xref: /linux/fs/nfsd/vfs.c (revision 15ecd83dc06277385ad71dc7ea26911d9a79acaf)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * File operations used by nfsd. Some of these have been ripped from
4  * other parts of the kernel because they weren't exported, others
5  * are partial duplicates with added or changed functionality.
6  *
7  * Note that several functions dget() the dentry upon which they want
8  * to act, most notably those that create directory entries. Response
9  * dentry's are dput()'d if necessary in the release callback.
10  * So if you notice code paths that apparently fail to dput() the
11  * dentry, don't worry--they have been taken care of.
12  *
13  * Copyright (C) 1995-1999 Olaf Kirch <okir@monad.swb.de>
14  * Zerocpy NFS support (C) 2002 Hirokazu Takahashi <taka@valinux.co.jp>
15  */
16 
17 #include <linux/fs.h>
18 #include <linux/file.h>
19 #include <linux/splice.h>
20 #include <linux/falloc.h>
21 #include <linux/fcntl.h>
22 #include <linux/namei.h>
23 #include <linux/delay.h>
24 #include <linux/fsnotify.h>
25 #include <linux/posix_acl_xattr.h>
26 #include <linux/xattr.h>
27 #include <linux/jhash.h>
28 #include <linux/pagemap.h>
29 #include <linux/slab.h>
30 #include <linux/uaccess.h>
31 #include <linux/exportfs.h>
32 #include <linux/writeback.h>
33 #include <linux/security.h>
34 
35 #include "xdr3.h"
36 
37 #ifdef CONFIG_NFSD_V4
38 #include "acl.h"
39 #include "idmap.h"
40 #include "xdr4.h"
41 #endif /* CONFIG_NFSD_V4 */
42 
43 #include "nfsd.h"
44 #include "vfs.h"
45 #include "filecache.h"
46 #include "trace.h"
47 
48 #define NFSDDBG_FACILITY		NFSDDBG_FILEOP
49 
50 /**
51  * nfserrno - Map Linux errnos to NFS errnos
52  * @errno: POSIX(-ish) error code to be mapped
53  *
54  * Returns the appropriate (net-endian) nfserr_* (or nfs_ok if errno is 0). If
55  * it's an error we don't expect, log it once and return nfserr_io.
56  */
57 __be32
58 nfserrno (int errno)
59 {
60 	static struct {
61 		__be32	nfserr;
62 		int	syserr;
63 	} nfs_errtbl[] = {
64 		{ nfs_ok, 0 },
65 		{ nfserr_perm, -EPERM },
66 		{ nfserr_noent, -ENOENT },
67 		{ nfserr_io, -EIO },
68 		{ nfserr_nxio, -ENXIO },
69 		{ nfserr_fbig, -E2BIG },
70 		{ nfserr_stale, -EBADF },
71 		{ nfserr_acces, -EACCES },
72 		{ nfserr_exist, -EEXIST },
73 		{ nfserr_xdev, -EXDEV },
74 		{ nfserr_nodev, -ENODEV },
75 		{ nfserr_notdir, -ENOTDIR },
76 		{ nfserr_isdir, -EISDIR },
77 		{ nfserr_inval, -EINVAL },
78 		{ nfserr_fbig, -EFBIG },
79 		{ nfserr_nospc, -ENOSPC },
80 		{ nfserr_rofs, -EROFS },
81 		{ nfserr_mlink, -EMLINK },
82 		{ nfserr_nametoolong, -ENAMETOOLONG },
83 		{ nfserr_notempty, -ENOTEMPTY },
84 		{ nfserr_dquot, -EDQUOT },
85 		{ nfserr_stale, -ESTALE },
86 		{ nfserr_jukebox, -ETIMEDOUT },
87 		{ nfserr_jukebox, -ERESTARTSYS },
88 		{ nfserr_jukebox, -EAGAIN },
89 		{ nfserr_jukebox, -EWOULDBLOCK },
90 		{ nfserr_jukebox, -ENOMEM },
91 		{ nfserr_io, -ETXTBSY },
92 		{ nfserr_notsupp, -EOPNOTSUPP },
93 		{ nfserr_toosmall, -ETOOSMALL },
94 		{ nfserr_serverfault, -ESERVERFAULT },
95 		{ nfserr_serverfault, -ENFILE },
96 		{ nfserr_io, -EREMOTEIO },
97 		{ nfserr_stale, -EOPENSTALE },
98 		{ nfserr_io, -EUCLEAN },
99 		{ nfserr_perm, -ENOKEY },
100 		{ nfserr_no_grace, -ENOGRACE},
101 		{ nfserr_io, -EBADMSG },
102 	};
103 	int	i;
104 
105 	for (i = 0; i < ARRAY_SIZE(nfs_errtbl); i++) {
106 		if (nfs_errtbl[i].syserr == errno)
107 			return nfs_errtbl[i].nfserr;
108 	}
109 	WARN_ONCE(1, "nfsd: non-standard errno: %d\n", errno);
110 	return nfserr_io;
111 }
112 
113 /*
114  * Called from nfsd_lookup and encode_dirent. Check if we have crossed
115  * a mount point.
116  * Returns -EAGAIN or -ETIMEDOUT leaving *dpp and *expp unchanged,
117  *  or nfs_ok having possibly changed *dpp and *expp
118  */
119 int
120 nfsd_cross_mnt(struct svc_rqst *rqstp, struct dentry **dpp,
121 		        struct svc_export **expp)
122 {
123 	struct svc_export *exp = *expp, *exp2 = NULL;
124 	struct dentry *dentry = *dpp;
125 	struct path path = {.mnt = mntget(exp->ex_path.mnt),
126 			    .dentry = dget(dentry)};
127 	unsigned int follow_flags = 0;
128 	int err = 0;
129 
130 	if (exp->ex_flags & NFSEXP_CROSSMOUNT)
131 		follow_flags = LOOKUP_AUTOMOUNT;
132 
133 	err = follow_down(&path, follow_flags);
134 	if (err < 0)
135 		goto out;
136 	if (path.mnt == exp->ex_path.mnt && path.dentry == dentry &&
137 	    nfsd_mountpoint(dentry, exp) == 2) {
138 		/* This is only a mountpoint in some other namespace */
139 		path_put(&path);
140 		goto out;
141 	}
142 
143 	exp2 = rqst_exp_get_by_name(rqstp, &path);
144 	if (IS_ERR(exp2)) {
145 		err = PTR_ERR(exp2);
146 		/*
147 		 * We normally allow NFS clients to continue
148 		 * "underneath" a mountpoint that is not exported.
149 		 * The exception is V4ROOT, where no traversal is ever
150 		 * allowed without an explicit export of the new
151 		 * directory.
152 		 */
153 		if (err == -ENOENT && !(exp->ex_flags & NFSEXP_V4ROOT))
154 			err = 0;
155 		path_put(&path);
156 		goto out;
157 	}
158 	if (nfsd_v4client(rqstp) ||
159 		(exp->ex_flags & NFSEXP_CROSSMOUNT) || EX_NOHIDE(exp2)) {
160 		/* successfully crossed mount point */
161 		/*
162 		 * This is subtle: path.dentry is *not* on path.mnt
163 		 * at this point.  The only reason we are safe is that
164 		 * original mnt is pinned down by exp, so we should
165 		 * put path *before* putting exp
166 		 */
167 		*dpp = path.dentry;
168 		path.dentry = dentry;
169 		*expp = exp2;
170 		exp2 = exp;
171 	}
172 	path_put(&path);
173 	exp_put(exp2);
174 out:
175 	return err;
176 }
177 
178 static void follow_to_parent(struct path *path)
179 {
180 	struct dentry *dp;
181 
182 	while (path->dentry == path->mnt->mnt_root && follow_up(path))
183 		;
184 	dp = dget_parent(path->dentry);
185 	dput(path->dentry);
186 	path->dentry = dp;
187 }
188 
189 static int nfsd_lookup_parent(struct svc_rqst *rqstp, struct dentry *dparent, struct svc_export **exp, struct dentry **dentryp)
190 {
191 	struct svc_export *exp2;
192 	struct path path = {.mnt = mntget((*exp)->ex_path.mnt),
193 			    .dentry = dget(dparent)};
194 
195 	follow_to_parent(&path);
196 
197 	exp2 = rqst_exp_parent(rqstp, &path);
198 	if (PTR_ERR(exp2) == -ENOENT) {
199 		*dentryp = dget(dparent);
200 	} else if (IS_ERR(exp2)) {
201 		path_put(&path);
202 		return PTR_ERR(exp2);
203 	} else {
204 		*dentryp = dget(path.dentry);
205 		exp_put(*exp);
206 		*exp = exp2;
207 	}
208 	path_put(&path);
209 	return 0;
210 }
211 
212 /*
213  * For nfsd purposes, we treat V4ROOT exports as though there was an
214  * export at *every* directory.
215  * We return:
216  * '1' if this dentry *must* be an export point,
217  * '2' if it might be, if there is really a mount here, and
218  * '0' if there is no chance of an export point here.
219  */
220 int nfsd_mountpoint(struct dentry *dentry, struct svc_export *exp)
221 {
222 	if (!d_inode(dentry))
223 		return 0;
224 	if (exp->ex_flags & NFSEXP_V4ROOT)
225 		return 1;
226 	if (nfsd4_is_junction(dentry))
227 		return 1;
228 	if (d_managed(dentry))
229 		/*
230 		 * Might only be a mountpoint in a different namespace,
231 		 * but we need to check.
232 		 */
233 		return 2;
234 	return 0;
235 }
236 
237 __be32
238 nfsd_lookup_dentry(struct svc_rqst *rqstp, struct svc_fh *fhp,
239 		   const char *name, unsigned int len,
240 		   struct svc_export **exp_ret, struct dentry **dentry_ret)
241 {
242 	struct svc_export	*exp;
243 	struct dentry		*dparent;
244 	struct dentry		*dentry;
245 	int			host_err;
246 
247 	dprintk("nfsd: nfsd_lookup(fh %s, %.*s)\n", SVCFH_fmt(fhp), len,name);
248 
249 	dparent = fhp->fh_dentry;
250 	exp = exp_get(fhp->fh_export);
251 
252 	/* Lookup the name, but don't follow links */
253 	if (isdotent(name, len)) {
254 		if (len==1)
255 			dentry = dget(dparent);
256 		else if (dparent != exp->ex_path.dentry)
257 			dentry = dget_parent(dparent);
258 		else if (!EX_NOHIDE(exp) && !nfsd_v4client(rqstp))
259 			dentry = dget(dparent); /* .. == . just like at / */
260 		else {
261 			/* checking mountpoint crossing is very different when stepping up */
262 			host_err = nfsd_lookup_parent(rqstp, dparent, &exp, &dentry);
263 			if (host_err)
264 				goto out_nfserr;
265 		}
266 	} else {
267 		dentry = lookup_one_unlocked(&nop_mnt_idmap,
268 					     &QSTR_LEN(name, len), dparent);
269 		host_err = PTR_ERR(dentry);
270 		if (IS_ERR(dentry))
271 			goto out_nfserr;
272 		if (nfsd_mountpoint(dentry, exp)) {
273 			host_err = nfsd_cross_mnt(rqstp, &dentry, &exp);
274 			if (host_err) {
275 				dput(dentry);
276 				goto out_nfserr;
277 			}
278 		}
279 	}
280 	*dentry_ret = dentry;
281 	*exp_ret = exp;
282 	return 0;
283 
284 out_nfserr:
285 	exp_put(exp);
286 	return nfserrno(host_err);
287 }
288 
289 /**
290  * nfsd_lookup - look up a single path component for nfsd
291  *
292  * @rqstp:   the request context
293  * @fhp:     the file handle of the directory
294  * @name:    the component name, or %NULL to look up parent
295  * @len:     length of name to examine
296  * @resfh:   pointer to pre-initialised filehandle to hold result.
297  *
298  * Look up one component of a pathname.
299  * N.B. After this call _both_ fhp and resfh need an fh_put
300  *
301  * If the lookup would cross a mountpoint, and the mounted filesystem
302  * is exported to the client with NFSEXP_NOHIDE, then the lookup is
303  * accepted as it stands and the mounted directory is
304  * returned. Otherwise the covered directory is returned.
305  * NOTE: this mountpoint crossing is not supported properly by all
306  *   clients and is explicitly disallowed for NFSv3
307  *
308  */
309 __be32
310 nfsd_lookup(struct svc_rqst *rqstp, struct svc_fh *fhp, const char *name,
311 	    unsigned int len, struct svc_fh *resfh)
312 {
313 	struct svc_export	*exp;
314 	struct dentry		*dentry;
315 	__be32 err;
316 
317 	err = fh_verify(rqstp, fhp, S_IFDIR, NFSD_MAY_EXEC);
318 	if (err)
319 		return err;
320 	err = nfsd_lookup_dentry(rqstp, fhp, name, len, &exp, &dentry);
321 	if (err)
322 		return err;
323 	err = check_nfsd_access(exp, rqstp, false);
324 	if (err)
325 		goto out;
326 	/*
327 	 * Note: we compose the file handle now, but as the
328 	 * dentry may be negative, it may need to be updated.
