1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * File operations used by nfsd. Some of these have been ripped from 4 * other parts of the kernel because they weren't exported, others 5 * are partial duplicates with added or changed functionality. 6 * 7 * Note that several functions dget() the dentry upon which they want 8 * to act, most notably those that create directory entries. Response 9 * dentry's are dput()'d if necessary in the release callback. 10 * So if you notice code paths that apparently fail to dput() the 11 * dentry, don't worry--they have been taken care of. 12 * 13 * Copyright (C) 1995-1999 Olaf Kirch <okir@monad.swb.de> 14 * Zerocpy NFS support (C) 2002 Hirokazu Takahashi <taka@valinux.co.jp> 15 */ 16 17 #include <linux/fs.h> 18 #include <linux/file.h> 19 #include <linux/splice.h> 20 #include <linux/falloc.h> 21 #include <linux/fcntl.h> 22 #include <linux/namei.h> 23 #include <linux/delay.h> 24 #include <linux/fsnotify.h> 25 #include <linux/posix_acl_xattr.h> 26 #include <linux/xattr.h> 27 #include <linux/jhash.h> 28 #include <linux/pagemap.h> 29 #include <linux/slab.h> 30 #include <linux/uaccess.h> 31 #include <linux/exportfs.h> 32 #include <linux/writeback.h> 33 #include <linux/security.h> 34 35 #include "xdr3.h" 36 37 #ifdef CONFIG_NFSD_V4 38 #include "acl.h" 39 #include "idmap.h" 40 #include "xdr4.h" 41 #endif /* CONFIG_NFSD_V4 */ 42 43 #include "nfsd.h" 44 #include "vfs.h" 45 #include "filecache.h" 46 #include "trace.h" 47 48 #define NFSDDBG_FACILITY NFSDDBG_FILEOP 49 50 /** 51 * nfserrno - Map Linux errnos to NFS errnos 52 * @errno: POSIX(-ish) error code to be mapped 53 * 54 * Returns the appropriate (net-endian) nfserr_* (or nfs_ok if errno is 0). If 55 * it's an error we don't expect, log it once and return nfserr_io. 56 */ 57 __be32 58 nfserrno (int errno) 59 { 60 static struct { 61 __be32 nfserr; 62 int syserr; 63 } nfs_errtbl[] = { 64 { nfs_ok, 0 }, 65 { nfserr_perm, -EPERM }, 66 { nfserr_noent, -ENOENT }, 67 { nfserr_io, -EIO }, 68 { nfserr_nxio, -ENXIO }, 69 { nfserr_fbig, -E2BIG }, 70 { nfserr_stale, -EBADF }, 71 { nfserr_acces, -EACCES }, 72 { nfserr_exist, -EEXIST }, 73 { nfserr_xdev, -EXDEV }, 74 { nfserr_nodev, -ENODEV }, 75 { nfserr_notdir, -ENOTDIR }, 76 { nfserr_isdir, -EISDIR }, 77 { nfserr_inval, -EINVAL }, 78 { nfserr_fbig, -EFBIG }, 79 { nfserr_nospc, -ENOSPC }, 80 { nfserr_rofs, -EROFS }, 81 { nfserr_mlink, -EMLINK }, 82 { nfserr_nametoolong, -ENAMETOOLONG }, 83 { nfserr_notempty, -ENOTEMPTY }, 84 { nfserr_dquot, -EDQUOT }, 85 { nfserr_stale, -ESTALE }, 86 { nfserr_jukebox, -ETIMEDOUT }, 87 { nfserr_jukebox, -ERESTARTSYS }, 88 { nfserr_jukebox, -EAGAIN }, 89 { nfserr_jukebox, -EWOULDBLOCK }, 90 { nfserr_jukebox, -ENOMEM }, 91 { nfserr_io, -ETXTBSY }, 92 { nfserr_notsupp, -EOPNOTSUPP }, 93 { nfserr_toosmall, -ETOOSMALL }, 94 { nfserr_serverfault, -ESERVERFAULT }, 95 { nfserr_serverfault, -ENFILE }, 96 { nfserr_io, -EREMOTEIO }, 97 { nfserr_stale, -EOPENSTALE }, 98 { nfserr_io, -EUCLEAN }, 99 { nfserr_perm, -ENOKEY }, 100 { nfserr_no_grace, -ENOGRACE}, 101 { nfserr_io, -EBADMSG }, 102 }; 103 int i; 104 105 for (i = 0; i < ARRAY_SIZE(nfs_errtbl); i++) { 106 if (nfs_errtbl[i].syserr == errno) 107 return nfs_errtbl[i].nfserr; 108 } 109 WARN_ONCE(1, "nfsd: non-standard errno: %d\n", errno); 110 return nfserr_io; 111 } 112 113 /* 114 * Called from nfsd_lookup and encode_dirent. Check if we have crossed 115 * a mount point. 116 * Returns -EAGAIN or -ETIMEDOUT leaving *dpp and *expp unchanged, 117 * or nfs_ok having possibly changed *dpp and *expp 118 */ 119 int 120 nfsd_cross_mnt(struct svc_rqst *rqstp, struct dentry **dpp, 121 struct svc_export **expp) 122 { 123 struct svc_export *exp = *expp, *exp2 = NULL; 124 struct dentry *dentry = *dpp; 125 struct path path = {.mnt = mntget(exp->ex_path.mnt), 126 .dentry = dget(dentry)}; 127 unsigned int follow_flags = 0; 128 int err = 0; 129 130 if (exp->ex_flags & NFSEXP_CROSSMOUNT) 131 follow_flags = LOOKUP_AUTOMOUNT; 132 133 err = follow_down(&path, follow_flags); 134 if (err < 0) 135 goto out; 136 if (path.mnt == exp->ex_path.mnt && path.dentry == dentry && 137 nfsd_mountpoint(dentry, exp) == 2) { 138 /* This is only a mountpoint in some other namespace */ 139 path_put(&path); 140 goto out; 141 } 142 143 exp2 = rqst_exp_get_by_name(rqstp, &path); 144 if (IS_ERR(exp2)) { 145 err = PTR_ERR(exp2); 146 /* 147 * We normally allow NFS clients to continue 148 * "underneath" a mountpoint that is not exported. 149 * The exception is V4ROOT, where no traversal is ever 150 * allowed without an explicit export of the new 151 * directory. 152 */ 153 if (err == -ENOENT && !(exp->ex_flags & NFSEXP_V4ROOT)) 154 err = 0; 155 path_put(&path); 156 goto out; 157 } 158 if (nfsd_v4client(rqstp) || 159 (exp->ex_flags & NFSEXP_CROSSMOUNT) || EX_NOHIDE(exp2)) { 160 /* successfully crossed mount point */ 161 /* 162 * This is subtle: path.dentry is *not* on path.mnt 163 * at this point. The only reason we are safe is that 164 * original mnt is pinned down by exp, so we should 165 * put path *before* putting exp 166 */ 167 *dpp = path.dentry; 168 path.dentry = dentry; 169 *expp = exp2; 170 exp2 = exp; 171 } 172 path_put(&path); 173 exp_put(exp2); 174 out: 175 return err; 176 } 177 178 static void follow_to_parent(struct path *path) 179 { 180 struct dentry *dp; 181 182 while (path->dentry == path->mnt->mnt_root && follow_up(path)) 183 ; 184 dp = dget_parent(path->dentry); 185 dput(path->dentry); 186 path->dentry = dp; 187 } 188 189 static int nfsd_lookup_parent(struct svc_rqst *rqstp, struct dentry *dparent, struct svc_export **exp, struct dentry **dentryp) 190 { 191 struct svc_export *exp2; 192 struct path path = {.mnt = mntget((*exp)->ex_path.mnt), 193 .dentry = dget(dparent)}; 194 195 follow_to_parent(&path); 196 197 exp2 = rqst_exp_parent(rqstp, &path); 198 if (PTR_ERR(exp2) == -ENOENT) { 199 *dentryp = dget(dparent); 200 } else if (IS_ERR(exp2)) { 201 path_put(&path); 202 return PTR_ERR(exp2); 203 } else { 204 *dentryp = dget(path.dentry); 205 exp_put(*exp); 206 *exp = exp2; 207 } 208 path_put(&path); 209 return 0; 210 } 211 212 /* 213 * For nfsd purposes, we treat V4ROOT exports as though there was an 214 * export at *every* directory. 215 * We return: 216 * '1' if this dentry *must* be an export point, 217 * '2' if it might be, if there is really a mount here, and 218 * '0' if there is no chance of an export point here. 219 */ 220 int nfsd_mountpoint(struct dentry *dentry, struct svc_export *exp) 221 { 222 if (!d_inode(dentry)) 223 return 0; 224 if (exp->ex_flags & NFSEXP_V4ROOT) 225 return 1; 226 if (nfsd4_is_junction(dentry)) 227 return 1; 228 if (d_managed(dentry)) 229 /* 230 * Might only be a mountpoint in a different namespace, 231 * but we need to check. 232 */ 233 return 2; 234 return 0; 235 } 236 237 __be32 238 nfsd_lookup_dentry(struct svc_rqst *rqstp, struct svc_fh *fhp, 239 const char *name, unsigned int len, 240 struct svc_export **exp_ret, struct dentry **dentry_ret) 241 { 242 struct svc_export *exp; 243 struct dentry *dparent; 244 struct dentry *dentry; 245 int host_err; 246 247 dprintk("nfsd: nfsd_lookup(fh %s, %.*s)\n", SVCFH_fmt(fhp), len,name); 248 249 dparent = fhp->fh_dentry; 250 exp = exp_get(fhp->fh_export); 251 252 /* Lookup the name, but don't follow links */ 253 if (isdotent(name, len)) { 254 if (len==1) 255 dentry = dget(dparent); 256 else if (dparent != exp->ex_path.dentry) 257 dentry = dget_parent(dparent); 258 else if (!EX_NOHIDE(exp) && !nfsd_v4client(rqstp)) 259 dentry = dget(dparent); /* .. == . just like at / */ 260 else { 261 /* checking mountpoint crossing is very different when stepping up */ 262 host_err = nfsd_lookup_parent(rqstp, dparent, &exp, &dentry); 263 if (host_err) 264 goto out_nfserr; 265 } 266 } else { 267 dentry = lookup_one_len_unlocked(name, dparent, len); 268 host_err = PTR_ERR(dentry); 269 if (IS_ERR(dentry)) 270 goto out_nfserr; 271 if (nfsd_mountpoint(dentry, exp)) { 272 host_err = nfsd_cross_mnt(rqstp, &dentry, &exp); 273 if (host_err) { 274 dput(dentry); 275 goto out_nfserr; 276 } 277 } 278 } 279 *dentry_ret = dentry; 280 *exp_ret = exp; 281 return 0; 282 283 out_nfserr: 284 exp_put(exp); 285 return nfserrno(host_err); 286 } 287 288 /** 289 * nfsd_lookup - look up a single path component for nfsd 290 * 291 * @rqstp: the request context 292 * @fhp: the file handle of the directory 293 * @name: the component name, or %NULL to look up parent 294 * @len: length of name to examine 295 * @resfh: pointer to pre-initialised filehandle to hold result. 296 * 297 * Look up one component of a pathname. 298 * N.B. After this call _both_ fhp and resfh need an fh_put 299 * 300 * If the lookup would cross a mountpoint, and the mounted filesystem 301 * is exported to the client with NFSEXP_NOHIDE, then the lookup is 302 * accepted as it stands and the mounted directory is 303 * returned. Otherwise the covered directory is returned. 304 * NOTE: this mountpoint crossing is not supported properly by all 305 * clients and is explicitly disallowed for NFSv3 306 * 307 */ 308 __be32 309 nfsd_lookup(struct svc_rqst *rqstp, struct svc_fh *fhp, const char *name, 310 unsigned int len, struct svc_fh *resfh) 311 { 312 struct svc_export *exp; 313 struct dentry *dentry; 314 __be32 err; 315 316 err = fh_verify(rqstp, fhp, S_IFDIR, NFSD_MAY_EXEC); 317 if (err) 318 return err; 319 err = nfsd_lookup_dentry(rqstp, fhp, name, len, &exp, &dentry); 320 if (err) 321 return err; 322 err = check_nfsd_access(exp, rqstp, false); 323 if (err) 324 goto out; 325 /* 326 * Note: we compose the file handle now, but as the 327 * dentry may be negative, it may need to be updated. 