1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * File operations used by nfsd. Some of these have been ripped from 4 * other parts of the kernel because they weren't exported, others 5 * are partial duplicates with added or changed functionality. 6 * 7 * Note that several functions dget() the dentry upon which they want 8 * to act, most notably those that create directory entries. Response 9 * dentry's are dput()'d if necessary in the release callback. 10 * So if you notice code paths that apparently fail to dput() the 11 * dentry, don't worry--they have been taken care of. 12 * 13 * Copyright (C) 1995-1999 Olaf Kirch <okir@monad.swb.de> 14 * Zerocpy NFS support (C) 2002 Hirokazu Takahashi <taka@valinux.co.jp> 15 */ 16 17 #include <linux/fs.h> 18 #include <linux/file.h> 19 #include <linux/splice.h> 20 #include <linux/falloc.h> 21 #include <linux/fcntl.h> 22 #include <linux/namei.h> 23 #include <linux/delay.h> 24 #include <linux/fsnotify.h> 25 #include <linux/posix_acl_xattr.h> 26 #include <linux/xattr.h> 27 #include <linux/jhash.h> 28 #include <linux/pagemap.h> 29 #include <linux/slab.h> 30 #include <linux/uaccess.h> 31 #include <linux/exportfs.h> 32 #include <linux/writeback.h> 33 #include <linux/security.h> 34 35 #include "xdr3.h" 36 37 #ifdef CONFIG_NFSD_V4 38 #include "acl.h" 39 #include "idmap.h" 40 #include "xdr4.h" 41 #endif /* CONFIG_NFSD_V4 */ 42 43 #include "nfsd.h" 44 #include "vfs.h" 45 #include "filecache.h" 46 #include "trace.h" 47 48 #define NFSDDBG_FACILITY NFSDDBG_FILEOP 49 50 /** 51 * nfserrno - Map Linux errnos to NFS errnos 52 * @errno: POSIX(-ish) error code to be mapped 53 * 54 * Returns the appropriate (net-endian) nfserr_* (or nfs_ok if errno is 0). If 55 * it's an error we don't expect, log it once and return nfserr_io. 56 */ 57 __be32 58 nfserrno (int errno) 59 { 60 static struct { 61 __be32 nfserr; 62 int syserr; 63 } nfs_errtbl[] = { 64 { nfs_ok, 0 }, 65 { nfserr_perm, -EPERM }, 66 { nfserr_noent, -ENOENT }, 67 { nfserr_io, -EIO }, 68 { nfserr_nxio, -ENXIO }, 69 { nfserr_fbig, -E2BIG }, 70 { nfserr_stale, -EBADF }, 71 { nfserr_acces, -EACCES }, 72 { nfserr_exist, -EEXIST }, 73 { nfserr_xdev, -EXDEV }, 74 { nfserr_nodev, -ENODEV }, 75 { nfserr_notdir, -ENOTDIR }, 76 { nfserr_isdir, -EISDIR }, 77 { nfserr_inval, -EINVAL }, 78 { nfserr_fbig, -EFBIG }, 79 { nfserr_nospc, -ENOSPC }, 80 { nfserr_rofs, -EROFS }, 81 { nfserr_mlink, -EMLINK }, 82 { nfserr_nametoolong, -ENAMETOOLONG }, 83 { nfserr_notempty, -ENOTEMPTY }, 84 { nfserr_dquot, -EDQUOT }, 85 { nfserr_stale, -ESTALE }, 86 { nfserr_jukebox, -ETIMEDOUT }, 87 { nfserr_jukebox, -ERESTARTSYS }, 88 { nfserr_jukebox, -EAGAIN }, 89 { nfserr_jukebox, -EWOULDBLOCK }, 90 { nfserr_jukebox, -ENOMEM }, 91 { nfserr_io, -ETXTBSY }, 92 { nfserr_notsupp, -EOPNOTSUPP }, 93 { nfserr_toosmall, -ETOOSMALL }, 94 { nfserr_serverfault, -ESERVERFAULT }, 95 { nfserr_serverfault, -ENFILE }, 96 { nfserr_io, -EREMOTEIO }, 97 { nfserr_stale, -EOPENSTALE }, 98 { nfserr_io, -EUCLEAN }, 99 { nfserr_perm, -ENOKEY }, 100 { nfserr_no_grace, -ENOGRACE}, 101 { nfserr_io, -EBADMSG }, 102 }; 103 int i; 104 105 for (i = 0; i < ARRAY_SIZE(nfs_errtbl); i++) { 106 if (nfs_errtbl[i].syserr == errno) 107 return nfs_errtbl[i].nfserr; 108 } 109 WARN_ONCE(1, "nfsd: non-standard errno: %d\n", errno); 110 return nfserr_io; 111 } 112 113 /* 114 * Called from nfsd_lookup and encode_dirent. Check if we have crossed 115 * a mount point. 116 * Returns -EAGAIN or -ETIMEDOUT leaving *dpp and *expp unchanged, 117 * or nfs_ok having possibly changed *dpp and *expp 118 */ 119 int 120 nfsd_cross_mnt(struct svc_rqst *rqstp, struct dentry **dpp, 121 struct svc_export **expp) 122 { 123 struct svc_export *exp = *expp, *exp2 = NULL; 124 struct dentry *dentry = *dpp; 125 struct path path = {.mnt = mntget(exp->ex_path.mnt), 126 .dentry = dget(dentry)}; 127 unsigned int follow_flags = 0; 128 int err = 0; 129 130 if (exp->ex_flags & NFSEXP_CROSSMOUNT) 131 follow_flags = LOOKUP_AUTOMOUNT; 132 133 err = follow_down(&path, follow_flags); 134 if (err < 0) 135 goto out; 136 if (path.mnt == exp->ex_path.mnt && path.dentry == dentry && 137 nfsd_mountpoint(dentry, exp) == 2) { 138 /* This is only a mountpoint in some other namespace */ 139 path_put(&path); 140 goto out; 141 } 142 143 exp2 = rqst_exp_get_by_name(rqstp, &path); 144 if (IS_ERR(exp2)) { 145 err = PTR_ERR(exp2); 146 /* 147 * We normally allow NFS clients to continue 148 * "underneath" a mountpoint that is not exported. 149 * The exception is V4ROOT, where no traversal is ever 150 * allowed without an explicit export of the new 151 * directory. 152 */ 153 if (err == -ENOENT && !