329 	 */
330 	err = fh_compose(resfh, exp, dentry, fhp);
331 	if (!err && d_really_is_negative(dentry))
332 		err = nfserr_noent;
333 out:
334 	dput(dentry);
335 	exp_put(exp);
336 	return err;
337 }
338 
339 static void
340 commit_reset_write_verifier(struct nfsd_net *nn, struct svc_rqst *rqstp,
341 			    int err)
342 {
343 	switch (err) {
344 	case -EAGAIN:
345 	case -ESTALE:
346 		/*
347 		 * Neither of these are the result of a problem with
348 		 * durable storage, so avoid a write verifier reset.
349 		 */
350 		break;
351 	default:
352 		nfsd_reset_write_verifier(nn);
353 		trace_nfsd_writeverf_reset(nn, rqstp, err);
354 	}
355 }
356 
357 /*
358  * Commit metadata changes to stable storage.
359  */
360 static int
361 commit_inode_metadata(struct inode *inode)
362 {
363 	const struct export_operations *export_ops = inode->i_sb->s_export_op;
364 
365 	if (export_ops->commit_metadata)
366 		return export_ops->commit_metadata(inode);
367 	return sync_inode_metadata(inode, 1);
368 }
369 
370 static int
371 commit_metadata(struct svc_fh *fhp)
372 {
373 	struct inode *inode = d_inode(fhp->fh_dentry);
374 
375 	if (!EX_ISSYNC(fhp->fh_export))
376 		return 0;
377 	return commit_inode_metadata(inode);
378 }
379 
380 /*
381  * Go over the attributes and take care of the small differences between
382  * NFS semantics and what Linux expects.
383  */
384 static void
385 nfsd_sanitize_attrs(struct inode *inode, struct iattr *iap)
386 {
387 	/* Ignore mode updates on symlinks */
388 	if (S_ISLNK(inode->i_mode))
389 		iap->ia_valid &= ~ATTR_MODE;
390 
391 	/* sanitize the mode change */
392 	if (iap->ia_valid & ATTR_MODE) {
393 		iap->ia_mode &= S_IALLUGO;
394 		iap->ia_mode |= (inode->i_mode & ~S_IALLUGO);
395 	}
396 
397 	/* Revoke setuid/setgid on chown */
398 	if (!S_ISDIR(inode->i_mode) &&
399 	    ((iap->ia_valid & ATTR_UID) || (iap->ia_valid & ATTR_GID))) {
400 		iap->ia_valid |= ATTR_KILL_PRIV;
401 		if (iap->ia_valid & ATTR_MODE) {
402 			/* we're setting mode too, just clear the s*id bits */
403 			iap->ia_mode &= ~S_ISUID;
404 			if (iap->ia_mode & S_IXGRP)
405 				iap->ia_mode &= ~S_ISGID;
406 		} else {
407 			/* set ATTR_KILL_* bits and let VFS handle it */
408 			iap->ia_valid |= ATTR_KILL_SUID;
409 			iap->ia_valid |=
410 				setattr_should_drop_sgid(&nop_mnt_idmap, inode);
411 		}
412 	}
413 }
414 
415 static __be32
416 nfsd_get_write_access(struct svc_rqst *rqstp, struct svc_fh *fhp,
417 		struct iattr *iap)
418 {
419 	struct inode *inode = d_inode(fhp->fh_dentry);
420 
421 	if (iap->ia_size < inode->i_size) {
422 		__be32 err;
423 
424 		err = nfsd_permission(&rqstp->rq_cred,
425 				      fhp->fh_export, fhp->fh_dentry,
426 				      NFSD_MAY_TRUNC | NFSD_MAY_OWNER_OVERRIDE);
427 		if (err)
428 			return err;
429 	}
430 	return nfserrno(get_write_access(inode));
431 }
432 
433 static int __nfsd_setattr(struct dentry *dentry, struct iattr *iap)
434 {
435 	int host_err;
436 
437 	if (iap->ia_valid & ATTR_SIZE) {
438 		/*
439 		 * RFC5661, Section 18.30.4:
440 		 *   Changing the size of a file with SETATTR indirectly
441 		 *   changes the time_modify and change attributes.
442 		 *
443 		 * (and similar for the older RFCs)
444 		 */
445 		struct iattr size_attr = {
446 			.ia_valid	= ATTR_SIZE | ATTR_CTIME | ATTR_MTIME,
447 			.ia_size	= iap->ia_size,
448 		};
449 
450 		if (iap->ia_size < 0)
451 			return -EFBIG;
452 
453 		host_err = notify_change(&nop_mnt_idmap, dentry, &size_attr, NULL);
454 		if (host_err)
455 			return host_err;
456 		iap->ia_valid &= ~ATTR_SIZE;
457 
458 		/*
459 		 * Avoid the additional setattr call below if the only other
460 		 * attribute that the client sends is the mtime, as we update
461 		 * it as part of the size change above.
462 		 */
463 		if ((iap->ia_valid & ~ATTR_MTIME) == 0)
464 			return 0;
465 	}
466 
467 	if (!iap->ia_valid)
468 		return 0;
469 
470 	iap->ia_valid |= ATTR_CTIME;
471 	return notify_change(&nop_mnt_idmap, dentry, iap, NULL);
472 }
473 
474 /**
475  * nfsd_setattr - Set various file attributes.
476  * @rqstp: controlling RPC transaction
477  * @fhp: filehandle of target
478  * @attr: attributes to set
479  * @guardtime: do not act if ctime.tv_sec does not match this timestamp
480  *
481  * This call may adjust the contents of @attr (in particular, this
482  * call may change the bits in the na_iattr.ia_valid field).
483  *
484  * Returns nfs_ok on success, otherwise an NFS status code is
485  * returned. Caller must release @fhp by calling fh_put in either
486  * case.
487  */
488 __be32
489 nfsd_setattr(struct svc_rqst *rqstp, struct svc_fh *fhp,
490 	     struct nfsd_attrs *attr, const struct timespec64 *guardtime)
491 {
492 	struct dentry	*dentry;
493 	struct inode	*inode;
494 	struct iattr	*iap = attr->na_iattr;
495 	int		accmode = NFSD_MAY_SATTR;
496 	umode_t		ftype = 0;
497 	__be32		err;
498 	int		host_err = 0;
499 	bool		get_write_count;
500 	bool		size_change = (iap->ia_valid & ATTR_SIZE);
501 	int		retries;
502 
503 	if (iap->ia_valid & ATTR_SIZE) {
504 		accmode |= NFSD_MAY_WRITE|NFSD_MAY_OWNER_OVERRIDE;
505 		ftype = S_IFREG;
506 	}
507 
508 	/*
509 	 * If utimes(2) and friends are called with times not NULL, we should
510 	 * not set NFSD_MAY_WRITE bit. Otherwise fh_verify->nfsd_permission
511 	 * will return EACCES, when the caller's effective UID does not match
512 	 * the owner of the file, and the caller is not privileged. In this
513 	 * situation, we should return EPERM(notify_change will return this).
514 	 */
515 	if (iap->ia_valid & (ATTR_ATIME | ATTR_MTIME)) {
516 		accmode |= NFSD_MAY_OWNER_OVERRIDE;
517 		if (!(iap->ia_valid & (ATTR_ATIME_SET | ATTR_MTIME_SET)))
518 			accmode |= NFSD_MAY_WRITE;
519 	}
520 
521 	/* Callers that do fh_verify should do the fh_want_write: */
522 	get_write_count = !fhp->fh_dentry;
523 
524 	/* Get inode */
525 	err = fh_verify(rqstp, fhp, ftype, accmode);
526 	if (err)
527 		return err;
528 	if (get_write_count) {
529 		host_err = fh_want_write(fhp);
530 		if (host_err)
531 			goto out;
532 	}
533 
534 	dentry = fhp->fh_dentry;
535 	inode = d_inode(dentry);
536 
537 	nfsd_sanitize_attrs(inode, iap);
538 
539 	/*
540 	 * The size case is special, it changes the file in addition to the
541 	 * attributes, and file systems don't expect it to be mixed with
542 	 * "random" attribute changes.  We thus split out the size change
543 	 * into a separate call to ->setattr, and do the rest as a separate
544 	 * setattr call.
545 	 */
546 	if (size_change) {
547 		err = nfsd_get_write_access(rqstp, fhp, iap);
548 		if (err)
549 			return err;
550 	}
551 
552 	inode_lock(inode);
553 	err = fh_fill_pre_attrs(fhp);
554 	if (err)
555 		goto out_unlock;
556 
557 	if (guardtime) {
558 		struct timespec64 ctime = inode_get_ctime(inode);
559 		if ((u32)guardtime->tv_sec != (u32)ctime.tv_sec ||
560 		    guardtime->tv_nsec != ctime.tv_nsec) {
561 			err = nfserr_notsync;
562 			goto out_fill_attrs;
563 		}
564 	}
565 
566 	for (retries = 1;;) {
567 		struct iattr attrs;
568 
569 		/*
570 		 * notify_change() can alter its iattr argument, making
571 		 * @iap unsuitable for submission multiple times. Make a
572 		 * copy for every loop iteration.
573 		 */
574 		attrs = *iap;
575 		host_err = __nfsd_setattr(dentry, &attrs);
576 		if (host_err != -EAGAIN || !retries--)
577 			break;
578 		if (!nfsd_wait_for_delegreturn(rqstp, inode))
579 			break;
580 	}
581 	if (attr->na_seclabel && attr->na_seclabel->len)
582 		attr->na_labelerr = security_inode_setsecctx(dentry,
583 			attr->na_seclabel->data, attr->na_seclabel->len);
584 	if (IS_ENABLED(CONFIG_FS_POSIX_ACL) && attr->na_pacl)
585 		attr->na_aclerr = set_posix_acl(&nop_mnt_idmap,
586 						dentry, ACL_TYPE_ACCESS,
587 						attr->na_pacl);
588 	if (IS_ENABLED(CONFIG_FS_POSIX_ACL) &&
589 	    !attr->na_aclerr && attr->na_dpacl && S_ISDIR(inode->i_mode))
590 		attr->na_aclerr = set_posix_acl(&nop_mnt_idmap,
591 						dentry, ACL_TYPE_DEFAULT,
592 						attr->na_dpacl);
593 out_fill_attrs:
594 	/*
595 	 * RFC 1813 Section 3.3.2 does not mandate that an NFS server
596 	 * returns wcc_data for SETATTR. Some client implementations
597 	 * depend on receiving wcc_data, however, to sort out partial
598 	 * updates (eg., the client requested that size and mode be
599 	 * modified, but the server changed only the file mode).
600 	 */
601 	fh_fill_post_attrs(fhp);
602 out_unlock:
603 	inode_unlock(inode);
604 	if (size_change)
605 		put_write_access(inode);
606 out:
607 	if (!host_err)
608 		host_err = commit_metadata(fhp);
609 	return err != 0 ? err : nfserrno(host_err);
610 }
611 
612 #if defined(CONFIG_NFSD_V4)
613 /*
614  * NFS junction information is stored in an extended attribute.
615  */
616 #define NFSD_JUNCTION_XATTR_NAME	XATTR_TRUSTED_PREFIX "junction.nfs"
617 
618 /**
619  * nfsd4_is_junction - Test if an object could be an NFS junction
620  *
621  * @dentry: object to test
622  *
623  * Returns 1 if "dentry" appears to contain NFS junction information.
624  * Otherwise 0 is returned.
