1 // SPDX-License-Identifier: GPL-2.0+ 2 /* 3 * NILFS inode operations. 4 * 5 * Copyright (C) 2005-2008 Nippon Telegraph and Telephone Corporation. 6 * 7 * Written by Ryusuke Konishi. 8 * 9 */ 10 11 #include <linux/buffer_head.h> 12 #include <linux/gfp.h> 13 #include <linux/mpage.h> 14 #include <linux/pagemap.h> 15 #include <linux/writeback.h> 16 #include <linux/uio.h> 17 #include <linux/fiemap.h> 18 #include "nilfs.h" 19 #include "btnode.h" 20 #include "segment.h" 21 #include "page.h" 22 #include "mdt.h" 23 #include "cpfile.h" 24 #include "ifile.h" 25 26 /** 27 * struct nilfs_iget_args - arguments used during comparison between inodes 28 * @ino: inode number 29 * @cno: checkpoint number 30 * @root: pointer on NILFS root object (mounted checkpoint) 31 * @for_gc: inode for GC flag 32 * @for_btnc: inode for B-tree node cache flag 33 * @for_shadow: inode for shadowed page cache flag 34 */ 35 struct nilfs_iget_args { 36 u64 ino; 37 __u64 cno; 38 struct nilfs_root *root; 39 bool for_gc; 40 bool for_btnc; 41 bool for_shadow; 42 }; 43 44 static int nilfs_iget_test(struct inode *inode, void *opaque); 45 46 void nilfs_inode_add_blocks(struct inode *inode, int n) 47 { 48 struct nilfs_root *root = NILFS_I(inode)->i_root; 49 50 inode_add_bytes(inode, i_blocksize(inode) * n); 51 if (root) 52 atomic64_add(n, &root->blocks_count); 53 } 54 55 void nilfs_inode_sub_blocks(struct inode *inode, int n) 56 { 57 struct nilfs_root *root = NILFS_I(inode)->i_root; 58 59 inode_sub_bytes(inode, i_blocksize(inode) * n); 60 if (root) 61 atomic64_sub(n, &root->blocks_count); 62 } 63 64 /** 65 * nilfs_get_block() - get a file block on the filesystem (callback function) 66 * @inode: inode struct of the target file 67 * @blkoff: file block number 68 * @bh_result: buffer head to be mapped on 69 * @create: indicate whether allocating the block or not when it has not 70 * been allocated yet. 71 * 72 * This function does not issue actual read request of the specified data 73 * block. It is done by VFS. 74 */ 75 int nilfs_get_block(struct inode *inode, sector_t blkoff, 76 struct buffer_head *bh_result, int create) 77 { 78 struct nilfs_inode_info *ii = NILFS_I(inode); 79 struct the_nilfs *nilfs = inode->i_sb->s_fs_info; 80 __u64 blknum = 0; 81 int err = 0, ret; 82 unsigned int maxblocks = bh_result->b_size >> inode->i_blkbits; 83 84 down_read(&NILFS_MDT(nilfs->ns_dat)->mi_sem); 85 ret = nilfs_bmap_lookup_contig(ii->i_bmap, blkoff, &blknum, maxblocks); 86 up_read(&NILFS_MDT(nilfs->ns_dat)->mi_sem); 87 if (ret >= 0) { /* found */ 88 map_bh(bh_result, inode->i_sb, blknum); 89 if (ret > 0) 90 bh_result->b_size = (ret << inode->i_blkbits); 91 goto out; 92 } 93 /* data block was not found */ 94 if (ret == -ENOENT && create) { 95 struct nilfs_transaction_info ti; 96 97 bh_result->b_blocknr = 0; 98 err = nilfs_transaction_begin(inode->i_sb, &ti, 1); 99 if (unlikely(err)) 100 goto out; 101 err = nilfs_bmap_insert(ii->i_bmap, blkoff, 102 (unsigned long)bh_result); 103 if (unlikely(err != 0)) { 104 if (err == -EEXIST) { 105 /* 106 * The get_block() function could be called 107 * from multiple callers for an inode. 108 * However, the page having this block must 109 * be locked in this case. 110 */ 111 nilfs_warn(inode->i_sb, 112 "%s (ino=%lu): a race condition while inserting a data block at offset=%llu", 113 __func__, inode->i_ino, 114 (unsigned long long)blkoff); 115 err = -EAGAIN; 116 } 117 nilfs_transaction_abort(inode->i_sb); 118 goto out; 119 } 120 nilfs_mark_inode_dirty_sync(inode); 121 nilfs_transaction_commit(inode->i_sb); /* never fails */ 122 /* Error handling should be detailed */ 123 set_buffer_new(bh_result); 124 set_buffer_delay(bh_result); 125 map_bh(bh_result, inode->i_sb, 0); 126 /* Disk block number must be changed to proper value */ 127 128 } else if (ret == -ENOENT) { 129 /* 130 * not found is not error (e.g. hole); must return without 131 * the mapped state flag. 132 */ 133 ; 134 } else { 135 err = ret; 136 } 137 138 out: 139 return err; 140 } 141 142 /** 143 * nilfs_read_folio() - implement read_folio() method of nilfs_aops {} 144 * address_space_operations. 