(exp->ex_flags & NFSEXP_V4ROOT)) 154 err = 0; 155 path_put(&path); 156 goto out; 157 } 158 if (nfsd_v4client(rqstp) || 159 (exp->ex_flags & NFSEXP_CROSSMOUNT) || EX_NOHIDE(exp2)) { 160 /* successfully crossed mount point */ 161 /* 162 * This is subtle: path.dentry is *not* on path.mnt 163 * at this point. The only reason we are safe is that 164 * original mnt is pinned down by exp, so we should 165 * put path *before* putting exp 166 */ 167 *dpp = path.dentry; 168 path.dentry = dentry; 169 *expp = exp2; 170 exp2 = exp; 171 } 172 path_put(&path); 173 exp_put(exp2); 174 out: 175 return err; 176 } 177 178 static void follow_to_parent(struct path *path) 179 { 180 struct dentry *dp; 181 182 while (path->dentry == path->mnt->mnt_root && follow_up(path)) 183 ; 184 dp = dget_parent(path->dentry); 185 dput(path->dentry); 186 path->dentry = dp; 187 } 188 189 static int nfsd_lookup_parent(struct svc_rqst *rqstp, struct dentry *dparent, struct svc_export **exp, struct dentry **dentryp) 190 { 191 struct svc_export *exp2; 192 struct path path = {.mnt = mntget((*exp)->ex_path.mnt), 193 .dentry = dget(dparent)}; 194 195 follow_to_parent(&path); 196 197 exp2 = rqst_exp_parent(rqstp, &path); 198 if (PTR_ERR(exp2) == -ENOENT) { 199 *dentryp = dget(dparent); 200 } else if (IS_ERR(exp2)) { 201 path_put(&path); 202 return PTR_ERR(exp2); 203 } else { 204 *dentryp = dget(path.dentry); 205 exp_put(*exp); 206 *exp = exp2; 207 } 208 path_put(&path); 209 return 0; 210 } 211 212 /* 213 * For nfsd purposes, we treat V4ROOT exports as though there was an 214 * export at *every* directory. 215 * We return: 216 * '1' if this dentry *must* be an export point, 217 * '2' if it might be, if there is really a mount here, and 218 * '0' if there is no chance of an export point here. 219 */ 220 int nfsd_mountpoint(struct dentry *dentry, struct svc_export *exp) 221 { 222 if (!d_inode(dentry)) 223 return 0; 224 if (exp->ex_flags & NFSEXP_V4ROOT) 225 return 1; 226 if (nfsd4_is_junction(dentry)) 227 return 1; 228 if (d_managed(dentry)) 229 /* 230 * Might only be a mountpoint in a different namespace, 231 * but we need to check. 232 */ 233 return 2; 234 return 0; 235 } 236 237 __be32 238 nfsd_lookup_dentry(struct svc_rqst *rqstp, struct svc_fh *fhp, 239 const char *name, unsigned int len, 240 struct svc_export **exp_ret, struct dentry **dentry_ret) 241 { 242 struct svc_export *exp; 243 struct dentry *dparent; 244 struct dentry *dentry; 245 int host_err; 246 247 dprintk("nfsd: nfsd_lookup(fh %s, %.*s)\n", SVCFH_fmt(fhp), len,name); 248 249 dparent = fhp->fh_dentry; 250 exp = exp_get(fhp->fh_export); 251 252 /* Lookup the name, but don't follow links */ 253 if (isdotent(name, len)) { 254 if (len==1) 255 dentry = dget(dparent); 256 else if (dparent != exp->ex_path.dentry) 257 dentry = dget_parent(dparent); 258 else if (!EX_NOHIDE(exp) && !nfsd_v4client(rqstp)) 259 dentry = dget(dparent); /* .. == . just like at / */ 260 else { 261 /* checking mountpoint crossing is very different when stepping up */ 262 host_err = nfsd_lookup_parent(rqstp, dparent, &exp, &dentry); 263 if (host_err) 264 goto out_nfserr; 265 } 266 } else { 267 dentry = lookup_one_unlocked(&nop_mnt_idmap, 268 &QSTR_LEN(name, len), dparent); 269 host_err = PTR_ERR(dentry); 270 if (IS_ERR(dentry)) 271 goto out_nfserr; 272 if (nfsd_mountpoint(dentry, exp)) { 273 host_err = nfsd_cross_mnt(rqstp, &dentry, &exp); 274 if (host_err) { 275 dput(dentry); 276 goto out_nfserr; 277 } 278 } 279 } 280 *dentry_ret = dentry; 281 *exp_ret = exp; 282 return 0; 283 284 out_nfserr: 285 exp_put(exp); 286 return nfserrno(host_err); 287 } 288 289 /** 290 * nfsd_lookup - look up a single path component for nfsd 291 * 292 * @rqstp: the request context 293 * @fhp: the file handle of the directory 294 * @name: the component name, or %NULL to look up parent 295 * @len: length of name to examine 296 * @resfh: pointer to pre-initialised filehandle to hold result. 297 * 298 * Look up one component of a pathname. 299 * N.B. After this call _both_ fhp and resfh need an fh_put 300 * 301 * If the lookup would cross a mountpoint, and the mounted filesystem 302 * is exported to the client with NFSEXP_NOHIDE, then the lookup is 303 * accepted as it stands and the mounted directory is 304 * returned. Otherwise the covered directory is returned. 305 * NOTE: this mountpoint crossing is not supported properly by all 306 * clients and is explicitly disallowed for NFSv3 307 * 308 */ 309 __be32 310 nfsd_lookup(struct svc_rqst *rqstp, struct svc_fh *fhp, const char *name, 311 unsigned int len, struct svc_fh *resfh) 312 { 313 struct svc_export *exp; 314 struct dentry *dentry; 315 __be32 err; 316 317 err = fh_verify(rqstp, fhp, S_IFDIR, NFSD_MAY_EXEC); 318 if (err) 319 return err; 320 err = nfsd_lookup_dentry(rqstp, fhp, name, len, &exp, &dentry); 321 if (err) 322 return err; 323 err = check_nfsd_access(exp, rqstp, false); 324 if (err) 325 goto out; 326 /* 327 * Note: we compose the file handle now, but as the 328 * dentry may be negative, it may need to be updated. 329 */ 330 err = fh_compose(resfh, exp, dentry, fhp); 331 if (!err && d_really_is_negative(dentry)) 332 err = nfserr_noent; 333 out: 334 dput(dentry); 335 exp_put(exp); 336 return err; 337 } 338 339 static void 340 commit_reset_write_verifier(struct nfsd_net *nn, struct svc_rqst *rqstp, 341 int err) 342 { 343 switch (err) { 344 case -EAGAIN: 345 case -ESTALE: 346 /* 347 * Neither of these are the result of a problem with 348 * durable storage, so avoid a write verifier reset. 349 */ 350 break; 351 default: 352 nfsd_reset_write_verifier(nn); 353 trace_nfsd_writeverf_reset(nn, rqstp, err); 354 } 355 } 356 357 /* 358 * Commit metadata changes to stable storage. 