xref: /linux/fs/nilfs2/inode.c (revision 2d7f3d1a5866705be2393150e1ffdf67030ab88d)
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * NILFS inode operations.
4  *
5  * Copyright (C) 2005-2008 Nippon Telegraph and Telephone Corporation.
6  *
7  * Written by Ryusuke Konishi.
8  *
9  */
10 
11 #include <linux/buffer_head.h>
12 #include <linux/gfp.h>
13 #include <linux/mpage.h>
14 #include <linux/pagemap.h>
15 #include <linux/writeback.h>
16 #include <linux/uio.h>
17 #include <linux/fiemap.h>
18 #include "nilfs.h"
19 #include "btnode.h"
20 #include "segment.h"
21 #include "page.h"
22 #include "mdt.h"
23 #include "cpfile.h"
24 #include "ifile.h"
25 
26 /**
27  * struct nilfs_iget_args - arguments used during comparison between inodes
28  * @ino: inode number
29  * @cno: checkpoint number
30  * @root: pointer on NILFS root object (mounted checkpoint)
31  * @for_gc: inode for GC flag
32  * @for_btnc: inode for B-tree node cache flag
33  * @for_shadow: inode for shadowed page cache flag
34  */
35 struct nilfs_iget_args {
36 	u64 ino;
37 	__u64 cno;
38 	struct nilfs_root *root;
39 	bool for_gc;
40 	bool for_btnc;
41 	bool for_shadow;
42 };
43 
44 static int nilfs_iget_test(struct inode *inode, void *opaque);
45 
46 void nilfs_inode_add_blocks(struct inode *inode, int n)
47 {
48 	struct nilfs_root *root = NILFS_I(inode)->i_root;
49 
50 	inode_add_bytes(inode, i_blocksize(inode) * n);
51 	if (root)
52 		atomic64_add(n, &root->blocks_count);
53 }
54 
55 void nilfs_inode_sub_blocks(struct inode *inode, int n)
56 {
57 	struct nilfs_root *root = NILFS_I(inode)->i_root;
58 
59 	inode_sub_bytes(inode, i_blocksize(inode) * n);
60 	if (root)
61 		atomic64_sub(n, &root->blocks_count);
62 }
63 
64 /**
65  * nilfs_get_block() - get a file block on the filesystem (callback function)
66  * @inode: inode struct of the target file
67  * @blkoff: file block number
68  * @bh_result: buffer head to be mapped on
69  * @create: indicate whether allocating the block or not when it has not
70  *      been allocated yet.
71  *
72  * This function does not issue actual read request of the specified data
73  * block. It is done by VFS.
74  */
75 int nilfs_get_block(struct inode *inode, sector_t blkoff,
76 		    struct buffer_head *bh_result, int create)
77 {
78 	struct nilfs_inode_info *ii = NILFS_I(inode);
79 	struct the_nilfs *nilfs = inode->i_sb->s_fs_info;
80 	__u64 blknum = 0;
81 	int err = 0, ret;
82 	unsigned int maxblocks = bh_result->b_size >> inode->i_blkbits;
83 
84 	down_read(&NILFS_MDT(nilfs->ns_dat)->mi_sem);
85 	ret = nilfs_bmap_lookup_contig(ii->i_bmap, blkoff, &blknum, maxblocks);
86 	up_read(&NILFS_MDT(nilfs->ns_dat)->mi_sem);
87 	if (ret >= 0) {	/* found */
88 		map_bh(bh_result, inode->i_sb, blknum);
89 		if (ret > 0)
90 			bh_result->b_size = (ret << inode->i_blkbits);
91 		goto out;
92 	}
93 	/* data block was not found */
94 	if (ret == -ENOENT && create) {
95 		struct nilfs_transaction_info ti;
96 
97 		bh_result->b_blocknr = 0;
98 		err = nilfs_transaction_begin(inode->i_sb, &ti, 1);
99 		if (unlikely(err))
100 			goto out;
101 		err = nilfs_bmap_insert(ii->i_bmap, blkoff,
102 					(unsigned long)bh_result);
103 		if (unlikely(err != 0)) {
104 			if (err == -EEXIST) {
105 				/*
106 				 * The get_block() function could be called
107 				 * from multiple callers for an inode.
108 				 * However, the page having this block must
109 				 * be locked in this case.
110 				 */
111 				nilfs_warn(inode->i_sb,
112 					   "%s (ino=%lu): a race condition while inserting a data block at offset=%llu",
113 					   __func__, inode->i_ino,
114 					   (unsigned long long)blkoff);
115 				err = 0;
116 			}
117 			nilfs_transaction_abort(inode->i_sb);
118 			goto out;
119 		}
120 		nilfs_mark_inode_dirty_sync(inode);
121 		nilfs_transaction_commit(inode->i_sb); /* never fails */
122 		/* Error handling should be detailed */
123 		set_buffer_new(bh_result);
124 		set_buffer_delay(bh_result);
125 		map_bh(bh_result, inode->i_sb, 0);
126 		/* Disk block number must be changed to proper value */
127 
128 	} else if (ret == -ENOENT) {
129 		/*
130 		 * not found is not error (e.g. hole); must return without
131 		 * the mapped state flag.
132 		 */
133 		;
134 	} else {
135 		err = ret;
136 	}
137 
138  out:
139 	return err;
140 }
141 
142 /**
143  * nilfs_read_folio() - implement read_folio() method of nilfs_aops {}
144  * address_space_operations.
145  * @file: file struct of the file to be read
146  * @folio: the folio to be read
147  */
148 static int nilfs_read_folio(struct file *file, struct folio *folio)
149 {
150 	return mpage_read_folio(folio, nilfs_get_block);
151 }
152 
153 static void nilfs_readahead(struct readahead_control *rac)
154 {
155 	mpage_readahead(rac, nilfs_get_block);
156 }
157 
158 static int nilfs_writepages(struct address_space *mapping,
159 			    struct writeback_control *wbc)
160 {
161 	struct inode *inode = mapping->host;
162 	int err = 0;
163 
164 	if (sb_rdonly(inode->i_sb)) {
165 		nilfs_clear_dirty_pages(mapping, false);
166 		return -EROFS;
167 	}
168 
169 	if (wbc->sync_mode == WB_SYNC_ALL)
170 		err = nilfs_construct_dsync_segment(inode->i_sb, inode,
171 						    wbc->range_start,
172 						    wbc->range_end);
173 	return err;
174 }
175 
176 static int nilfs_writepage(struct page *page, struct writeback_control *wbc)
177 {
178 	struct folio *folio = page_folio(page);
179 	struct inode *inode = folio->mapping->host;
180 	int err;
181 
182 	if (sb_rdonly(inode->i_sb)) {
183 		/*
184 		 * It means that filesystem was remounted in read-only
185 		 * mode because of error or metadata corruption. But we
186 		 * have dirty pages that try to be flushed in background.