145 * @file: file struct of the file to be read 146 * @folio: the folio to be read 147 */ 148 static int nilfs_read_folio(struct file *file, struct folio *folio) 149 { 150 return mpage_read_folio(folio, nilfs_get_block); 151 } 152 153 static void nilfs_readahead(struct readahead_control *rac) 154 { 155 mpage_readahead(rac, nilfs_get_block); 156 } 157 158 static int nilfs_writepages(struct address_space *mapping, 159 struct writeback_control *wbc) 160 { 161 struct inode *inode = mapping->host; 162 int err = 0; 163 164 if (sb_rdonly(inode->i_sb)) { 165 nilfs_clear_dirty_pages(mapping, false); 166 return -EROFS; 167 } 168 169 if (wbc->sync_mode == WB_SYNC_ALL) 170 err = nilfs_construct_dsync_segment(inode->i_sb, inode, 171 wbc->range_start, 172 wbc->range_end); 173 return err; 174 } 175 176 static int nilfs_writepage(struct page *page, struct writeback_control *wbc) 177 { 178 struct folio *folio = page_folio(page); 179 struct inode *inode = folio->mapping->host; 180 int err; 181 182 if (sb_rdonly(inode->i_sb)) { 183 /* 184 * It means that filesystem was remounted in read-only 185 * mode because of error or metadata corruption. But we 186 * have dirty pages that try to be flushed in background. 187 * So, here we simply discard this dirty page. 188 */ 189 nilfs_clear_folio_dirty(folio, false); 190 folio_unlock(folio); 191 return -EROFS; 192 } 193 194 folio_redirty_for_writepage(wbc, folio); 195 folio_unlock(folio); 196 197 if (wbc->sync_mode == WB_SYNC_ALL) { 198 err = nilfs_construct_segment(inode->i_sb); 199 if (unlikely(err)) 200 return err; 201 } else if (wbc->for_reclaim) 202 nilfs_flush_segment(inode->i_sb, inode->i_ino); 203 204 return 0; 205 } 206 207 static bool nilfs_dirty_folio(struct address_space *mapping, 208 struct folio *folio) 209 { 210 struct inode *inode = mapping->host; 211 struct buffer_head *head; 212 unsigned int nr_dirty = 0; 213 bool ret = filemap_dirty_folio(mapping, folio); 214 215 /* 216 * The page may not be locked, eg if called from try_to_unmap_one() 217 */ 218 spin_lock(&mapping->i_private_lock); 219 head = folio_buffers(folio); 220 if (head) { 221 struct buffer_head *bh = head; 222 223 do { 224 /* Do not mark hole blocks dirty */ 225 if (buffer_dirty(bh) || !buffer_mapped(bh)) 226 continue; 227 228 set_buffer_dirty(bh); 229 nr_dirty++; 230 } while (bh = bh->b_this_page, bh != head); 231 } else if (ret) { 232 nr_dirty = 1 << (folio_shift(folio) - inode->i_blkbits); 233 } 234 spin_unlock(&mapping->i_private_lock); 235 236 if (nr_dirty) 237 nilfs_set_file_dirty(inode, nr_dirty); 238 return ret; 239 } 240 241 void nilfs_write_failed(struct address_space *mapping, loff_t to) 242 { 243 struct inode *inode = mapping->host; 244 245 if (to > inode->i_size) { 246 truncate_pagecache(inode, inode->i_size); 247 nilfs_truncate(inode); 248 } 249 } 250 251 static int nilfs_write_begin(struct file *file, struct address_space *mapping, 252 loff_t pos, unsigned len, 253 struct page **pagep, void **fsdata) 254 255 { 256 struct inode *inode = mapping->host; 257 int err = nilfs_transaction_begin(inode->i_sb, NULL, 1); 258 259 if (unlikely(err)) 260 return err; 261 262 err = block_write_begin(mapping, pos, len, pagep, nilfs_get_block); 263 if (unlikely(err)) { 264 nilfs_write_failed(mapping, pos + len); 265 nilfs_transaction_abort(inode->i_sb); 266 } 267 return err; 268 } 269 270 static int nilfs_write_end(struct file *file, struct address_space *mapping, 271 loff_t pos, unsigned len, unsigned copied, 272 struct page *page, void *fsdata) 273 { 274 struct inode *inode = mapping->host; 275 unsigned int start = pos & (PAGE_SIZE - 1); 276 unsigned int nr_dirty; 277 int err; 278 279 nr_dirty = nilfs_page_count_clean_buffers(page, start, 280 start + copied); 281 copied = generic_write_end(file, mapping, pos, len, copied, page, 282 fsdata); 283 nilfs_set_file_dirty(inode, nr_dirty); 284 err = nilfs_transaction_commit(inode->i_sb); 285 return err ? : copied; 286 } 287 288 static ssize_t 289 nilfs_direct_IO(struct kiocb *iocb, struct iov_iter *iter) 290 { 291 struct inode *inode = file_inode(iocb->ki_filp); 292 293 if (iov_iter_rw(iter) == WRITE) 294 return 0; 295 296 /* Needs synchronization with the cleaner */ 297 return blockdev_direct_IO(iocb, inode, iter, nilfs_get_block); 298 } 299 300 const struct address_space_operations nilfs_aops = { 301 .writepage = nilfs_writepage, 302 .read_folio = nilfs_read_folio, 303 .writepages = nilfs_writepages, 304 .dirty_folio = nilfs_dirty_folio, 305 .readahead = nilfs_readahead, 306 .write_begin = nilfs_write_begin, 307 .write_end = nilfs_write_end, 308 .invalidate_folio = block_invalidate_folio, 309 .direct_IO = nilfs_direct_IO, 310 .is_partially_uptodate = block_is_partially_uptodate, 311 }; 312 313 static int nilfs_insert_inode_locked(struct inode *inode, 314 struct nilfs_root *root, 315 unsigned long ino) 316 { 317 struct nilfs_iget_args args = { 318 .ino = ino, .root = root, .cno = 0, .for_gc = false, 319 .for_btnc = false, .for_shadow = false 320 }; 321 322 return insert_inode_locked4(inode, ino, nilfs_iget_test, &args); 323 } 324 325 struct inode *nilfs_new_inode(struct inode *dir, umode_t mode) 326 { 327 struct super_block *sb = dir->i_sb; 328 struct the_nilfs *nilfs = sb->s_fs_info; 329 struct inode *inode; 330 struct nilfs_inode_info *ii; 331 struct