328 */ 329 err = fh_compose(resfh, exp, dentry, fhp); 330 if (!err && d_really_is_negative(dentry)) 331 err = nfserr_noent; 332 out: 333 dput(dentry); 334 exp_put(exp); 335 return err; 336 } 337 338 static void 339 commit_reset_write_verifier(struct nfsd_net *nn, struct svc_rqst *rqstp, 340 int err) 341 { 342 switch (err) { 343 case -EAGAIN: 344 case -ESTALE: 345 /* 346 * Neither of these are the result of a problem with 347 * durable storage, so avoid a write verifier reset. 348 */ 349 break; 350 default: 351 nfsd_reset_write_verifier(nn); 352 trace_nfsd_writeverf_reset(nn, rqstp, err); 353 } 354 } 355 356 /* 357 * Commit metadata changes to stable storage. 358 */ 359 static int 360 commit_inode_metadata(struct inode *inode) 361 { 362 const struct export_operations *export_ops = inode->i_sb->s_export_op; 363 364 if (export_ops->commit_metadata) 365 return export_ops->commit_metadata(inode); 366 return sync_inode_metadata(inode, 1); 367 } 368 369 static int 370 commit_metadata(struct svc_fh *fhp) 371 { 372 struct inode *inode = d_inode(fhp->fh_dentry); 373 374 if (!EX_ISSYNC(fhp->fh_export)) 375 return 0; 376 return commit_inode_metadata(inode); 377 } 378 379 /* 380 * Go over the attributes and take care of the small differences between 381 * NFS semantics and what Linux expects. 382 */ 383 static void 384 nfsd_sanitize_attrs(struct inode *inode, struct iattr *iap) 385 { 386 /* Ignore mode updates on symlinks */ 387 if (S_ISLNK(inode->i_mode)) 388 iap->ia_valid &= ~ATTR_MODE; 389 390 /* sanitize the mode change */ 391 if (iap->ia_valid & ATTR_MODE) { 392 iap->ia_mode &= S_IALLUGO; 393 iap->ia_mode |= (inode->i_mode & ~S_IALLUGO); 394 } 395 396 /* Revoke setuid/setgid on chown */ 397 if (!S_ISDIR(inode->i_mode) && 398 ((iap->ia_valid & ATTR_UID) || (iap->ia_valid & ATTR_GID))) { 399 iap->ia_valid |= ATTR_KILL_PRIV; 400 if (iap->ia_valid & ATTR_MODE) { 401 /* we're setting mode too, just clear the s*id bits */ 402 iap->ia_mode &= ~S_ISUID; 403 if (iap->ia_mode & S_IXGRP) 404 iap->ia_mode &= ~S_ISGID; 405 } else { 406 /* set ATTR_KILL_* bits and let VFS handle it */ 407 iap->ia_valid |= ATTR_KILL_SUID; 408 iap->ia_valid |= 409 setattr_should_drop_sgid(&nop_mnt_idmap, inode); 410 } 411 } 412 } 413 414 static __be32 415 nfsd_get_write_access(struct svc_rqst *rqstp, struct svc_fh *fhp, 416 struct iattr *iap) 417 { 418 struct inode *inode = d_inode(fhp->fh_dentry); 419 420 if (iap->ia_size < inode->i_size) { 421 __be32 err; 422 423 err = nfsd_permission(&rqstp->rq_cred, 424 fhp->fh_export, fhp->fh_dentry, 425 NFSD_MAY_TRUNC | NFSD_MAY_OWNER_OVERRIDE); 426 if (err) 427 return err; 428 } 429 return nfserrno(get_write_access(inode)); 430 } 431 432 static int __nfsd_setattr(struct dentry *dentry, struct iattr *iap) 433 { 434 int host_err; 435 436 if (iap->ia_valid & ATTR_SIZE) { 437 /* 438 * RFC5661, Section 18.30.4: 439 * Changing the size of a file with SETATTR indirectly 440 * changes the time_modify and change attributes. 441 * 442 * (and similar for the older RFCs) 443 */ 444 struct iattr size_attr = { 445 .ia_valid = ATTR_SIZE | ATTR_CTIME | ATTR_MTIME, 446 .ia_size = iap->ia_size, 447 }; 448 449 if (iap->ia_size < 0) 450 return -EFBIG; 451 452 host_err = notify_change(&nop_mnt_idmap, dentry, &size_attr, NULL); 453 if (host_err) 454 return host_err; 455 iap->ia_valid &= ~ATTR_SIZE; 456 457 /* 458 * Avoid the additional setattr call below if the only other 459 * attribute that the client sends is the mtime, as we update 460 * it as part of the size change above. 461 */ 462 if ((iap->ia_valid & ~ATTR_MTIME) == 0) 463 return 0; 464 } 465 466 if (!iap->ia_valid) 467 return 0; 468 469 iap->ia_valid |= ATTR_CTIME; 470 return notify_change(&nop_mnt_idmap, dentry, iap, NULL); 471 } 472 473 /** 474 * nfsd_setattr - Set various file attributes. 475 * @rqstp: controlling RPC transaction 476 * @fhp: filehandle of target 477 * @attr: attributes to set 478 * @guardtime: do not act if ctime.tv_sec does not match this timestamp 479 * 480 * This call may adjust the contents of @attr (in particular, this 481 * call may change the bits in the na_iattr.ia_valid field). 482 * 483 * Returns nfs_ok on success, otherwise an NFS status code is 484 * returned. Caller must release @fhp by calling fh_put in either 485 * case. 486 */ 487 __be32 488 nfsd_setattr(struct svc_rqst *rqstp, struct svc_fh *fhp, 489 struct nfsd_attrs *attr, const struct timespec64 *guardtime) 490 { 491 struct dentry *dentry; 492 struct inode *inode; 493 struct iattr *iap = attr->na_iattr; 494 int accmode = NFSD_MAY_SATTR; 495 umode_t ftype = 0; 496 __be32 err; 497 int host_err = 0; 498 bool get_write_count; 499 bool size_change = (iap->ia_valid & ATTR_SIZE); 500 int retries; 501 502 if (iap->ia_valid & ATTR_SIZE) { 503 accmode |= NFSD_MAY_WRITE|NFSD_MAY_OWNER_OVERRIDE; 504 ftype = S_IFREG; 505 } 506 507 /* 508 * If utimes(2) and friends are called with times not NULL, we should 509 * not set NFSD_MAY_WRITE bit. Otherwise fh_verify->nfsd_permission 510 * will return EACCES, when the caller's effective UID does not match 511 * the owner of the file, and the caller is not privileged. In this 512 * situation, we should return EPERM(notify_change will return this). 513 */ 514 if (iap->ia_valid & (ATTR_ATIME | ATTR_MTIME)) { 515 accmode |= NFSD_MAY_OWNER_OVERRIDE; 516 if (!(iap->ia_valid & (ATTR_ATIME_SET | ATTR_MTIME_SET))) 517 accmode |= NFSD_MAY_WRITE; 518 } 519 520 /* Callers that do fh_verify should do the fh_want_write: */ 521 get_write_count = !fhp->fh_dentry; 522 523 /* Get inode */ 524 err = fh_verify(rqstp, fhp, ftype, accmode); 525 if (err) 526 return err; 527 if (get_write_count) { 528 host_err = fh_want_write(fhp); 529 if (host_err) 530 goto out; 531 } 532 533 dentry = fhp->fh_dentry; 534 inode = d_inode(dentry); 535 536 nfsd_sanitize_attrs(inode, iap); 537 538 /* 539 * The size case is special, it changes the file in addition to the 540 * attributes, and file systems don't expect it to be mixed with 541 * "random" attribute changes. We thus split out the size change 542 * into a separate call to ->setattr, and do the rest as a separate 543 * setattr call. 544 */ 545 if (size_change) { 546 err = nfsd_get_write_access(rqstp, fhp, iap); 547 if (err) 548 return err; 549 } 550 551 inode_lock(inode); 552 err = fh_fill_pre_attrs(fhp); 553 if (err) 554 goto out_unlock; 555 556 if (guardtime) { 557 struct timespec64 ctime = inode_get_ctime(inode); 558 if ((u32)guardtime->tv_sec != (u32)ctime.tv_sec || 559 guardtime->tv_nsec != ctime.tv_nsec) { 560 err = nfserr_notsync; 561 goto out_fill_attrs; 562 } 563 } 564 565 for (retries = 1;;) { 566 struct iattr attrs; 567 568 /* 569 * notify_change() can alter its iattr argument, making 570 * @iap unsuitable for submission multiple times. Make a 571 * copy for every loop iteration. 572 */ 573 attrs = *iap; 574 host_err = __nfsd_setattr(dentry, &attrs); 575 if (host_err != -EAGAIN || !retries--) 576 break; 577 if (!nfsd_wait_for_delegreturn(rqstp, inode)) 578 break; 579 } 580 if (attr->na_seclabel && attr->na_seclabel->len) 581 attr->na_labelerr = security_inode_setsecctx(dentry, 582 attr->na_seclabel->data, attr->na_seclabel->len); 583 if (IS_ENABLED(CONFIG_FS_POSIX_ACL) && attr->na_pacl) 584 attr->na_aclerr = set_posix_acl(&nop_mnt_idmap, 585 dentry, ACL_TYPE_ACCESS, 586 attr->na_pacl); 587 if (IS_ENABLED(CONFIG_FS_POSIX_ACL) && 588 !attr->na_aclerr && attr->na_dpacl && S_ISDIR(inode->i_mode)) 589 attr->na_aclerr = set_posix_acl(&nop_mnt_idmap, 590 dentry, ACL_TYPE_DEFAULT, 591 attr->na_dpacl); 592 out_fill_attrs: 593 /* 594 * RFC 1813 Section 3.3.2 does not mandate that an NFS server 595 * returns wcc_data for SETATTR. Some client implementations 596 * depend on receiving wcc_data, however, to sort out partial 597 * updates (eg., the client requested that size and mode be 598 * modified, but the server changed only the file mode). 599 */ 600 fh_fill_post_attrs(fhp); 601 out_unlock: 602 inode_unlock(inode); 603 if (size_change) 604 put_write_access(inode); 605 out: 606 if (!host_err) 607 host_err = commit_metadata(fhp); 608 return err != 0 ? err : nfserrno(host_err); 609 } 610 611 #if defined(CONFIG_NFSD_V4) 612 /* 613 * NFS junction information is stored in an extended attribute. 614 */ 615 #define NFSD_JUNCTION_XATTR_NAME XATTR_TRUSTED_PREFIX "junction.nfs" 616 617 /** 618 * nfsd4_is_junction - Test if an object could be an NFS junction 619 * 620 * @dentry: object to test 621 * 622 * Returns 1 if "dentry" appears to contain NFS junction information. 623 * Otherwise 0 is returned. 624 */ 625 int nfsd4_is_junction(struct dentry *dentry) 626 { 627 struct inode *inode = d_inode(dentry); 628 629 if (inode == NULL) 630 return 0; 631 if (inode->i_mode & S_IXUGO) 632 return 0; 633 if (!