187 		 * So, here we simply discard this dirty page.
188 		 */
189 		nilfs_clear_folio_dirty(folio, false);
190 		folio_unlock(folio);
191 		return -EROFS;
192 	}
193 
194 	folio_redirty_for_writepage(wbc, folio);
195 	folio_unlock(folio);
196 
197 	if (wbc->sync_mode == WB_SYNC_ALL) {
198 		err = nilfs_construct_segment(inode->i_sb);
199 		if (unlikely(err))
200 			return err;
201 	} else if (wbc->for_reclaim)
202 		nilfs_flush_segment(inode->i_sb, inode->i_ino);
203 
204 	return 0;
205 }
206 
207 static bool nilfs_dirty_folio(struct address_space *mapping,
208 		struct folio *folio)
209 {
210 	struct inode *inode = mapping->host;
211 	struct buffer_head *head;
212 	unsigned int nr_dirty = 0;
213 	bool ret = filemap_dirty_folio(mapping, folio);
214 
215 	/*
216 	 * The page may not be locked, eg if called from try_to_unmap_one()
217 	 */
218 	spin_lock(&mapping->i_private_lock);
219 	head = folio_buffers(folio);
220 	if (head) {
221 		struct buffer_head *bh = head;
222 
223 		do {
224 			/* Do not mark hole blocks dirty */
225 			if (buffer_dirty(bh) || !buffer_mapped(bh))
226 				continue;
227 
228 			set_buffer_dirty(bh);
229 			nr_dirty++;
230 		} while (bh = bh->b_this_page, bh != head);
231 	} else if (ret) {
232 		nr_dirty = 1 << (folio_shift(folio) - inode->i_blkbits);
233 	}
234 	spin_unlock(&mapping->i_private_lock);
235 
236 	if (nr_dirty)
237 		nilfs_set_file_dirty(inode, nr_dirty);
238 	return ret;
239 }
240 
241 void nilfs_write_failed(struct address_space *mapping, loff_t to)
242 {
243 	struct inode *inode = mapping->host;
244 
245 	if (to > inode->i_size) {
246 		truncate_pagecache(inode, inode->i_size);
247 		nilfs_truncate(inode);
248 	}
249 }
250 
251 static int nilfs_write_begin(struct file *file, struct address_space *mapping,
252 			     loff_t pos, unsigned len,
253 			     struct page **pagep, void **fsdata)
254 
255 {
256 	struct inode *inode = mapping->host;
257 	int err = nilfs_transaction_begin(inode->i_sb, NULL, 1);
258 
259 	if (unlikely(err))
260 		return err;
261 
262 	err = block_write_begin(mapping, pos, len, pagep, nilfs_get_block);
263 	if (unlikely(err)) {
264 		nilfs_write_failed(mapping, pos + len);
265 		nilfs_transaction_abort(inode->i_sb);
266 	}
267 	return err;
268 }
269 
270 static int nilfs_write_end(struct file *file, struct address_space *mapping,
271 			   loff_t pos, unsigned len, unsigned copied,
272 			   struct page *page, void *fsdata)
273 {
274 	struct inode *inode = mapping->host;
275 	unsigned int start = pos & (PAGE_SIZE - 1);
276 	unsigned int nr_dirty;
277 	int err;
278 
279 	nr_dirty = nilfs_page_count_clean_buffers(page, start,
280 						  start + copied);
281 	copied = generic_write_end(file, mapping, pos, len, copied, page,
282 				   fsdata);
283 	nilfs_set_file_dirty(inode, nr_dirty);
284 	err = nilfs_transaction_commit(inode->i_sb);
285 	return err ? : copied;
286 }
287 
288 static ssize_t
289 nilfs_direct_IO(struct kiocb *iocb, struct iov_iter *iter)
290 {
291 	struct inode *inode = file_inode(iocb->ki_filp);
292 
293 	if (iov_iter_rw(iter) == WRITE)
294 		return 0;
295 
296 	/* Needs synchronization with the cleaner */
297 	return blockdev_direct_IO(iocb, inode, iter, nilfs_get_block);
298 }
299 
300 const struct address_space_operations nilfs_aops = {
301 	.writepage		= nilfs_writepage,
302 	.read_folio		= nilfs_read_folio,
303 	.writepages		= nilfs_writepages,
304 	.dirty_folio		= nilfs_dirty_folio,
305 	.readahead		= nilfs_readahead,
306 	.write_begin		= nilfs_write_begin,
307 	.write_end		= nilfs_write_end,
308 	.invalidate_folio	= block_invalidate_folio,
309 	.direct_IO		= nilfs_direct_IO,
310 	.is_partially_uptodate  = block_is_partially_uptodate,
311 };
312 
313 static int nilfs_insert_inode_locked(struct inode *inode,
314 				     struct nilfs_root *root,
315 				     unsigned long ino)
316 {
317 	struct nilfs_iget_args args = {
318 		.ino = ino, .root = root, .cno = 0, .for_gc = false,
319 		.for_btnc = false, .for_shadow = false
320 	};
321 
322 	return insert_inode_locked4(inode, ino, nilfs_iget_test, &args);
323 }
324 
325 struct inode *nilfs_new_inode(struct inode *dir, umode_t mode)
326 {
327 	struct super_block *sb = dir->i_sb;
328 	struct the_nilfs *nilfs = sb->s_fs_info;
329 	struct inode *inode;
330 	struct nilfs_inode_info *ii;
331 	struct nilfs_root *root;
332 	struct buffer_head *bh;