359 */ 360 static int 361 commit_inode_metadata(struct inode *inode) 362 { 363 const struct export_operations *export_ops = inode->i_sb->s_export_op; 364 365 if (export_ops->commit_metadata) 366 return export_ops->commit_metadata(inode); 367 return sync_inode_metadata(inode, 1); 368 } 369 370 static int 371 commit_metadata(struct svc_fh *fhp) 372 { 373 struct inode *inode = d_inode(fhp->fh_dentry); 374 375 if (!EX_ISSYNC(fhp->fh_export)) 376 return 0; 377 return commit_inode_metadata(inode); 378 } 379 380 /* 381 * Go over the attributes and take care of the small differences between 382 * NFS semantics and what Linux expects. 383 */ 384 static void 385 nfsd_sanitize_attrs(struct inode *inode, struct iattr *iap) 386 { 387 /* Ignore mode updates on symlinks */ 388 if (S_ISLNK(inode->i_mode)) 389 iap->ia_valid &= ~ATTR_MODE; 390 391 /* sanitize the mode change */ 392 if (iap->ia_valid & ATTR_MODE) { 393 iap->ia_mode &= S_IALLUGO; 394 iap->ia_mode |= (inode->i_mode & ~S_IALLUGO); 395 } 396 397 /* Revoke setuid/setgid on chown */ 398 if (!S_ISDIR(inode->i_mode) && 399 ((iap->ia_valid & ATTR_UID) || (iap->ia_valid & ATTR_GID))) { 400 iap->ia_valid |= ATTR_KILL_PRIV; 401 if (iap->ia_valid & ATTR_MODE) { 402 /* we're setting mode too, just clear the s*id bits */ 403 iap->ia_mode &= ~S_ISUID; 404 if (iap->ia_mode & S_IXGRP) 405 iap->ia_mode &= ~S_ISGID; 406 } else { 407 /* set ATTR_KILL_* bits and let VFS handle it */ 408 iap->ia_valid |= ATTR_KILL_SUID; 409 iap->ia_valid |= 410 setattr_should_drop_sgid(&nop_mnt_idmap, inode); 411 } 412 } 413 } 414 415 static __be32 416 nfsd_get_write_access(struct svc_rqst *rqstp, struct svc_fh *fhp, 417 struct iattr *iap) 418 { 419 struct inode *inode = d_inode(fhp->fh_dentry); 420 421 if (iap->ia_size < inode->i_size) { 422 __be32 err; 423 424 err = nfsd_permission(&rqstp->rq_cred, 425 fhp->fh_export, fhp->fh_dentry, 426 NFSD_MAY_TRUNC | NFSD_MAY_OWNER_OVERRIDE); 427 if (err) 428 return err; 429 } 430 return nfserrno(get_write_access(inode)); 431 } 432 433 static int __nfsd_setattr(struct dentry *dentry, struct iattr *iap) 434 { 435 int host_err; 436 437 if (iap->ia_valid & ATTR_SIZE) { 438 /* 439 * RFC5661, Section 18.30.4: 440 * Changing the size of a file with SETATTR indirectly 441 * changes the time_modify and change attributes. 442 * 443 * (and similar for the older RFCs) 444 */ 445 struct iattr size_attr = { 446 .ia_valid = ATTR_SIZE | ATTR_CTIME | ATTR_MTIME, 447 .ia_size = iap->ia_size, 448 }; 449 450 if (iap->ia_size < 0) 451 return -EFBIG; 452 453 host_err = notify_change(&nop_mnt_idmap, dentry, &size_attr, NULL); 454 if (host_err) 455 return host_err; 456 iap->ia_valid &= ~ATTR_SIZE; 457 458 /* 459 * Avoid the additional setattr call below if the only other 460 * attribute that the client sends is the mtime, as we update 461 * it as part of the size change above. 462 */ 463 if ((iap->ia_valid & ~ATTR_MTIME) == 0) 464 return 0; 465 } 466 467 if (!iap->ia_valid) 468 return 0; 469 470 iap->ia_valid |= ATTR_CTIME; 471 return notify_change(&nop_mnt_idmap, dentry, iap, NULL); 472 } 473 474 /** 475 * nfsd_setattr - Set various file attributes. 476 * @rqstp: controlling RPC transaction 477 * @fhp: filehandle of target 478 * @attr: attributes to set 479 * @guardtime: do not act if ctime.tv_sec does not match this timestamp 480 * 481 * This call may adjust the contents of @attr (in particular, this 482 * call may change the bits in the na_iattr.ia_valid field). 483 * 484 * Returns nfs_ok on success, otherwise an NFS status code is 485 * returned. Caller must release @fhp by calling fh_put in either 486 * case. 487 */ 488 __be32 489 nfsd_setattr(struct svc_rqst *rqstp, struct svc_fh *fhp, 490 struct nfsd_attrs *attr, const struct timespec64 *guardtime) 491 { 492 struct dentry *dentry; 493 struct inode *inode; 494 struct iattr *iap = attr->na_iattr; 495 int accmode = NFSD_MAY_SATTR; 496 umode_t ftype = 0; 497 __be32 err; 498 int host_err = 0; 499 bool get_write_count; 500 bool size_change = (iap->ia_valid & ATTR_SIZE); 501 int retries; 502 503 if (iap->ia_valid & ATTR_SIZE) { 504 accmode |= NFSD_MAY_WRITE|NFSD_MAY_OWNER_OVERRIDE; 505 ftype = S_IFREG; 506 } 507 508 /* 509 * If utimes(2) and friends are called with times not NULL, we should 510 * not set NFSD_MAY_WRITE bit. Otherwise fh_verify->nfsd_permission 511 * will return EACCES, when the caller's effective UID does not match 512 * the owner of the file, and the caller is not privileged. In this 513 * situation, we should return EPERM(notify_change will return this). 514 */ 515 if (iap->ia_valid & (ATTR_ATIME | ATTR_MTIME)) { 516 accmode |= NFSD_MAY_OWNER_OVERRIDE; 517 if (!