(inode->i_mode & S_ISVTX)) 634 return 0; 635 if (vfs_getxattr(&nop_mnt_idmap, dentry, NFSD_JUNCTION_XATTR_NAME, 636 NULL, 0) <= 0) 637 return 0; 638 return 1; 639 } 640 641 static struct nfsd4_compound_state *nfsd4_get_cstate(struct svc_rqst *rqstp) 642 { 643 return &((struct nfsd4_compoundres *)rqstp->rq_resp)->cstate; 644 } 645 646 __be32 nfsd4_clone_file_range(struct svc_rqst *rqstp, 647 struct nfsd_file *nf_src, u64 src_pos, 648 struct nfsd_file *nf_dst, u64 dst_pos, 649 u64 count, bool sync) 650 { 651 struct file *src = nf_src->nf_file; 652 struct file *dst = nf_dst->nf_file; 653 errseq_t since; 654 loff_t cloned; 655 __be32 ret = 0; 656 657 since = READ_ONCE(dst->f_wb_err); 658 cloned = vfs_clone_file_range(src, src_pos, dst, dst_pos, count, 0); 659 if (cloned < 0) { 660 ret = nfserrno(cloned); 661 goto out_err; 662 } 663 if (count && cloned != count) { 664 ret = nfserrno(-EINVAL); 665 goto out_err; 666 } 667 if (sync) { 668 loff_t dst_end = count ? dst_pos + count - 1 : LLONG_MAX; 669 int status = vfs_fsync_range(dst, dst_pos, dst_end, 0); 670 671 if (!status) 672 status = filemap_check_wb_err(dst->f_mapping, since); 673 if (!status) 674 status = commit_inode_metadata(file_inode(src)); 675 if (status < 0) { 676 struct nfsd_net *nn = net_generic(nf_dst->nf_net, 677 nfsd_net_id); 678 679 trace_nfsd_clone_file_range_err(rqstp, 680 &nfsd4_get_cstate(rqstp)->save_fh, 681 src_pos, 682 &nfsd4_get_cstate(rqstp)->current_fh, 683 dst_pos, 684 count, status); 685 commit_reset_write_verifier(nn, rqstp, status); 686 ret = nfserrno(status); 687 } 688 } 689 out_err: 690 return ret; 691 } 692 693 ssize_t nfsd_copy_file_range(struct file *src, u64 src_pos, struct file *dst, 694 u64 dst_pos, u64 count) 695 { 696 ssize_t ret; 697 698 /* 699 * Limit copy to 4MB to prevent indefinitely blocking an nfsd 700 * thread and client rpc slot. The choice of 4MB is somewhat 701 * arbitrary. We might instead base this on r/wsize, or make it 702 * tunable, or use a time instead of a byte limit, or implement 703 * asynchronous copy. In theory a client could also recognize a 704 * limit like this and pipeline multiple COPY requests. 705 */ 706 count = min_t(u64, count, 1 << 22); 707 ret = vfs_copy_file_range(src, src_pos, dst, dst_pos, count, 0); 708 709 if (ret == -EOPNOTSUPP || ret == -EXDEV) 710 ret = vfs_copy_file_range(src, src_pos, dst, dst_pos, count, 711 COPY_FILE_SPLICE); 712 return ret; 713 } 714 715 __be32 nfsd4_vfs_fallocate(struct svc_rqst *rqstp, struct svc_fh *fhp, 716 struct file *file, loff_t offset, loff_t len, 717 int flags) 718 { 719 int error; 720 721 if (!S_ISREG(file_inode(file)->i_mode)) 722 return nfserr_inval; 723 724 error = vfs_fallocate(file, flags, offset, len); 725 if (!error) 726 error = commit_metadata(fhp); 727 728 return nfserrno(error); 729 } 730 #endif /* defined(CONFIG_NFSD_V4) */ 731 732 /* 733 * Check server access rights to a file system object 734 */ 735 struct accessmap { 736 u32 access; 737 int how; 738 }; 739 static struct accessmap nfs3_regaccess[] = { 740 { NFS3_ACCESS_READ, NFSD_MAY_READ }, 741 { NFS3_ACCESS_EXECUTE, NFSD_MAY_EXEC }, 742 { NFS3_ACCESS_MODIFY, NFSD_MAY_WRITE|NFSD_MAY_TRUNC }, 743 { NFS3_ACCESS_EXTEND, NFSD_MAY_WRITE }, 744 745 #ifdef CONFIG_NFSD_V4 746 { NFS4_ACCESS_XAREAD, NFSD_MAY_READ }, 747 { NFS4_ACCESS_XAWRITE, NFSD_MAY_WRITE }, 748 { NFS4_ACCESS_XALIST, NFSD_MAY_READ }, 749 #endif 750 751 { 0, 0 } 752 }; 753 754 static struct accessmap nfs3_diraccess[] = { 755 { NFS3_ACCESS_READ, NFSD_MAY_READ }, 756 { NFS3_ACCESS_LOOKUP, NFSD_MAY_EXEC }, 757 { NFS3_ACCESS_MODIFY, NFSD_MAY_EXEC|NFSD_MAY_WRITE|NFSD_MAY_TRUNC}, 758 { NFS3_ACCESS_EXTEND, NFSD_MAY_EXEC|NFSD_MAY_WRITE }, 759 { NFS3_ACCESS_DELETE, NFSD_MAY_REMOVE }, 760 761 #ifdef CONFIG_NFSD_V4 762 { NFS4_ACCESS_XAREAD, NFSD_MAY_READ }, 763 { NFS4_ACCESS_XAWRITE, NFSD_MAY_WRITE }, 764 { NFS4_ACCESS_XALIST, NFSD_MAY_READ }, 765 #endif 766 767 { 0, 0 } 768 }; 769 770 static struct accessmap nfs3_anyaccess[] = { 771 /* Some clients - Solaris 2.6 at least, make an access call 772 * to the server to check for access for things like /dev/null 773 * (which really, the server doesn't care about). So 774 * We provide simple access checking for them, looking 775 * mainly at mode bits, and we make sure to ignore read-only 776 * filesystem checks 777 */ 778 { NFS3_ACCESS_READ, NFSD_MAY_READ }, 779 { NFS3_ACCESS_EXECUTE, NFSD_MAY_EXEC }, 780 { NFS3_ACCESS_MODIFY, NFSD_MAY_WRITE|NFSD_MAY_LOCAL_ACCESS }, 781 { NFS3_ACCESS_EXTEND, NFSD_MAY_WRITE|NFSD_MAY_LOCAL_ACCESS }, 782 783 { 0, 0 } 784 }; 785 786 __be32 787 nfsd_access(struct svc_rqst *rqstp, struct svc_fh *fhp, u32 *access, u32 *supported) 788 { 789 struct accessmap *map; 790 struct svc_export *export; 791 struct dentry *dentry; 792 u32 query, result = 0, sresult = 0; 793 __be32 error; 794 795 error = fh_verify(rqstp, fhp, 0, NFSD_MAY_NOP); 796 if (error) 797 goto out; 798 799 export = fhp->fh_export; 800 dentry = fhp->fh_dentry; 801 802 if (d_is_reg(dentry)) 803 map = nfs3_regaccess; 804 else if (d_is_dir(dentry)) 805 map = nfs3_diraccess; 806 else 807 map = nfs3_anyaccess; 808 809 810 query = *access; 811 for (; map->access; map++) { 812 if (map->access & query) { 813 __be32 err2; 814 815 sresult |= map->access; 816 817 err2 = nfsd_permission(&rqstp->rq_cred, export, 818 dentry, map->how); 819 switch (err2) { 820 case nfs_ok: 821 result |= map->access; 822 break; 823 824 /* the following error codes just mean the access was not allowed, 825 * rather than an error occurred */ 826 case nfserr_rofs: 827 case nfserr_acces: 828 case nfserr_perm: 829 /* simply don't "or" in the access bit. */ 830 break; 831 default: 832 error = err2; 833 goto out; 834 } 835 } 836 } 837 *access = result; 838 if (supported) 839 *supported = sresult; 840 841 out: 842 return error; 843 } 844 845 int nfsd_open_break_lease(struct inode *inode, int access) 846 { 847 unsigned int mode; 848 849 if (access & NFSD_MAY_NOT_BREAK_LEASE) 850 return 0; 851 mode = (access & NFSD_MAY_WRITE) ? O_WRONLY : O_RDONLY; 852 return break_lease(inode, mode | O_NONBLOCK); 853 } 854 855 /* 856 * Open an existing file or directory. 857 * The may_flags argument indicates the type of open (read/write/lock) 858 * and additional flags. 859 * N.B. After this call fhp needs an fh_put 860 */ 861 static int 862 __nfsd_open(struct svc_fh *fhp, umode_t type, int may_flags, struct file **filp) 863 { 864 struct path path; 865 struct inode *inode; 866 struct file *file; 867 int flags = O_RDONLY|O_LARGEFILE; 868 int host_err = -EPERM; 869 870 path.mnt = fhp->fh_export->ex_path.mnt; 871 path.dentry = fhp->fh_dentry; 872 inode = d_inode(path.dentry); 873 874 if (IS_APPEND(inode) && (may_flags & NFSD_MAY_WRITE)) 875 goto out; 876 877 if (!inode->i_fop) 878 goto out; 879 880 host_err = nfsd_open_break_lease(inode, may_flags); 881 if (host_err) /* NOMEM or WOULDBLOCK */ 882 goto out; 883 884 if (may_flags & NFSD_MAY_WRITE) { 885 if (may_flags & NFSD_MAY_READ) 886 flags = O_RDWR|O_LARGEFILE; 887 else 888 flags = O_WRONLY|O_LARGEFILE; 889 } 890 891 file = dentry_open(&path, flags, current_cred()); 892 if (IS_ERR(file)) { 893 host_err = PTR_ERR(file); 894 goto out; 895 } 896 897 host_err = security_file_post_open(file, may_flags); 898 if (host_err) { 899 fput(file); 900 goto out; 901 } 902 903 *filp = file; 904 out: 905 return host_err; 906 } 907 908 __be32 909 nfsd_open(struct svc_rqst *rqstp, struct svc_fh *fhp, umode_t type, 910 int may_flags, struct file **filp) 911 { 912 __be32 err; 913 int host_err; 914 bool retried = false; 915 916 /* 917 * If we get here, then the client has already done an "open", 918 * and (hopefully) checked permission - so allow OWNER_OVERRIDE 919 * in case a chmod has now revoked permission. 920 * 921 * Arguably we should also allow the owner override for 922 * directories, but we never have and it doesn't seem to have 923 * caused anyone a problem. If we were to change this, note 924 * also that our filldir callbacks would need a variant of 925 * lookup_one_len that doesn't check permissions. 926 */ 927 if (type == S_IFREG) 928 may_flags |= NFSD_MAY_OWNER_OVERRIDE; 929 retry: 930 err = fh_verify(rqstp, fhp, type, may_flags); 931 if (!err) { 932 host_err = __nfsd_open(fhp, type, may_flags, filp); 933 if (host_err == -EOPENSTALE && !retried) { 934 retried = true; 935 fh_put(fhp); 936 goto retry; 937 } 938 err = nfserrno(host_err); 939 } 940 return err; 941 } 942 943 /** 944 * nfsd_open_verified - Open a regular file for the filecache 945 * @fhp: NFS filehandle of the file to open 946 * @may_flags: internal permission flags 947 * @filp: OUT: open "struct file *" 948 * 949 * Returns zero on success, or a negative errno value. 950 */ 951 int 952 nfsd_open_verified(struct svc_fh *fhp, int may_flags, struct file **filp) 953 { 954 return __nfsd_open(fhp, S_IFREG, may_flags, filp); 955 } 956 957 /* 958 * Grab and keep cached pages associated with a file in the svc_rqst 959 * so that they can be passed to the network sendmsg routines 960 * directly. They will be released after the sending has completed. 961 * 962 * Return values: Number of bytes consumed, or -EIO if there are no 963 * remaining pages in rqstp->rq_pages. 964 */ 965 static int 966 nfsd_splice_actor(struct pipe_inode_info *pipe, struct pipe_buffer *buf, 967 struct splice_desc *sd) 968 { 969 struct svc_rqst *rqstp = sd->u.data; 970 struct page *page = buf->page; // may be a compound one 971 unsigned offset = buf->offset; 972 struct page *last_page; 973 974 last_page = page + (offset + sd->len - 1) / PAGE_SIZE; 975 for (page += offset / PAGE_SIZE; page <= last_page; page++) { 976 /* 977 * Skip page replacement when extending the contents of the 978 * current page. But note that we may get two zero_pages in a 979 * row from shmem. 