nilfs_root *root; 332 struct buffer_head *bh; 333 int err = -ENOMEM; 334 ino_t ino; 335 336 inode = new_inode(sb); 337 if (unlikely(!inode)) 338 goto failed; 339 340 mapping_set_gfp_mask(inode->i_mapping, 341 mapping_gfp_constraint(inode->i_mapping, ~__GFP_FS)); 342 343 root = NILFS_I(dir)->i_root; 344 ii = NILFS_I(inode); 345 ii->i_state = BIT(NILFS_I_NEW); 346 ii->i_root = root; 347 348 err = nilfs_ifile_create_inode(root->ifile, &ino, &bh); 349 if (unlikely(err)) 350 goto failed_ifile_create_inode; 351 /* reference count of i_bh inherits from nilfs_mdt_read_block() */ 352 353 if (unlikely(ino < NILFS_USER_INO)) { 354 nilfs_warn(sb, 355 "inode bitmap is inconsistent for reserved inodes"); 356 do { 357 brelse(bh); 358 err = nilfs_ifile_create_inode(root->ifile, &ino, &bh); 359 if (unlikely(err)) 360 goto failed_ifile_create_inode; 361 } while (ino < NILFS_USER_INO); 362 363 nilfs_info(sb, "repaired inode bitmap for reserved inodes"); 364 } 365 ii->i_bh = bh; 366 367 atomic64_inc(&root->inodes_count); 368 inode_init_owner(&nop_mnt_idmap, inode, dir, mode); 369 inode->i_ino = ino; 370 simple_inode_init_ts(inode); 371 372 if (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode)) { 373 err = nilfs_bmap_read(ii->i_bmap, NULL); 374 if (err < 0) 375 goto failed_after_creation; 376 377 set_bit(NILFS_I_BMAP, &ii->i_state); 378 /* No lock is needed; iget() ensures it. */ 379 } 380 381 ii->i_flags = nilfs_mask_flags( 382 mode, NILFS_I(dir)->i_flags & NILFS_FL_INHERITED); 383 384 /* ii->i_file_acl = 0; */ 385 /* ii->i_dir_acl = 0; */ 386 ii->i_dir_start_lookup = 0; 387 nilfs_set_inode_flags(inode); 388 spin_lock(&nilfs->ns_next_gen_lock); 389 inode->i_generation = nilfs->ns_next_generation++; 390 spin_unlock(&nilfs->ns_next_gen_lock); 391 if (nilfs_insert_inode_locked(inode, root, ino) < 0) { 392 err = -EIO; 393 goto failed_after_creation; 394 } 395 396 err = nilfs_init_acl(inode, dir); 397 if (unlikely(err)) 398 /* 399 * Never occur. When supporting nilfs_init_acl(), 400 * proper cancellation of above jobs should be considered. 401 */ 402 goto failed_after_creation; 403 404 return inode; 405 406 failed_after_creation: 407 clear_nlink(inode); 408 if (inode->i_state & I_NEW) 409 unlock_new_inode(inode); 410 iput(inode); /* 411 * raw_inode will be deleted through 412 * nilfs_evict_inode(). 413 */ 414 goto failed; 415 416 failed_ifile_create_inode: 417 make_bad_inode(inode); 418 iput(inode); 419 failed: 420 return ERR_PTR(err); 421 } 422 423 void nilfs_set_inode_flags(struct inode *inode) 424 { 425 unsigned int flags = NILFS_I(inode)->i_flags; 426 unsigned int new_fl = 0; 427 428 if (flags & FS_SYNC_FL) 429 new_fl |= S_SYNC; 430 if (flags & FS_APPEND_FL) 431 new_fl |= S_APPEND; 432 if (flags & FS_IMMUTABLE_FL) 433 new_fl |= S_IMMUTABLE; 434 if (flags & FS_NOATIME_FL) 435 new_fl |= S_NOATIME; 436 if (flags & FS_DIRSYNC_FL) 437 new_fl |= S_DIRSYNC; 438 inode_set_flags(inode, new_fl, S_SYNC | S_APPEND | S_IMMUTABLE | 439 S_NOATIME | S_DIRSYNC); 440 } 441 442 int nilfs_read_inode_common(struct inode *inode, 443 struct nilfs_inode *raw_inode) 444 { 445 struct nilfs_inode_info *ii = NILFS_I(inode); 446 int err; 447 448 inode->i_mode = le16_to_cpu(raw_inode->i_mode); 449 i_uid_write(inode, le32_to_cpu(raw_inode->i_uid)); 450 i_gid_write(inode, le32_to_cpu(raw_inode->i_gid)); 451 set_nlink(inode, le16_to_cpu(raw_inode->i_links_count)); 452 inode->i_size = le64_to_cpu(raw_inode->i_size); 453 inode_set_atime(inode, le64_to_cpu(raw_inode->i_mtime), 454 le32_to_cpu(raw_inode->i_mtime_nsec)); 455 inode_set_ctime(inode, le64_to_cpu(raw_inode->i_ctime), 456 le32_to_cpu(raw_inode->i_ctime_nsec)); 457 inode_set_mtime(inode, le64_to_cpu(raw_inode->i_mtime), 458 le32_to_cpu(raw_inode->i_mtime_nsec)); 459 if (nilfs_is_metadata_file_inode(inode) && !S_ISREG(inode->i_mode)) 460 return -EIO; /* this inode is for metadata and corrupted */ 461 if (inode->i_nlink == 0) 462 return -ESTALE; /* this inode is deleted */ 463 464 inode->i_blocks = le64_to_cpu(raw_inode->i_blocks); 465 ii->i_flags = le32_to_cpu(raw_inode->i_flags); 466 #if 0 467 ii->i_file_acl = le32_to_cpu(raw_inode->i_file_acl); 468 ii->i_dir_acl = S_ISREG(inode->i_mode) ? 