625  */
626 int nfsd4_is_junction(struct dentry *dentry)
627 {
628 	struct inode *inode = d_inode(dentry);
629 
630 	if (inode == NULL)
631 		return 0;
632 	if (inode->i_mode & S_IXUGO)
633 		return 0;
634 	if (!(inode->i_mode & S_ISVTX))
635 		return 0;
636 	if (vfs_getxattr(&nop_mnt_idmap, dentry, NFSD_JUNCTION_XATTR_NAME,
637 			 NULL, 0) <= 0)
638 		return 0;
639 	return 1;
640 }
641 
642 static struct nfsd4_compound_state *nfsd4_get_cstate(struct svc_rqst *rqstp)
643 {
644 	return &((struct nfsd4_compoundres *)rqstp->rq_resp)->cstate;
645 }
646 
647 __be32 nfsd4_clone_file_range(struct svc_rqst *rqstp,
648 		struct nfsd_file *nf_src, u64 src_pos,
649 		struct nfsd_file *nf_dst, u64 dst_pos,
650 		u64 count, bool sync)
651 {
652 	struct file *src = nf_src->nf_file;
653 	struct file *dst = nf_dst->nf_file;
654 	errseq_t since;
655 	loff_t cloned;
656 	__be32 ret = 0;
657 
658 	since = READ_ONCE(dst->f_wb_err);
659 	cloned = vfs_clone_file_range(src, src_pos, dst, dst_pos, count, 0);
660 	if (cloned < 0) {
661 		ret = nfserrno(cloned);
662 		goto out_err;
663 	}
664 	if (count && cloned != count) {
665 		ret = nfserrno(-EINVAL);
666 		goto out_err;
667 	}
668 	if (sync) {
669 		loff_t dst_end = count ? dst_pos + count - 1 : LLONG_MAX;
670 		int status = vfs_fsync_range(dst, dst_pos, dst_end, 0);
671 
672 		if (!status)
673 			status = filemap_check_wb_err(dst->f_mapping, since);
674 		if (!status)
675 			status = commit_inode_metadata(file_inode(src));
676 		if (status < 0) {
677 			struct nfsd_net *nn = net_generic(nf_dst->nf_net,
678 							  nfsd_net_id);
679 
680 			trace_nfsd_clone_file_range_err(rqstp,
681 					&nfsd4_get_cstate(rqstp)->save_fh,
682 					src_pos,
683 					&nfsd4_get_cstate(rqstp)->current_fh,
684 					dst_pos,
685 					count, status);
686 			commit_reset_write_verifier(nn, rqstp, status);
687 			ret = nfserrno(status);
688 		}
689 	}
690 out_err:
691 	return ret;
692 }
693 
694 ssize_t nfsd_copy_file_range(struct file *src, u64 src_pos, struct file *dst,
695 			     u64 dst_pos, u64 count)
696 {
697 	ssize_t ret;
698 
699 	/*
700 	 * Limit copy to 4MB to prevent indefinitely blocking an nfsd
701 	 * thread and client rpc slot.  The choice of 4MB is somewhat
702 	 * arbitrary.  We might instead base this on r/wsize, or make it
703 	 * tunable, or use a time instead of a byte limit, or implement
704 	 * asynchronous copy.  In theory a client could also recognize a
705 	 * limit like this and pipeline multiple COPY requests.
706 	 */
707 	count = min_t(u64, count, 1 << 22);
708 	ret = vfs_copy_file_range(src, src_pos, dst, dst_pos, count, 0);
709 
710 	if (ret == -EOPNOTSUPP || ret == -EXDEV)
711 		ret = vfs_copy_file_range(src, src_pos, dst, dst_pos, count,
712 					  COPY_FILE_SPLICE);
713 	return ret;
714 }
715 
716 __be32 nfsd4_vfs_fallocate(struct svc_rqst *rqstp, struct svc_fh *fhp,
717 			   struct file *file, loff_t offset, loff_t len,
718 			   int flags)
719 {
720 	int error;
721 
722 	if (!S_ISREG(file_inode(file)->i_mode))
723 		return nfserr_inval;
724 
725 	error = vfs_fallocate(file, flags, offset, len);
726 	if (!error)
727 		error = commit_metadata(fhp);
728 
729 	return nfserrno(error);
730 }
731 #endif /* defined(CONFIG_NFSD_V4) */
732 
733 /*
734  * Check server access rights to a file system object
735  */
736 struct accessmap {
737 	u32		access;
738 	int		how;
739 };
740 static struct accessmap	nfs3_regaccess[] = {
741     {	NFS3_ACCESS_READ,	NFSD_MAY_READ			},
742     {	NFS3_ACCESS_EXECUTE,	NFSD_MAY_EXEC			},
743     {	NFS3_ACCESS_MODIFY,	NFSD_MAY_WRITE|NFSD_MAY_TRUNC	},
744     {	NFS3_ACCESS_EXTEND,	NFSD_MAY_WRITE			},
745 
746 #ifdef CONFIG_NFSD_V4
747     {	NFS4_ACCESS_XAREAD,	NFSD_MAY_READ			},
748     {	NFS4_ACCESS_XAWRITE,	NFSD_MAY_WRITE			},
749     {	NFS4_ACCESS_XALIST,	NFSD_MAY_READ			},
750 #endif
751 
752     {	0,			0				}
753 };
754 
755 static struct accessmap	nfs3_diraccess[] = {
756     {	NFS3_ACCESS_READ,	NFSD_MAY_READ			},
757     {	NFS3_ACCESS_LOOKUP,	NFSD_MAY_EXEC			},
758     {	NFS3_ACCESS_MODIFY,	NFSD_MAY_EXEC|NFSD_MAY_WRITE|NFSD_MAY_TRUNC},
759     {	NFS3_ACCESS_EXTEND,	NFSD_MAY_EXEC|NFSD_MAY_WRITE	},
760     {	NFS3_ACCESS_DELETE,	NFSD_MAY_REMOVE			},
761 
762 #ifdef CONFIG_NFSD_V4
763     {	NFS4_ACCESS_XAREAD,	NFSD_MAY_READ			},
764     {	NFS4_ACCESS_XAWRITE,	NFSD_MAY_WRITE			},
765     {	NFS4_ACCESS_XALIST,	NFSD_MAY_READ			},
766 #endif
767 
768     {	0,			0				}
769 };
770 
771 static struct accessmap	nfs3_anyaccess[] = {
772 	/* Some clients - Solaris 2.6 at least, make an access call
773 	 * to the server to check for access for things like /dev/null
774 	 * (which really, the server doesn't care about).  So
775 	 * We provide simple access checking for them, looking
776 	 * mainly at mode bits, and we make sure to ignore read-only
777 	 * filesystem checks
778 	 */
779     {	NFS3_ACCESS_READ,	NFSD_MAY_READ			},
780     {	NFS3_ACCESS_EXECUTE,	NFSD_MAY_EXEC			},
781     {	NFS3_ACCESS_MODIFY,	NFSD_MAY_WRITE|NFSD_MAY_LOCAL_ACCESS	},
782     {	NFS3_ACCESS_EXTEND,	NFSD_MAY_WRITE|NFSD_MAY_LOCAL_ACCESS	},
783 
784     {	0,			0				}
785 };
786 
787 __be32
788 nfsd_access(struct svc_rqst *rqstp, struct svc_fh *fhp, u32 *access, u32 *supported)
789 {
790 	struct accessmap	*map;
791 	struct svc_export	*export;
792 	struct dentry		*dentry;
793 	u32			query, result = 0, sresult = 0;
794 	__be32			error;
795 
796 	error = fh_verify(rqstp, fhp, 0, NFSD_MAY_NOP);
797 	if (error)
798 		goto out;
799 
800 	export = fhp->fh_export;
801 	dentry = fhp->fh_dentry;
802 
803 	if (d_is_reg(dentry))
804 		map = nfs3_regaccess;
805 	else if (d_is_dir(dentry))
806 		map = nfs3_diraccess;
807 	else
808 		map = nfs3_anyaccess;
809 
810 
811 	query = *access;
812 	for  (; map->access; map++) {
813 		if (map->access & query) {
814 			__be32 err2;
815 
816 			sresult |= map->access;
817 
818 			err2 = nfsd_permission(&rqstp->rq_cred, export,
819 					       dentry, map->how);
820 			switch (err2) {
821 			case nfs_ok:
822 				result |= map->access;
823 				break;
824 
825 			/* the following error codes just mean the access was not allowed,
826 			 * rather than an error occurred */
827 			case nfserr_rofs:
828 			case nfserr_acces:
829 			case nfserr_perm:
830 				/* simply don't "or" in the access bit. */
831 				break;
832 			default:
833 				error = err2;
834 				goto out;
835 			}
836 		}
837 	}
838 	*access = result;
839 	if (supported)
840 		*supported = sresult;
841 
842  out:
843 	return error;
844 }
845 
846 int nfsd_open_break_lease(struct inode *inode, int access)
847 {
848 	unsigned int mode;
849 
850 	if (access & NFSD_MAY_NOT_BREAK_LEASE)
851 		return 0;
852 	mode = (access & NFSD_MAY_WRITE) ? O_WRONLY : O_RDONLY;
853 	return break_lease(inode, mode | O_NONBLOCK);
854 }
855 
856 /*
857  * Open an existing file or directory.
858  * The may_flags argument indicates the type of open (read/write/lock)
859  * and additional flags.
860  * N.B. After this call fhp needs an fh_put
861  */
862 static int
863 __nfsd_open(struct svc_fh *fhp, umode_t type, int may_flags, struct file **filp)
864 {
865 	struct path	path;
866 	struct inode	*inode;
867 	struct file	*file;
868 	int		flags = O_RDONLY|O_LARGEFILE;
869 	int		host_err = -EPERM;
870 
871 	path.mnt = fhp->fh_export->ex_path.mnt;
872 	path.dentry = fhp->fh_dentry;
873 	inode = d_inode(path.dentry);
874 
875 	if (IS_APPEND(inode) && (may_flags & NFSD_MAY_WRITE))
876 		goto out;
877 
878 	if (!inode->i_fop)
879 		goto out;
880 
881 	host_err = nfsd_open_break_lease(inode, may_flags);
882 	if (host_err) /* NOMEM or WOULDBLOCK */
883 		goto out;
884 
885 	if (may_flags & NFSD_MAY_WRITE) {
886 		if (may_flags & NFSD_MAY_READ)
887 			flags = O_RDWR|O_LARGEFILE;
888 		else
889 			flags = O_WRONLY|O_LARGEFILE;
890 	}
891 
892 	file = dentry_open(&path, flags, current_cred());
893 	if (IS_ERR(file)) {
894 		host_err = PTR_ERR(file);
895 		goto out;
896 	}
897 
898 	host_err = security_file_post_open(file, may_flags);
899 	if (host_err) {
900 		fput(file);
901 		goto out;
902 	}
903 
904 	*filp = file;
905 out:
906 	return host_err;
907 }
908 
909 __be32
910 nfsd_open(struct svc_rqst *rqstp, struct svc_fh *fhp, umode_t type,
911 		int may_flags, struct file **filp)
912 {
913 	__be32 err;
914 	int host_err;
915 	bool retried = false;
916 
917 	/*
918 	 * If we get here, then the client has already done an "open",
919 	 * and (hopefully) checked permission - so allow OWNER_OVERRIDE
920 	 * in case a chmod has now revoked permission.
921 	 *
922 	 * Arguably we should also allow the owner override for
923 	 * directories, but we never have and it doesn't seem to have
924 	 * caused anyone a problem.  If we were to change this, note
925 	 * also that our filldir callbacks would need a variant of
926 	 * lookup_one_positive_unlocked() that doesn't check permissions.
927 	 */
928 	if (type == S_IFREG)
929 		may_flags |= NFSD_MAY_OWNER_OVERRIDE;
930 retry:
931 	err = fh_verify(rqstp, fhp, type, may_flags);
932 	if (!err) {
933 		host_err = __nfsd_open(fhp, type, may_flags, filp);
934 		if (host_err == -EOPENSTALE && !retried) {
935 			retried = true;
936 			fh_put(fhp);
937 			goto retry;
938 		}
939 		err = nfserrno(host_err);
940 	}
941 	return err;
942 }
943 
944 /**
945  * nfsd_open_verified - Open a regular file for the filecache
946  * @fhp: NFS filehandle of the file to open
947  * @may_flags: internal permission flags
948  * @filp: OUT: open "struct file *"
949  *
950  * Returns zero on success, or a negative errno value.
951  */
952 int
953 nfsd_open_verified(struct svc_fh *fhp, int may_flags, struct file **filp)
954 {
955 	return __nfsd_open(fhp, S_IFREG, may_flags, filp);
956 }
957 
958 /*
959  * Grab and keep cached pages associated with a file in the svc_rqst
960  * so that they can be passed to the network sendmsg routines
961  * directly. They will be released after the sending has completed.
962  *
963  * Return values: Number of bytes consumed, or -EIO if there are no
964  * remaining pages in rqstp->rq_pages.
965  */
966 static int
967 nfsd_splice_actor(struct pipe_inode_info *pipe, struct pipe_buffer *buf,
968 		  struct splice_desc *sd)
969 {
970 	struct svc_rqst *rqstp = sd->u.data;
971 	struct page *page = buf->page;	// may be a compound one
972 	unsigned offset = buf->offset;
973 	struct page *last_page;
974 
975 	last_page = page + (offset + sd->len - 1) / PAGE_SIZE;
976 	for (page += offset / PAGE_SIZE; page <= last_page; page++) {
977 		/*
978 		 * Skip page replacement when extending the contents of the
979 		 * current page.  But note that we may get two zero_pages in a
980 		 * row from shmem.