980 */ 981 if (page == *(rqstp->rq_next_page - 1) && 982 offset_in_page(rqstp->rq_res.page_base + 983 rqstp->rq_res.page_len)) 984 continue; 985 if (unlikely(!svc_rqst_replace_page(rqstp, page))) 986 return -EIO; 987 } 988 if (rqstp->rq_res.page_len == 0) // first call 989 rqstp->rq_res.page_base = offset % PAGE_SIZE; 990 rqstp->rq_res.page_len += sd->len; 991 return sd->len; 992 } 993 994 static int nfsd_direct_splice_actor(struct pipe_inode_info *pipe, 995 struct splice_desc *sd) 996 { 997 return __splice_from_pipe(pipe, sd, nfsd_splice_actor); 998 } 999 1000 static u32 nfsd_eof_on_read(struct file *file, loff_t offset, ssize_t len, 1001 size_t expected) 1002 { 1003 if (expected != 0 && len == 0) 1004 return 1; 1005 if (offset+len >= i_size_read(file_inode(file))) 1006 return 1; 1007 return 0; 1008 } 1009 1010 static __be32 nfsd_finish_read(struct svc_rqst *rqstp, struct svc_fh *fhp, 1011 struct file *file, loff_t offset, 1012 unsigned long *count, u32 *eof, ssize_t host_err) 1013 { 1014 if (host_err >= 0) { 1015 struct nfsd_net *nn = net_generic(SVC_NET(rqstp), nfsd_net_id); 1016 1017 nfsd_stats_io_read_add(nn, fhp->fh_export, host_err); 1018 *eof = nfsd_eof_on_read(file, offset, host_err, *count); 1019 *count = host_err; 1020 fsnotify_access(file); 1021 trace_nfsd_read_io_done(rqstp, fhp, offset, *count); 1022 return 0; 1023 } else { 1024 trace_nfsd_read_err(rqstp, fhp, offset, host_err); 1025 return nfserrno(host_err); 1026 } 1027 } 1028 1029 /** 1030 * nfsd_splice_read - Perform a VFS read using a splice pipe 1031 * @rqstp: RPC transaction context 1032 * @fhp: file handle of file to be read 1033 * @file: opened struct file of file to be read 1034 * @offset: starting byte offset 1035 * @count: IN: requested number of bytes; OUT: number of bytes read 1036 * @eof: OUT: set non-zero if operation reached the end of the file 1037 * 1038 * Returns nfs_ok on success, otherwise an nfserr stat value is 1039 * returned. 1040 */ 1041 __be32 nfsd_splice_read(struct svc_rqst *rqstp, struct svc_fh *fhp, 1042 struct file *file, loff_t offset, unsigned long *count, 1043 u32 *eof) 1044 { 1045 struct splice_desc sd = { 1046 .len = 0, 1047 .total_len = *count, 1048 .pos = offset, 1049 .u.data = rqstp, 1050 }; 1051 ssize_t host_err; 1052 1053 trace_nfsd_read_splice(rqstp, fhp, offset, *count); 1054 host_err = rw_verify_area(READ, file, &offset, *count); 1055 if (!host_err) 1056 host_err = splice_direct_to_actor(file, &sd, 1057 nfsd_direct_splice_actor); 1058 return nfsd_finish_read(rqstp, fhp, file, offset, count, eof, host_err); 1059 } 1060 1061 /** 1062 * nfsd_iter_read - Perform a VFS read using an iterator 1063 * @rqstp: RPC transaction context 1064 * @fhp: file handle of file to be read 1065 * @file: opened struct file of file to be read 1066 * @offset: starting byte offset 1067 * @count: IN: requested number of bytes; OUT: number of bytes read 1068 * @base: offset in first page of read buffer 1069 * @eof: OUT: set non-zero if operation reached the end of the file 1070 * 1071 * Some filesystems or situations cannot use nfsd_splice_read. This 1072 * function is the slightly less-performant fallback for those cases. 1073 * 1074 * Returns nfs_ok on success, otherwise an nfserr stat value is 1075 * returned. 1076 */ 1077 __be32 nfsd_iter_read(struct svc_rqst *rqstp, struct svc_fh *fhp, 1078 struct file *file, loff_t offset, unsigned long *count, 1079 unsigned int base, u32 *eof) 1080 { 1081 unsigned long v, total; 1082 struct iov_iter iter; 1083 loff_t ppos = offset; 1084 struct page *page; 1085 ssize_t host_err; 1086 1087 v = 0; 1088 total = *count; 1089 while (total) { 1090 page = *(rqstp->rq_next_page++); 1091 rqstp->rq_vec[v].iov_base = page_address(page) + base; 1092 rqstp->rq_vec[v].iov_len = min_t(size_t, total, PAGE_SIZE - base); 1093 total -= rqstp->rq_vec[v].iov_len; 1094 ++v; 1095 base = 0; 1096 } 1097 WARN_ON_ONCE(v > ARRAY_SIZE(rqstp->rq_vec)); 1098 1099 trace_nfsd_read_vector(rqstp, fhp, offset, *count); 1100 iov_iter_kvec(&iter, ITER_DEST, rqstp->rq_vec, v, *count); 1101 host_err = vfs_iter_read(file, &iter, &ppos, 0); 1102 return nfsd_finish_read(rqstp, fhp, file, offset, count, eof, host_err); 1103 } 1104 1105 /* 1106 * Gathered writes: If another process is currently writing to the file, 1107 * there's a high chance this is another nfsd (triggered by a bulk write 1108 * from a client's biod). Rather than syncing the file with each write 1109 * request, we sleep for 10 msec. 1110 * 1111 * I don't know if this roughly approximates C. Juszak's idea of 1112 * gathered writes, but it's a nice and simple solution (IMHO), and it 1113 * seems to work:-) 1114 * 1115 * Note: we do this only in the NFSv2 case, since v3 and higher have a 1116 * better tool (separate unstable writes and commits) for solving this 1117 * problem. 1118 */ 1119 static int wait_for_concurrent_writes(struct file *file) 1120 { 1121 struct inode *inode = file_inode(file); 1122 static ino_t last_ino; 1123 static dev_t last_dev; 1124 int err = 0; 1125 1126 if (atomic_read(&inode->i_writecount) > 1 1127 || (last_ino == inode->i_ino && last_dev == inode->i_sb->s_dev)) { 1128 dprintk("nfsd: write defer %d\n", task_pid_nr(current)); 1129 msleep(10); 1130 dprintk("nfsd: write resume %d\n", task_pid_nr(current)); 1131 } 1132 1133 if (inode->i_state & I_DIRTY) { 1134 dprintk("nfsd: write sync %d\n", task_pid_nr(current)); 1135 err = vfs_fsync(file, 0); 1136 } 1137 last_ino = inode->i_ino; 1138 last_dev = inode->i_sb->s_dev; 1139 return err; 1140 } 1141 1142 __be32 1143 nfsd_vfs_write(struct svc_rqst *rqstp, struct svc_fh *fhp, struct nfsd_file *nf, 1144 loff_t offset, struct kvec *vec, int vlen, 1145 unsigned long *cnt, int stable, 1146 __be32 *verf) 1147 { 1148 struct nfsd_net *nn = net_generic(SVC_NET(rqstp), nfsd_net_id); 1149 struct file *file = nf->nf_file; 1150 struct super_block *sb = file_inode(file)->i_sb; 1151 struct svc_export *exp; 1152 struct iov_iter iter; 1153 errseq_t since; 1154 __be32 nfserr; 1155 int host_err; 1156 loff_t pos = offset; 1157 unsigned long exp_op_flags = 0; 1158 unsigned int pflags = current->flags; 1159 rwf_t flags = 0; 1160 bool restore_flags = false; 1161 1162 trace_nfsd_write_opened(rqstp, fhp, offset, *cnt); 1163 1164 if (sb->s_export_op) 1165 exp_op_flags = sb->s_export_op->flags; 1166 1167 if (test_bit(RQ_LOCAL, &rqstp->rq_flags) && 1168 !(exp_op_flags & EXPORT_OP_REMOTE_FS)) { 1169 /* 1170 * We want throttling in balance_dirty_pages() 1171 * and shrink_inactive_list() to only consider 1172 * the backingdev we are writing to, so that nfs to 1173 * localhost doesn't cause nfsd to lock up due to all 1174 * the client's dirty pages or its congested queue. 1175 */ 1176 current->flags |= PF_LOCAL_THROTTLE; 1177 restore_flags = true; 1178 } 1179 1180 exp = fhp->fh_export; 1181 1182 if (!EX_ISSYNC(exp)) 1183 stable = NFS_UNSTABLE; 1184 1185 if (stable && !fhp->fh_use_wgather) 1186 flags |= RWF_SYNC; 1187 1188 iov_iter_kvec(&iter, ITER_SOURCE, vec, vlen, *cnt); 1189 since = READ_ONCE(file->f_wb_err); 1190 if (verf) 1191 nfsd_copy_write_verifier(verf, nn); 1192 host_err = vfs_iter_write(file, &iter, &pos, flags); 1193 if (host_err < 0) { 1194 commit_reset_write_verifier(nn, rqstp, host_err); 1195 goto out_nfserr; 1196 } 1197 *cnt = host_err; 1198 nfsd_stats_io_write_add(nn, exp, *cnt); 1199 fsnotify_modify(file); 1200 host_err = filemap_check_wb_err(file->f_mapping, since); 1201 if (host_err < 0) 1202 goto out_nfserr; 1203 1204 if (stable && fhp->fh_use_wgather) { 1205 host_err = wait_for_concurrent_writes(file); 1206 if (host_err < 0) 1207 commit_reset_write_verifier(nn, rqstp, host_err); 1208 } 1209 1210 out_nfserr: 1211 if (host_err >= 0) { 1212 trace_nfsd_write_io_done(rqstp, fhp, offset, *cnt); 1213 nfserr = nfs_ok; 1214 } else { 1215 trace_nfsd_write_err(rqstp, fhp, offset, host_err); 1216 nfserr = nfserrno(host_err); 1217 } 1218 if (restore_flags) 1219 current_restore_flags(pflags, PF_LOCAL_THROTTLE); 1220 return nfserr; 1221 } 1222 1223 /** 1224 * nfsd_read_splice_ok - check if spliced reading is supported 1225 * @rqstp: RPC transaction context 1226 * 1227 * Return values: 1228 * %true: nfsd_splice_read() may be used 1229 * %false: nfsd_splice_read() must not be used 1230 * 1231 * NFS READ normally uses splice to send data in-place. However the 1232 * data in cache can change after the reply's MIC is computed but 1233 * before the RPC reply is sent. To prevent the client from 1234 * rejecting the server-computed MIC in this somewhat rare case, do 1235 * not use splice with the GSS integrity and privacy services. 1236 */ 1237 bool nfsd_read_splice_ok(struct svc_rqst *rqstp) 1238 { 1239 switch (svc_auth_flavor(rqstp)) { 1240 case RPC_AUTH_GSS_KRB5I: 1241 case RPC_AUTH_GSS_KRB5P: 1242 return false; 1243 } 1244 return true; 1245 } 1246 1247 /** 1248 * nfsd_read - Read data from a file 1249 * @rqstp: RPC transaction context 1250 * @fhp: file handle of file to be read 1251 * @offset: starting byte offset 1252 * @count: IN: requested number of bytes; OUT: number of bytes read 1253 * @eof: OUT: set non-zero if operation reached the end of the file 1254 * 1255 * The caller must verify that there is enough space in @rqstp.rq_res 1256 * to perform this operation. 1257 * 1258 * N.B. After this call fhp needs an fh_put 1259 * 1260 * Returns nfs_ok on success, otherwise an nfserr stat value is 1261 * returned. 