(iap->ia_valid & (ATTR_ATIME_SET | ATTR_MTIME_SET))) 518 accmode |= NFSD_MAY_WRITE; 519 } 520 521 /* Callers that do fh_verify should do the fh_want_write: */ 522 get_write_count = !fhp->fh_dentry; 523 524 /* Get inode */ 525 err = fh_verify(rqstp, fhp, ftype, accmode); 526 if (err) 527 return err; 528 if (get_write_count) { 529 host_err = fh_want_write(fhp); 530 if (host_err) 531 goto out; 532 } 533 534 dentry = fhp->fh_dentry; 535 inode = d_inode(dentry); 536 537 nfsd_sanitize_attrs(inode, iap); 538 539 /* 540 * The size case is special, it changes the file in addition to the 541 * attributes, and file systems don't expect it to be mixed with 542 * "random" attribute changes. We thus split out the size change 543 * into a separate call to ->setattr, and do the rest as a separate 544 * setattr call. 545 */ 546 if (size_change) { 547 err = nfsd_get_write_access(rqstp, fhp, iap); 548 if (err) 549 return err; 550 } 551 552 inode_lock(inode); 553 err = fh_fill_pre_attrs(fhp); 554 if (err) 555 goto out_unlock; 556 557 if (guardtime) { 558 struct timespec64 ctime = inode_get_ctime(inode); 559 if ((u32)guardtime->tv_sec != (u32)ctime.tv_sec || 560 guardtime->tv_nsec != ctime.tv_nsec) { 561 err = nfserr_notsync; 562 goto out_fill_attrs; 563 } 564 } 565 566 for (retries = 1;;) { 567 struct iattr attrs; 568 569 /* 570 * notify_change() can alter its iattr argument, making 571 * @iap unsuitable for submission multiple times. Make a 572 * copy for every loop iteration. 573 */ 574 attrs = *iap; 575 host_err = __nfsd_setattr(dentry, &attrs); 576 if (host_err != -EAGAIN || !retries--) 577 break; 578 if (!nfsd_wait_for_delegreturn(rqstp, inode)) 579 break; 580 } 581 if (attr->na_seclabel && attr->na_seclabel->len) 582 attr->na_labelerr = security_inode_setsecctx(dentry, 583 attr->na_seclabel->data, attr->na_seclabel->len); 584 if (IS_ENABLED(CONFIG_FS_POSIX_ACL) && attr->na_pacl) 585 attr->na_aclerr = set_posix_acl(&nop_mnt_idmap, 586 dentry, ACL_TYPE_ACCESS, 587 attr->na_pacl); 588 if (IS_ENABLED(CONFIG_FS_POSIX_ACL) && 589 !attr->na_aclerr && attr->na_dpacl && S_ISDIR(inode->i_mode)) 590 attr->na_aclerr = set_posix_acl(&nop_mnt_idmap, 591 dentry, ACL_TYPE_DEFAULT, 592 attr->na_dpacl); 593 out_fill_attrs: 594 /* 595 * RFC 1813 Section 3.3.2 does not mandate that an NFS server 596 * returns wcc_data for SETATTR. Some client implementations 597 * depend on receiving wcc_data, however, to sort out partial 598 * updates (eg., the client requested that size and mode be 599 * modified, but the server changed only the file mode). 600 */ 601 fh_fill_post_attrs(fhp); 602 out_unlock: 603 inode_unlock(inode); 604 if (size_change) 605 put_write_access(inode); 606 out: 607 if (!host_err) 608 host_err = commit_metadata(fhp); 609 return err != 0 ? err : nfserrno(host_err); 610 } 611 612 #if defined(CONFIG_NFSD_V4) 613 /* 614 * NFS junction information is stored in an extended attribute. 615 */ 616 #define NFSD_JUNCTION_XATTR_NAME XATTR_TRUSTED_PREFIX "junction.nfs" 617 618 /** 619 * nfsd4_is_junction - Test if an object could be an NFS junction 620 * 621 * @dentry: object to test 622 * 623 * Returns 1 if "dentry" appears to contain NFS junction information. 624 * Otherwise 0 is returned. 625 */ 626 int nfsd4_is_junction(struct dentry *dentry) 627 { 628 struct inode *inode = d_inode(dentry); 629 630 if (inode == NULL) 631 return 0; 632 if (inode->i_mode & S_IXUGO) 633 return 0; 634 if (!(inode->i_mode & S_ISVTX)) 635 return 0; 636 if (vfs_getxattr(&nop_mnt_idmap, dentry, NFSD_JUNCTION_XATTR_NAME, 637 NULL, 0) <= 0) 638 return 0; 639 return 1; 640 } 641 642 static struct nfsd4_compound_state *nfsd4_get_cstate(struct svc_rqst *rqstp) 643 { 644 return &((struct nfsd4_compoundres *)rqstp->rq_resp)->cstate; 645 } 646 647 __be32 nfsd4_clone_file_range(struct svc_rqst *rqstp, 648 struct nfsd_file *nf_src, u64 src_pos, 649 struct nfsd_file *nf_dst, u64 dst_pos, 650 u64 count, bool sync) 651 { 652 struct file *src = nf_src->nf_file; 653 struct file *dst = nf_dst->nf_file; 654 errseq_t since; 655 loff_t cloned; 656 __be32 ret = 0; 657 658 since = READ_ONCE(dst->f_wb_err); 659 cloned = vfs_clone_file_range(src, src_pos, dst, dst_pos, count, 0); 660 if (cloned < 0) { 661 ret = nfserrno(cloned); 662 goto out_err; 663 } 664 if (count && cloned != count) { 665 ret = nfserrno(-EINVAL); 666 goto out_err; 667 } 668 if (sync) { 669 loff_t dst_end = count ? dst_pos + count - 1 : LLONG_MAX; 670 int status = vfs_fsync_range(dst, dst_pos, dst_end, 0); 671 672 if (!status) 673 status = filemap_check_wb_err(dst->f_mapping, since); 674 if (!status) 675 status = commit_inode_metadata(file_inode(src)); 676 if (status < 0) { 677 struct nfsd_net *nn = net_generic(nf_dst->nf_net, 678 nfsd_net_id); 679 680 trace_nfsd_clone_file_range_err(rqstp, 681 &nfsd4_get_cstate(rqstp)->save_fh, 682 src_pos, 683 &nfsd4_get_cstate(rqstp)->current_fh, 684 dst_pos, 685 count, status); 686 commit_reset_write_verifier(nn, rqstp, status); 687 ret = nfserrno(status); 688 } 689 } 690 out_err: 691 return ret; 692 } 693 694 ssize_t nfsd_copy_file_range(struct file *src, u64 src_pos, struct file *dst, 695 u64 dst_pos, u64 count) 696 { 697 ssize_t ret; 698 699 /* 700 * Limit copy to 4MB to prevent indefinitely blocking an nfsd 701 * thread and client rpc slot. The choice of 4MB is somewhat 702 * arbitrary. We might instead base this on r/wsize, or make it 703 * tunable, or use a time instead of a byte limit, or implement 704 * asynchronous copy. In theory a client could also recognize a 705 * limit like this and pipeline multiple COPY requests. 