981 		 */
982 		if (page == *(rqstp->rq_next_page - 1) &&
983 		    offset_in_page(rqstp->rq_res.page_base +
984 				   rqstp->rq_res.page_len))
985 			continue;
986 		if (unlikely(!svc_rqst_replace_page(rqstp, page)))
987 			return -EIO;
988 	}
989 	if (rqstp->rq_res.page_len == 0)	// first call
990 		rqstp->rq_res.page_base = offset % PAGE_SIZE;
991 	rqstp->rq_res.page_len += sd->len;
992 	return sd->len;
993 }
994 
995 static int nfsd_direct_splice_actor(struct pipe_inode_info *pipe,
996 				    struct splice_desc *sd)
997 {
998 	return __splice_from_pipe(pipe, sd, nfsd_splice_actor);
999 }
1000 
1001 static u32 nfsd_eof_on_read(struct file *file, loff_t offset, ssize_t len,
1002 		size_t expected)
1003 {
1004 	if (expected != 0 && len == 0)
1005 		return 1;
1006 	if (offset+len >= i_size_read(file_inode(file)))
1007 		return 1;
1008 	return 0;
1009 }
1010 
1011 static __be32 nfsd_finish_read(struct svc_rqst *rqstp, struct svc_fh *fhp,
1012 			       struct file *file, loff_t offset,
1013 			       unsigned long *count, u32 *eof, ssize_t host_err)
1014 {
1015 	if (host_err >= 0) {
1016 		struct nfsd_net *nn = net_generic(SVC_NET(rqstp), nfsd_net_id);
1017 
1018 		nfsd_stats_io_read_add(nn, fhp->fh_export, host_err);
1019 		*eof = nfsd_eof_on_read(file, offset, host_err, *count);
1020 		*count = host_err;
1021 		fsnotify_access(file);
1022 		trace_nfsd_read_io_done(rqstp, fhp, offset, *count);
1023 		return 0;
1024 	} else {
1025 		trace_nfsd_read_err(rqstp, fhp, offset, host_err);
1026 		return nfserrno(host_err);
1027 	}
1028 }
1029 
1030 /**
1031  * nfsd_splice_read - Perform a VFS read using a splice pipe
1032  * @rqstp: RPC transaction context
1033  * @fhp: file handle of file to be read
1034  * @file: opened struct file of file to be read
1035  * @offset: starting byte offset
1036  * @count: IN: requested number of bytes; OUT: number of bytes read
1037  * @eof: OUT: set non-zero if operation reached the end of the file
1038  *
1039  * Returns nfs_ok on success, otherwise an nfserr stat value is
1040  * returned.
1041  */
1042 __be32 nfsd_splice_read(struct svc_rqst *rqstp, struct svc_fh *fhp,
1043 			struct file *file, loff_t offset, unsigned long *count,
1044 			u32 *eof)
1045 {
1046 	struct splice_desc sd = {
1047 		.len		= 0,
1048 		.total_len	= *count,
1049 		.pos		= offset,
1050 		.u.data		= rqstp,
1051 	};
1052 	ssize_t host_err;
1053 
1054 	trace_nfsd_read_splice(rqstp, fhp, offset, *count);
1055 	host_err = rw_verify_area(READ, file, &offset, *count);
1056 	if (!host_err)
1057 		host_err = splice_direct_to_actor(file, &sd,
1058 						  nfsd_direct_splice_actor);
1059 	return nfsd_finish_read(rqstp, fhp, file, offset, count, eof, host_err);
1060 }
1061 
1062 /**
1063  * nfsd_iter_read - Perform a VFS read using an iterator
1064  * @rqstp: RPC transaction context
1065  * @fhp: file handle of file to be read
1066  * @file: opened struct file of file to be read
1067  * @offset: starting byte offset
1068  * @count: IN: requested number of bytes; OUT: number of bytes read
1069  * @base: offset in first page of read buffer
1070  * @eof: OUT: set non-zero if operation reached the end of the file
1071  *
1072  * Some filesystems or situations cannot use nfsd_splice_read. This
1073  * function is the slightly less-performant fallback for those cases.
1074  *
1075  * Returns nfs_ok on success, otherwise an nfserr stat value is
1076  * returned.
1077  */
1078 __be32 nfsd_iter_read(struct svc_rqst *rqstp, struct svc_fh *fhp,
1079 		      struct file *file, loff_t offset, unsigned long *count,
1080 		      unsigned int base, u32 *eof)
1081 {
1082 	unsigned long v, total;
1083 	struct iov_iter iter;
1084 	loff_t ppos = offset;
1085 	struct page *page;
1086 	ssize_t host_err;
1087 
1088 	v = 0;
1089 	total = *count;
1090 	while (total) {
1091 		page = *(rqstp->rq_next_page++);
1092 		rqstp->rq_vec[v].iov_base = page_address(page) + base;
1093 		rqstp->rq_vec[v].iov_len = min_t(size_t, total, PAGE_SIZE - base);
1094 		total -= rqstp->rq_vec[v].iov_len;
1095 		++v;
1096 		base = 0;
1097 	}
1098 	WARN_ON_ONCE(v > ARRAY_SIZE(rqstp->rq_vec));
1099 
1100 	trace_nfsd_read_vector(rqstp, fhp, offset, *count);
1101 	iov_iter_kvec(&iter, ITER_DEST, rqstp->rq_vec, v, *count);
1102 	host_err = vfs_iter_read(file, &iter, &ppos, 0);
1103 	return nfsd_finish_read(rqstp, fhp, file, offset, count, eof, host_err);
1104 }
1105 
1106 /*
1107  * Gathered writes: If another process is currently writing to the file,
1108  * there's a high chance this is another nfsd (triggered by a bulk write
1109  * from a client's biod). Rather than syncing the file with each write
1110  * request, we sleep for 10 msec.
1111  *
1112  * I don't know if this roughly approximates C. Juszak's idea of
1113  * gathered writes, but it's a nice and simple solution (IMHO), and it
1114  * seems to work:-)
1115  *
1116  * Note: we do this only in the NFSv2 case, since v3 and higher have a
1117  * better tool (separate unstable writes and commits) for solving this
1118  * problem.
1119  */
1120 static int wait_for_concurrent_writes(struct file *file)
1121 {
1122 	struct inode *inode = file_inode(file);
1123 	static ino_t last_ino;
1124 	static dev_t last_dev;
1125 	int err = 0;
1126 
1127 	if (atomic_read(&inode->i_writecount) > 1
1128 	    || (last_ino == inode->i_ino && last_dev == inode->i_sb->s_dev)) {
1129 		dprintk("nfsd: write defer %d\n", task_pid_nr(current));
1130 		msleep(10);
1131 		dprintk("nfsd: write resume %d\n", task_pid_nr(current));
1132 	}
1133 
1134 	if (inode->i_state & I_DIRTY) {
1135 		dprintk("nfsd: write sync %d\n", task_pid_nr(current));
1136 		err = vfs_fsync(file, 0);
1137 	}
1138 	last_ino = inode->i_ino;
1139 	last_dev = inode->i_sb->s_dev;
1140 	return err;
1141 }
1142 
1143 __be32
1144 nfsd_vfs_write(struct svc_rqst *rqstp, struct svc_fh *fhp, struct nfsd_file *nf,
1145 				loff_t offset, struct kvec *vec, int vlen,
1146 				unsigned long *cnt, int stable,
1147 				__be32 *verf)
1148 {
1149 	struct nfsd_net		*nn = net_generic(SVC_NET(rqstp), nfsd_net_id);
1150 	struct file		*file = nf->nf_file;
1151 	struct super_block	*sb = file_inode(file)->i_sb;
1152 	struct svc_export	*exp;
1153 	struct iov_iter		iter;
1154 	errseq_t		since;
1155 	__be32			nfserr;
1156 	int			host_err;
1157 	loff_t			pos = offset;
1158 	unsigned long		exp_op_flags = 0;
1159 	unsigned int		pflags = current->flags;
1160 	rwf_t			flags = 0;
1161 	bool			restore_flags = false;
1162 
1163 	trace_nfsd_write_opened(rqstp, fhp, offset, *cnt);
1164 
1165 	if (sb->s_export_op)
1166 		exp_op_flags = sb->s_export_op->flags;
1167 
1168 	if (test_bit(RQ_LOCAL, &rqstp->rq_flags) &&
1169 	    !(exp_op_flags & EXPORT_OP_REMOTE_FS)) {
1170 		/*
1171 		 * We want throttling in balance_dirty_pages()
1172 		 * and shrink_inactive_list() to only consider
1173 		 * the backingdev we are writing to, so that nfs to
1174 		 * localhost doesn't cause nfsd to lock up due to all
1175 		 * the client's dirty pages or its congested queue.
1176 		 */
1177 		current->flags |= PF_LOCAL_THROTTLE;
1178 		restore_flags = true;
1179 	}
1180 
1181 	exp = fhp->fh_export;
1182 
1183 	if (!EX_ISSYNC(exp))
1184 		stable = NFS_UNSTABLE;
1185 
1186 	if (stable && !fhp->fh_use_wgather)
1187 		flags |= RWF_SYNC;
1188 
1189 	iov_iter_kvec(&iter, ITER_SOURCE, vec, vlen, *cnt);
1190 	since = READ_ONCE(file->f_wb_err);
1191 	if (verf)
1192 		nfsd_copy_write_verifier(verf, nn);
1193 	host_err = vfs_iter_write(file, &iter, &pos, flags);
1194 	if (host_err < 0) {
1195 		commit_reset_write_verifier(nn, rqstp, host_err);
1196 		goto out_nfserr;
1197 	}
1198 	*cnt = host_err;
1199 	nfsd_stats_io_write_add(nn, exp, *cnt);
1200 	fsnotify_modify(file);
1201 	host_err = filemap_check_wb_err(file->f_mapping, since);
1202 	if (host_err < 0)
1203 		goto out_nfserr;
1204 
1205 	if (stable && fhp->fh_use_wgather) {
1206 		host_err = wait_for_concurrent_writes(file);
1207 		if (host_err < 0)
1208 			commit_reset_write_verifier(nn, rqstp, host_err);
1209 	}
1210 
1211 out_nfserr:
1212 	if (host_err >= 0) {
1213 		trace_nfsd_write_io_done(rqstp, fhp, offset, *cnt);
1214 		nfserr = nfs_ok;
1215 	} else {
1216 		trace_nfsd_write_err(rqstp, fhp, offset, host_err);
1217 		nfserr = nfserrno(host_err);
1218 	}
1219 	if (restore_flags)
1220 		current_restore_flags(pflags, PF_LOCAL_THROTTLE);
1221 	return nfserr;
1222 }
1223 
1224 /**
1225  * nfsd_read_splice_ok - check if spliced reading is supported
1226  * @rqstp: RPC transaction context
1227  *
1228  * Return values:
1229  *   %true: nfsd_splice_read() may be used
1230  *   %false: nfsd_splice_read() must not be used
1231  *
1232  * NFS READ normally uses splice to send data in-place. However the
1233  * data in cache can change after the reply's MIC is computed but
1234  * before the RPC reply is sent. To prevent the client from
1235  * rejecting the server-computed MIC in this somewhat rare case, do
1236  * not use splice with the GSS integrity and privacy services.
1237  */
1238 bool nfsd_read_splice_ok(struct svc_rqst *rqstp)
1239 {
1240 	switch (svc_auth_flavor(rqstp)) {
1241 	case RPC_AUTH_GSS_KRB5I:
1242 	case RPC_AUTH_GSS_KRB5P:
1243 		return false;
1244 	}
1245 	return true;
1246 }
1247 
1248 /**
1249  * nfsd_read - Read data from a file
1250  * @rqstp: RPC transaction context
1251  * @fhp: file handle of file to be read
1252  * @offset: starting byte offset
1253  * @count: IN: requested number of bytes; OUT: number of bytes read
1254  * @eof: OUT: set non-zero if operation reached the end of the file
1255  *
1256  * The caller must verify that there is enough space in @rqstp.rq_res
1257  * to perform this operation.
1258  *
1259  * N.B. After this call fhp needs an fh_put
1260  *
1261  * Returns nfs_ok on success, otherwise an nfserr stat value is
1262  * returned.
1263  */
1264 __be32 nfsd_read(struct svc_rqst *rqstp, struct svc_fh *fhp,
1265 		 loff_t offset, unsigned long *count, u32 *eof)
1266 {
1267 	struct nfsd_file	*nf;
1268 	struct file *file;
1269 	__be32 err;
1270 
1271 	trace_nfsd_read_start(rqstp, fhp, offset, *count);
1272 	err = nfsd_file_acquire_gc(rqstp, fhp, NFSD_MAY_READ, &nf);
1273 	if (err)
1274 		return err;
1275 
1276 	file = nf->nf_file;
1277 	if (file->f_op->splice_read && nfsd_read_splice_ok(rqstp))
1278 		err = nfsd_splice_read(rqstp, fhp, file, offset, count, eof);
1279 	else
1280 		err = nfsd_iter_read(rqstp, fhp, file, offset, count, 0, eof);
1281 
1282 	nfsd_file_put(nf);
1283 	trace_nfsd_read_done(rqstp, fhp, offset, *count);
1284 	return err;
1285 }
1286 
1287 /*
1288  * Write data to a file.