1262 */ 1263 __be32 nfsd_read(struct svc_rqst *rqstp, struct svc_fh *fhp, 1264 loff_t offset, unsigned long *count, u32 *eof) 1265 { 1266 struct nfsd_file *nf; 1267 struct file *file; 1268 __be32 err; 1269 1270 trace_nfsd_read_start(rqstp, fhp, offset, *count); 1271 err = nfsd_file_acquire_gc(rqstp, fhp, NFSD_MAY_READ, &nf); 1272 if (err) 1273 return err; 1274 1275 file = nf->nf_file; 1276 if (file->f_op->splice_read && nfsd_read_splice_ok(rqstp)) 1277 err = nfsd_splice_read(rqstp, fhp, file, offset, count, eof); 1278 else 1279 err = nfsd_iter_read(rqstp, fhp, file, offset, count, 0, eof); 1280 1281 nfsd_file_put(nf); 1282 trace_nfsd_read_done(rqstp, fhp, offset, *count); 1283 return err; 1284 } 1285 1286 /* 1287 * Write data to a file. 1288 * The stable flag requests synchronous writes. 1289 * N.B. After this call fhp needs an fh_put 1290 */ 1291 __be32 1292 nfsd_write(struct svc_rqst *rqstp, struct svc_fh *fhp, loff_t offset, 1293 struct kvec *vec, int vlen, unsigned long *cnt, int stable, 1294 __be32 *verf) 1295 { 1296 struct nfsd_file *nf; 1297 __be32 err; 1298 1299 trace_nfsd_write_start(rqstp, fhp, offset, *cnt); 1300 1301 err = nfsd_file_acquire_gc(rqstp, fhp, NFSD_MAY_WRITE, &nf); 1302 if (err) 1303 goto out; 1304 1305 err = nfsd_vfs_write(rqstp, fhp, nf, offset, vec, 1306 vlen, cnt, stable, verf); 1307 nfsd_file_put(nf); 1308 out: 1309 trace_nfsd_write_done(rqstp, fhp, offset, *cnt); 1310 return err; 1311 } 1312 1313 /** 1314 * nfsd_commit - Commit pending writes to stable storage 1315 * @rqstp: RPC request being processed 1316 * @fhp: NFS filehandle 1317 * @nf: target file 1318 * @offset: raw offset from beginning of file 1319 * @count: raw count of bytes to sync 1320 * @verf: filled in with the server's current write verifier 1321 * 1322 * Note: we guarantee that data that lies within the range specified 1323 * by the 'offset' and 'count' parameters will be synced. The server 1324 * is permitted to sync data that lies outside this range at the 1325 * same time. 1326 * 1327 * Unfortunately we cannot lock the file to make sure we return full WCC 1328 * data to the client, as locking happens lower down in the filesystem. 1329 * 1330 * Return values: 1331 * An nfsstat value in network byte order. 1332 */ 1333 __be32 1334 nfsd_commit(struct svc_rqst *rqstp, struct svc_fh *fhp, struct nfsd_file *nf, 1335 u64 offset, u32 count, __be32 *verf) 1336 { 1337 __be32 err = nfs_ok; 1338 u64 maxbytes; 1339 loff_t start, end; 1340 struct nfsd_net *nn; 1341 1342 /* 1343 * Convert the client-provided (offset, count) range to a 1344 * (start, end) range. If the client-provided range falls 1345 * outside the maximum file size of the underlying FS, 1346 * clamp the sync range appropriately. 1347 */ 1348 start = 0; 1349 end = LLONG_MAX; 1350 maxbytes = (u64)fhp->fh_dentry->d_sb->s_maxbytes; 1351 if (offset < maxbytes) { 1352 start = offset; 1353 if (count && (offset + count - 1 < maxbytes)) 1354 end = offset + count - 1; 1355 } 1356 1357 nn = net_generic(nf->nf_net, nfsd_net_id); 1358 if (EX_ISSYNC(fhp->fh_export)) { 1359 errseq_t since = READ_ONCE(nf->nf_file->f_wb_err); 1360 int err2; 1361 1362 err2 = vfs_fsync_range(nf->nf_file, start, end, 0); 1363 switch (err2) { 1364 case 0: 1365 nfsd_copy_write_verifier(verf, nn); 1366 err2 = filemap_check_wb_err(nf->nf_file->f_mapping, 1367 since); 1368 err = nfserrno(err2); 1369 break; 1370 case -EINVAL: 1371 err = nfserr_notsupp; 1372 break; 1373 default: 1374 commit_reset_write_verifier(nn, rqstp, err2); 1375 err = nfserrno(err2); 1376 } 1377 } else 1378 nfsd_copy_write_verifier(verf, nn); 1379 1380 return err; 1381 } 1382 1383 /** 1384 * nfsd_create_setattr - Set a created file's attributes 1385 * @rqstp: RPC transaction being executed 1386 * @fhp: NFS filehandle of parent directory 1387 * @resfhp: NFS filehandle of new object 1388 * @attrs: requested attributes of new object 1389 * 1390 * Returns nfs_ok on success, or an nfsstat in network byte order. 1391 */ 1392 __be32 1393 nfsd_create_setattr(struct svc_rqst *rqstp, struct svc_fh *fhp, 1394 struct svc_fh *resfhp, struct nfsd_attrs *attrs) 1395 { 1396 struct iattr *iap = attrs->na_iattr; 1397 __be32 status; 1398 1399 /* 1400 * Mode has already been set by file creation. 1401 */ 1402 iap->ia_valid &= ~ATTR_MODE; 1403 1404 /* 1405 * Setting uid/gid works only for root. Irix appears to 1406 * send along the gid on create when it tries to implement 1407 * setgid directories via NFS: 1408 */ 1409 if (!uid_eq(current_fsuid(), GLOBAL_ROOT_UID)) 1410 iap->ia_valid &= ~(ATTR_UID|ATTR_GID); 1411 1412 /* 1413 * Callers expect new file metadata to be committed even 1414 * if the attributes have not changed. 1415 */ 1416 if (nfsd_attrs_valid(attrs)) 1417 status = nfsd_setattr(rqstp, resfhp, attrs, NULL); 1418 else 1419 status = nfserrno(commit_metadata(resfhp)); 1420 1421 /* 1422 * Transactional filesystems had a chance to commit changes 1423 * for both parent and child simultaneously making the 1424 * following commit_metadata a noop in many cases. 1425 */ 1426 if (!status) 1427 status = nfserrno(commit_metadata(fhp)); 1428 1429 /* 1430 * Update the new filehandle to pick up the new attributes. 1431 */ 1432 if (!status) 1433 status = fh_update(resfhp); 1434 1435 return status; 1436 } 1437 1438 /* HPUX client sometimes creates a file in mode 000, and sets size to 0. 1439 * setting size to 0 may fail for some specific file systems by the permission 1440 * checking which requires WRITE permission but the mode is 000. 1441 * we ignore the resizing(to 0) on the just new created file, since the size is 1442 * 0 after file created. 1443 * 1444 * call this only after vfs_create() is called. 1445 * */ 1446 static void 1447 nfsd_check_ignore_resizing(struct iattr *iap) 1448 { 1449 if ((iap->ia_valid & ATTR_SIZE) && (iap->ia_size == 0)) 1450 iap->ia_valid &= ~ATTR_SIZE; 1451 } 1452 1453 /* The parent directory should already be locked: */ 1454 __be32 1455 nfsd_create_locked(struct svc_rqst *rqstp, struct svc_fh *fhp, 1456 struct nfsd_attrs *attrs, 1457 int type, dev_t rdev, struct svc_fh *resfhp) 1458 { 1459 struct dentry *dentry, *dchild; 1460 struct inode *dirp; 1461 struct iattr *iap = attrs->na_iattr; 1462 __be32 err; 1463 int host_err = 0; 1464 1465 dentry = fhp->fh_dentry; 1466 dirp = d_inode(dentry); 1467 1468 dchild = dget(resfhp->fh_dentry); 1469 err = nfsd_permission(&rqstp->rq_cred, fhp->fh_export, dentry, 1470 NFSD_MAY_CREATE); 1471 if (err) 1472 goto out; 1473 1474 if (!(iap->ia_valid & ATTR_MODE)) 1475 iap->ia_mode = 0; 1476 iap->ia_mode = (iap->ia_mode & S_IALLUGO) | type; 1477 1478 if (!IS_POSIXACL(dirp)) 1479 iap->ia_mode &= ~current_umask(); 1480 1481 err = 0; 1482 switch (type) { 1483 case S_IFREG: 1484 host_err = vfs_create(&nop_mnt_idmap, dirp, dchild, 1485 iap->ia_mode, true); 1486 if (!host_err) 1487 nfsd_check_ignore_resizing(iap); 1488 break; 1489 case S_IFDIR: 1490 dchild = vfs_mkdir(&nop_mnt_idmap, dirp, dchild, iap->ia_mode); 1491 if (IS_ERR(dchild)) { 1492 host_err = PTR_ERR(dchild); 1493 } else if (d_is_negative(dchild)) { 1494 err = nfserr_serverfault; 1495 goto out; 1496 } else if (unlikely(dchild != resfhp->fh_dentry)) { 1497 dput(resfhp->fh_dentry); 1498 resfhp->fh_dentry = dget(dchild); 1499 } 1500 break; 1501 case S_IFCHR: 1502 case S_IFBLK: 1503 case S_IFIFO: 1504 case S_IFSOCK: 1505 host_err = vfs_mknod(&nop_mnt_idmap, dirp, dchild, 1506 iap->ia_mode, rdev); 1507 break; 1508 default: 1509 printk(KERN_WARNING "nfsd: bad file type %o in nfsd_create\n", 1510 type); 1511 host_err = -EINVAL; 1512 } 1513 if (host_err < 0) 1514 goto out_nfserr; 1515 1516 err = nfsd_create_setattr(rqstp, fhp, resfhp, attrs); 1517 1518 out: 1519 if (!IS_ERR(dchild)) 1520 dput(dchild); 1521 return err; 1522 1523 out_nfserr: 1524 err = nfserrno(host_err); 1525 goto out; 1526 } 1527 1528 /* 1529 * Create a filesystem object (regular, directory, special). 1530 * Note that the parent directory is left locked. 1531 * 1532 * N.B. Every call to nfsd_create needs an fh_put for _both_ fhp and resfhp 1533 */ 1534 __be32 1535 nfsd_create(struct svc_rqst *rqstp, struct svc_fh *fhp, 1536 char *fname, int flen, struct nfsd_attrs *attrs, 1537 int type, dev_t rdev, struct svc_fh *resfhp) 1538 { 1539 struct dentry *dentry, *dchild = NULL; 1540 __be32 err; 1541 int host_err; 1542 1543 if (isdotent(fname, flen)) 1544 return nfserr_exist; 1545 1546 err = fh_verify(rqstp, fhp, S_IFDIR, NFSD_MAY_NOP); 1547 if (err) 1548 return err; 1549 1550 dentry = fhp->fh_dentry; 1551 1552 host_err = fh_want_write(fhp); 1553 if (host_err) 1554 return nfserrno(host_err); 1555 1556 inode_lock_nested(dentry->d_inode, I_MUTEX_PARENT); 1557 dchild = lookup_one_len(fname, dentry, flen); 1558 host_err = PTR_ERR(dchild); 1559 if (IS_ERR(dchild)) { 1560 err = nfserrno(host_err); 1561 goto out_unlock; 1562 } 1563 err = fh_compose(resfhp, fhp->fh_export, dchild, fhp); 1564 /* 1565 * We unconditionally drop our ref to dchild as fh_compose will have 1566 * already grabbed its own ref for it. 1567 */ 1568 dput(dchild); 1569 if (err) 1570 goto out_unlock; 1571 err = fh_fill_pre_attrs(fhp); 1572 if (err != nfs_ok) 1573 goto out_unlock; 1574 err = nfsd_create_locked(rqstp, fhp, attrs, type, rdev, resfhp); 1575 fh_fill_post_attrs(fhp); 1576 out_unlock: 1577 inode_unlock(dentry->d_inode); 1578 return err; 1579 } 1580 1581 /* 1582 * Read a symlink. On entry, *lenp must contain the maximum path length that 1583 * fits into the buffer. On return, it contains the true length. 