469 0 : le32_to_cpu(raw_inode->i_dir_acl); 470 #endif 471 ii->i_dir_start_lookup = 0; 472 inode->i_generation = le32_to_cpu(raw_inode->i_generation); 473 474 if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) || 475 S_ISLNK(inode->i_mode)) { 476 err = nilfs_bmap_read(ii->i_bmap, raw_inode); 477 if (err < 0) 478 return err; 479 set_bit(NILFS_I_BMAP, &ii->i_state); 480 /* No lock is needed; iget() ensures it. */ 481 } 482 return 0; 483 } 484 485 static int __nilfs_read_inode(struct super_block *sb, 486 struct nilfs_root *root, unsigned long ino, 487 struct inode *inode) 488 { 489 struct the_nilfs *nilfs = sb->s_fs_info; 490 struct buffer_head *bh; 491 struct nilfs_inode *raw_inode; 492 int err; 493 494 down_read(&NILFS_MDT(nilfs->ns_dat)->mi_sem); 495 err = nilfs_ifile_get_inode_block(root->ifile, ino, &bh); 496 if (unlikely(err)) 497 goto bad_inode; 498 499 raw_inode = nilfs_ifile_map_inode(root->ifile, ino, bh); 500 501 err = nilfs_read_inode_common(inode, raw_inode); 502 if (err) 503 goto failed_unmap; 504 505 if (S_ISREG(inode->i_mode)) { 506 inode->i_op = &nilfs_file_inode_operations; 507 inode->i_fop = &nilfs_file_operations; 508 inode->i_mapping->a_ops = &nilfs_aops; 509 } else if (S_ISDIR(inode->i_mode)) { 510 inode->i_op = &nilfs_dir_inode_operations; 511 inode->i_fop = &nilfs_dir_operations; 512 inode->i_mapping->a_ops = &nilfs_aops; 513 } else if (S_ISLNK(inode->i_mode)) { 514 inode->i_op = &nilfs_symlink_inode_operations; 515 inode_nohighmem(inode); 516 inode->i_mapping->a_ops = &nilfs_aops; 517 } else { 518 inode->i_op = &nilfs_special_inode_operations; 519 init_special_inode( 520 inode, inode->i_mode, 521 huge_decode_dev(le64_to_cpu(raw_inode->i_device_code))); 522 } 523 nilfs_ifile_unmap_inode(raw_inode); 524 brelse(bh); 525 up_read(&NILFS_MDT(nilfs->ns_dat)->mi_sem); 526 nilfs_set_inode_flags(inode); 527 mapping_set_gfp_mask(inode->i_mapping, 528 mapping_gfp_constraint(inode->i_mapping, ~__GFP_FS)); 529 return 0; 530 531 failed_unmap: 532 nilfs_ifile_unmap_inode(raw_inode); 533 brelse(bh); 534 535 bad_inode: 536 up_read(&NILFS_MDT(nilfs->ns_dat)->mi_sem); 537 return err; 538 } 539 540 static int nilfs_iget_test(struct inode *inode, void *opaque) 541 { 542 struct nilfs_iget_args *args = opaque; 543 struct nilfs_inode_info *ii; 544 545 if (args->ino != inode->i_ino || args->root != NILFS_I(inode)->i_root) 546 return 0; 547 548 ii = NILFS_I(inode); 549 if (test_bit(NILFS_I_BTNC, &ii->i_state)) { 550 if (!args->for_btnc) 551 return 0; 552 } else if (args->for_btnc) { 553 return 0; 554 } 555 if (test_bit(NILFS_I_SHADOW, &ii->i_state)) { 556 if (!args->for_shadow) 557 return 0; 558 } else if (args->for_shadow) { 559 return 0; 560 } 561 562 if (!test_bit(NILFS_I_GCINODE, &ii->i_state)) 563 return !args->for_gc; 564 565 return args->for_gc && args->cno == ii->i_cno; 566 } 567 568 static int nilfs_iget_set(struct inode *inode, void *opaque) 569 { 570 struct nilfs_iget_args *args = opaque; 571 572 inode->i_ino = args->ino; 573 NILFS_I(inode)->i_cno = args->cno; 574 NILFS_I(inode)->i_root = args->root; 575 if (args->root && args->ino == NILFS_ROOT_INO) 576 nilfs_get_root(args->root); 577 578 if (args->for_gc) 579 NILFS_I(inode)->i_state = BIT(NILFS_I_GCINODE); 580 if (args->for_btnc) 581 NILFS_I(inode)->i_state |= BIT(NILFS_I_BTNC); 582 if (args->for_shadow) 583 NILFS_I(inode)->i_state |= BIT(NILFS_I_SHADOW); 584 return 0; 585 } 586 587 struct inode *nilfs_ilookup(struct super_block *sb, struct nilfs_root *root, 588 unsigned long ino) 589 { 590 struct nilfs_iget_args args = { 591 .ino = ino, .root = root, .cno = 0, .for_gc = false, 592 .for_btnc = false, .for_shadow = false 593 }; 594 595 return ilookup5(sb, ino, nilfs_iget_test, &args); 596 } 597 598 struct inode *nilfs_iget_locked(struct super_block *sb, struct nilfs_root *root, 599 unsigned long ino) 600 { 601 struct nilfs_iget_args args = { 602 .ino = ino, .root = root, .cno = 0, .for_gc = false, 603 .for_btnc = false, .for_shadow = false 604 }; 605 606 return iget5_locked(sb, ino, nilfs_iget_test, nilfs_iget_set, &args); 607 } 608 609 struct inode *nilfs_iget(struct super_block *sb, struct nilfs_root *root, 610 unsigned long ino) 611 { 612 struct inode *inode; 613 int err; 614 615 inode = nilfs_iget_locked(sb, root, ino); 616 if (unlikely(!inode)) 617 return ERR_PTR(-ENOMEM); 618 if (!(inode->i_state & I_NEW)) 619 return inode; 620 621 err = __nilfs_read_inode(sb, root, ino, inode); 622 if (unlikely(err)) { 623 iget_failed(inode); 624 return ERR_PTR(err); 625 } 626 unlock_new_inode(inode); 627 return inode; 628 } 629 630 struct inode *nilfs_iget_for_gc(struct super_block *sb, unsigned long ino, 631 __u64 cno) 632 { 633 struct nilfs_iget_args args = { 634 .ino = ino, .root = NULL, .cno = cno, .for_gc = true, 635 .for_btnc = false, .for_shadow = false 636 }; 637 struct inode *inode; 638 int err; 639 640 inode = iget5_locked(sb, ino, nilfs_iget_test, nilfs_iget_set, &args); 641 if (unlikely(!inode)) 642 return ERR_PTR(-ENOMEM); 643 if (!