1289  * The stable flag requests synchronous writes.
1290  * N.B. After this call fhp needs an fh_put
1291  */
1292 __be32
1293 nfsd_write(struct svc_rqst *rqstp, struct svc_fh *fhp, loff_t offset,
1294 	   struct kvec *vec, int vlen, unsigned long *cnt, int stable,
1295 	   __be32 *verf)
1296 {
1297 	struct nfsd_file *nf;
1298 	__be32 err;
1299 
1300 	trace_nfsd_write_start(rqstp, fhp, offset, *cnt);
1301 
1302 	err = nfsd_file_acquire_gc(rqstp, fhp, NFSD_MAY_WRITE, &nf);
1303 	if (err)
1304 		goto out;
1305 
1306 	err = nfsd_vfs_write(rqstp, fhp, nf, offset, vec,
1307 			vlen, cnt, stable, verf);
1308 	nfsd_file_put(nf);
1309 out:
1310 	trace_nfsd_write_done(rqstp, fhp, offset, *cnt);
1311 	return err;
1312 }
1313 
1314 /**
1315  * nfsd_commit - Commit pending writes to stable storage
1316  * @rqstp: RPC request being processed
1317  * @fhp: NFS filehandle
1318  * @nf: target file
1319  * @offset: raw offset from beginning of file
1320  * @count: raw count of bytes to sync
1321  * @verf: filled in with the server's current write verifier
1322  *
1323  * Note: we guarantee that data that lies within the range specified
1324  * by the 'offset' and 'count' parameters will be synced. The server
1325  * is permitted to sync data that lies outside this range at the
1326  * same time.
1327  *
1328  * Unfortunately we cannot lock the file to make sure we return full WCC
1329  * data to the client, as locking happens lower down in the filesystem.
1330  *
1331  * Return values:
1332  *   An nfsstat value in network byte order.
1333  */
1334 __be32
1335 nfsd_commit(struct svc_rqst *rqstp, struct svc_fh *fhp, struct nfsd_file *nf,
1336 	    u64 offset, u32 count, __be32 *verf)
1337 {
1338 	__be32			err = nfs_ok;
1339 	u64			maxbytes;
1340 	loff_t			start, end;
1341 	struct nfsd_net		*nn;
1342 
1343 	/*
1344 	 * Convert the client-provided (offset, count) range to a
1345 	 * (start, end) range. If the client-provided range falls
1346 	 * outside the maximum file size of the underlying FS,
1347 	 * clamp the sync range appropriately.
1348 	 */
1349 	start = 0;
1350 	end = LLONG_MAX;
1351 	maxbytes = (u64)fhp->fh_dentry->d_sb->s_maxbytes;
1352 	if (offset < maxbytes) {
1353 		start = offset;
1354 		if (count && (offset + count - 1 < maxbytes))
1355 			end = offset + count - 1;
1356 	}
1357 
1358 	nn = net_generic(nf->nf_net, nfsd_net_id);
1359 	if (EX_ISSYNC(fhp->fh_export)) {
1360 		errseq_t since = READ_ONCE(nf->nf_file->f_wb_err);
1361 		int err2;
1362 
1363 		err2 = vfs_fsync_range(nf->nf_file, start, end, 0);
1364 		switch (err2) {
1365 		case 0:
1366 			nfsd_copy_write_verifier(verf, nn);
1367 			err2 = filemap_check_wb_err(nf->nf_file->f_mapping,
1368 						    since);
1369 			err = nfserrno(err2);
1370 			break;
1371 		case -EINVAL:
1372 			err = nfserr_notsupp;
1373 			break;
1374 		default:
1375 			commit_reset_write_verifier(nn, rqstp, err2);
1376 			err = nfserrno(err2);
1377 		}
1378 	} else
1379 		nfsd_copy_write_verifier(verf, nn);
1380 
1381 	return err;
1382 }
1383 
1384 /**
1385  * nfsd_create_setattr - Set a created file's attributes
1386  * @rqstp: RPC transaction being executed
1387  * @fhp: NFS filehandle of parent directory
1388  * @resfhp: NFS filehandle of new object
1389  * @attrs: requested attributes of new object
1390  *
1391  * Returns nfs_ok on success, or an nfsstat in network byte order.
1392  */
1393 __be32
1394 nfsd_create_setattr(struct svc_rqst *rqstp, struct svc_fh *fhp,
1395 		    struct svc_fh *resfhp, struct nfsd_attrs *attrs)
1396 {
1397 	struct iattr *iap = attrs->na_iattr;
1398 	__be32 status;
1399 
1400 	/*
1401 	 * Mode has already been set by file creation.
1402 	 */
1403 	iap->ia_valid &= ~ATTR_MODE;
1404 
1405 	/*
1406 	 * Setting uid/gid works only for root.  Irix appears to
1407 	 * send along the gid on create when it tries to implement
1408 	 * setgid directories via NFS:
1409 	 */
1410 	if (!uid_eq(current_fsuid(), GLOBAL_ROOT_UID))
1411 		iap->ia_valid &= ~(ATTR_UID|ATTR_GID);
1412 
1413 	/*
1414 	 * Callers expect new file metadata to be committed even
1415 	 * if the attributes have not changed.
1416 	 */
1417 	if (nfsd_attrs_valid(attrs))
1418 		status = nfsd_setattr(rqstp, resfhp, attrs, NULL);
1419 	else
1420 		status = nfserrno(commit_metadata(resfhp));
1421 
1422 	/*
1423 	 * Transactional filesystems had a chance to commit changes
1424 	 * for both parent and child simultaneously making the
1425 	 * following commit_metadata a noop in many cases.
1426 	 */
1427 	if (!status)
1428 		status = nfserrno(commit_metadata(fhp));
1429 
1430 	/*
1431 	 * Update the new filehandle to pick up the new attributes.
1432 	 */
1433 	if (!status)
1434 		status = fh_update(resfhp);
1435 
1436 	return status;
1437 }
1438 
1439 /* HPUX client sometimes creates a file in mode 000, and sets size to 0.
1440  * setting size to 0 may fail for some specific file systems by the permission
1441  * checking which requires WRITE permission but the mode is 000.
1442  * we ignore the resizing(to 0) on the just new created file, since the size is
1443  * 0 after file created.
1444  *
1445  * call this only after vfs_create() is called.
1446  * */
1447 static void
1448 nfsd_check_ignore_resizing(struct iattr *iap)
1449 {
1450 	if ((iap->ia_valid & ATTR_SIZE) && (iap->ia_size == 0))
1451 		iap->ia_valid &= ~ATTR_SIZE;
1452 }
1453 
1454 /* The parent directory should already be locked: */
1455 __be32
1456 nfsd_create_locked(struct svc_rqst *rqstp, struct svc_fh *fhp,
1457 		   struct nfsd_attrs *attrs,
1458 		   int type, dev_t rdev, struct svc_fh *resfhp)
1459 {
1460 	struct dentry	*dentry, *dchild;
1461 	struct inode	*dirp;
1462 	struct iattr	*iap = attrs->na_iattr;
1463 	__be32		err;
1464 	int		host_err = 0;
1465 
1466 	dentry = fhp->fh_dentry;
1467 	dirp = d_inode(dentry);
1468 
1469 	dchild = dget(resfhp->fh_dentry);
1470 	err = nfsd_permission(&rqstp->rq_cred, fhp->fh_export, dentry,
1471 			      NFSD_MAY_CREATE);
1472 	if (err)
1473 		goto out;
1474 
1475 	if (!(iap->ia_valid & ATTR_MODE))
1476 		iap->ia_mode = 0;
1477 	iap->ia_mode = (iap->ia_mode & S_IALLUGO) | type;
1478 
1479 	if (!IS_POSIXACL(dirp))
1480 		iap->ia_mode &= ~current_umask();
1481 
1482 	err = 0;
1483 	switch (type) {
1484 	case S_IFREG:
1485 		host_err = vfs_create(&nop_mnt_idmap, dirp, dchild,
1486 				      iap->ia_mode, true);
1487 		if (!host_err)
1488 			nfsd_check_ignore_resizing(iap);
1489 		break;
1490 	case S_IFDIR:
1491 		dchild = vfs_mkdir(&nop_mnt_idmap, dirp, dchild, iap->ia_mode);
1492 		if (IS_ERR(dchild)) {
1493 			host_err = PTR_ERR(dchild);
1494 		} else if (d_is_negative(dchild)) {
1495 			err = nfserr_serverfault;
1496 			goto out;
1497 		} else if (unlikely(dchild != resfhp->fh_dentry)) {
1498 			dput(resfhp->fh_dentry);
1499 			resfhp->fh_dentry = dget(dchild);
1500 		}
1501 		break;
1502 	case S_IFCHR:
1503 	case S_IFBLK:
1504 	case S_IFIFO:
1505 	case S_IFSOCK:
1506 		host_err = vfs_mknod(&nop_mnt_idmap, dirp, dchild,
1507 				     iap->ia_mode, rdev);
1508 		break;
1509 	default:
1510 		printk(KERN_WARNING "nfsd: bad file type %o in nfsd_create\n",
1511 		       type);
1512 		host_err = -EINVAL;
1513 	}
1514 	if (host_err < 0)
1515 		goto out_nfserr;
1516 
1517 	err = nfsd_create_setattr(rqstp, fhp, resfhp, attrs);
1518 
1519 out:
1520 	if (!IS_ERR(dchild))
1521 		dput(dchild);
1522 	return err;
1523 
1524 out_nfserr:
1525 	err = nfserrno(host_err);
1526 	goto out;
1527 }
1528 
1529 /*
1530  * Create a filesystem object (regular, directory, special).
1531  * Note that the parent directory is left locked.
1532  *
1533  * N.B. Every call to nfsd_create needs an fh_put for _both_ fhp and resfhp
1534  */
1535 __be32
1536 nfsd_create(struct svc_rqst *rqstp, struct svc_fh *fhp,
1537 	    char *fname, int flen, struct nfsd_attrs *attrs,
1538 	    int type, dev_t rdev, struct svc_fh *resfhp)
1539 {
1540 	struct dentry	*dentry, *dchild = NULL;
1541 	__be32		err;
1542 	int		host_err;
1543 
1544 	if (isdotent(fname, flen))
1545 		return nfserr_exist;
1546 
1547 	err = fh_verify(rqstp, fhp, S_IFDIR, NFSD_MAY_NOP);
1548 	if (err)
1549 		return err;
1550 
1551 	dentry = fhp->fh_dentry;
1552 
1553 	host_err = fh_want_write(fhp);
1554 	if (host_err)
1555 		return nfserrno(host_err);
1556 
1557 	inode_lock_nested(dentry->d_inode, I_MUTEX_PARENT);
1558 	dchild = lookup_one(&nop_mnt_idmap, &QSTR_LEN(fname, flen), dentry);
1559 	host_err = PTR_ERR(dchild);
1560 	if (IS_ERR(dchild)) {
1561 		err = nfserrno(host_err);
1562 		goto out_unlock;
1563 	}
1564 	err = fh_compose(resfhp, fhp->fh_export, dchild, fhp);
1565 	/*
1566 	 * We unconditionally drop our ref to dchild as fh_compose will have
1567 	 * already grabbed its own ref for it.
1568 	 */
1569 	dput(dchild);
1570 	if (err)
1571 		goto out_unlock;
1572 	err = fh_fill_pre_attrs(fhp);
1573 	if (err != nfs_ok)
1574 		goto out_unlock;
1575 	err = nfsd_create_locked(rqstp, fhp, attrs, type, rdev, resfhp);
1576 	fh_fill_post_attrs(fhp);
1577 out_unlock:
1578 	inode_unlock(dentry->d_inode);
1579 	return err;
1580 }
1581 
1582 /*
1583  * Read a symlink. On entry, *lenp must contain the maximum path length that
1584  * fits into the buffer. On return, it contains the true length.
1585  * N.B. After this call fhp needs an fh_put
1586  */
1587 __be32
1588 nfsd_readlink(struct svc_rqst *rqstp, struct svc_fh *fhp, char *buf, int *lenp)
1589 {
1590 	__be32		err;
1591 	const char *link;
1592 	struct path path;
1593 	DEFINE_DELAYED_CALL(done);
1594 	int len;
1595 
1596 	err = fh_verify(rqstp, fhp, S_IFLNK, NFSD_MAY_NOP);
1597 	if (unlikely(err))
1598 		return err;
1599 
1600 	path.mnt = fhp->fh_export->ex_path.mnt;
1601 	path.dentry = fhp->fh_dentry;
1602 
1603 	if (unlikely(!d_is_symlink(path.dentry)))
1604 		return nfserr_inval;
1605 
1606 	touch_atime(&path);
1607 
1608 	link = vfs_get_link(path.dentry, &done);
1609 	if (IS_ERR(link))
1610 		return nfserrno(PTR_ERR(link));
1611 
1612 	len = strlen(link);
1613 	if (len < *lenp)
1614 		*lenp = len;
1615 	memcpy(buf, link, *lenp);
1616 	do_delayed_call(&done);
1617 	return 0;
1618 }
1619 
1620 /**
1621  * nfsd_symlink - Create a symlink and look up its inode
1622  * @rqstp: RPC transaction being executed
1623  * @fhp: NFS filehandle of parent directory
1624  * @fname: filename of the new symlink
1625  * @flen: length of @fname
1626  * @path: content of the new symlink (NUL-terminated)
1627  * @attrs: requested attributes of new object
1628  * @resfhp: NFS filehandle of new object
1629  *
1630  * N.B. After this call _both_ fhp and resfhp need an fh_put
1631  *
1632  * Returns nfs_ok on success, or an nfsstat in network byte order.