1584 * N.B. After this call fhp needs an fh_put 1585 */ 1586 __be32 1587 nfsd_readlink(struct svc_rqst *rqstp, struct svc_fh *fhp, char *buf, int *lenp) 1588 { 1589 __be32 err; 1590 const char *link; 1591 struct path path; 1592 DEFINE_DELAYED_CALL(done); 1593 int len; 1594 1595 err = fh_verify(rqstp, fhp, S_IFLNK, NFSD_MAY_NOP); 1596 if (unlikely(err)) 1597 return err; 1598 1599 path.mnt = fhp->fh_export->ex_path.mnt; 1600 path.dentry = fhp->fh_dentry; 1601 1602 if (unlikely(!d_is_symlink(path.dentry))) 1603 return nfserr_inval; 1604 1605 touch_atime(&path); 1606 1607 link = vfs_get_link(path.dentry, &done); 1608 if (IS_ERR(link)) 1609 return nfserrno(PTR_ERR(link)); 1610 1611 len = strlen(link); 1612 if (len < *lenp) 1613 *lenp = len; 1614 memcpy(buf, link, *lenp); 1615 do_delayed_call(&done); 1616 return 0; 1617 } 1618 1619 /** 1620 * nfsd_symlink - Create a symlink and look up its inode 1621 * @rqstp: RPC transaction being executed 1622 * @fhp: NFS filehandle of parent directory 1623 * @fname: filename of the new symlink 1624 * @flen: length of @fname 1625 * @path: content of the new symlink (NUL-terminated) 1626 * @attrs: requested attributes of new object 1627 * @resfhp: NFS filehandle of new object 1628 * 1629 * N.B. After this call _both_ fhp and resfhp need an fh_put 1630 * 1631 * Returns nfs_ok on success, or an nfsstat in network byte order. 1632 */ 1633 __be32 1634 nfsd_symlink(struct svc_rqst *rqstp, struct svc_fh *fhp, 1635 char *fname, int flen, 1636 char *path, struct nfsd_attrs *attrs, 1637 struct svc_fh *resfhp) 1638 { 1639 struct dentry *dentry, *dnew; 1640 __be32 err, cerr; 1641 int host_err; 1642 1643 err = nfserr_noent; 1644 if (!flen || path[0] == '\0') 1645 goto out; 1646 err = nfserr_exist; 1647 if (isdotent(fname, flen)) 1648 goto out; 1649 1650 err = fh_verify(rqstp, fhp, S_IFDIR, NFSD_MAY_CREATE); 1651 if (err) 1652 goto out; 1653 1654 host_err = fh_want_write(fhp); 1655 if (host_err) { 1656 err = nfserrno(host_err); 1657 goto out; 1658 } 1659 1660 dentry = fhp->fh_dentry; 1661 inode_lock_nested(dentry->d_inode, I_MUTEX_PARENT); 1662 dnew = lookup_one_len(fname, dentry, flen); 1663 if (IS_ERR(dnew)) { 1664 err = nfserrno(PTR_ERR(dnew)); 1665 inode_unlock(dentry->d_inode); 1666 goto out_drop_write; 1667 } 1668 err = fh_fill_pre_attrs(fhp); 1669 if (err != nfs_ok) 1670 goto out_unlock; 1671 host_err = vfs_symlink(&nop_mnt_idmap, d_inode(dentry), dnew, path); 1672 err = nfserrno(host_err); 1673 cerr = fh_compose(resfhp, fhp->fh_export, dnew, fhp); 1674 if (!err) 1675 nfsd_create_setattr(rqstp, fhp, resfhp, attrs); 1676 fh_fill_post_attrs(fhp); 1677 out_unlock: 1678 inode_unlock(dentry->d_inode); 1679 if (!err) 1680 err = nfserrno(commit_metadata(fhp)); 1681 dput(dnew); 1682 if (err==0) err = cerr; 1683 out_drop_write: 1684 fh_drop_write(fhp); 1685 out: 1686 return err; 1687 } 1688 1689 /** 1690 * nfsd_link - create a link 1691 * @rqstp: RPC transaction context 1692 * @ffhp: the file handle of the directory where the new link is to be created 1693 * @name: the filename of the new link 1694 * @len: the length of @name in octets 1695 * @tfhp: the file handle of an existing file object 1696 * 1697 * After this call _both_ ffhp and tfhp need an fh_put. 1698 * 1699 * Returns a generic NFS status code in network byte-order. 1700 */ 1701 __be32 1702 nfsd_link(struct svc_rqst *rqstp, struct svc_fh *ffhp, 1703 char *name, int len, struct svc_fh *tfhp) 1704 { 1705 struct dentry *ddir, *dnew, *dold; 1706 struct inode *dirp; 1707 int type; 1708 __be32 err; 1709 int host_err; 1710 1711 err = fh_verify(rqstp, ffhp, S_IFDIR, NFSD_MAY_CREATE); 1712 if (err) 1713 goto out; 1714 err = fh_verify(rqstp, tfhp, 0, NFSD_MAY_NOP); 1715 if (err) 1716 goto out; 1717 err = nfserr_isdir; 1718 if (d_is_dir(tfhp->fh_dentry)) 1719 goto out; 1720 err = nfserr_perm; 1721 if (!len) 1722 goto out; 1723 err = nfserr_exist; 1724 if (isdotent(name, len)) 1725 goto out; 1726 1727 err = nfs_ok; 1728 type = d_inode(tfhp->fh_dentry)->i_mode & S_IFMT; 1729 host_err = fh_want_write(tfhp); 1730 if (host_err) 1731 goto out; 1732 1733 ddir = ffhp->fh_dentry; 1734 dirp = d_inode(ddir); 1735 inode_lock_nested(dirp, I_MUTEX_PARENT); 1736 1737 dnew = lookup_one_len(name, ddir, len); 1738 if (IS_ERR(dnew)) { 1739 host_err = PTR_ERR(dnew); 1740 goto out_unlock; 1741 } 1742 1743 dold = tfhp->fh_dentry; 1744 1745 err = nfserr_noent; 1746 if (d_really_is_negative(dold)) 1747 goto out_dput; 1748 err = fh_fill_pre_attrs(ffhp); 1749 if (err != nfs_ok) 1750 goto out_dput; 1751 host_err = vfs_link(dold, &nop_mnt_idmap, dirp, dnew, NULL); 1752 fh_fill_post_attrs(ffhp); 1753 inode_unlock(dirp); 1754 if (!host_err) { 1755 host_err = commit_metadata(ffhp); 1756 if (!host_err) 1757 host_err = commit_metadata(tfhp); 1758 } 1759 1760 dput(dnew); 1761 out_drop_write: 1762 fh_drop_write(tfhp); 1763 if (host_err == -EBUSY) { 1764 /* 1765 * See RFC 8881 Section 18.9.4 para 1-2: NFSv4 LINK 1766 * wants a status unique to the object type. 1767 */ 1768 if (type != S_IFDIR) 1769 err = nfserr_file_open; 1770 else 1771 err = nfserr_acces; 1772 } 1773 out: 1774 return err != nfs_ok ? err : nfserrno(host_err); 1775 1776 out_dput: 1777 dput(dnew); 1778 out_unlock: 1779 inode_unlock(dirp); 1780 goto out_drop_write; 1781 } 1782 1783 static void 1784 nfsd_close_cached_files(struct dentry *dentry) 1785 { 1786 struct inode *inode = d_inode(dentry); 1787 1788 if (inode && S_ISREG(inode->i_mode)) 1789 nfsd_file_close_inode_sync(inode); 1790 } 1791 1792 static bool 1793 nfsd_has_cached_files(struct dentry *dentry) 1794 { 1795 bool ret = false; 1796 struct inode *inode = d_inode(dentry); 1797 1798 if (inode && S_ISREG(inode->i_mode)) 1799 ret = nfsd_file_is_cached(inode); 1800 return ret; 1801 } 1802 1803 /** 1804 * nfsd_rename - rename a directory entry 1805 * @rqstp: RPC transaction context 1806 * @ffhp: the file handle of parent directory containing the entry to be renamed 1807 * @fname: the filename of directory entry to be renamed 1808 * @flen: the length of @fname in octets 1809 * @tfhp: the file handle of parent directory to contain the renamed entry 1810 * @tname: the filename of the new entry 1811 * @tlen: the length of @tlen in octets 1812 * 1813 * After this call _both_ ffhp and tfhp need an fh_put. 1814 * 1815 * Returns a generic NFS status code in network byte-order. 1816 */ 1817 __be32 1818 nfsd_rename(struct svc_rqst *rqstp, struct svc_fh *ffhp, char *fname, int flen, 1819 struct svc_fh *tfhp, char *tname, int tlen) 1820 { 1821 struct dentry *fdentry, *tdentry, *odentry, *ndentry, *trap; 1822 struct inode *fdir, *tdir; 1823 int type = S_IFDIR; 1824 __be32 err; 1825 int host_err; 1826 bool close_cached = false; 1827 1828 err = fh_verify(rqstp, ffhp, S_IFDIR, NFSD_MAY_REMOVE); 1829 if (err) 1830 goto out; 1831 err = fh_verify(rqstp, tfhp, S_IFDIR, NFSD_MAY_CREATE); 1832 if (err) 1833 goto out; 1834 1835 fdentry = ffhp->fh_dentry; 1836 fdir = d_inode(fdentry); 1837 1838 tdentry = tfhp->fh_dentry; 1839 tdir = d_inode(tdentry); 1840 1841 err = nfserr_perm; 1842 if (!flen || isdotent(fname, flen) || !tlen || isdotent(tname, tlen)) 1843 goto out; 1844 1845 err = nfserr_xdev; 1846 if (ffhp->fh_export->ex_path.mnt != tfhp->fh_export->ex_path.mnt) 1847 goto out; 1848 if (ffhp->fh_export->ex_path.dentry != tfhp->fh_export->ex_path.dentry) 1849 goto out; 1850 1851 retry: 1852 host_err = fh_want_write(ffhp); 1853 if (host_err) { 1854 err = nfserrno(host_err); 1855 goto out; 1856 } 1857 1858 trap = lock_rename(tdentry, fdentry); 1859 if (IS_ERR(trap)) { 1860 err = nfserr_xdev; 1861 goto out_want_write; 1862 } 1863 err = fh_fill_pre_attrs(ffhp); 1864 if (err != nfs_ok) 1865 goto out_unlock; 1866 err = fh_fill_pre_attrs(tfhp); 1867 if (err != nfs_ok) 1868 goto out_unlock; 1869 1870 odentry = lookup_one_len(fname, fdentry, flen); 1871 host_err = PTR_ERR(odentry); 1872 if (IS_ERR(odentry)) 1873 goto out_nfserr; 1874 1875 host_err = -ENOENT; 1876 if (d_really_is_negative(odentry)) 1877 goto out_dput_old; 1878 host_err = -EINVAL; 1879 if (odentry == trap) 1880 goto out_dput_old; 1881 type = d_inode(odentry)->i_mode & S_IFMT; 1882 1883 ndentry = lookup_one_len(tname, tdentry, tlen); 1884 host_err = PTR_ERR(ndentry); 1885 if (IS_ERR(ndentry)) 1886 goto out_dput_old; 1887 if (d_inode(ndentry)) 1888 type = d_inode(ndentry)->i_mode & S_IFMT; 1889 host_err = -ENOTEMPTY; 1890 if (ndentry == trap) 1891 goto out_dput_new; 1892 1893 if ((ndentry->d_sb->s_export_op->flags & EXPORT_OP_CLOSE_BEFORE_UNLINK) && 1894 nfsd_has_cached_files(ndentry)) { 1895 close_cached = true; 1896 goto out_dput_old; 1897 } else { 1898 struct renamedata rd = { 1899 .old_mnt_idmap = &nop_mnt_idmap, 1900 .old_dir = fdir, 1901 .old_dentry = odentry, 1902 .new_mnt_idmap = &nop_mnt_idmap, 1903 .new_dir = tdir, 1904 .new_dentry = ndentry, 1905 }; 1906 int retries; 1907 1908 for (retries = 1;;) { 1909 host_err = vfs_rename(&rd); 1910 if (host_err != -EAGAIN || !retries--) 1911 break; 1912 if (!nfsd_wait_for_delegreturn(rqstp, d_inode(odentry))) 1913 break; 1914 } 1915 if (!host_err) { 1916 host_err = commit_metadata(tfhp); 1917 if (!host_err) 1918 host_err = commit_metadata(ffhp); 1919 } 1920 } 1921 out_dput_new: 1922 dput(ndentry); 1923 out_dput_old: 1924 dput(odentry); 1925 out_nfserr: 1926 if (host_err == -EBUSY) { 1927 /* 1928 * See RFC 8881 Section 18.26.4 para 1-3: NFSv4 RENAME 1929 * wants a status unique to the object type. 1930 */ 1931 if (type != S_IFDIR) 1932 err = nfserr_file_open; 1933 else 1934 err = nfserr_acces; 1935 } else { 1936 err = nfserrno(host_err); 1937 } 1938 1939 if (!close_cached) { 1940 fh_fill_post_attrs(ffhp); 1941 fh_fill_post_attrs(tfhp); 1942 } 1943 out_unlock: 1944 unlock_rename(tdentry, fdentry); 1945 out_want_write: 1946 fh_drop_write(ffhp); 1947 1948 /* 1949 * If the target dentry has cached open files, then we need to 1950 * try to close them prior to doing the rename. Final fput 1951 * shouldn't be done with locks held however, so we delay it 1952 * until this point and then reattempt the whole shebang. 