(inode->i_state & I_NEW)) 644 return inode; 645 646 err = nilfs_init_gcinode(inode); 647 if (unlikely(err)) { 648 iget_failed(inode); 649 return ERR_PTR(err); 650 } 651 unlock_new_inode(inode); 652 return inode; 653 } 654 655 /** 656 * nilfs_attach_btree_node_cache - attach a B-tree node cache to the inode 657 * @inode: inode object 658 * 659 * nilfs_attach_btree_node_cache() attaches a B-tree node cache to @inode, 660 * or does nothing if the inode already has it. This function allocates 661 * an additional inode to maintain page cache of B-tree nodes one-on-one. 662 * 663 * Return Value: On success, 0 is returned. On errors, one of the following 664 * negative error code is returned. 665 * 666 * %-ENOMEM - Insufficient memory available. 667 */ 668 int nilfs_attach_btree_node_cache(struct inode *inode) 669 { 670 struct nilfs_inode_info *ii = NILFS_I(inode); 671 struct inode *btnc_inode; 672 struct nilfs_iget_args args; 673 674 if (ii->i_assoc_inode) 675 return 0; 676 677 args.ino = inode->i_ino; 678 args.root = ii->i_root; 679 args.cno = ii->i_cno; 680 args.for_gc = test_bit(NILFS_I_GCINODE, &ii->i_state) != 0; 681 args.for_btnc = true; 682 args.for_shadow = test_bit(NILFS_I_SHADOW, &ii->i_state) != 0; 683 684 btnc_inode = iget5_locked(inode->i_sb, inode->i_ino, nilfs_iget_test, 685 nilfs_iget_set, &args); 686 if (unlikely(!btnc_inode)) 687 return -ENOMEM; 688 if (btnc_inode->i_state & I_NEW) { 689 nilfs_init_btnc_inode(btnc_inode); 690 unlock_new_inode(btnc_inode); 691 } 692 NILFS_I(btnc_inode)->i_assoc_inode = inode; 693 NILFS_I(btnc_inode)->i_bmap = ii->i_bmap; 694 ii->i_assoc_inode = btnc_inode; 695 696 return 0; 697 } 698 699 /** 700 * nilfs_detach_btree_node_cache - detach the B-tree node cache from the inode 701 * @inode: inode object 702 * 703 * nilfs_detach_btree_node_cache() detaches the B-tree node cache and its 704 * holder inode bound to @inode, or does nothing if @inode doesn't have it. 705 */ 706 void nilfs_detach_btree_node_cache(struct inode *inode) 707 { 708 struct nilfs_inode_info *ii = NILFS_I(inode); 709 struct inode *btnc_inode = ii->i_assoc_inode; 710 711 if (btnc_inode) { 712 NILFS_I(btnc_inode)->i_assoc_inode = NULL; 713 ii->i_assoc_inode = NULL; 714 iput(btnc_inode); 715 } 716 } 717 718 /** 719 * nilfs_iget_for_shadow - obtain inode for shadow mapping 720 * @inode: inode object that uses shadow mapping 721 * 722 * nilfs_iget_for_shadow() allocates a pair of inodes that holds page 723 * caches for shadow mapping. The page cache for data pages is set up 724 * in one inode and the one for b-tree node pages is set up in the 725 * other inode, which is attached to the former inode. 726 * 727 * Return Value: On success, a pointer to the inode for data pages is 728 * returned. On errors, one of the following negative error code is returned 729 * in a pointer type. 730 * 731 * %-ENOMEM - Insufficient memory available. 732 */ 733 struct inode *nilfs_iget_for_shadow(struct inode *inode) 734 { 735 struct nilfs_iget_args args = { 736 .ino = inode->i_ino, .root = NULL, .cno = 0, .for_gc = false, 737 .for_btnc = false, .for_shadow = true 738 }; 739 struct inode *s_inode; 740 int err; 741 742 s_inode = iget5_locked(inode->i_sb, inode->i_ino, nilfs_iget_test, 743 nilfs_iget_set, &args); 744 if (unlikely(!s_inode)) 745 return ERR_PTR(-ENOMEM); 746 if (!(s_inode->i_state & I_NEW)) 747 return inode; 748 749 NILFS_I(s_inode)->i_flags = 0; 750 memset(NILFS_I(s_inode)->i_bmap, 0, sizeof(struct nilfs_bmap)); 751 mapping_set_gfp_mask(s_inode->i_mapping, GFP_NOFS); 752 753 err = nilfs_attach_btree_node_cache(s_inode); 754 if (unlikely(err)) { 755 iget_failed(s_inode); 756 return ERR_PTR(err); 757 } 758 unlock_new_inode(s_inode); 759 return s_inode; 760 } 761 762 /** 763 * nilfs_write_inode_common - export common inode information to on-disk inode 764 * @inode: inode object 765 * @raw_inode: on-disk inode 766 * 767 * This function writes standard information from the on-memory inode @inode 768 * to @raw_inode on ifile, cpfile or a super root block. Since inode bmap 769 * data is not exported, nilfs_bmap_write() must be called separately during 770 * log writing. 771 */ 772 void nilfs_write_inode_common(struct inode *inode, 773 struct nilfs_inode *raw_inode) 774 { 775 struct nilfs_inode_info *ii = NILFS_I(inode); 776 777 raw_inode->i_mode = cpu_to_le16(inode->i_mode); 778 raw_inode->i_uid = cpu_to_le32(i_uid_read(inode)); 779 raw_inode->i_gid = cpu_to_le32(i_gid_read(inode)); 780 raw_inode->i_links_count = cpu_to_le16(inode->i_nlink); 781 raw_inode->i_size = cpu_to_le64(inode->i_size); 782 raw_inode->i_ctime = cpu_to_le64(inode_get_ctime_sec(inode)); 783 raw_inode->i_mtime = cpu_to_le64(inode_get_mtime_sec(inode)); 784 raw_inode->i_ctime_nsec = cpu_to_le32(inode_get_ctime_nsec(inode)); 785 raw_inode->i_mtime_nsec = cpu_to_le32(inode_get_mtime_nsec(inode)); 786 raw_inode->i_blocks = cpu_to_le64(inode->i_blocks); 787 788 raw_inode->i_flags = cpu_to_le32(ii->i_flags); 789 raw_inode->i_generation = cpu_to_le32(inode->i_generation); 790 791 /* 792 * When extending inode, nilfs->ns_inode_size should be checked 793 * for substitutions of appended fields. 