1633  */
1634 __be32
1635 nfsd_symlink(struct svc_rqst *rqstp, struct svc_fh *fhp,
1636 	     char *fname, int flen,
1637 	     char *path, struct nfsd_attrs *attrs,
1638 	     struct svc_fh *resfhp)
1639 {
1640 	struct dentry	*dentry, *dnew;
1641 	__be32		err, cerr;
1642 	int		host_err;
1643 
1644 	err = nfserr_noent;
1645 	if (!flen || path[0] == '\0')
1646 		goto out;
1647 	err = nfserr_exist;
1648 	if (isdotent(fname, flen))
1649 		goto out;
1650 
1651 	err = fh_verify(rqstp, fhp, S_IFDIR, NFSD_MAY_CREATE);
1652 	if (err)
1653 		goto out;
1654 
1655 	host_err = fh_want_write(fhp);
1656 	if (host_err) {
1657 		err = nfserrno(host_err);
1658 		goto out;
1659 	}
1660 
1661 	dentry = fhp->fh_dentry;
1662 	inode_lock_nested(dentry->d_inode, I_MUTEX_PARENT);
1663 	dnew = lookup_one(&nop_mnt_idmap, &QSTR_LEN(fname, flen), dentry);
1664 	if (IS_ERR(dnew)) {
1665 		err = nfserrno(PTR_ERR(dnew));
1666 		inode_unlock(dentry->d_inode);
1667 		goto out_drop_write;
1668 	}
1669 	err = fh_fill_pre_attrs(fhp);
1670 	if (err != nfs_ok)
1671 		goto out_unlock;
1672 	host_err = vfs_symlink(&nop_mnt_idmap, d_inode(dentry), dnew, path);
1673 	err = nfserrno(host_err);
1674 	cerr = fh_compose(resfhp, fhp->fh_export, dnew, fhp);
1675 	if (!err)
1676 		nfsd_create_setattr(rqstp, fhp, resfhp, attrs);
1677 	fh_fill_post_attrs(fhp);
1678 out_unlock:
1679 	inode_unlock(dentry->d_inode);
1680 	if (!err)
1681 		err = nfserrno(commit_metadata(fhp));
1682 	dput(dnew);
1683 	if (err==0) err = cerr;
1684 out_drop_write:
1685 	fh_drop_write(fhp);
1686 out:
1687 	return err;
1688 }
1689 
1690 /**
1691  * nfsd_link - create a link
1692  * @rqstp: RPC transaction context
1693  * @ffhp: the file handle of the directory where the new link is to be created
1694  * @name: the filename of the new link
1695  * @len: the length of @name in octets
1696  * @tfhp: the file handle of an existing file object
1697  *
1698  * After this call _both_ ffhp and tfhp need an fh_put.
1699  *
1700  * Returns a generic NFS status code in network byte-order.
1701  */
1702 __be32
1703 nfsd_link(struct svc_rqst *rqstp, struct svc_fh *ffhp,
1704 				char *name, int len, struct svc_fh *tfhp)
1705 {
1706 	struct dentry	*ddir, *dnew, *dold;
1707 	struct inode	*dirp;
1708 	int		type;
1709 	__be32		err;
1710 	int		host_err;
1711 
1712 	err = fh_verify(rqstp, ffhp, S_IFDIR, NFSD_MAY_CREATE);
1713 	if (err)
1714 		goto out;
1715 	err = fh_verify(rqstp, tfhp, 0, NFSD_MAY_NOP);
1716 	if (err)
1717 		goto out;
1718 	err = nfserr_isdir;
1719 	if (d_is_dir(tfhp->fh_dentry))
1720 		goto out;
1721 	err = nfserr_perm;
1722 	if (!len)
1723 		goto out;
1724 	err = nfserr_exist;
1725 	if (isdotent(name, len))
1726 		goto out;
1727 
1728 	err = nfs_ok;
1729 	type = d_inode(tfhp->fh_dentry)->i_mode & S_IFMT;
1730 	host_err = fh_want_write(tfhp);
1731 	if (host_err)
1732 		goto out;
1733 
1734 	ddir = ffhp->fh_dentry;
1735 	dirp = d_inode(ddir);
1736 	inode_lock_nested(dirp, I_MUTEX_PARENT);
1737 
1738 	dnew = lookup_one(&nop_mnt_idmap, &QSTR_LEN(name, len), ddir);
1739 	if (IS_ERR(dnew)) {
1740 		host_err = PTR_ERR(dnew);
1741 		goto out_unlock;
1742 	}
1743 
1744 	dold = tfhp->fh_dentry;
1745 
1746 	err = nfserr_noent;
1747 	if (d_really_is_negative(dold))
1748 		goto out_dput;
1749 	err = fh_fill_pre_attrs(ffhp);
1750 	if (err != nfs_ok)
1751 		goto out_dput;
1752 	host_err = vfs_link(dold, &nop_mnt_idmap, dirp, dnew, NULL);
1753 	fh_fill_post_attrs(ffhp);
1754 	inode_unlock(dirp);
1755 	if (!host_err) {
1756 		host_err = commit_metadata(ffhp);
1757 		if (!host_err)
1758 			host_err = commit_metadata(tfhp);
1759 	}
1760 
1761 	dput(dnew);
1762 out_drop_write:
1763 	fh_drop_write(tfhp);
1764 	if (host_err == -EBUSY) {
1765 		/*
1766 		 * See RFC 8881 Section 18.9.4 para 1-2: NFSv4 LINK
1767 		 * wants a status unique to the object type.
1768 		 */
1769 		if (type != S_IFDIR)
1770 			err = nfserr_file_open;
1771 		else
1772 			err = nfserr_acces;
1773 	}
1774 out:
1775 	return err != nfs_ok ? err : nfserrno(host_err);
1776 
1777 out_dput:
1778 	dput(dnew);
1779 out_unlock:
1780 	inode_unlock(dirp);
1781 	goto out_drop_write;
1782 }
1783 
1784 static void
1785 nfsd_close_cached_files(struct dentry *dentry)
1786 {
1787 	struct inode *inode = d_inode(dentry);
1788 
1789 	if (inode && S_ISREG(inode->i_mode))
1790 		nfsd_file_close_inode_sync(inode);
1791 }
1792 
1793 static bool
1794 nfsd_has_cached_files(struct dentry *dentry)
1795 {
1796 	bool		ret = false;
1797 	struct inode *inode = d_inode(dentry);
1798 
1799 	if (inode && S_ISREG(inode->i_mode))
1800 		ret = nfsd_file_is_cached(inode);
1801 	return ret;
1802 }
1803 
1804 /**
1805  * nfsd_rename - rename a directory entry
1806  * @rqstp: RPC transaction context
1807  * @ffhp: the file handle of parent directory containing the entry to be renamed
1808  * @fname: the filename of directory entry to be renamed
1809  * @flen: the length of @fname in octets
1810  * @tfhp: the file handle of parent directory to contain the renamed entry
1811  * @tname: the filename of the new entry
1812  * @tlen: the length of @tlen in octets
1813  *
1814  * After this call _both_ ffhp and tfhp need an fh_put.
1815  *
1816  * Returns a generic NFS status code in network byte-order.
1817  */
1818 __be32
1819 nfsd_rename(struct svc_rqst *rqstp, struct svc_fh *ffhp, char *fname, int flen,
1820 			    struct svc_fh *tfhp, char *tname, int tlen)
1821 {
1822 	struct dentry	*fdentry, *tdentry, *odentry, *ndentry, *trap;
1823 	struct inode	*fdir, *tdir;
1824 	int		type = S_IFDIR;
1825 	__be32		err;
1826 	int		host_err;
1827 	bool		close_cached = false;
1828 
1829 	err = fh_verify(rqstp, ffhp, S_IFDIR, NFSD_MAY_REMOVE);
1830 	if (err)
1831 		goto out;
1832 	err = fh_verify(rqstp, tfhp, S_IFDIR, NFSD_MAY_CREATE);
1833 	if (err)
1834 		goto out;
1835 
1836 	fdentry = ffhp->fh_dentry;
1837 	fdir = d_inode(fdentry);
1838 
1839 	tdentry = tfhp->fh_dentry;
1840 	tdir = d_inode(tdentry);
1841 
1842 	err = nfserr_perm;
1843 	if (!flen || isdotent(fname, flen) || !tlen || isdotent(tname, tlen))
1844 		goto out;
1845 
1846 	err = nfserr_xdev;
1847 	if (ffhp->fh_export->ex_path.mnt != tfhp->fh_export->ex_path.mnt)
1848 		goto out;
1849 	if (ffhp->fh_export->ex_path.dentry != tfhp->fh_export->ex_path.dentry)
1850 		goto out;
1851 
1852 retry:
1853 	host_err = fh_want_write(ffhp);
1854 	if (host_err) {
1855 		err = nfserrno(host_err);
1856 		goto out;
1857 	}
1858 
1859 	trap = lock_rename(tdentry, fdentry);
1860 	if (IS_ERR(trap)) {
1861 		err = nfserr_xdev;
1862 		goto out_want_write;
1863 	}
1864 	err = fh_fill_pre_attrs(ffhp);
1865 	if (err != nfs_ok)
1866 		goto out_unlock;
1867 	err = fh_fill_pre_attrs(tfhp);
1868 	if (err != nfs_ok)
1869 		goto out_unlock;
1870 
1871 	odentry = lookup_one(&nop_mnt_idmap, &QSTR_LEN(fname, flen), fdentry);
1872 	host_err = PTR_ERR(odentry);
1873 	if (IS_ERR(odentry))
1874 		goto out_nfserr;
1875 
1876 	host_err = -ENOENT;
1877 	if (d_really_is_negative(odentry))
1878 		goto out_dput_old;
1879 	host_err = -EINVAL;
1880 	if (odentry == trap)
1881 		goto out_dput_old;
1882 	type = d_inode(odentry)->i_mode & S_IFMT;
1883 
1884 	ndentry = lookup_one(&nop_mnt_idmap, &QSTR_LEN(tname, tlen), tdentry);
1885 	host_err = PTR_ERR(ndentry);
1886 	if (IS_ERR(ndentry))
1887 		goto out_dput_old;
1888 	if (d_inode(ndentry))
1889 		type = d_inode(ndentry)->i_mode & S_IFMT;
1890 	host_err = -ENOTEMPTY;
1891 	if (ndentry == trap)
1892 		goto out_dput_new;
1893 
1894 	if ((ndentry->d_sb->s_export_op->flags & EXPORT_OP_CLOSE_BEFORE_UNLINK) &&
1895 	    nfsd_has_cached_files(ndentry)) {
1896 		close_cached = true;
1897 		goto out_dput_old;
1898 	} else {
1899 		struct renamedata rd = {
1900 			.old_mnt_idmap	= &nop_mnt_idmap,
1901 			.old_dir	= fdir,
1902 			.old_dentry	= odentry,
1903 			.new_mnt_idmap	= &nop_mnt_idmap,
1904 			.new_dir	= tdir,
1905 			.new_dentry	= ndentry,
1906 		};
1907 		int retries;
1908 
1909 		for (retries = 1;;) {
1910 			host_err = vfs_rename(&rd);
1911 			if (host_err != -EAGAIN || !retries--)
1912 				break;
1913 			if (!nfsd_wait_for_delegreturn(rqstp, d_inode(odentry)))
1914 				break;
1915 		}
1916 		if (!host_err) {
1917 			host_err = commit_metadata(tfhp);
1918 			if (!host_err)
1919 				host_err = commit_metadata(ffhp);
1920 		}
1921 	}
1922  out_dput_new:
1923 	dput(ndentry);
1924  out_dput_old:
1925 	dput(odentry);
1926  out_nfserr:
1927 	if (host_err == -EBUSY) {
1928 		/*
1929 		 * See RFC 8881 Section 18.26.4 para 1-3: NFSv4 RENAME
1930 		 * wants a status unique to the object type.