1953 */ 1954 if (close_cached) { 1955 close_cached = false; 1956 nfsd_close_cached_files(ndentry); 1957 dput(ndentry); 1958 goto retry; 1959 } 1960 out: 1961 return err; 1962 } 1963 1964 /** 1965 * nfsd_unlink - remove a directory entry 1966 * @rqstp: RPC transaction context 1967 * @fhp: the file handle of the parent directory to be modified 1968 * @type: enforced file type of the object to be removed 1969 * @fname: the name of directory entry to be removed 1970 * @flen: length of @fname in octets 1971 * 1972 * After this call fhp needs an fh_put. 1973 * 1974 * Returns a generic NFS status code in network byte-order. 1975 */ 1976 __be32 1977 nfsd_unlink(struct svc_rqst *rqstp, struct svc_fh *fhp, int type, 1978 char *fname, int flen) 1979 { 1980 struct dentry *dentry, *rdentry; 1981 struct inode *dirp; 1982 struct inode *rinode; 1983 __be32 err; 1984 int host_err; 1985 1986 err = nfserr_acces; 1987 if (!flen || isdotent(fname, flen)) 1988 goto out; 1989 err = fh_verify(rqstp, fhp, S_IFDIR, NFSD_MAY_REMOVE); 1990 if (err) 1991 goto out; 1992 1993 host_err = fh_want_write(fhp); 1994 if (host_err) 1995 goto out_nfserr; 1996 1997 dentry = fhp->fh_dentry; 1998 dirp = d_inode(dentry); 1999 inode_lock_nested(dirp, I_MUTEX_PARENT); 2000 2001 rdentry = lookup_one_len(fname, dentry, flen); 2002 host_err = PTR_ERR(rdentry); 2003 if (IS_ERR(rdentry)) 2004 goto out_unlock; 2005 2006 if (d_really_is_negative(rdentry)) { 2007 dput(rdentry); 2008 host_err = -ENOENT; 2009 goto out_unlock; 2010 } 2011 rinode = d_inode(rdentry); 2012 err = fh_fill_pre_attrs(fhp); 2013 if (err != nfs_ok) 2014 goto out_unlock; 2015 2016 ihold(rinode); 2017 if (!type) 2018 type = d_inode(rdentry)->i_mode & S_IFMT; 2019 2020 if (type != S_IFDIR) { 2021 int retries; 2022 2023 if (rdentry->d_sb->s_export_op->flags & EXPORT_OP_CLOSE_BEFORE_UNLINK) 2024 nfsd_close_cached_files(rdentry); 2025 2026 for (retries = 1;;) { 2027 host_err = vfs_unlink(&nop_mnt_idmap, dirp, rdentry, NULL); 2028 if (host_err != -EAGAIN || !retries--) 2029 break; 2030 if (!nfsd_wait_for_delegreturn(rqstp, rinode)) 2031 break; 2032 } 2033 } else { 2034 host_err = vfs_rmdir(&nop_mnt_idmap, dirp, rdentry); 2035 } 2036 fh_fill_post_attrs(fhp); 2037 2038 inode_unlock(dirp); 2039 if (!host_err) 2040 host_err = commit_metadata(fhp); 2041 dput(rdentry); 2042 iput(rinode); /* truncate the inode here */ 2043 2044 out_drop_write: 2045 fh_drop_write(fhp); 2046 out_nfserr: 2047 if (host_err == -EBUSY) { 2048 /* 2049 * See RFC 8881 Section 18.25.4 para 4: NFSv4 REMOVE 2050 * wants a status unique to the object type. 2051 */ 2052 if (type != S_IFDIR) 2053 err = nfserr_file_open; 2054 else 2055 err = nfserr_acces; 2056 } 2057 out: 2058 return err != nfs_ok ? err : nfserrno(host_err); 2059 out_unlock: 2060 inode_unlock(dirp); 2061 goto out_drop_write; 2062 } 2063 2064 /* 2065 * We do this buffering because we must not call back into the file 2066 * system's ->lookup() method from the filldir callback. That may well 2067 * deadlock a number of file systems. 2068 * 2069 * This is based heavily on the implementation of same in XFS. 2070 */ 2071 struct buffered_dirent { 2072 u64 ino; 2073 loff_t offset; 2074 int namlen; 2075 unsigned int d_type; 2076 char name[]; 2077 }; 2078 2079 struct readdir_data { 2080 struct dir_context ctx; 2081 char *dirent; 2082 size_t used; 2083 int full; 2084 }; 2085 2086 static bool nfsd_buffered_filldir(struct dir_context *ctx, const char *name, 2087 int namlen, loff_t offset, u64 ino, 2088 unsigned int d_type) 2089 { 2090 struct readdir_data *buf = 2091 container_of(ctx, struct readdir_data, ctx); 2092 struct buffered_dirent *de = (void *)(buf->dirent + buf->used); 2093 unsigned int reclen; 2094 2095 reclen = ALIGN(sizeof(struct buffered_dirent) + namlen, sizeof(u64)); 2096 if (buf->used + reclen > PAGE_SIZE) { 2097 buf->full = 1; 2098 return false; 2099 } 2100 2101 de->namlen = namlen; 2102 de->offset = offset; 2103 de->ino = ino; 2104 de->d_type = d_type; 2105 memcpy(de->name, name, namlen); 2106 buf->used += reclen; 2107 2108 return true; 2109 } 2110 2111 static __be32 nfsd_buffered_readdir(struct file *file, struct svc_fh *fhp, 2112 nfsd_filldir_t func, struct readdir_cd *cdp, 2113 loff_t *offsetp) 2114 { 2115 struct buffered_dirent *de; 2116 int host_err; 2117 int size; 2118 loff_t offset; 2119 struct readdir_data buf = { 2120 .ctx.actor = nfsd_buffered_filldir, 2121 .dirent = (void *)__get_free_page(GFP_KERNEL) 2122 }; 2123 2124 if (!buf.dirent) 2125 return nfserrno(-ENOMEM); 2126 2127 offset = *offsetp; 2128 2129 while (1) { 2130 unsigned int reclen; 2131 2132 cdp->err = nfserr_eof; /* will be cleared on successful read */ 2133 buf.used = 0; 2134 buf.full = 0; 2135 2136 host_err = iterate_dir(file, &buf.ctx); 2137 if (buf.full) 2138 host_err = 0; 2139 2140 if (host_err < 0) 2141 break; 2142 2143 size = buf.used; 2144 2145 if (!size) 2146 break; 2147 2148 de = (struct buffered_dirent *)buf.dirent; 2149 while (size > 0) { 2150 offset = de->offset; 2151 2152 if (func(cdp, de->name, de->namlen, de->offset, 2153 de->ino, de->d_type)) 2154 break; 2155 2156 if (cdp->err != nfs_ok) 2157 break; 2158 2159 trace_nfsd_dirent(fhp, de->ino, de->name, de->namlen); 2160 2161 reclen = ALIGN(sizeof(*de) + de->namlen, 2162 sizeof(u64)); 2163 size -= reclen; 2164 de = (struct buffered_dirent *)((char *)de + reclen); 2165 } 2166 if (size > 0) /* We bailed out early */ 2167 break; 2168 2169 offset = vfs_llseek(file, 0, SEEK_CUR); 2170 } 2171 2172 free_page((unsigned long)(buf.dirent)); 2173 2174 if (host_err) 2175 return nfserrno(host_err); 2176 2177 *offsetp = offset; 2178 return cdp->err; 2179 } 2180 2181 /** 2182 * nfsd_readdir - Read entries from a directory 2183 * @rqstp: RPC transaction context 2184 * @fhp: NFS file handle of directory to be read 2185 * @offsetp: OUT: seek offset of final entry that was read 2186 * @cdp: OUT: an eof error value 2187 * @func: entry filler actor 2188 * 2189 * This implementation ignores the NFSv3/4 verifier cookie. 2190 * 2191 * NB: normal system calls hold file->f_pos_lock when calling 2192 * ->iterate_shared and ->llseek, but nfsd_readdir() does not. 2193 * Because the struct file acquired here is not visible to other 2194 * threads, it's internal state does not need mutex protection. 2195 * 2196 * Returns nfs_ok on success, otherwise an nfsstat code is 2197 * returned. 2198 */ 2199 __be32 2200 nfsd_readdir(struct svc_rqst *rqstp, struct svc_fh *fhp, loff_t *offsetp, 2201 struct readdir_cd *cdp, nfsd_filldir_t func) 2202 { 2203 __be32 err; 2204 struct file *file; 2205 loff_t offset = *offsetp; 2206 int may_flags = NFSD_MAY_READ; 2207 2208 err = nfsd_open(rqstp, fhp, S_IFDIR, may_flags, &file); 2209 if (err) 2210 goto out; 2211 2212 if (fhp->fh_64bit_cookies) 2213 file->f_mode |= FMODE_64BITHASH; 2214 else 2215 file->f_mode |= FMODE_32BITHASH; 2216 2217 offset = vfs_llseek(file, offset, SEEK_SET); 2218 if (offset < 0) { 2219 err = nfserrno((int)offset); 2220 goto out_close; 2221 } 2222 2223 err = nfsd_buffered_readdir(file, fhp, func, cdp, offsetp); 2224 2225 if (err == nfserr_eof || err == nfserr_toosmall) 2226 err = nfs_ok; /* can still be found in ->err */ 2227 out_close: 2228 nfsd_filp_close(file); 2229 out: 2230 return err; 2231 } 2232 2233 /** 2234 * nfsd_filp_close: close a file synchronously 2235 * @fp: the file to close 2236 * 2237 * nfsd_filp_close() is similar in behaviour to filp_close(). 2238 * The difference is that if this is the final close on the 2239 * file, the that finalisation happens immediately, rather then 2240 * being handed over to a work_queue, as it the case for 2241 * filp_close(). 2242 * When a user-space process closes a file (even when using 2243 * filp_close() the finalisation happens before returning to 2244 * userspace, so it is effectively synchronous. When a kernel thread 2245 * uses file_close(), on the other hand, the handling is completely 2246 * asynchronous. This means that any cost imposed by that finalisation 2247 * is not imposed on the nfsd thread, and nfsd could potentually 2248 * close files more quickly than the work queue finalises the close, 2249 * which would lead to unbounded growth in the queue. 2250 * 2251 * In some contexts is it not safe to synchronously wait for 2252 * close finalisation (see comment for __fput_sync()), but nfsd 2253 * does not match those contexts. In partcilarly it does not, at the 2254 * time that this function is called, hold and locks and no finalisation 2255 * of any file, socket, or device driver would have any cause to wait 2256 * for nfsd to make progress. 