333 	int err = -ENOMEM;
334 	ino_t ino;
335 
336 	inode = new_inode(sb);
337 	if (unlikely(!inode))
338 		goto failed;
339 
340 	mapping_set_gfp_mask(inode->i_mapping,
341 			   mapping_gfp_constraint(inode->i_mapping, ~__GFP_FS));
342 
343 	root = NILFS_I(dir)->i_root;
344 	ii = NILFS_I(inode);
345 	ii->i_state = BIT(NILFS_I_NEW);
346 	ii->i_root = root;
347 
348 	err = nilfs_ifile_create_inode(root->ifile, &ino, &bh);
349 	if (unlikely(err))
350 		goto failed_ifile_create_inode;
351 	/* reference count of i_bh inherits from nilfs_mdt_read_block() */
352 
353 	if (unlikely(ino < NILFS_USER_INO)) {
354 		nilfs_warn(sb,
355 			   "inode bitmap is inconsistent for reserved inodes");
356 		do {
357 			brelse(bh);
358 			err = nilfs_ifile_create_inode(root->ifile, &ino, &bh);
359 			if (unlikely(err))
360 				goto failed_ifile_create_inode;
361 		} while (ino < NILFS_USER_INO);
362 
363 		nilfs_info(sb, "repaired inode bitmap for reserved inodes");
364 	}
365 	ii->i_bh = bh;
366 
367 	atomic64_inc(&root->inodes_count);
368 	inode_init_owner(&nop_mnt_idmap, inode, dir, mode);
369 	inode->i_ino = ino;
370 	simple_inode_init_ts(inode);
371 
372 	if (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode)) {
373 		err = nilfs_bmap_read(ii->i_bmap, NULL);
374 		if (err < 0)
375 			goto failed_after_creation;
376 
377 		set_bit(NILFS_I_BMAP, &ii->i_state);
378 		/* No lock is needed; iget() ensures it. */
379 	}
380 
381 	ii->i_flags = nilfs_mask_flags(
382 		mode, NILFS_I(dir)->i_flags & NILFS_FL_INHERITED);
383 
384 	/* ii->i_file_acl = 0; */
385 	/* ii->i_dir_acl = 0; */
386 	ii->i_dir_start_lookup = 0;
387 	nilfs_set_inode_flags(inode);
388 	spin_lock(&nilfs->ns_next_gen_lock);
389 	inode->i_generation = nilfs->ns_next_generation++;
390 	spin_unlock(&nilfs->ns_next_gen_lock);
391 	if (nilfs_insert_inode_locked(inode, root, ino) < 0) {
392 		err = -EIO;
393 		goto failed_after_creation;
394 	}
395 
396 	err = nilfs_init_acl(inode, dir);
397 	if (unlikely(err))
398 		/*
399 		 * Never occur.  When supporting nilfs_init_acl(),
400 		 * proper cancellation of above jobs should be considered.
401 		 */
402 		goto failed_after_creation;
403 
404 	return inode;
405 
406  failed_after_creation:
407 	clear_nlink(inode);
408 	if (inode->i_state & I_NEW)
409 		unlock_new_inode(inode);
410 	iput(inode);  /*
411 		       * raw_inode will be deleted through
412 		       * nilfs_evict_inode().
413 		       */
414 	goto failed;
415 
416  failed_ifile_create_inode:
417 	make_bad_inode(inode);
418 	iput(inode);
419  failed:
420 	return ERR_PTR(err);
421 }
422 
423 void nilfs_set_inode_flags(struct inode *inode)
424 {
425 	unsigned int flags = NILFS_I(inode)->i_flags;
426 	unsigned int new_fl = 0;
427 
428 	if (flags & FS_SYNC_FL)
429 		new_fl |= S_SYNC;
430 	if (flags & FS_APPEND_FL)
431 		new_fl |= S_APPEND;
432 	if (flags & FS_IMMUTABLE_FL)
433 		new_fl |= S_IMMUTABLE;
434 	if (flags & FS_NOATIME_FL)
435 		new_fl |= S_NOATIME;
436 	if (flags & FS_DIRSYNC_FL)
437 		new_fl |= S_DIRSYNC;
438 	inode_set_flags(inode, new_fl, S_SYNC | S_APPEND | S_IMMUTABLE |
439 			S_NOATIME | S_DIRSYNC);
440 }
441 
442 int nilfs_read_inode_common(struct inode *inode,
443 			    struct nilfs_inode *raw_inode)
444 {
445 	struct nilfs_inode_info *ii = NILFS_I(inode);
446 	int err;
447 
448 	inode->i_mode = le16_to_cpu(raw_inode->i_mode);
449 	i_uid_write(inode, le32_to_cpu(raw_inode->i_uid));
450 	i_gid_write(inode, le32_to_cpu(raw_inode->i_gid));
451 	set_nlink(inode, le16_to_cpu(raw_inode->i_links_count));
452 	inode->i_size = le64_to_cpu(raw_inode->i_size);
453 	inode_set_atime(inode, le64_to_cpu(raw_inode->i_mtime),
454 			le32_to_cpu(raw_inode->i_mtime_nsec));
455 	inode_set_ctime(inode, le64_to_cpu(raw_inode->i_ctime),
456 			le32_to_cpu(raw_inode->i_ctime_nsec));
457 	inode_set_mtime(inode, le64_to_cpu(raw_inode->i_mtime),
458 			le32_to_cpu(raw_inode->i_mtime_nsec));
459 	if (nilfs_is_metadata_file_inode(inode) && !S_ISREG(inode->i_mode))
460 		return -EIO; /* this inode is for metadata and corrupted */
461 	if (inode->i_nlink == 0)
462 		return -ESTALE; /* this inode is deleted */
463 
464 	inode->i_blocks = le64_to_cpu(raw_inode->i_blocks);
465 	ii->i_flags = le32_to_cpu(raw_inode->i_flags);
466 #if 0
467 	ii->i_file_acl = le32_to_cpu(raw_inode->i_file_acl);
468 	ii->i_dir_acl = S_ISREG(inode->i_mode) ?