794 */ 795 } 796 797 void nilfs_update_inode(struct inode *inode, struct buffer_head *ibh, int flags) 798 { 799 ino_t ino = inode->i_ino; 800 struct nilfs_inode_info *ii = NILFS_I(inode); 801 struct inode *ifile = ii->i_root->ifile; 802 struct nilfs_inode *raw_inode; 803 804 raw_inode = nilfs_ifile_map_inode(ifile, ino, ibh); 805 806 if (test_and_clear_bit(NILFS_I_NEW, &ii->i_state)) 807 memset(raw_inode, 0, NILFS_MDT(ifile)->mi_entry_size); 808 if (flags & I_DIRTY_DATASYNC) 809 set_bit(NILFS_I_INODE_SYNC, &ii->i_state); 810 811 nilfs_write_inode_common(inode, raw_inode); 812 813 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) 814 raw_inode->i_device_code = 815 cpu_to_le64(huge_encode_dev(inode->i_rdev)); 816 817 nilfs_ifile_unmap_inode(raw_inode); 818 } 819 820 #define NILFS_MAX_TRUNCATE_BLOCKS 16384 /* 64MB for 4KB block */ 821 822 static void nilfs_truncate_bmap(struct nilfs_inode_info *ii, 823 unsigned long from) 824 { 825 __u64 b; 826 int ret; 827 828 if (!test_bit(NILFS_I_BMAP, &ii->i_state)) 829 return; 830 repeat: 831 ret = nilfs_bmap_last_key(ii->i_bmap, &b); 832 if (ret == -ENOENT) 833 return; 834 else if (ret < 0) 835 goto failed; 836 837 if (b < from) 838 return; 839 840 b -= min_t(__u64, NILFS_MAX_TRUNCATE_BLOCKS, b - from); 841 ret = nilfs_bmap_truncate(ii->i_bmap, b); 842 nilfs_relax_pressure_in_lock(ii->vfs_inode.i_sb); 843 if (!ret || (ret == -ENOMEM && 844 nilfs_bmap_truncate(ii->i_bmap, b) == 0)) 845 goto repeat; 846 847 failed: 848 nilfs_warn(ii->vfs_inode.i_sb, "error %d truncating bmap (ino=%lu)", 849 ret, ii->vfs_inode.i_ino); 850 } 851 852 void nilfs_truncate(struct inode *inode) 853 { 854 unsigned long blkoff; 855 unsigned int blocksize; 856 struct nilfs_transaction_info ti; 857 struct super_block *sb = inode->i_sb; 858 struct nilfs_inode_info *ii = NILFS_I(inode); 859 860 if (!test_bit(NILFS_I_BMAP, &ii->i_state)) 861 return; 862 if (IS_APPEND(inode) || IS_IMMUTABLE(inode)) 863 return; 864 865 blocksize = sb->s_blocksize; 866 blkoff = (inode->i_size + blocksize - 1) >> sb->s_blocksize_bits; 867 nilfs_transaction_begin(sb, &ti, 0); /* never fails */ 868 869 block_truncate_page(inode->i_mapping, inode->i_size, nilfs_get_block); 870 871 nilfs_truncate_bmap(ii, blkoff); 872 873 inode_set_mtime_to_ts(inode, inode_set_ctime_current(inode)); 874 if (IS_SYNC(inode)) 875 nilfs_set_transaction_flag(NILFS_TI_SYNC); 876 877 nilfs_mark_inode_dirty(inode); 878 nilfs_set_file_dirty(inode, 0); 879 nilfs_transaction_commit(sb); 880 /* 881 * May construct a logical segment and may fail in sync mode. 882 * But truncate has no return value. 883 */ 884 } 885 886 static void nilfs_clear_inode(struct inode *inode) 887 { 888 struct nilfs_inode_info *ii = NILFS_I(inode); 889 890 /* 891 * Free resources allocated in nilfs_read_inode(), here. 892 */ 893 BUG_ON(!list_empty(&ii->i_dirty)); 894 brelse(ii->i_bh); 895 ii->i_bh = NULL; 896 897 if (nilfs_is_metadata_file_inode(inode)) 898 nilfs_mdt_clear(inode); 899 900 if (test_bit(NILFS_I_BMAP, &ii->i_state)) 901 nilfs_bmap_clear(ii->i_bmap); 902 903 if (!test_bit(NILFS_I_BTNC, &ii->i_state)) 904 nilfs_detach_btree_node_cache(inode); 905 906 if (ii->i_root && inode->i_ino == NILFS_ROOT_INO) 907 nilfs_put_root(ii->i_root); 908 } 909 910 void nilfs_evict_inode(struct inode *inode) 911 { 912 struct nilfs_transaction_info ti; 913 struct super_block *sb = inode->i_sb; 914 struct nilfs_inode_info *ii = NILFS_I(inode); 915 struct the_nilfs *nilfs; 916 int ret; 917 918 if (inode->i_nlink || !ii->i_root || unlikely(is_bad_inode(inode))) { 919 truncate_inode_pages_final(&inode->i_data); 920 clear_inode(inode); 921 nilfs_clear_inode(inode); 922 return; 923 } 924 nilfs_transaction_begin(sb, &ti, 0); /* never fails */ 925 926 truncate_inode_pages_final(&inode->i_data); 927 928 nilfs = sb->s_fs_info; 929 if (unlikely(sb_rdonly(sb) || !nilfs->ns_writer)) { 930 /* 931 * If this inode is about to be disposed after the file system 932 * has been degraded to read-only due to file system corruption 933 * or after the writer has been detached, do not make any 934 * changes that cause writes, just clear it. 935 * Do this check after read-locking ns_segctor_sem by 936 * nilfs_transaction_begin() in order to avoid a race with 937 * the writer detach operation. 