1931 		 */
1932 		if (type != S_IFDIR)
1933 			err = nfserr_file_open;
1934 		else
1935 			err = nfserr_acces;
1936 	} else {
1937 		err = nfserrno(host_err);
1938 	}
1939 
1940 	if (!close_cached) {
1941 		fh_fill_post_attrs(ffhp);
1942 		fh_fill_post_attrs(tfhp);
1943 	}
1944 out_unlock:
1945 	unlock_rename(tdentry, fdentry);
1946 out_want_write:
1947 	fh_drop_write(ffhp);
1948 
1949 	/*
1950 	 * If the target dentry has cached open files, then we need to
1951 	 * try to close them prior to doing the rename.  Final fput
1952 	 * shouldn't be done with locks held however, so we delay it
1953 	 * until this point and then reattempt the whole shebang.
1954 	 */
1955 	if (close_cached) {
1956 		close_cached = false;
1957 		nfsd_close_cached_files(ndentry);
1958 		dput(ndentry);
1959 		goto retry;
1960 	}
1961 out:
1962 	return err;
1963 }
1964 
1965 /**
1966  * nfsd_unlink - remove a directory entry
1967  * @rqstp: RPC transaction context
1968  * @fhp: the file handle of the parent directory to be modified
1969  * @type: enforced file type of the object to be removed
1970  * @fname: the name of directory entry to be removed
1971  * @flen: length of @fname in octets
1972  *
1973  * After this call fhp needs an fh_put.
1974  *
1975  * Returns a generic NFS status code in network byte-order.
1976  */
1977 __be32
1978 nfsd_unlink(struct svc_rqst *rqstp, struct svc_fh *fhp, int type,
1979 				char *fname, int flen)
1980 {
1981 	struct dentry	*dentry, *rdentry;
1982 	struct inode	*dirp;
1983 	struct inode	*rinode;
1984 	__be32		err;
1985 	int		host_err;
1986 
1987 	err = nfserr_acces;
1988 	if (!flen || isdotent(fname, flen))
1989 		goto out;
1990 	err = fh_verify(rqstp, fhp, S_IFDIR, NFSD_MAY_REMOVE);
1991 	if (err)
1992 		goto out;
1993 
1994 	host_err = fh_want_write(fhp);
1995 	if (host_err)
1996 		goto out_nfserr;
1997 
1998 	dentry = fhp->fh_dentry;
1999 	dirp = d_inode(dentry);
2000 	inode_lock_nested(dirp, I_MUTEX_PARENT);
2001 
2002 	rdentry = lookup_one(&nop_mnt_idmap, &QSTR_LEN(fname, flen), dentry);
2003 	host_err = PTR_ERR(rdentry);
2004 	if (IS_ERR(rdentry))
2005 		goto out_unlock;
2006 
2007 	if (d_really_is_negative(rdentry)) {
2008 		dput(rdentry);
2009 		host_err = -ENOENT;
2010 		goto out_unlock;
2011 	}
2012 	rinode = d_inode(rdentry);
2013 	err = fh_fill_pre_attrs(fhp);
2014 	if (err != nfs_ok)
2015 		goto out_unlock;
2016 
2017 	ihold(rinode);
2018 	if (!type)
2019 		type = d_inode(rdentry)->i_mode & S_IFMT;
2020 
2021 	if (type != S_IFDIR) {
2022 		int retries;
2023 
2024 		if (rdentry->d_sb->s_export_op->flags & EXPORT_OP_CLOSE_BEFORE_UNLINK)
2025 			nfsd_close_cached_files(rdentry);
2026 
2027 		for (retries = 1;;) {
2028 			host_err = vfs_unlink(&nop_mnt_idmap, dirp, rdentry, NULL);
2029 			if (host_err != -EAGAIN || !retries--)
2030 				break;
2031 			if (!nfsd_wait_for_delegreturn(rqstp, rinode))
2032 				break;
2033 		}
2034 	} else {
2035 		host_err = vfs_rmdir(&nop_mnt_idmap, dirp, rdentry);
2036 	}
2037 	fh_fill_post_attrs(fhp);
2038 
2039 	inode_unlock(dirp);
2040 	if (!host_err)
2041 		host_err = commit_metadata(fhp);
2042 	dput(rdentry);
2043 	iput(rinode);    /* truncate the inode here */
2044 
2045 out_drop_write:
2046 	fh_drop_write(fhp);
2047 out_nfserr:
2048 	if (host_err == -EBUSY) {
2049 		/*
2050 		 * See RFC 8881 Section 18.25.4 para 4: NFSv4 REMOVE
2051 		 * wants a status unique to the object type.
2052 		 */
2053 		if (type != S_IFDIR)
2054 			err = nfserr_file_open;
2055 		else
2056 			err = nfserr_acces;
2057 	}
2058 out:
2059 	return err != nfs_ok ? err : nfserrno(host_err);
2060 out_unlock:
2061 	inode_unlock(dirp);
2062 	goto out_drop_write;
2063 }
2064 
2065 /*
2066  * We do this buffering because we must not call back into the file
2067  * system's ->lookup() method from the filldir callback. That may well
2068  * deadlock a number of file systems.
2069  *
2070  * This is based heavily on the implementation of same in XFS.
2071  */
2072 struct buffered_dirent {
2073 	u64		ino;
2074 	loff_t		offset;
2075 	int		namlen;
2076 	unsigned int	d_type;
2077 	char		name[];
2078 };
2079 
2080 struct readdir_data {
2081 	struct dir_context ctx;
2082 	char		*dirent;
2083 	size_t		used;
2084 	int		full;
2085 };
2086 
2087 static bool nfsd_buffered_filldir(struct dir_context *ctx, const char *name,
2088 				 int namlen, loff_t offset, u64 ino,
2089 				 unsigned int d_type)
2090 {
2091 	struct readdir_data *buf =
2092 		container_of(ctx, struct readdir_data, ctx);
2093 	struct buffered_dirent *de = (void *)(buf->dirent + buf->used);
2094 	unsigned int reclen;
2095 
2096 	reclen = ALIGN(sizeof(struct buffered_dirent) + namlen, sizeof(u64));
2097 	if (buf->used + reclen > PAGE_SIZE) {
2098 		buf->full = 1;
2099 		return false;
2100 	}
2101 
2102 	de->namlen = namlen;
2103 	de->offset = offset;
2104 	de->ino = ino;
2105 	de->d_type = d_type;
2106 	memcpy(de->name, name, namlen);
2107 	buf->used += reclen;
2108 
2109 	return true;
2110 }
2111 
2112 static __be32 nfsd_buffered_readdir(struct file *file, struct svc_fh *fhp,
2113 				    nfsd_filldir_t func, struct readdir_cd *cdp,
2114 				    loff_t *offsetp)
2115 {
2116 	struct buffered_dirent *de;
2117 	int host_err;
2118 	int size;
2119 	loff_t offset;
2120 	struct readdir_data buf = {
2121 		.ctx.actor = nfsd_buffered_filldir,
2122 		.dirent = (void *)__get_free_page(GFP_KERNEL)
2123 	};
2124 
2125 	if (!buf.dirent)
2126 		return nfserrno(-ENOMEM);
2127 
2128 	offset = *offsetp;
2129 
2130 	while (1) {
2131 		unsigned int reclen;
2132 
2133 		cdp->err = nfserr_eof; /* will be cleared on successful read */
2134 		buf.used = 0;
2135 		buf.full = 0;
2136 
2137 		host_err = iterate_dir(file, &buf.ctx);
2138 		if (buf.full)
2139 			host_err = 0;
2140 
2141 		if (host_err < 0)
2142 			break;
2143 
2144 		size = buf.used;
2145 
2146 		if (!size)
2147 			break;
2148 
2149 		de = (struct buffered_dirent *)buf.dirent;
2150 		while (size > 0) {
2151 			offset = de->offset;
2152 
2153 			if (func(cdp, de->name, de->namlen, de->offset,
2154 				 de->ino, de->d_type))
2155 				break;
2156 
2157 			if (cdp->err != nfs_ok)
2158 				break;
2159 
2160 			trace_nfsd_dirent(fhp, de->ino, de->name, de->namlen);
2161 
2162 			reclen = ALIGN(sizeof(*de) + de->namlen,
2163 				       sizeof(u64));
2164 			size -= reclen;
2165 			de = (struct buffered_dirent *)((char *)de + reclen);
2166 		}
2167 		if (size > 0) /* We bailed out early */
2168 			break;
2169 
2170 		offset = vfs_llseek(file, 0, SEEK_CUR);
2171 	}
2172 
2173 	free_page((unsigned long)(buf.dirent));
2174 
2175 	if (host_err)
2176 		return nfserrno(host_err);
2177 
2178 	*offsetp = offset;
2179 	return cdp->err;
2180 }
2181 
2182 /**
2183  * nfsd_readdir - Read entries from a directory
2184  * @rqstp: RPC transaction context
2185  * @fhp: NFS file handle of directory to be read
2186  * @offsetp: OUT: seek offset of final entry that was read
2187  * @cdp: OUT: an eof error value
2188  * @func: entry filler actor
2189  *
2190  * This implementation ignores the NFSv3/4 verifier cookie.
2191  *
2192  * NB: normal system calls hold file->f_pos_lock when calling
2193  * ->iterate_shared and ->llseek, but nfsd_readdir() does not.
2194  * Because the struct file acquired here is not visible to other
2195  * threads, it's internal state does not need mutex protection.
2196  *
2197  * Returns nfs_ok on success, otherwise an nfsstat code is
2198  * returned.
2199  */
2200 __be32
2201 nfsd_readdir(struct svc_rqst *rqstp, struct svc_fh *fhp, loff_t *offsetp,
2202 	     struct readdir_cd *cdp, nfsd_filldir_t func)
2203 {
2204 	__be32		err;
2205 	struct file	*file;
2206 	loff_t		offset = *offsetp;
2207 	int             may_flags = NFSD_MAY_READ;
2208 
2209 	err = nfsd_open(rqstp, fhp, S_IFDIR, may_flags, &file);
2210 	if (err)
2211 		goto out;
2212 
2213 	if (fhp->fh_64bit_cookies)
2214 		file->f_mode |= FMODE_64BITHASH;
2215 	else
2216 		file->f_mode |= FMODE_32BITHASH;
2217 
2218 	offset = vfs_llseek(file, offset, SEEK_SET);
2219 	if (offset < 0) {
2220 		err = nfserrno((int)offset);
2221 		goto out_close;
2222 	}
2223 
2224 	err = nfsd_buffered_readdir(file, fhp, func, cdp, offsetp);
2225 
2226 	if (err == nfserr_eof || err == nfserr_toosmall)
2227 		err = nfs_ok; /* can still be found in ->err */
2228 out_close:
2229 	nfsd_filp_close(file);
2230 out:
2231 	return err;
2232 }
2233 
2234 /**
2235  * nfsd_filp_close: close a file synchronously
2236  * @fp: the file to close
2237  *
2238  * nfsd_filp_close() is similar in behaviour to filp_close().
2239  * The difference is that if this is the final close on the
2240  * file, the that finalisation happens immediately, rather then
2241  * being handed over to a work_queue, as it the case for
2242  * filp_close().
2243  * When a user-space process closes a file (even when using
2244  * filp_close() the finalisation happens before returning to
2245  * userspace, so it is effectively synchronous.  When a kernel thread
2246  * uses file_close(), on the other hand, the handling is completely
2247  * asynchronous.  This means that any cost imposed by that finalisation
2248  * is not imposed on the nfsd thread, and nfsd could potentually
2249  * close files more quickly than the work queue finalises the close,
2250  * which would lead to unbounded growth in the queue.
2251  *
2252  * In some contexts is it not safe to synchronously wait for
2253  * close finalisation (see comment for __fput_sync()), but nfsd
2254  * does not match those contexts.  In partcilarly it does not, at the
2255  * time that this function is called, hold and locks and no finalisation
2256  * of any file, socket, or device driver would have any cause to wait
2257  * for nfsd to make progress.
2258  */
2259 void nfsd_filp_close(struct file *fp)
2260 {
2261 	get_file(fp);
2262 	filp_close(fp, NULL);
2263 	__fput_sync(fp);
2264 }
2265 
2266 /*
2267  * Get file system stats
2268  * N.B. After this call fhp needs an fh_put
2269  */
2270 __be32
2271 nfsd_statfs(struct svc_rqst *rqstp, struct svc_fh *fhp, struct kstatfs *stat, int access)
2272 {
2273 	__be32 err;
2274 
2275 	err = fh_verify(rqstp, fhp, 0, NFSD_MAY_NOP | access);
2276 	if (!err) {
2277 		struct path path = {
2278 			.mnt	= fhp->fh_export->ex_path.mnt,
2279 			.dentry	= fhp->fh_dentry,
2280 		};
2281 		if (vfs_statfs(&path, stat))
2282 			err = nfserr_io;
2283 	}
2284 	return err;
2285 }
2286 
2287 static int exp_rdonly(struct svc_cred *cred, struct svc_export *exp)
2288 {
2289 	return nfsexp_flags(cred, exp) & NFSEXP_READONLY;
2290 }
2291 
2292 #ifdef CONFIG_NFSD_V4
2293 /*
2294  * Helper function to translate error numbers. In the case of xattr operations,
2295  * some error codes need to be translated outside of the standard translations.