469 		0 : le32_to_cpu(raw_inode->i_dir_acl);
470 #endif
471 	ii->i_dir_start_lookup = 0;
472 	inode->i_generation = le32_to_cpu(raw_inode->i_generation);
473 
474 	if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
475 	    S_ISLNK(inode->i_mode)) {
476 		err = nilfs_bmap_read(ii->i_bmap, raw_inode);
477 		if (err < 0)
478 			return err;
479 		set_bit(NILFS_I_BMAP, &ii->i_state);
480 		/* No lock is needed; iget() ensures it. */
481 	}
482 	return 0;
483 }
484 
485 static int __nilfs_read_inode(struct super_block *sb,
486 			      struct nilfs_root *root, unsigned long ino,
487 			      struct inode *inode)
488 {
489 	struct the_nilfs *nilfs = sb->s_fs_info;
490 	struct buffer_head *bh;
491 	struct nilfs_inode *raw_inode;
492 	int err;
493 
494 	down_read(&NILFS_MDT(nilfs->ns_dat)->mi_sem);
495 	err = nilfs_ifile_get_inode_block(root->ifile, ino, &bh);
496 	if (unlikely(err))
497 		goto bad_inode;
498 
499 	raw_inode = nilfs_ifile_map_inode(root->ifile, ino, bh);
500 
501 	err = nilfs_read_inode_common(inode, raw_inode);
502 	if (err)
503 		goto failed_unmap;
504 
505 	if (S_ISREG(inode->i_mode)) {
506 		inode->i_op = &nilfs_file_inode_operations;
507 		inode->i_fop = &nilfs_file_operations;
508 		inode->i_mapping->a_ops = &nilfs_aops;
509 	} else if (S_ISDIR(inode->i_mode)) {
510 		inode->i_op = &nilfs_dir_inode_operations;
511 		inode->i_fop = &nilfs_dir_operations;
512 		inode->i_mapping->a_ops = &nilfs_aops;
513 	} else if (S_ISLNK(inode->i_mode)) {
514 		inode->i_op = &nilfs_symlink_inode_operations;
515 		inode_nohighmem(inode);
516 		inode->i_mapping->a_ops = &nilfs_aops;
517 	} else {
518 		inode->i_op = &nilfs_special_inode_operations;
519 		init_special_inode(
520 			inode, inode->i_mode,
521 			huge_decode_dev(le64_to_cpu(raw_inode->i_device_code)));
522 	}
523 	nilfs_ifile_unmap_inode(root->ifile, ino, bh);
524 	brelse(bh);
525 	up_read(&NILFS_MDT(nilfs->ns_dat)->mi_sem);
526 	nilfs_set_inode_flags(inode);
527 	mapping_set_gfp_mask(inode->i_mapping,
528 			   mapping_gfp_constraint(inode->i_mapping, ~__GFP_FS));
529 	return 0;
530 
531  failed_unmap:
532 	nilfs_ifile_unmap_inode(root->ifile, ino, bh);
533 	brelse(bh);
534 
535  bad_inode:
536 	up_read(&NILFS_MDT(nilfs->ns_dat)->mi_sem);
537 	return err;
538 }
539 
540 static int nilfs_iget_test(struct inode *inode, void *opaque)
541 {
542 	struct nilfs_iget_args *args = opaque;
543 	struct nilfs_inode_info *ii;
544 
545 	if (args->ino != inode->i_ino || args->root != NILFS_I(inode)->i_root)
546 		return 0;
547 
548 	ii = NILFS_I(inode);
549 	if (test_bit(NILFS_I_BTNC, &ii->i_state)) {
550 		if (!args->for_btnc)
551 			return 0;
552 	} else if (args->for_btnc) {
553 		return 0;
554 	}
555 	if (test_bit(NILFS_I_SHADOW, &ii->i_state)) {
556 		if (!args->for_shadow)
557 			return 0;
558 	} else if (args->for_shadow) {
559 		return 0;
560 	}
561 
562 	if (!test_bit(NILFS_I_GCINODE, &ii->i_state))
563 		return !args->for_gc;
564 
565 	return args->for_gc && args->cno == ii->i_cno;
566 }
567 
568 static int nilfs_iget_set(struct inode *inode, void *opaque)
569 {
570 	struct nilfs_iget_args *args = opaque;
571 
572 	inode->i_ino = args->ino;
573 	NILFS_I(inode)->i_cno = args->cno;
574 	NILFS_I(inode)->i_root = args->root;
575 	if (args->root && args->ino == NILFS_ROOT_INO)
576 		nilfs_get_root(args->root);
577 
578 	if (args->for_gc)
579 		NILFS_I(inode)->i_state = BIT(NILFS_I_GCINODE);
580 	if (args->for_btnc)
581 		NILFS_I(inode)->i_state |= BIT(NILFS_I_BTNC);
582 	if (args->for_shadow)
583 		NILFS_I(inode)->i_state |= BIT(NILFS_I_SHADOW);
584 	return 0;
585 }
586 
587 struct inode *nilfs_ilookup(struct super_block *sb, struct nilfs_root *root,
588 			    unsigned long ino)
589 {
590 	struct nilfs_iget_args args = {
591 		.ino = ino, .root = root, .cno = 0, .for_gc = false,
592 		.for_btnc = false, .for_shadow = false
593 	};
594 
595 	return ilookup5(sb, ino, nilfs_iget_test, &args);
596 }
597 
598 struct inode *nilfs_iget_locked(struct super_block *sb, struct nilfs_root *root,
599 				unsigned long ino)
600 {
601 	struct nilfs_iget_args args = {
602 		.ino = ino, .root = root, .cno = 0, .for_gc = false,
603 		.for_btnc = false, .for_shadow = false
604 	};
605 
606 	return iget5_locked(sb, ino, nilfs_iget_test, nilfs_iget_set, &args);
607 }
608 
609 struct inode *nilfs_iget(struct super_block *sb, struct nilfs_root *root,
610 			 unsigned long ino)
611 {
612 	struct inode *inode;
613 	int err;
614 
615 	inode = nilfs_iget_locked(sb, root, ino);
616 	if (unlikely(!inode))
617 		return ERR_PTR(-ENOMEM);
618 	if (!(inode->i_state & I_NEW))
619 		return inode;
620 
621 	err = __nilfs_read_inode(sb, root, ino, inode);
622 	if (unlikely(err)) {
623 		iget_failed(inode);
624 		return ERR_PTR(err);
625 	}
626 	unlock_new_inode(inode);
627 	return inode;
628 }
629 
630 struct inode *nilfs_iget_for_gc(struct super_block *sb, unsigned long ino,
631 				__u64 cno)
632 {
633 	struct nilfs_iget_args args = {
634 		.ino = ino, .root = NULL, .cno = cno, .for_gc = true,
635 		.for_btnc = false, .for_shadow = false
636 	};
637 	struct inode *inode;
638 	int err;
639 
640 	inode = iget5_locked(sb, ino, nilfs_iget_test, nilfs_iget_set, &args);
641 	if (unlikely(!inode))
642 		return ERR_PTR(-ENOMEM);
643 	if (!(inode->i_state & I_NEW))
644 		return inode;
645 
646 	err = nilfs_init_gcinode(inode);
647 	if (unlikely(err)) {
648 		iget_failed(inode);
649 		return ERR_PTR(err);
650 	}
651 	unlock_new_inode(inode);
652 	return inode;
653 }
654 
655 /**
656  * nilfs_attach_btree_node_cache - attach a B-tree node cache to the inode
657  * @inode: inode object
658  *
659  * nilfs_attach_btree_node_cache() attaches a B-tree node cache to @inode,
660  * or does nothing if the inode already has it.  This function allocates
661  * an additional inode to maintain page cache of B-tree nodes one-on-one.