938 */ 939 clear_inode(inode); 940 nilfs_clear_inode(inode); 941 nilfs_transaction_abort(sb); 942 return; 943 } 944 945 /* TODO: some of the following operations may fail. */ 946 nilfs_truncate_bmap(ii, 0); 947 nilfs_mark_inode_dirty(inode); 948 clear_inode(inode); 949 950 ret = nilfs_ifile_delete_inode(ii->i_root->ifile, inode->i_ino); 951 if (!ret) 952 atomic64_dec(&ii->i_root->inodes_count); 953 954 nilfs_clear_inode(inode); 955 956 if (IS_SYNC(inode)) 957 nilfs_set_transaction_flag(NILFS_TI_SYNC); 958 nilfs_transaction_commit(sb); 959 /* 960 * May construct a logical segment and may fail in sync mode. 961 * But delete_inode has no return value. 962 */ 963 } 964 965 int nilfs_setattr(struct mnt_idmap *idmap, struct dentry *dentry, 966 struct iattr *iattr) 967 { 968 struct nilfs_transaction_info ti; 969 struct inode *inode = d_inode(dentry); 970 struct super_block *sb = inode->i_sb; 971 int err; 972 973 err = setattr_prepare(&nop_mnt_idmap, dentry, iattr); 974 if (err) 975 return err; 976 977 err = nilfs_transaction_begin(sb, &ti, 0); 978 if (unlikely(err)) 979 return err; 980 981 if ((iattr->ia_valid & ATTR_SIZE) && 982 iattr->ia_size != i_size_read(inode)) { 983 inode_dio_wait(inode); 984 truncate_setsize(inode, iattr->ia_size); 985 nilfs_truncate(inode); 986 } 987 988 setattr_copy(&nop_mnt_idmap, inode, iattr); 989 mark_inode_dirty(inode); 990 991 if (iattr->ia_valid & ATTR_MODE) { 992 err = nilfs_acl_chmod(inode); 993 if (unlikely(err)) 994 goto out_err; 995 } 996 997 return nilfs_transaction_commit(sb); 998 999 out_err: 1000 nilfs_transaction_abort(sb); 1001 return err; 1002 } 1003 1004 int nilfs_permission(struct mnt_idmap *idmap, struct inode *inode, 1005 int mask) 1006 { 1007 struct nilfs_root *root = NILFS_I(inode)->i_root; 1008 1009 if ((mask & MAY_WRITE) && root && 1010 root->cno != NILFS_CPTREE_CURRENT_CNO) 1011 return -EROFS; /* snapshot is not writable */ 1012 1013 return generic_permission(&nop_mnt_idmap, inode, mask); 1014 } 1015 1016 int nilfs_load_inode_block(struct inode *inode, struct buffer_head **pbh) 1017 { 1018 struct the_nilfs *nilfs = inode->i_sb->s_fs_info; 1019 struct nilfs_inode_info *ii = NILFS_I(inode); 1020 int err; 1021 1022 spin_lock(&nilfs->ns_inode_lock); 1023 if (ii->i_bh == NULL || unlikely(!buffer_uptodate(ii->i_bh))) { 1024 spin_unlock(&nilfs->ns_inode_lock); 1025 err = nilfs_ifile_get_inode_block(ii->i_root->ifile, 1026 inode->i_ino, pbh); 1027 if (unlikely(err)) 1028 return err; 1029 spin_lock(&nilfs->ns_inode_lock); 1030 if (ii->i_bh == NULL) 1031 ii->i_bh = *pbh; 1032 else if (unlikely(!buffer_uptodate(ii->i_bh))) { 1033 __brelse(ii->i_bh); 1034 ii->i_bh = *pbh; 1035 } else { 1036 brelse(*pbh); 1037 *pbh = ii->i_bh; 1038 } 1039 } else 1040 *pbh = ii->i_bh; 1041 1042 get_bh(*pbh); 1043 spin_unlock(&nilfs->ns_inode_lock); 1044 return 0; 1045 } 1046 1047 int nilfs_inode_dirty(struct inode *inode) 1048 { 1049 struct nilfs_inode_info *ii = NILFS_I(inode); 1050 struct the_nilfs *nilfs = inode->i_sb->s_fs_info; 1051 int ret = 0; 1052 1053 if (!list_empty(&ii->i_dirty)) { 1054 spin_lock(&nilfs->ns_inode_lock); 1055 ret = test_bit(NILFS_I_DIRTY, &ii->i_state) || 1056 test_bit(NILFS_I_BUSY, &ii->i_state); 1057 spin_unlock(&nilfs->ns_inode_lock); 1058 } 1059 return ret; 1060 } 1061 1062 int nilfs_set_file_dirty(struct inode *inode, unsigned int nr_dirty) 1063 { 1064 struct nilfs_inode_info *ii = NILFS_I(inode); 1065 struct the_nilfs *nilfs = inode->i_sb->s_fs_info; 1066 1067 atomic_add(nr_dirty, &nilfs->ns_ndirtyblks); 1068 1069 if (test_and_set_bit(NILFS_I_DIRTY, &ii->i_state)) 1070 return 0; 1071 1072 spin_lock(&nilfs->ns_inode_lock); 1073 if (!test_bit(NILFS_I_QUEUED, &ii->i_state) && 1074 !test_bit(NILFS_I_BUSY, &ii->i_state)) { 1075 /* 1076 * Because this routine may race with nilfs_dispose_list(), 1077 * we have to check NILFS_I_QUEUED here, too. 1078 */ 1079 if (list_empty(&ii->i_dirty) && igrab(inode) == NULL) { 1080 /* 1081 * This will happen when somebody is freeing 1082 * this inode. 1083 */ 1084 nilfs_warn(inode->i_sb, 1085 "cannot set file dirty (ino=%lu): the file is being freed", 1086 inode->i_ino); 1087 spin_unlock(&nilfs->ns_inode_lock); 1088 return -EINVAL; /* 1089 * NILFS_I_DIRTY may remain for 1090 * freeing inode. 1091 */ 1092 } 1093 list_move_tail(&ii->i_dirty, &nilfs->ns_dirty_files); 1094 set_bit(NILFS_I_QUEUED, &ii->i_state); 1095 } 1096 spin_unlock(&nilfs->ns_inode_lock); 1097 return 0; 1098 } 1099 1100 int __nilfs_mark_inode_dirty(struct inode *inode, int flags) 1101 { 1102 struct the_nilfs *nilfs = inode->i_sb->s_fs_info; 1103 struct buffer_head *ibh; 1104 int err; 1105 1106 /* 1107 * Do not dirty inodes after the log writer has been detached 1108 * and its nilfs_root struct has been freed. 