2296  *
2297  * ENODATA needs to be translated to nfserr_noxattr.
2298  * E2BIG to nfserr_xattr2big.
2299  *
2300  * Additionally, vfs_listxattr can return -ERANGE. This means that the
2301  * file has too many extended attributes to retrieve inside an
2302  * XATTR_LIST_MAX sized buffer. This is a bug in the xattr implementation:
2303  * filesystems will allow the adding of extended attributes until they hit
2304  * their own internal limit. This limit may be larger than XATTR_LIST_MAX.
2305  * So, at that point, the attributes are present and valid, but can't
2306  * be retrieved using listxattr, since the upper level xattr code enforces
2307  * the XATTR_LIST_MAX limit.
2308  *
2309  * This bug means that we need to deal with listxattr returning -ERANGE. The
2310  * best mapping is to return TOOSMALL.
2311  */
2312 static __be32
2313 nfsd_xattr_errno(int err)
2314 {
2315 	switch (err) {
2316 	case -ENODATA:
2317 		return nfserr_noxattr;
2318 	case -E2BIG:
2319 		return nfserr_xattr2big;
2320 	case -ERANGE:
2321 		return nfserr_toosmall;
2322 	}
2323 	return nfserrno(err);
2324 }
2325 
2326 /*
2327  * Retrieve the specified user extended attribute. To avoid always
2328  * having to allocate the maximum size (since we are not getting
2329  * a maximum size from the RPC), do a probe + alloc. Hold a reader
2330  * lock on i_rwsem to prevent the extended attribute from changing
2331  * size while we're doing this.
2332  */
2333 __be32
2334 nfsd_getxattr(struct svc_rqst *rqstp, struct svc_fh *fhp, char *name,
2335 	      void **bufp, int *lenp)
2336 {
2337 	ssize_t len;
2338 	__be32 err;
2339 	char *buf;
2340 	struct inode *inode;
2341 	struct dentry *dentry;
2342 
2343 	err = fh_verify(rqstp, fhp, 0, NFSD_MAY_READ);
2344 	if (err)
2345 		return err;
2346 
2347 	err = nfs_ok;
2348 	dentry = fhp->fh_dentry;
2349 	inode = d_inode(dentry);
2350 
2351 	inode_lock_shared(inode);
2352 
2353 	len = vfs_getxattr(&nop_mnt_idmap, dentry, name, NULL, 0);
2354 
2355 	/*
2356 	 * Zero-length attribute, just return.
2357 	 */
2358 	if (len == 0) {
2359 		*bufp = NULL;
2360 		*lenp = 0;
2361 		goto out;
2362 	}
2363 
2364 	if (len < 0) {
2365 		err = nfsd_xattr_errno(len);
2366 		goto out;
2367 	}
2368 
2369 	if (len > *lenp) {
2370 		err = nfserr_toosmall;
2371 		goto out;
2372 	}
2373 
2374 	buf = kvmalloc(len, GFP_KERNEL);
2375 	if (buf == NULL) {
2376 		err = nfserr_jukebox;
2377 		goto out;
2378 	}
2379 
2380 	len = vfs_getxattr(&nop_mnt_idmap, dentry, name, buf, len);
2381 	if (len <= 0) {
2382 		kvfree(buf);
2383 		buf = NULL;
2384 		err = nfsd_xattr_errno(len);
2385 	}
2386 
2387 	*lenp = len;
2388 	*bufp = buf;
2389 
2390 out:
2391 	inode_unlock_shared(inode);
2392 
2393 	return err;
2394 }
2395 
2396 /*
2397  * Retrieve the xattr names. Since we can't know how many are
2398  * user extended attributes, we must get all attributes here,
2399  * and have the XDR encode filter out the "user." ones.
2400  *
2401  * While this could always just allocate an XATTR_LIST_MAX
2402  * buffer, that's a waste, so do a probe + allocate. To
2403  * avoid any changes between the probe and allocate, wrap
2404  * this in inode_lock.
2405  */
2406 __be32
2407 nfsd_listxattr(struct svc_rqst *rqstp, struct svc_fh *fhp, char **bufp,
2408 	       int *lenp)
2409 {
2410 	ssize_t len;
2411 	__be32 err;
2412 	char *buf;
2413 	struct inode *inode;
2414 	struct dentry *dentry;
2415 
2416 	err = fh_verify(rqstp, fhp, 0, NFSD_MAY_READ);
2417 	if (err)
2418 		return err;
2419 
2420 	dentry = fhp->fh_dentry;
2421 	inode = d_inode(dentry);
2422 	*lenp = 0;
2423 
2424 	inode_lock_shared(inode);
2425 
2426 	len = vfs_listxattr(dentry, NULL, 0);
2427 	if (len <= 0) {
2428 		err = nfsd_xattr_errno(len);
2429 		goto out;
2430 	}
2431 
2432 	if (len > XATTR_LIST_MAX) {
2433 		err = nfserr_xattr2big;
2434 		goto out;
2435 	}
2436 
2437 	buf = kvmalloc(len, GFP_KERNEL);
2438 	if (buf == NULL) {
2439 		err = nfserr_jukebox;
2440 		goto out;
2441 	}
2442 
2443 	len = vfs_listxattr(dentry, buf, len);
2444 	if (len <= 0) {
2445 		kvfree(buf);
2446 		err = nfsd_xattr_errno(len);
2447 		goto out;
2448 	}
2449 
2450 	*lenp = len;
2451 	*bufp = buf;
2452 
2453 	err = nfs_ok;
2454 out:
2455 	inode_unlock_shared(inode);
2456 
2457 	return err;
2458 }
2459 
2460 /**
2461  * nfsd_removexattr - Remove an extended attribute
2462  * @rqstp: RPC transaction being executed
2463  * @fhp: NFS filehandle of object with xattr to remove
2464  * @name: name of xattr to remove (NUL-terminate)
2465  *
2466  * Pass in a NULL pointer for delegated_inode, and let the client deal
2467  * with NFS4ERR_DELAY (same as with e.g. setattr and remove).
2468  *
2469  * Returns nfs_ok on success, or an nfsstat in network byte order.
2470  */
2471 __be32
2472 nfsd_removexattr(struct svc_rqst *rqstp, struct svc_fh *fhp, char *name)
2473 {
2474 	__be32 err;
2475 	int ret;
2476 
2477 	err = fh_verify(rqstp, fhp, 0, NFSD_MAY_WRITE);
2478 	if (err)
2479 		return err;
2480 
2481 	ret = fh_want_write(fhp);
2482 	if (ret)
2483 		return nfserrno(ret);
2484 
2485 	inode_lock(fhp->fh_dentry->d_inode);
2486 	err = fh_fill_pre_attrs(fhp);
2487 	if (err != nfs_ok)
2488 		goto out_unlock;
2489 	ret = __vfs_removexattr_locked(&nop_mnt_idmap, fhp->fh_dentry,
2490 				       name, NULL);
2491 	err = nfsd_xattr_errno(ret);
2492 	fh_fill_post_attrs(fhp);
2493 out_unlock:
2494 	inode_unlock(fhp->fh_dentry->d_inode);
2495 	fh_drop_write(fhp);
2496 
2497 	return err;
2498 }
2499 
2500 __be32
2501 nfsd_setxattr(struct svc_rqst *rqstp, struct svc_fh *fhp, char *name,
2502 	      void *buf, u32 len, u32 flags)
2503 {
2504 	__be32 err;
2505 	int ret;
2506 
2507 	err = fh_verify(rqstp, fhp, 0, NFSD_MAY_WRITE);
2508 	if (err)
2509 		return err;
2510 
2511 	ret = fh_want_write(fhp);
2512 	if (ret)
2513 		return nfserrno(ret);
2514 	inode_lock(fhp->fh_dentry->d_inode);
2515 	err = fh_fill_pre_attrs(fhp);
2516 	if (err != nfs_ok)
2517 		goto out_unlock;
2518 	ret = __vfs_setxattr_locked(&nop_mnt_idmap, fhp->fh_dentry,
2519 				    name, buf, len, flags, NULL);
2520 	fh_fill_post_attrs(fhp);
2521 	err = nfsd_xattr_errno(ret);
2522 out_unlock:
2523 	inode_unlock(fhp->fh_dentry->d_inode);
2524 	fh_drop_write(fhp);
2525 	return err;
2526 }
2527 #endif
2528 
2529 /*
2530  * Check for a user's access permissions to this inode.
2531  */
2532 __be32
2533 nfsd_permission(struct svc_cred *cred, struct svc_export *exp,
2534 		struct dentry *dentry, int acc)
2535 {
2536 	struct inode	*inode = d_inode(dentry);
2537 	int		err;
2538 
2539 	if ((acc & NFSD_MAY_MASK) == NFSD_MAY_NOP)
2540 		return 0;
2541 #if 0
2542 	dprintk("nfsd: permission 0x%x%s%s%s%s%s%s%s mode 0%o%s%s%s\n",
2543 		acc,
2544 		(acc & NFSD_MAY_READ)?	" read"  : "",
2545 		(acc & NFSD_MAY_WRITE)?	" write" : "",
2546 		(acc & NFSD_MAY_EXEC)?	" exec"  : "",
2547 		(acc & NFSD_MAY_SATTR)?	" sattr" : "",
2548 		(acc & NFSD_MAY_TRUNC)?	" trunc" : "",
2549 		(acc & NFSD_MAY_NLM)?	" nlm"  : "",
2550 		(acc & NFSD_MAY_OWNER_OVERRIDE)? " owneroverride" : "",
2551 		inode->i_mode,
2552 		IS_IMMUTABLE(inode)?	" immut" : "",
2553 		IS_APPEND(inode)?	" append" : "",
2554 		__mnt_is_readonly(exp->ex_path.mnt)?	" ro" : "");
2555 	dprintk("      owner %d/%d user %d/%d\n",
2556 		inode->i_uid, inode->i_gid, current_fsuid(), current_fsgid());
2557 #endif
2558 
2559 	/* Normally we reject any write/sattr etc access on a read-only file
2560 	 * system.  But if it is IRIX doing check on write-access for a
2561 	 * device special file, we ignore rofs.
2562 	 */
2563 	if (!(acc & NFSD_MAY_LOCAL_ACCESS))
2564 		if (acc & (NFSD_MAY_WRITE | NFSD_MAY_SATTR | NFSD_MAY_TRUNC)) {
2565 			if (exp_rdonly(cred, exp) ||
2566 			    __mnt_is_readonly(exp->ex_path.mnt))
2567 				return nfserr_rofs;
2568 			if (/* (acc & NFSD_MAY_WRITE) && */ IS_IMMUTABLE(inode))
2569 				return nfserr_perm;
2570 		}
2571 	if ((acc & NFSD_MAY_TRUNC) && IS_APPEND(inode))
2572 		return nfserr_perm;
2573 
2574 	/*
2575 	 * The file owner always gets access permission for accesses that
2576 	 * would normally be checked at open time. This is to make
2577 	 * file access work even when the client has done a fchmod(fd, 0).
2578 	 *
2579 	 * However, `cp foo bar' should fail nevertheless when bar is
2580 	 * readonly. A sensible way to do this might be to reject all
2581 	 * attempts to truncate a read-only file, because a creat() call
2582 	 * always implies file truncation.
2583 	 * ... but this isn't really fair.  A process may reasonably call
2584 	 * ftruncate on an open file descriptor on a file with perm 000.
2585 	 * We must trust the client to do permission checking - using "ACCESS"
2586 	 * with NFSv3.
2587 	 */
2588 	if ((acc & NFSD_MAY_OWNER_OVERRIDE) &&
2589 	    uid_eq(inode->i_uid, current_fsuid()))
2590 		return 0;
2591 
2592 	/* This assumes  NFSD_MAY_{READ,WRITE,EXEC} == MAY_{READ,WRITE,EXEC} */
2593 	err = inode_permission(&nop_mnt_idmap, inode,
2594 			       acc & (MAY_READ | MAY_WRITE | MAY_EXEC));
2595 
2596 	/* Allow read access to binaries even when mode 111 */
2597 	if (err == -EACCES && S_ISREG(inode->i_mode) &&
2598 	     (acc == (NFSD_MAY_READ | NFSD_MAY_OWNER_OVERRIDE) ||
2599 	      acc == (NFSD_MAY_READ | NFSD_MAY_READ_IF_EXEC)))
2600 		err = inode_permission(&nop_mnt_idmap, inode, MAY_EXEC);
2601 
2602 	return err? nfserrno(err) : 0;
2603 }
2604