706 */ 707 count = min_t(u64, count, 1 << 22); 708 ret = vfs_copy_file_range(src, src_pos, dst, dst_pos, count, 0); 709 710 if (ret == -EOPNOTSUPP || ret == -EXDEV) 711 ret = vfs_copy_file_range(src, src_pos, dst, dst_pos, count, 712 COPY_FILE_SPLICE); 713 return ret; 714 } 715 716 __be32 nfsd4_vfs_fallocate(struct svc_rqst *rqstp, struct svc_fh *fhp, 717 struct file *file, loff_t offset, loff_t len, 718 int flags) 719 { 720 int error; 721 722 if (!S_ISREG(file_inode(file)->i_mode)) 723 return nfserr_inval; 724 725 error = vfs_fallocate(file, flags, offset, len); 726 if (!error) 727 error = commit_metadata(fhp); 728 729 return nfserrno(error); 730 } 731 #endif /* defined(CONFIG_NFSD_V4) */ 732 733 /* 734 * Check server access rights to a file system object 735 */ 736 struct accessmap { 737 u32 access; 738 int how; 739 }; 740 static struct accessmap nfs3_regaccess[] = { 741 { NFS3_ACCESS_READ, NFSD_MAY_READ }, 742 { NFS3_ACCESS_EXECUTE, NFSD_MAY_EXEC }, 743 { NFS3_ACCESS_MODIFY, NFSD_MAY_WRITE|NFSD_MAY_TRUNC }, 744 { NFS3_ACCESS_EXTEND, NFSD_MAY_WRITE }, 745 746 #ifdef CONFIG_NFSD_V4 747 { NFS4_ACCESS_XAREAD, NFSD_MAY_READ }, 748 { NFS4_ACCESS_XAWRITE, NFSD_MAY_WRITE }, 749 { NFS4_ACCESS_XALIST, NFSD_MAY_READ }, 750 #endif 751 752 { 0, 0 } 753 }; 754 755 static struct accessmap nfs3_diraccess[] = { 756 { NFS3_ACCESS_READ, NFSD_MAY_READ }, 757 { NFS3_ACCESS_LOOKUP, NFSD_MAY_EXEC }, 758 { NFS3_ACCESS_MODIFY, NFSD_MAY_EXEC|NFSD_MAY_WRITE|NFSD_MAY_TRUNC}, 759 { NFS3_ACCESS_EXTEND, NFSD_MAY_EXEC|NFSD_MAY_WRITE }, 760 { NFS3_ACCESS_DELETE, NFSD_MAY_REMOVE }, 761 762 #ifdef CONFIG_NFSD_V4 763 { NFS4_ACCESS_XAREAD, NFSD_MAY_READ }, 764 { NFS4_ACCESS_XAWRITE, NFSD_MAY_WRITE }, 765 { NFS4_ACCESS_XALIST, NFSD_MAY_READ }, 766 #endif 767 768 { 0, 0 } 769 }; 770 771 static struct accessmap nfs3_anyaccess[] = { 772 /* Some clients - Solaris 2.6 at least, make an access call 773 * to the server to check for access for things like /dev/null 774 * (which really, the server doesn't care about). So 775 * We provide simple access checking for them, looking 776 * mainly at mode bits, and we make sure to ignore read-only 777 * filesystem checks 778 */ 779 { NFS3_ACCESS_READ, NFSD_MAY_READ }, 780 { NFS3_ACCESS_EXECUTE, NFSD_MAY_EXEC }, 781 { NFS3_ACCESS_MODIFY, NFSD_MAY_WRITE|NFSD_MAY_LOCAL_ACCESS }, 782 { NFS3_ACCESS_EXTEND, NFSD_MAY_WRITE|NFSD_MAY_LOCAL_ACCESS }, 783 784 { 0, 0 } 785 }; 786 787 __be32 788 nfsd_access(struct svc_rqst *rqstp, struct svc_fh *fhp, u32 *access, u32 *supported) 789 { 790 struct accessmap *map; 791 struct svc_export *export; 792 struct dentry *dentry; 793 u32 query, result = 0, sresult = 0; 794 __be32 error; 795 796 error = fh_verify(rqstp, fhp, 0, NFSD_MAY_NOP); 797 if (error) 798 goto out; 799 800 export = fhp->fh_export; 801 dentry = fhp->fh_dentry; 802 803 if (d_is_reg(dentry)) 804 map = nfs3_regaccess; 805 else if (d_is_dir(dentry)) 806 map = nfs3_diraccess; 807 else 808 map = nfs3_anyaccess; 809 810 811 query = *access; 812 for (; map->access; map++) { 813 if (map->access & query) { 814 __be32 err2; 815 816 sresult |= map->access; 817 818 err2 = nfsd_permission(&rqstp->rq_cred, export, 819 dentry, map->how); 820 switch (err2) { 821 case nfs_ok: 822 result |= map->access; 823 break; 824 825 /* the following error codes just mean the access was not allowed, 826 * rather than an error occurred */ 827 case nfserr_rofs: 828 case nfserr_acces: 829 case nfserr_perm: 830 /* simply don't "or" in the access bit. */ 831 break; 832 default: 833 error = err2; 834 goto out; 835 } 836 } 837 } 838 *access = result; 839 if (supported) 840 *supported = sresult; 841 842 out: 843 return error; 844 } 845 846 int nfsd_open_break_lease(struct inode *inode, int access) 847 { 848 unsigned int mode; 849 850 if (access & NFSD_MAY_NOT_BREAK_LEASE) 851 return 0; 852 mode = (access & NFSD_MAY_WRITE) ? O_WRONLY : O_RDONLY; 853 return break_lease(inode, mode | O_NONBLOCK); 854 } 855 856 /* 857 * Open an existing file or directory. 858 * The may_flags argument indicates the type of open (read/write/lock) 859 * and additional flags. 860 * N.B. After this call fhp needs an fh_put 861 */ 862 static int 863 __nfsd_open(struct svc_fh *fhp, umode_t type, int may_flags, struct file **filp) 864 { 865 struct path path; 866 struct inode *inode; 867 struct file *file; 868 int flags = O_RDONLY|O_LARGEFILE; 869 int host_err = -EPERM; 870 871 path.mnt = fhp->fh_export->ex_path.mnt; 872 path.dentry = fhp->fh_dentry; 873 inode = d_inode(path.dentry); 874 875 if (IS_APPEND(inode) && (may_flags & NFSD_MAY_WRITE)) 876 goto out; 877 878 if (!inode->i_fop) 879 goto out; 880 881 host_err = nfsd_open_break_lease(inode, may_flags); 882 if (host_err) /* NOMEM or WOULDBLOCK */ 883 goto out; 884 885 if (may_flags & NFSD_MAY_WRITE) { 886 if (may_flags & NFSD_MAY_READ) 887 flags = O_RDWR|O_LARGEFILE; 888 else 889 flags = O_WRONLY|O_LARGEFILE; 890 } 891 892 file = dentry_open(&path, flags, current_cred()); 893 if (IS_ERR(file)) { 894 host_err = PTR_ERR(file); 895 goto out; 896 } 897 898 host_err = security_file_post_open(file, may_flags); 899 if (host_err) { 900 fput(file); 901 goto out; 902 } 903 904 *filp = file; 905 out: 906 return host_err; 907 } 908 909 __be32 910 nfsd_open(struct svc_rqst *rqstp, struct svc_fh *fhp, umode_t type, 911 int may_flags, struct file **filp) 912 { 913 __be32 err; 914 int host_err; 915 bool retried = false; 916 917 /* 918 * If we get here, then the client has already done an "open", 919 * and (hopefully) checked permission - so allow OWNER_OVERRIDE 920 * in case a chmod has now revoked permission. 