662  *
663  * Return Value: On success, 0 is returned. On errors, one of the following
664  * negative error code is returned.
665  *
666  * %-ENOMEM - Insufficient memory available.
667  */
668 int nilfs_attach_btree_node_cache(struct inode *inode)
669 {
670 	struct nilfs_inode_info *ii = NILFS_I(inode);
671 	struct inode *btnc_inode;
672 	struct nilfs_iget_args args;
673 
674 	if (ii->i_assoc_inode)
675 		return 0;
676 
677 	args.ino = inode->i_ino;
678 	args.root = ii->i_root;
679 	args.cno = ii->i_cno;
680 	args.for_gc = test_bit(NILFS_I_GCINODE, &ii->i_state) != 0;
681 	args.for_btnc = true;
682 	args.for_shadow = test_bit(NILFS_I_SHADOW, &ii->i_state) != 0;
683 
684 	btnc_inode = iget5_locked(inode->i_sb, inode->i_ino, nilfs_iget_test,
685 				  nilfs_iget_set, &args);
686 	if (unlikely(!btnc_inode))
687 		return -ENOMEM;
688 	if (btnc_inode->i_state & I_NEW) {
689 		nilfs_init_btnc_inode(btnc_inode);
690 		unlock_new_inode(btnc_inode);
691 	}
692 	NILFS_I(btnc_inode)->i_assoc_inode = inode;
693 	NILFS_I(btnc_inode)->i_bmap = ii->i_bmap;
694 	ii->i_assoc_inode = btnc_inode;
695 
696 	return 0;
697 }
698 
699 /**
700  * nilfs_detach_btree_node_cache - detach the B-tree node cache from the inode
701  * @inode: inode object
702  *
703  * nilfs_detach_btree_node_cache() detaches the B-tree node cache and its
704  * holder inode bound to @inode, or does nothing if @inode doesn't have it.
705  */
706 void nilfs_detach_btree_node_cache(struct inode *inode)
707 {
708 	struct nilfs_inode_info *ii = NILFS_I(inode);
709 	struct inode *btnc_inode = ii->i_assoc_inode;
710 
711 	if (btnc_inode) {
712 		NILFS_I(btnc_inode)->i_assoc_inode = NULL;
713 		ii->i_assoc_inode = NULL;
714 		iput(btnc_inode);
715 	}
716 }
717 
718 /**
719  * nilfs_iget_for_shadow - obtain inode for shadow mapping
720  * @inode: inode object that uses shadow mapping
721  *
722  * nilfs_iget_for_shadow() allocates a pair of inodes that holds page
723  * caches for shadow mapping.  The page cache for data pages is set up
724  * in one inode and the one for b-tree node pages is set up in the
725  * other inode, which is attached to the former inode.
726  *
727  * Return Value: On success, a pointer to the inode for data pages is
728  * returned. On errors, one of the following negative error code is returned
729  * in a pointer type.
730  *
731  * %-ENOMEM - Insufficient memory available.
732  */
733 struct inode *nilfs_iget_for_shadow(struct inode *inode)
734 {
735 	struct nilfs_iget_args args = {
736 		.ino = inode->i_ino, .root = NULL, .cno = 0, .for_gc = false,
737 		.for_btnc = false, .for_shadow = true
738 	};
739 	struct inode *s_inode;
740 	int err;
741 
742 	s_inode = iget5_locked(inode->i_sb, inode->i_ino, nilfs_iget_test,
743 			       nilfs_iget_set, &args);
744 	if (unlikely(!s_inode))
745 		return ERR_PTR(-ENOMEM);
746 	if (!(s_inode->i_state & I_NEW))
747 		return inode;
748 
749 	NILFS_I(s_inode)->i_flags = 0;
750 	memset(NILFS_I(s_inode)->i_bmap, 0, sizeof(struct nilfs_bmap));
751 	mapping_set_gfp_mask(s_inode->i_mapping, GFP_NOFS);
752 
753 	err = nilfs_attach_btree_node_cache(s_inode);
754 	if (unlikely(err)) {
755 		iget_failed(s_inode);
756 		return ERR_PTR(err);
757 	}
758 	unlock_new_inode(s_inode);
759 	return s_inode;
760 }
761 
762 void nilfs_write_inode_common(struct inode *inode,
763 			      struct nilfs_inode *raw_inode, int has_bmap)
764 {
765 	struct nilfs_inode_info *ii = NILFS_I(inode);
766 
767 	raw_inode->i_mode = cpu_to_le16(inode->i_mode);
768 	raw_inode->i_uid = cpu_to_le32(i_uid_read(inode));
769 	raw_inode->i_gid = cpu_to_le32(i_gid_read(inode));
770 	raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
771 	raw_inode->i_size = cpu_to_le64(inode->i_size);
772 	raw_inode->i_ctime = cpu_to_le64(inode_get_ctime_sec(inode));
773 	raw_inode->i_mtime = cpu_to_le64(inode_get_mtime_sec(inode));
774 	raw_inode->i_ctime_nsec = cpu_to_le32(inode_get_ctime_nsec(inode));
775 	raw_inode->i_mtime_nsec = cpu_to_le32(inode_get_mtime_nsec(inode));
776 	raw_inode->i_blocks = cpu_to_le64(inode->i_blocks);
777 
778 	raw_inode->i_flags = cpu_to_le32(ii->i_flags);
779 	raw_inode->i_generation = cpu_to_le32(inode->i_generation);
780 
781 	if (NILFS_ROOT_METADATA_FILE(inode->i_ino)) {
782 		struct the_nilfs *nilfs = inode->i_sb->s_fs_info;
783 
784 		/* zero-fill unused portion in the case of super root block */
785 		raw_inode->i_xattr = 0;
786 		raw_inode->i_pad = 0;
787 		memset((void *)raw_inode + sizeof(*raw_inode), 0,
788 		       nilfs->ns_inode_size - sizeof(*raw_inode));
789 	}
790 
791 	if (has_bmap)
792 		nilfs_bmap_write(ii->i_bmap, raw_inode);
793 	else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode))
794 		raw_inode->i_device_code =
795 			cpu_to_le64(huge_encode_dev(inode->i_rdev));
796 	/*
797 	 * When extending inode, nilfs->ns_inode_size should be checked
798 	 * for substitutions of appended fields.