1109 */ 1110 if (unlikely(nilfs_purging(nilfs))) 1111 return 0; 1112 1113 err = nilfs_load_inode_block(inode, &ibh); 1114 if (unlikely(err)) { 1115 nilfs_warn(inode->i_sb, 1116 "cannot mark inode dirty (ino=%lu): error %d loading inode block", 1117 inode->i_ino, err); 1118 return err; 1119 } 1120 nilfs_update_inode(inode, ibh, flags); 1121 mark_buffer_dirty(ibh); 1122 nilfs_mdt_mark_dirty(NILFS_I(inode)->i_root->ifile); 1123 brelse(ibh); 1124 return 0; 1125 } 1126 1127 /** 1128 * nilfs_dirty_inode - reflect changes on given inode to an inode block. 1129 * @inode: inode of the file to be registered. 1130 * @flags: flags to determine the dirty state of the inode 1131 * 1132 * nilfs_dirty_inode() loads a inode block containing the specified 1133 * @inode and copies data from a nilfs_inode to a corresponding inode 1134 * entry in the inode block. This operation is excluded from the segment 1135 * construction. This function can be called both as a single operation 1136 * and as a part of indivisible file operations. 1137 */ 1138 void nilfs_dirty_inode(struct inode *inode, int flags) 1139 { 1140 struct nilfs_transaction_info ti; 1141 struct nilfs_mdt_info *mdi = NILFS_MDT(inode); 1142 1143 if (is_bad_inode(inode)) { 1144 nilfs_warn(inode->i_sb, 1145 "tried to mark bad_inode dirty. ignored."); 1146 dump_stack(); 1147 return; 1148 } 1149 if (mdi) { 1150 nilfs_mdt_mark_dirty(inode); 1151 return; 1152 } 1153 nilfs_transaction_begin(inode->i_sb, &ti, 0); 1154 __nilfs_mark_inode_dirty(inode, flags); 1155 nilfs_transaction_commit(inode->i_sb); /* never fails */ 1156 } 1157 1158 int nilfs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo, 1159 __u64 start, __u64 len) 1160 { 1161 struct the_nilfs *nilfs = inode->i_sb->s_fs_info; 1162 __u64 logical = 0, phys = 0, size = 0; 1163 __u32 flags = 0; 1164 loff_t isize; 1165 sector_t blkoff, end_blkoff; 1166 sector_t delalloc_blkoff; 1167 unsigned long delalloc_blklen; 1168 unsigned int blkbits = inode->i_blkbits; 1169 int ret, n; 1170 1171 ret = fiemap_prep(inode, fieinfo, start, &len, 0); 1172 if (ret) 1173 return ret; 1174 1175 inode_lock(inode); 1176 1177 isize = i_size_read(inode); 1178 1179 blkoff = start >> blkbits; 1180 end_blkoff = (start + len - 1) >> blkbits; 1181 1182 delalloc_blklen = nilfs_find_uncommitted_extent(inode, blkoff, 1183 &delalloc_blkoff); 1184 1185 do { 1186 __u64 blkphy; 1187 unsigned int maxblocks; 1188 1189 if (delalloc_blklen && blkoff == delalloc_blkoff) { 1190 if (size) { 1191 /* End of the current extent */ 1192 ret = fiemap_fill_next_extent( 1193 fieinfo, logical, phys, size, flags); 1194 if (ret) 1195 break; 1196 } 1197 if (blkoff > end_blkoff) 1198 break; 1199 1200 flags = FIEMAP_EXTENT_MERGED | FIEMAP_EXTENT_DELALLOC; 1201 logical = blkoff << blkbits; 1202 phys = 0; 1203 size = delalloc_blklen << blkbits; 1204 1205 blkoff = delalloc_blkoff + delalloc_blklen; 1206 delalloc_blklen = nilfs_find_uncommitted_extent( 1207 inode, blkoff, &delalloc_blkoff); 1208 continue; 1209 } 1210 1211 /* 1212 * Limit the number of blocks that we look up so as 1213 * not to get into the next delayed allocation extent. 1214 */ 1215 maxblocks = INT_MAX; 1216 if (delalloc_blklen) 1217 maxblocks = min_t(sector_t, delalloc_blkoff - blkoff, 1218 maxblocks); 1219 blkphy = 0; 1220 1221 down_read(&NILFS_MDT(nilfs->ns_dat)->mi_sem); 1222 n = nilfs_bmap_lookup_contig( 1223 NILFS_I(inode)->i_bmap, blkoff, &blkphy, maxblocks); 1224 up_read(&NILFS_MDT(nilfs->ns_dat)->mi_sem); 1225 1226 if (n < 0) { 1227 int past_eof; 1228 1229 if (unlikely(n != -ENOENT)) 1230 break; /* error */ 1231 1232 /* HOLE */ 1233 blkoff++; 1234 past_eof = ((blkoff << blkbits) >= isize); 1235 1236 if (size) { 1237 /* End of the current extent */ 1238 1239 if (past_eof) 1240 flags |= FIEMAP_EXTENT_LAST; 1241 1242 ret = fiemap_fill_next_extent( 1243 fieinfo, logical, phys, size, flags); 1244 if (ret) 1245 break; 1246 size = 0; 1247 } 1248 if (blkoff > end_blkoff || past_eof) 1249 break; 1250 } else { 1251 if (size) { 1252 if (phys && blkphy << blkbits == phys + size) { 1253 /* The current extent goes on */ 1254 size += n << blkbits; 1255 } else { 1256 /* Terminate the current extent */ 1257 ret = fiemap_fill_next_extent( 1258 fieinfo, logical, phys, size, 1259 flags); 1260 if (ret || blkoff > end_blkoff) 1261 break; 1262 1263 /* Start another extent */ 1264 flags = FIEMAP_EXTENT_MERGED; 1265 logical = blkoff << blkbits; 1266 phys = blkphy << blkbits; 1267 size = n << blkbits; 1268 } 1269 } else { 1270 /* Start a new extent */ 1271 flags = FIEMAP_EXTENT_MERGED; 1272 logical = blkoff << blkbits; 1273 phys = blkphy << blkbits; 1274 size = n << blkbits; 1275 } 1276 blkoff += n; 1277 } 1278 cond_resched(); 1279 } while (true); 1280 1281 /* If ret is 1 then we just hit the end of the extent array */ 1282 if (ret == 1) 1283 ret = 0; 1284 1285 inode_unlock(inode); 1286 return ret; 1287 } 1288