921 * 922 * Arguably we should also allow the owner override for 923 * directories, but we never have and it doesn't seem to have 924 * caused anyone a problem. If we were to change this, note 925 * also that our filldir callbacks would need a variant of 926 * lookup_one_positive_unlocked() that doesn't check permissions. 927 */ 928 if (type == S_IFREG) 929 may_flags |= NFSD_MAY_OWNER_OVERRIDE; 930 retry: 931 err = fh_verify(rqstp, fhp, type, may_flags); 932 if (!err) { 933 host_err = __nfsd_open(fhp, type, may_flags, filp); 934 if (host_err == -EOPENSTALE && !retried) { 935 retried = true; 936 fh_put(fhp); 937 goto retry; 938 } 939 err = nfserrno(host_err); 940 } 941 return err; 942 } 943 944 /** 945 * nfsd_open_verified - Open a regular file for the filecache 946 * @fhp: NFS filehandle of the file to open 947 * @may_flags: internal permission flags 948 * @filp: OUT: open "struct file *" 949 * 950 * Returns zero on success, or a negative errno value. 951 */ 952 int 953 nfsd_open_verified(struct svc_fh *fhp, int may_flags, struct file **filp) 954 { 955 return __nfsd_open(fhp, S_IFREG, may_flags, filp); 956 } 957 958 /* 959 * Grab and keep cached pages associated with a file in the svc_rqst 960 * so that they can be passed to the network sendmsg routines 961 * directly. They will be released after the sending has completed. 962 * 963 * Return values: Number of bytes consumed, or -EIO if there are no 964 * remaining pages in rqstp->rq_pages. 965 */ 966 static int 967 nfsd_splice_actor(struct pipe_inode_info *pipe, struct pipe_buffer *buf, 968 struct splice_desc *sd) 969 { 970 struct svc_rqst *rqstp = sd->u.data; 971 struct page *page = buf->page; // may be a compound one 972 unsigned offset = buf->offset; 973 struct page *last_page; 974 975 last_page = page + (offset + sd->len - 1) / PAGE_SIZE; 976 for (page += offset / PAGE_SIZE; page <= last_page; page++) { 977 /* 978 * Skip page replacement when extending the contents of the 979 * current page. But note that we may get two zero_pages in a 980 * row from shmem. 981 */ 982 if (page == *(rqstp->rq_next_page - 1) && 983 offset_in_page(rqstp->rq_res.page_base + 984 rqstp->rq_res.page_len)) 985 continue; 986 if (unlikely(!svc_rqst_replace_page(rqstp, page))) 987 return -EIO; 988 } 989 if (rqstp->rq_res.page_len == 0) // first call 990 rqstp->rq_res.page_base = offset % PAGE_SIZE; 991 rqstp->rq_res.page_len += sd->len; 992 return sd->len; 993 } 994 995 static int nfsd_direct_splice_actor(struct pipe_inode_info *pipe, 996 struct splice_desc *sd) 997 { 998 return __splice_from_pipe(pipe, sd, nfsd_splice_actor); 999 } 1000 1001 static u32 nfsd_eof_on_read(struct file *file, loff_t offset, ssize_t len, 1002 size_t expected) 1003 { 1004 if (expected != 0 && len == 0) 1005 return 1; 1006 if (offset+len >= i_size_read(file_inode(file))) 1007 return 1; 1008 return 0; 1009 } 1010 1011 static __be32 nfsd_finish_read(struct svc_rqst *rqstp, struct svc_fh *fhp, 1012 struct file *file, loff_t offset, 1013 unsigned long *count, u32 *eof, ssize_t host_err) 1014 { 1015 if (host_err >= 0) { 1016 struct nfsd_net *nn = net_generic(SVC_NET(rqstp), nfsd_net_id); 1017 1018 nfsd_stats_io_read_add(nn, fhp->fh_export, host_err); 1019 *eof = nfsd_eof_on_read(file, offset, host_err, *count); 1020 *count = host_err; 1021 fsnotify_access(file); 1022 trace_nfsd_read_io_done(rqstp, fhp, offset, *count); 1023 return 0; 1024 } else { 1025 trace_nfsd_read_err(rqstp, fhp, offset, host_err); 1026 return nfserrno(host_err); 1027 } 1028 } 1029 1030 /** 1031 * nfsd_splice_read - Perform a VFS read using a splice pipe 1032 * @rqstp: RPC transaction context 1033 * @fhp: file handle of file to be read 1034 * @file: opened struct file of file to be read 1035 * @offset: starting byte offset 1036 * @count: IN: requested number of bytes; OUT: number of bytes read 1037 * @eof: OUT: set non-zero if operation reached the end of the file 1038 * 1039 * Returns nfs_ok on success, otherwise an nfserr stat value is 1040 * returned. 1041 */ 1042 __be32 nfsd_splice_read(struct svc_rqst *rqstp, struct svc_fh *fhp, 1043 struct file *file, loff_t offset, unsigned long *count, 1044 u32 *eof) 1045 { 1046 struct splice_desc sd = { 1047 .len = 0, 1048 .total_len = *count, 1049 .pos = offset, 1050 .u.data = rqstp, 1051 }; 1052 ssize_t host_err; 1053 1054 trace_nfsd_read_splice(rqstp, fhp, offset, *count); 1055 host_err = rw_verify_area(READ, file, &offset, *count); 1056 if (!host_err) 1057 host_err = splice_direct_to_actor(file, &sd, 1058 nfsd_direct_splice_actor); 1059 return nfsd_finish_read(rqstp, fhp, file, offset, count, eof, host_err); 1060 } 1061 1062 /** 1063 * nfsd_iter_read - Perform a VFS read using an iterator 1064 * @rqstp: RPC transaction context 1065 * @fhp: file handle of file to be read 1066 * @file: opened struct file of file to be read 1067 * @offset: starting byte offset 1068 * @count: IN: requested number of bytes; OUT: number of bytes read 1069 * @base: offset in first page of read buffer 1070 * @eof: OUT: set non-zero if operation reached the end of the file 1071 * 1072 * Some filesystems or situations cannot use nfsd_splice_read. This 1073 * function is the slightly less-performant fallback for those cases. 