799 	 */
800 }
801 
802 void nilfs_update_inode(struct inode *inode, struct buffer_head *ibh, int flags)
803 {
804 	ino_t ino = inode->i_ino;
805 	struct nilfs_inode_info *ii = NILFS_I(inode);
806 	struct inode *ifile = ii->i_root->ifile;
807 	struct nilfs_inode *raw_inode;
808 
809 	raw_inode = nilfs_ifile_map_inode(ifile, ino, ibh);
810 
811 	if (test_and_clear_bit(NILFS_I_NEW, &ii->i_state))
812 		memset(raw_inode, 0, NILFS_MDT(ifile)->mi_entry_size);
813 	if (flags & I_DIRTY_DATASYNC)
814 		set_bit(NILFS_I_INODE_SYNC, &ii->i_state);
815 
816 	nilfs_write_inode_common(inode, raw_inode, 0);
817 		/*
818 		 * XXX: call with has_bmap = 0 is a workaround to avoid
819 		 * deadlock of bmap.  This delays update of i_bmap to just
820 		 * before writing.
821 		 */
822 
823 	nilfs_ifile_unmap_inode(ifile, ino, ibh);
824 }
825 
826 #define NILFS_MAX_TRUNCATE_BLOCKS	16384  /* 64MB for 4KB block */
827 
828 static void nilfs_truncate_bmap(struct nilfs_inode_info *ii,
829 				unsigned long from)
830 {
831 	__u64 b;
832 	int ret;
833 
834 	if (!test_bit(NILFS_I_BMAP, &ii->i_state))
835 		return;
836 repeat:
837 	ret = nilfs_bmap_last_key(ii->i_bmap, &b);
838 	if (ret == -ENOENT)
839 		return;
840 	else if (ret < 0)
841 		goto failed;
842 
843 	if (b < from)
844 		return;
845 
846 	b -= min_t(__u64, NILFS_MAX_TRUNCATE_BLOCKS, b - from);
847 	ret = nilfs_bmap_truncate(ii->i_bmap, b);
848 	nilfs_relax_pressure_in_lock(ii->vfs_inode.i_sb);
849 	if (!ret || (ret == -ENOMEM &&
850 		     nilfs_bmap_truncate(ii->i_bmap, b) == 0))
851 		goto repeat;
852 
853 failed:
854 	nilfs_warn(ii->vfs_inode.i_sb, "error %d truncating bmap (ino=%lu)",
855 		   ret, ii->vfs_inode.i_ino);
856 }
857 
858 void nilfs_truncate(struct inode *inode)
859 {
860 	unsigned long blkoff;
861 	unsigned int blocksize;
862 	struct nilfs_transaction_info ti;
863 	struct super_block *sb = inode->i_sb;
864 	struct nilfs_inode_info *ii = NILFS_I(inode);
865 
866 	if (!test_bit(NILFS_I_BMAP, &ii->i_state))
867 		return;
868 	if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
869 		return;
870 
871 	blocksize = sb->s_blocksize;
872 	blkoff = (inode->i_size + blocksize - 1) >> sb->s_blocksize_bits;
873 	nilfs_transaction_begin(sb, &ti, 0); /* never fails */
874 
875 	block_truncate_page(inode->i_mapping, inode->i_size, nilfs_get_block);
876 
877 	nilfs_truncate_bmap(ii, blkoff);
878 
879 	inode_set_mtime_to_ts(inode, inode_set_ctime_current(inode));
880 	if (IS_SYNC(inode))
881 		nilfs_set_transaction_flag(NILFS_TI_SYNC);
882 
883 	nilfs_mark_inode_dirty(inode);
884 	nilfs_set_file_dirty(inode, 0);
885 	nilfs_transaction_commit(sb);
886 	/*
887 	 * May construct a logical segment and may fail in sync mode.
888 	 * But truncate has no return value.
889 	 */
890 }
891 
892 static void nilfs_clear_inode(struct inode *inode)
893 {
894 	struct nilfs_inode_info *ii = NILFS_I(inode);
895 
896 	/*
897 	 * Free resources allocated in nilfs_read_inode(), here.
898 	 */
899 	BUG_ON(!list_empty(&ii->i_dirty));
900 	brelse(ii->i_bh);
901 	ii->i_bh = NULL;
902 
903 	if (nilfs_is_metadata_file_inode(inode))
904 		nilfs_mdt_clear(inode);
905 
906 	if (test_bit(NILFS_I_BMAP, &ii->i_state))
907 		nilfs_bmap_clear(ii->i_bmap);
908 
909 	if (!test_bit(NILFS_I_BTNC, &ii->i_state))
910 		nilfs_detach_btree_node_cache(inode);
911 
912 	if (ii->i_root && inode->i_ino == NILFS_ROOT_INO)
913 		nilfs_put_root(ii->i_root);
914 }
915 
916 void nilfs_evict_inode(struct inode *inode)
917 {
918 	struct nilfs_transaction_info ti;
919 	struct super_block *sb = inode->i_sb;
920 	struct nilfs_inode_info *ii = NILFS_I(inode);
921 	struct the_nilfs *nilfs;
922 	int ret;
923 
924 	if (inode->i_nlink || !ii->i_root || unlikely(is_bad_inode(inode))) {
925 		truncate_inode_pages_final(&inode->i_data);
926 		clear_inode(inode);
927 		nilfs_clear_inode(inode);
928 		return;
929 	}
930 	nilfs_transaction_begin(sb, &ti, 0); /* never fails */
931 
932 	truncate_inode_pages_final(&inode->i_data);
933 
934 	nilfs = sb->s_fs_info;
935 	if (unlikely(sb_rdonly(sb) || !nilfs->ns_writer)) {
936 		/*
937 		 * If this inode is about to be disposed after the file system
938 		 * has been degraded to read-only due to file system corruption
939 		 * or after the writer has been detached, do not make any
940 		 * changes that cause writes, just clear it.
941 		 * Do this check after read-locking ns_segctor_sem by
942 		 * nilfs_transaction_begin() in order to avoid a race with
943 		 * the writer detach operation.
944 		 */
945 		clear_inode(inode);
946 		nilfs_clear_inode(inode);
947 		nilfs_transaction_abort(sb);
948 		return;
949 	}
950 
951 	/* TODO: some of the following operations may fail.  */
952 	nilfs_truncate_bmap(ii, 0);
953 	nilfs_mark_inode_dirty(inode);
954 	clear_inode(inode);
955 
956 	ret = nilfs_ifile_delete_inode(ii->i_root->ifile, inode->i_ino);
957 	if (!ret)
958 		atomic64_dec(&ii->i_root->inodes_count);
959 
960 	nilfs_clear_inode(inode);
961 
962 	if (IS_SYNC(inode))
963 		nilfs_set_transaction_flag(NILFS_TI_SYNC);
964 	nilfs_transaction_commit(sb);
965 	/*
966 	 * May construct a logical segment and may fail in sync mode.