2257 */ 2258 void nfsd_filp_close(struct file *fp) 2259 { 2260 get_file(fp); 2261 filp_close(fp, NULL); 2262 __fput_sync(fp); 2263 } 2264 2265 /* 2266 * Get file system stats 2267 * N.B. After this call fhp needs an fh_put 2268 */ 2269 __be32 2270 nfsd_statfs(struct svc_rqst *rqstp, struct svc_fh *fhp, struct kstatfs *stat, int access) 2271 { 2272 __be32 err; 2273 2274 err = fh_verify(rqstp, fhp, 0, NFSD_MAY_NOP | access); 2275 if (!err) { 2276 struct path path = { 2277 .mnt = fhp->fh_export->ex_path.mnt, 2278 .dentry = fhp->fh_dentry, 2279 }; 2280 if (vfs_statfs(&path, stat)) 2281 err = nfserr_io; 2282 } 2283 return err; 2284 } 2285 2286 static int exp_rdonly(struct svc_cred *cred, struct svc_export *exp) 2287 { 2288 return nfsexp_flags(cred, exp) & NFSEXP_READONLY; 2289 } 2290 2291 #ifdef CONFIG_NFSD_V4 2292 /* 2293 * Helper function to translate error numbers. In the case of xattr operations, 2294 * some error codes need to be translated outside of the standard translations. 2295 * 2296 * ENODATA needs to be translated to nfserr_noxattr. 2297 * E2BIG to nfserr_xattr2big. 2298 * 2299 * Additionally, vfs_listxattr can return -ERANGE. This means that the 2300 * file has too many extended attributes to retrieve inside an 2301 * XATTR_LIST_MAX sized buffer. This is a bug in the xattr implementation: 2302 * filesystems will allow the adding of extended attributes until they hit 2303 * their own internal limit. This limit may be larger than XATTR_LIST_MAX. 2304 * So, at that point, the attributes are present and valid, but can't 2305 * be retrieved using listxattr, since the upper level xattr code enforces 2306 * the XATTR_LIST_MAX limit. 2307 * 2308 * This bug means that we need to deal with listxattr returning -ERANGE. The 2309 * best mapping is to return TOOSMALL. 2310 */ 2311 static __be32 2312 nfsd_xattr_errno(int err) 2313 { 2314 switch (err) { 2315 case -ENODATA: 2316 return nfserr_noxattr; 2317 case -E2BIG: 2318 return nfserr_xattr2big; 2319 case -ERANGE: 2320 return nfserr_toosmall; 2321 } 2322 return nfserrno(err); 2323 } 2324 2325 /* 2326 * Retrieve the specified user extended attribute. To avoid always 2327 * having to allocate the maximum size (since we are not getting 2328 * a maximum size from the RPC), do a probe + alloc. Hold a reader 2329 * lock on i_rwsem to prevent the extended attribute from changing 2330 * size while we're doing this. 2331 */ 2332 __be32 2333 nfsd_getxattr(struct svc_rqst *rqstp, struct svc_fh *fhp, char *name, 2334 void **bufp, int *lenp) 2335 { 2336 ssize_t len; 2337 __be32 err; 2338 char *buf; 2339 struct inode *inode; 2340 struct dentry *dentry; 2341 2342 err = fh_verify(rqstp, fhp, 0, NFSD_MAY_READ); 2343 if (err) 2344 return err; 2345 2346 err = nfs_ok; 2347 dentry = fhp->fh_dentry; 2348 inode = d_inode(dentry); 2349 2350 inode_lock_shared(inode); 2351 2352 len = vfs_getxattr(&nop_mnt_idmap, dentry, name, NULL, 0); 2353 2354 /* 2355 * Zero-length attribute, just return. 2356 */ 2357 if (len == 0) { 2358 *bufp = NULL; 2359 *lenp = 0; 2360 goto out; 2361 } 2362 2363 if (len < 0) { 2364 err = nfsd_xattr_errno(len); 2365 goto out; 2366 } 2367 2368 if (len > *lenp) { 2369 err = nfserr_toosmall; 2370 goto out; 2371 } 2372 2373 buf = kvmalloc(len, GFP_KERNEL); 2374 if (buf == NULL) { 2375 err = nfserr_jukebox; 2376 goto out; 2377 } 2378 2379 len = vfs_getxattr(&nop_mnt_idmap, dentry, name, buf, len); 2380 if (len <= 0) { 2381 kvfree(buf); 2382 buf = NULL; 2383 err = nfsd_xattr_errno(len); 2384 } 2385 2386 *lenp = len; 2387 *bufp = buf; 2388 2389 out: 2390 inode_unlock_shared(inode); 2391 2392 return err; 2393 } 2394 2395 /* 2396 * Retrieve the xattr names. Since we can't know how many are 2397 * user extended attributes, we must get all attributes here, 2398 * and have the XDR encode filter out the "user." ones. 2399 * 2400 * While this could always just allocate an XATTR_LIST_MAX 2401 * buffer, that's a waste, so do a probe + allocate. To 2402 * avoid any changes between the probe and allocate, wrap 2403 * this in inode_lock. 2404 */ 2405 __be32 2406 nfsd_listxattr(struct svc_rqst *rqstp, struct svc_fh *fhp, char **bufp, 2407 int *lenp) 2408 { 2409 ssize_t len; 2410 __be32 err; 2411 char *buf; 2412 struct inode *inode; 2413 struct dentry *dentry; 2414 2415 err = fh_verify(rqstp, fhp, 0, NFSD_MAY_READ); 2416 if (err) 2417 return err; 2418 2419 dentry = fhp->fh_dentry; 2420 inode = d_inode(dentry); 2421 *lenp = 0; 2422 2423 inode_lock_shared(inode); 2424 2425 len = vfs_listxattr(dentry, NULL, 0); 2426 if (len <= 0) { 2427 err = nfsd_xattr_errno(len); 2428 goto out; 2429 } 2430 2431 if (len > XATTR_LIST_MAX) { 2432 err = nfserr_xattr2big; 2433 goto out; 2434 } 2435 2436 buf = kvmalloc(len, GFP_KERNEL); 2437 if (buf == NULL) { 2438 err = nfserr_jukebox; 2439 goto out; 2440 } 2441 2442 len = vfs_listxattr(dentry, buf, len); 2443 if (len <= 0) { 2444 kvfree(buf); 2445 err = nfsd_xattr_errno(len); 2446 goto out; 2447 } 2448 2449 *lenp = len; 2450 *bufp = buf; 2451 2452 err = nfs_ok; 2453 out: 2454 inode_unlock_shared(inode); 2455 2456 return err; 2457 } 2458 2459 /** 2460 * nfsd_removexattr - Remove an extended attribute 2461 * @rqstp: RPC transaction being executed 2462 * @fhp: NFS filehandle of object with xattr to remove 2463 * @name: name of xattr to remove (NUL-terminate) 2464 * 2465 * Pass in a NULL pointer for delegated_inode, and let the client deal 2466 * with NFS4ERR_DELAY (same as with e.g. setattr and remove). 2467 * 2468 * Returns nfs_ok on success, or an nfsstat in network byte order. 2469 */ 2470 __be32 2471 nfsd_removexattr(struct svc_rqst *rqstp, struct svc_fh *fhp, char *name) 2472 { 2473 __be32 err; 2474 int ret; 2475 2476 err = fh_verify(rqstp, fhp, 0, NFSD_MAY_WRITE); 2477 if (err) 2478 return err; 2479 2480 ret = fh_want_write(fhp); 2481 if (ret) 2482 return nfserrno(ret); 2483 2484 inode_lock(fhp->fh_dentry->d_inode); 2485 err = fh_fill_pre_attrs(fhp); 2486 if (err != nfs_ok) 2487 goto out_unlock; 2488 ret = __vfs_removexattr_locked(&nop_mnt_idmap, fhp->fh_dentry, 2489 name, NULL); 2490 err = nfsd_xattr_errno(ret); 2491 fh_fill_post_attrs(fhp); 2492 out_unlock: 2493 inode_unlock(fhp->fh_dentry->d_inode); 2494 fh_drop_write(fhp); 2495 2496 return err; 2497 } 2498 2499 __be32 2500 nfsd_setxattr(struct svc_rqst *rqstp, struct svc_fh *fhp, char *name, 2501 void *buf, u32 len, u32 flags) 2502 { 2503 __be32 err; 2504 int ret; 2505 2506 err = fh_verify(rqstp, fhp, 0, NFSD_MAY_WRITE); 2507 if (err) 2508 return err; 2509 2510 ret = fh_want_write(fhp); 2511 if (ret) 2512 return nfserrno(ret); 2513 inode_lock(fhp->fh_dentry->d_inode); 2514 err = fh_fill_pre_attrs(fhp); 2515 if (err != nfs_ok) 2516 goto out_unlock; 2517 ret = __vfs_setxattr_locked(&nop_mnt_idmap, fhp->fh_dentry, 2518 name, buf, len, flags, NULL); 2519 fh_fill_post_attrs(fhp); 2520 err = nfsd_xattr_errno(ret); 2521 out_unlock: 2522 inode_unlock(fhp->fh_dentry->d_inode); 2523 fh_drop_write(fhp); 2524 return err; 2525 } 2526 #endif 2527 2528 /* 2529 * Check for a user's access permissions to this inode. 2530 */ 2531 __be32 2532 nfsd_permission(struct svc_cred *cred, struct svc_export *exp, 2533 struct dentry *dentry, int acc) 2534 { 2535 struct inode *inode = d_inode(dentry); 2536 int err; 2537 2538 if ((acc & NFSD_MAY_MASK) == NFSD_MAY_NOP) 2539 return 0; 2540 #if 0 2541 dprintk("nfsd: permission 0x%x%s%s%s%s%s%s%s mode 0%o%s%s%s\n", 2542 acc, 2543 (acc & NFSD_MAY_READ)? " read" : "", 2544 (acc & NFSD_MAY_WRITE)? " write" : "", 2545 (acc & NFSD_MAY_EXEC)? " exec" : "", 2546 (acc & NFSD_MAY_SATTR)? " sattr" : "", 2547 (acc & NFSD_MAY_TRUNC)? " trunc" : "", 2548 (acc & NFSD_MAY_NLM)? " nlm" : "", 2549 (acc & NFSD_MAY_OWNER_OVERRIDE)? " owneroverride" : "", 2550 inode->i_mode, 2551 IS_IMMUTABLE(inode)? " immut" : "", 2552 IS_APPEND(inode)? " append" : "", 2553 __mnt_is_readonly(exp->ex_path.mnt)? " ro" : ""); 2554 dprintk(" owner %d/%d user %d/%d\n", 2555 inode->i_uid, inode->i_gid, current_fsuid(), current_fsgid()); 2556 #endif 2557 2558 /* Normally we reject any write/sattr etc access on a read-only file 2559 * system. But if it is IRIX doing check on write-access for a 2560 * device special file, we ignore rofs. 2561 */ 2562 if (!(acc & NFSD_MAY_LOCAL_ACCESS)) 2563 if (acc & (NFSD_MAY_WRITE | NFSD_MAY_SATTR | NFSD_MAY_TRUNC)) { 2564 if (exp_rdonly(cred, exp) || 2565 __mnt_is_readonly(exp->ex_path.mnt)) 2566 return nfserr_rofs; 2567 if (/* (acc & NFSD_MAY_WRITE) && */ IS_IMMUTABLE(inode)) 2568 return nfserr_perm; 2569 } 2570 if ((acc & NFSD_MAY_TRUNC) && IS_APPEND(inode)) 2571 return nfserr_perm; 2572 2573 /* 2574 * The file owner always gets access permission for accesses that 2575 * would normally be checked at open time. This is to make 2576 * file access work even when the client has done a fchmod(fd, 0). 2577 * 2578 * However, `cp foo bar' should fail nevertheless when bar is 2579 * readonly. A sensible way to do this might be to reject all 2580 * attempts to truncate a read-only file, because a creat() call 2581 * always implies file truncation. 2582 * ... but this isn't really fair. A process may reasonably call 2583 * ftruncate on an open file descriptor on a file with perm 000. 2584 * We must trust the client to do permission checking - using "ACCESS" 2585 * with NFSv3. 2586 */ 2587 if ((acc & NFSD_MAY_OWNER_OVERRIDE) && 2588 uid_eq(inode->i_uid, current_fsuid())) 2589 return 0; 2590 2591 /* This assumes NFSD_MAY_{READ,WRITE,EXEC} == MAY_{READ,WRITE,EXEC} */ 2592 err = inode_permission(&nop_mnt_idmap, inode, 2593 acc & (MAY_READ | MAY_WRITE | MAY_EXEC)); 2594 2595 /* Allow read access to binaries even when mode 111 */ 2596 if (err == -EACCES && S_ISREG(inode->i_mode) && 2597 (acc == (NFSD_MAY_READ | NFSD_MAY_OWNER_OVERRIDE) || 2598 acc == (NFSD_MAY_READ | NFSD_MAY_READ_IF_EXEC))) 2599 err = inode_permission(&nop_mnt_idmap, inode, MAY_EXEC); 2600 2601 return err? nfserrno(err) : 0; 2602 } 2603