1074 * 1075 * Returns nfs_ok on success, otherwise an nfserr stat value is 1076 * returned. 1077 */ 1078 __be32 nfsd_iter_read(struct svc_rqst *rqstp, struct svc_fh *fhp, 1079 struct file *file, loff_t offset, unsigned long *count, 1080 unsigned int base, u32 *eof) 1081 { 1082 unsigned long v, total; 1083 struct iov_iter iter; 1084 loff_t ppos = offset; 1085 struct page *page; 1086 ssize_t host_err; 1087 1088 v = 0; 1089 total = *count; 1090 while (total) { 1091 page = *(rqstp->rq_next_page++); 1092 rqstp->rq_vec[v].iov_base = page_address(page) + base; 1093 rqstp->rq_vec[v].iov_len = min_t(size_t, total, PAGE_SIZE - base); 1094 total -= rqstp->rq_vec[v].iov_len; 1095 ++v; 1096 base = 0; 1097 } 1098 WARN_ON_ONCE(v > ARRAY_SIZE(rqstp->rq_vec)); 1099 1100 trace_nfsd_read_vector(rqstp, fhp, offset, *count); 1101 iov_iter_kvec(&iter, ITER_DEST, rqstp->rq_vec, v, *count); 1102 host_err = vfs_iter_read(file, &iter, &ppos, 0); 1103 return nfsd_finish_read(rqstp, fhp, file, offset, count, eof, host_err); 1104 } 1105 1106 /* 1107 * Gathered writes: If another process is currently writing to the file, 1108 * there's a high chance this is another nfsd (triggered by a bulk write 1109 * from a client's biod). Rather than syncing the file with each write 1110 * request, we sleep for 10 msec. 1111 * 1112 * I don't know if this roughly approximates C. Juszak's idea of 1113 * gathered writes, but it's a nice and simple solution (IMHO), and it 1114 * seems to work:-) 1115 * 1116 * Note: we do this only in the NFSv2 case, since v3 and higher have a 1117 * better tool (separate unstable writes and commits) for solving this 1118 * problem. 1119 */ 1120 static int wait_for_concurrent_writes(struct file *file) 1121 { 1122 struct inode *inode = file_inode(file); 1123 static ino_t last_ino; 1124 static dev_t last_dev; 1125 int err = 0; 1126 1127 if (atomic_read(&inode->i_writecount) > 1 1128 || (last_ino == inode->i_ino && last_dev == inode->i_sb->s_dev)) { 1129 dprintk("nfsd: write defer %d\n", task_pid_nr(current)); 1130 msleep(10); 1131 dprintk("nfsd: write resume %d\n", task_pid_nr(current)); 1132 } 1133 1134 if (inode->i_state & I_DIRTY) { 1135 dprintk("nfsd: write sync %d\n", task_pid_nr(current)); 1136 err = vfs_fsync(file, 0); 1137 } 1138 last_ino = inode->i_ino; 1139 last_dev = inode->i_sb->s_dev; 1140 return err; 1141 } 1142 1143 __be32 1144 nfsd_vfs_write(struct svc_rqst *rqstp, struct svc_fh *fhp, struct nfsd_file *nf, 1145 loff_t offset, struct kvec *vec, int vlen, 1146 unsigned long *cnt, int stable, 1147 __be32 *verf) 1148 { 1149 struct nfsd_net *nn = net_generic(SVC_NET(rqstp), nfsd_net_id); 1150 struct file *file = nf->nf_file; 1151 struct super_block *sb = file_inode(file)->i_sb; 1152 struct svc_export *exp; 1153 struct iov_iter iter; 1154 errseq_t since; 1155 __be32 nfserr; 1156 int host_err; 1157 loff_t pos = offset; 1158 unsigned long exp_op_flags = 0; 1159 unsigned int pflags = current->flags; 1160 rwf_t flags = 0; 1161 bool restore_flags = false; 1162 1163 trace_nfsd_write_opened(rqstp, fhp, offset, *cnt); 1164 1165 if (sb->s_export_op) 1166 exp_op_flags = sb->s_export_op->flags; 1167 1168 if (test_bit(RQ_LOCAL, &rqstp->rq_flags) && 1169 !(exp_op_flags & EXPORT_OP_REMOTE_FS)) { 1170 /* 1171 * We want throttling in balance_dirty_pages() 1172 * and shrink_inactive_list() to only consider 1173 * the backingdev we are writing to, so that nfs to 1174 * localhost doesn't cause nfsd to lock up due to all 1175 * the client's dirty pages or its congested queue. 1176 */ 1177 current->flags |= PF_LOCAL_THROTTLE; 1178 restore_flags = true; 1179 } 1180 1181 exp = fhp->fh_export; 1182 1183 if (!EX_ISSYNC(exp)) 1184 stable = NFS_UNSTABLE; 1185 1186 if (stable && !fhp->fh_use_wgather) 1187 flags |= RWF_SYNC; 1188 1189 iov_iter_kvec(&iter, ITER_SOURCE, vec, vlen, *cnt); 1190 since = READ_ONCE(file->f_wb_err); 1191 if (verf) 1192 nfsd_copy_write_verifier(verf, nn); 1193 host_err = vfs_iter_write(file, &iter, &pos, flags); 1194 if (host_err < 0) { 1195 commit_reset_write_verifier(nn, rqstp, host_err); 1196 goto out_nfserr; 1197 } 1198 *cnt = host_err; 1199 nfsd_stats_io_write_add(nn, exp, *cnt); 1200 fsnotify_modify(file); 1201 host_err = filemap_check_wb_err(file->f_mapping, since); 1202 if (host_err < 0) 1203 goto out_nfserr; 1204 1205 if (stable && fhp->fh_use_wgather) { 1206 host_err = wait_for_concurrent_writes(file); 1207 if (host_err < 0) 1208 commit_reset_write_verifier(nn, rqstp, host_err); 1209 } 1210 1211 out_nfserr: 1212 if (host_err >= 0) { 1213 trace_nfsd_write_io_done(rqstp, fhp, offset, *cnt); 1214 nfserr = nfs_ok; 1215 } else { 1216 trace_nfsd_write_err(rqstp, fhp, offset, host_err); 1217 nfserr = nfserrno(host_err); 1218 } 1219 if (restore_flags) 1220 current_restore_flags(pflags, PF_LOCAL_THROTTLE); 1221 return nfserr; 1222 } 1223 1224 /** 1225 * nfsd_read_splice_ok - check if spliced reading is supported 1226 * @rqstp: RPC transaction context 1227 * 1228 * Return values: 1229 * %true: nfsd_splice_read() may be used 1230 * %false: nfsd_splice_read() must not be used 1231 * 1232 * NFS READ normally uses splice to send data in-place. However the 1233 * data in cache can change after the reply's MIC is computed but 1234 * before the RPC reply is sent. To prevent the client from 1235 * rejecting the server-computed MIC in this somewhat rare case, do 1236 * not use splice with the GSS integrity and privacy services. 