967 	 * But delete_inode has no return value.
968 	 */
969 }
970 
971 int nilfs_setattr(struct mnt_idmap *idmap, struct dentry *dentry,
972 		  struct iattr *iattr)
973 {
974 	struct nilfs_transaction_info ti;
975 	struct inode *inode = d_inode(dentry);
976 	struct super_block *sb = inode->i_sb;
977 	int err;
978 
979 	err = setattr_prepare(&nop_mnt_idmap, dentry, iattr);
980 	if (err)
981 		return err;
982 
983 	err = nilfs_transaction_begin(sb, &ti, 0);
984 	if (unlikely(err))
985 		return err;
986 
987 	if ((iattr->ia_valid & ATTR_SIZE) &&
988 	    iattr->ia_size != i_size_read(inode)) {
989 		inode_dio_wait(inode);
990 		truncate_setsize(inode, iattr->ia_size);
991 		nilfs_truncate(inode);
992 	}
993 
994 	setattr_copy(&nop_mnt_idmap, inode, iattr);
995 	mark_inode_dirty(inode);
996 
997 	if (iattr->ia_valid & ATTR_MODE) {
998 		err = nilfs_acl_chmod(inode);
999 		if (unlikely(err))
1000 			goto out_err;
1001 	}
1002 
1003 	return nilfs_transaction_commit(sb);
1004 
1005 out_err:
1006 	nilfs_transaction_abort(sb);
1007 	return err;
1008 }
1009 
1010 int nilfs_permission(struct mnt_idmap *idmap, struct inode *inode,
1011 		     int mask)
1012 {
1013 	struct nilfs_root *root = NILFS_I(inode)->i_root;
1014 
1015 	if ((mask & MAY_WRITE) && root &&
1016 	    root->cno != NILFS_CPTREE_CURRENT_CNO)
1017 		return -EROFS; /* snapshot is not writable */
1018 
1019 	return generic_permission(&nop_mnt_idmap, inode, mask);
1020 }
1021 
1022 int nilfs_load_inode_block(struct inode *inode, struct buffer_head **pbh)
1023 {
1024 	struct the_nilfs *nilfs = inode->i_sb->s_fs_info;
1025 	struct nilfs_inode_info *ii = NILFS_I(inode);
1026 	int err;
1027 
1028 	spin_lock(&nilfs->ns_inode_lock);
1029 	if (ii->i_bh == NULL || unlikely(!buffer_uptodate(ii->i_bh))) {
1030 		spin_unlock(&nilfs->ns_inode_lock);
1031 		err = nilfs_ifile_get_inode_block(ii->i_root->ifile,
1032 						  inode->i_ino, pbh);
1033 		if (unlikely(err))
1034 			return err;
1035 		spin_lock(&nilfs->ns_inode_lock);
1036 		if (ii->i_bh == NULL)
1037 			ii->i_bh = *pbh;
1038 		else if (unlikely(!buffer_uptodate(ii->i_bh))) {
1039 			__brelse(ii->i_bh);
1040 			ii->i_bh = *pbh;
1041 		} else {
1042 			brelse(*pbh);
1043 			*pbh = ii->i_bh;
1044 		}
1045 	} else
1046 		*pbh = ii->i_bh;
1047 
1048 	get_bh(*pbh);
1049 	spin_unlock(&nilfs->ns_inode_lock);
1050 	return 0;
1051 }
1052 
1053 int nilfs_inode_dirty(struct inode *inode)
1054 {
1055 	struct nilfs_inode_info *ii = NILFS_I(inode);
1056 	struct the_nilfs *nilfs = inode->i_sb->s_fs_info;
1057 	int ret = 0;
1058 
1059 	if (!list_empty(&ii->i_dirty)) {
1060 		spin_lock(&nilfs->ns_inode_lock);
1061 		ret = test_bit(NILFS_I_DIRTY, &ii->i_state) ||
1062 			test_bit(NILFS_I_BUSY, &ii->i_state);
1063 		spin_unlock(&nilfs->ns_inode_lock);
1064 	}
1065 	return ret;
1066 }
1067 
1068 int nilfs_set_file_dirty(struct inode *inode, unsigned int nr_dirty)
1069 {
1070 	struct nilfs_inode_info *ii = NILFS_I(inode);
1071 	struct the_nilfs *nilfs = inode->i_sb->s_fs_info;
1072 
1073 	atomic_add(nr_dirty, &nilfs->ns_ndirtyblks);
1074 
1075 	if (test_and_set_bit(NILFS_I_DIRTY, &ii->i_state))
1076 		return 0;
1077 
1078 	spin_lock(&nilfs->ns_inode_lock);
1079 	if (!test_bit(NILFS_I_QUEUED, &ii->i_state) &&
1080 	    !test_bit(NILFS_I_BUSY, &ii->i_state)) {
1081 		/*
1082 		 * Because this routine may race with nilfs_dispose_list(),
1083 		 * we have to check NILFS_I_QUEUED here, too.
1084 		 */
1085 		if (list_empty(&ii->i_dirty) && igrab(inode) == NULL) {
1086 			/*
1087 			 * This will happen when somebody is freeing
1088 			 * this inode.
1089 			 */
1090 			nilfs_warn(inode->i_sb,
1091 				   "cannot set file dirty (ino=%lu): the file is being freed",
1092 				   inode->i_ino);
1093 			spin_unlock(&nilfs->ns_inode_lock);
1094 			return -EINVAL; /*
1095 					 * NILFS_I_DIRTY may remain for
1096 					 * freeing inode.
1097 					 */
1098 		}
1099 		list_move_tail(&ii->i_dirty, &nilfs->ns_dirty_files);
1100 		set_bit(NILFS_I_QUEUED, &ii->i_state);
1101 	}
1102 	spin_unlock(&nilfs->ns_inode_lock);
1103 	return 0;
1104 }
1105 
1106 int __nilfs_mark_inode_dirty(struct inode *inode, int flags)
1107 {
1108 	struct the_nilfs *nilfs = inode->i_sb->s_fs_info;
1109 	struct buffer_head *ibh;
1110 	int err;
1111 
1112 	/*
1113 	 * Do not dirty inodes after the log writer has been detached
1114 	 * and its nilfs_root struct has been freed.
1115 	 */
1116 	if (unlikely(nilfs_purging(nilfs)))
1117 		return 0;
1118 
1119 	err = nilfs_load_inode_block(inode, &ibh);
1120 	if (unlikely(err)) {
1121 		nilfs_warn(inode->i_sb,
1122 			   "cannot mark inode dirty (ino=%lu): error %d loading inode block",
1123 			   inode->i_ino, err);
1124 		return err;
1125 	}
1126 	nilfs_update_inode(inode, ibh, flags);
1127 	mark_buffer_dirty(ibh);
1128 	nilfs_mdt_mark_dirty(NILFS_I(inode)->i_root->ifile);
1129 	brelse(ibh);
1130 	return 0;
1131 }
1132 
1133 /**
1134  * nilfs_dirty_inode - reflect changes on given inode to an inode block.
1135  * @inode: inode of the file to be registered.
1136  * @flags: flags to determine the dirty state of the inode
1137  *
1138  * nilfs_dirty_inode() loads a inode block containing the specified
1139  * @inode and copies data from a nilfs_inode to a corresponding inode
1140  * entry in the inode block. This operation is excluded from the segment
1141  * construction. This function can be called both as a single operation
1142  * and as a part of indivisible file operations.
1143  */
1144 void nilfs_dirty_inode(struct inode *inode, int flags)
1145 {
1146 	struct nilfs_transaction_info ti;
1147 	struct nilfs_mdt_info *mdi = NILFS_MDT(inode);
1148 
1149 	if (is_bad_inode(inode)) {
1150 		nilfs_warn(inode->i_sb,
1151 			   "tried to mark bad_inode dirty. ignored.");
1152 		dump_stack();
1153 		return;
1154 	}
1155 	if (mdi) {
1156 		nilfs_mdt_mark_dirty(inode);
1157 		return;
1158 	}
1159 	nilfs_transaction_begin(inode->i_sb, &ti, 0);
1160 	__nilfs_mark_inode_dirty(inode, flags);
1161 	nilfs_transaction_commit(inode->i_sb); /* never fails */
1162 }
1163 
1164 int nilfs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
1165 		 __u64 start, __u64 len)
1166 {
1167 	struct the_nilfs *nilfs = inode->i_sb->s_fs_info;
1168 	__u64 logical = 0, phys = 0, size = 0;
1169 	__u32 flags = 0;
1170 	loff_t isize;
1171 	sector_t blkoff, end_blkoff;
1172 	sector_t delalloc_blkoff;
1173 	unsigned long delalloc_blklen;
1174 	unsigned int blkbits = inode->i_blkbits;
1175 	int ret, n;
1176 
1177 	ret = fiemap_prep(inode, fieinfo, start, &len, 0);
1178 	if (ret)
1179 		return ret;
1180 
1181 	inode_lock(inode);
1182 
1183 	isize = i_size_read(inode);
1184 
1185 	blkoff = start >> blkbits;
1186 	end_blkoff = (start + len - 1) >> blkbits;
1187 
1188 	delalloc_blklen = nilfs_find_uncommitted_extent(inode, blkoff,
1189 							&delalloc_blkoff);
1190 
1191 	do {
1192 		__u64 blkphy;
1193 		unsigned int maxblocks;
1194 
1195 		if (delalloc_blklen && blkoff == delalloc_blkoff) {
1196 			if (size) {
1197 				/* End of the current extent */
1198 				ret = fiemap_fill_next_extent(
1199 					fieinfo, logical, phys, size, flags);
1200 				if (ret)
1201 					break;
1202 			}
1203 			if (blkoff > end_blkoff)
1204 				break;
1205 
1206 			flags = FIEMAP_EXTENT_MERGED | FIEMAP_EXTENT_DELALLOC;
1207 			logical = blkoff << blkbits;
1208 			phys = 0;
1209 			size = delalloc_blklen << blkbits;
1210 
1211 			blkoff = delalloc_blkoff + delalloc_blklen;
1212 			delalloc_blklen = nilfs_find_uncommitted_extent(
1213 				inode, blkoff, &delalloc_blkoff);
1214 			continue;
1215 		}
1216 
1217 		/*
1218 		 * Limit the number of blocks that we look up so as
1219 		 * not to get into the next delayed allocation extent.
1220 		 */
1221 		maxblocks = INT_MAX;
1222 		if (delalloc_blklen)
1223 			maxblocks = min_t(sector_t, delalloc_blkoff - blkoff,
1224 					  maxblocks);
1225 		blkphy = 0;
1226 
1227 		down_read(&NILFS_MDT(nilfs->ns_dat)->mi_sem);
1228 		n = nilfs_bmap_lookup_contig(
1229 			NILFS_I(inode)->i_bmap, blkoff, &blkphy, maxblocks);
1230 		up_read(&NILFS_MDT(nilfs->ns_dat)->mi_sem);
1231 
1232 		if (n < 0) {
1233 			int past_eof;
1234 
1235 			if (unlikely(n != -ENOENT))
1236 				break; /* error */
1237 
1238 			/* HOLE */
1239 			blkoff++;
1240 			past_eof = ((blkoff << blkbits) >= isize);
1241 
1242 			if (size) {
1243 				/* End of the current extent */
1244 
1245 				if (past_eof)
1246 					flags |= FIEMAP_EXTENT_LAST;
1247 
1248 				ret = fiemap_fill_next_extent(
1249 					fieinfo, logical, phys, size, flags);
1250 				if (ret)
1251 					break;
1252 				size = 0;
1253 			}
1254 			if (blkoff > end_blkoff || past_eof)
1255 				break;
1256 		} else {
1257 			if (size) {
1258 				if (phys && blkphy << blkbits == phys + size) {
1259 					/* The current extent goes on */
1260 					size += n << blkbits;
1261 				} else {
1262 					/* Terminate the current extent */
1263 					ret = fiemap_fill_next_extent(
1264 						fieinfo, logical, phys, size,
1265 						flags);
1266 					if (ret || blkoff > end_blkoff)
1267 						break;
1268 
1269 					/* Start another extent */
1270 					flags = FIEMAP_EXTENT_MERGED;
1271 					logical = blkoff << blkbits;
1272 					phys = blkphy << blkbits;
1273 					size = n << blkbits;
1274 				}
1275 			} else {
1276 				/* Start a new extent */
1277 				flags = FIEMAP_EXTENT_MERGED;
1278 				logical = blkoff << blkbits;
1279 				phys = blkphy << blkbits;
1280 				size = n << blkbits;
1281 			}
1282 			blkoff += n;
1283 		}
1284 		cond_resched();
1285 	} while (true);
1286 
1287 	/* If ret is 1 then we just hit the end of the extent array */
1288 	if (ret == 1)
1289 		ret = 0;
1290 
1291 	inode_unlock(inode);
1292 	return ret;
1293 }
1294