1237 */ 1238 bool nfsd_read_splice_ok(struct svc_rqst *rqstp) 1239 { 1240 switch (svc_auth_flavor(rqstp)) { 1241 case RPC_AUTH_GSS_KRB5I: 1242 case RPC_AUTH_GSS_KRB5P: 1243 return false; 1244 } 1245 return true; 1246 } 1247 1248 /** 1249 * nfsd_read - Read data from a file 1250 * @rqstp: RPC transaction context 1251 * @fhp: file handle of file to be read 1252 * @offset: starting byte offset 1253 * @count: IN: requested number of bytes; OUT: number of bytes read 1254 * @eof: OUT: set non-zero if operation reached the end of the file 1255 * 1256 * The caller must verify that there is enough space in @rqstp.rq_res 1257 * to perform this operation. 1258 * 1259 * N.B. After this call fhp needs an fh_put 1260 * 1261 * Returns nfs_ok on success, otherwise an nfserr stat value is 1262 * returned. 1263 */ 1264 __be32 nfsd_read(struct svc_rqst *rqstp, struct svc_fh *fhp, 1265 loff_t offset, unsigned long *count, u32 *eof) 1266 { 1267 struct nfsd_file *nf; 1268 struct file *file; 1269 __be32 err; 1270 1271 trace_nfsd_read_start(rqstp, fhp, offset, *count); 1272 err = nfsd_file_acquire_gc(rqstp, fhp, NFSD_MAY_READ, &nf); 1273 if (err) 1274 return err; 1275 1276 file = nf->nf_file; 1277 if (file->f_op->splice_read && nfsd_read_splice_ok(rqstp)) 1278 err = nfsd_splice_read(rqstp, fhp, file, offset, count, eof); 1279 else 1280 err = nfsd_iter_read(rqstp, fhp, file, offset, count, 0, eof); 1281 1282 nfsd_file_put(nf); 1283 trace_nfsd_read_done(rqstp, fhp, offset, *count); 1284 return err; 1285 } 1286 1287 /* 1288 * Write data to a file. 1289 * The stable flag requests synchronous writes. 1290 * N.B. After this call fhp needs an fh_put 1291 */ 1292 __be32 1293 nfsd_write(struct svc_rqst *rqstp, struct svc_fh *fhp, loff_t offset, 1294 struct kvec *vec, int vlen, unsigned long *cnt, int stable, 1295 __be32 *verf) 1296 { 1297 struct nfsd_file *nf; 1298 __be32 err; 1299 1300 trace_nfsd_write_start(rqstp, fhp, offset, *cnt); 1301 1302 err = nfsd_file_acquire_gc(rqstp, fhp, NFSD_MAY_WRITE, &nf); 1303 if (err) 1304 goto out; 1305 1306 err = nfsd_vfs_write(rqstp, fhp, nf, offset, vec, 1307 vlen, cnt, stable, verf); 1308 nfsd_file_put(nf); 1309 out: 1310 trace_nfsd_write_done(rqstp, fhp, offset, *cnt); 1311 return err; 1312 } 1313 1314 /** 1315 * nfsd_commit - Commit pending writes to stable storage 1316 * @rqstp: RPC request being processed 1317 * @fhp: NFS filehandle 1318 * @nf: target file 1319 * @offset: raw offset from beginning of file 1320 * @count: raw count of bytes to sync 1321 * @verf: filled in with the server's current write verifier 1322 * 1323 * Note: we guarantee that data that lies within the range specified 1324 * by the 'offset' and 'count' parameters will be synced. The server 1325 * is permitted to sync data that lies outside this range at the 1326 * same time. 1327 * 1328 * Unfortunately we cannot lock the file to make sure we return full WCC 1329 * data to the client, as locking happens lower down in the filesystem. 1330 * 1331 * Return values: 1332 * An nfsstat value in network byte order. 1333 */ 1334 __be32 1335 nfsd_commit(struct svc_rqst *rqstp, struct svc_fh *fhp, struct nfsd_file *nf, 1336 u64 offset, u32 count, __be32 *verf) 1337 { 1338 __be32 err = nfs_ok; 1339 u64 maxbytes; 1340 loff_t start, end; 1341 struct nfsd_net *nn; 1342 1343 /* 1344 * Convert the client-provided (offset, count) range to a 1345 * (start, end) range. If the client-provided range falls 1346 * outside the maximum file size of the underlying FS, 1347 * clamp the sync range appropriately. 1348 */ 1349 start = 0; 1350 end = LLONG_MAX; 1351 maxbytes = (u64)fhp->fh_dentry->d_sb->s_maxbytes; 1352 if (offset < maxbytes) { 1353 start = offset; 1354 if (count && (offset + count - 1 < maxbytes)) 1355 end = offset + count - 1; 1356 } 1357 1358 nn = net_generic(nf->nf_net, nfsd_net_id); 1359 if (EX_ISSYNC(fhp->fh_export)) { 1360 errseq_t since = READ_ONCE(nf->nf_file->f_wb_err); 1361 int err2; 1362 1363 err2 = vfs_fsync_range(nf->nf_file, start, end, 0); 1364 switch (err2) { 1365 case 0: 1366 nfsd_copy_write_verifier(verf, nn); 1367 err2 = filemap_check_wb_err(nf->nf_file->f_mapping, 1368 since); 1369 err = nfserrno(err2); 1370 break; 1371 case -EINVAL: 1372 err = nfserr_notsupp; 1373 break; 1374 default: 1375 commit_reset_write_verifier(nn, rqstp, err2); 1376 err = nfserrno(err2); 1377 } 1378 } else 1379 nfsd_copy_write_verifier(verf, nn); 1380 1381 return err; 1382 } 1383 1384 /** 1385 * nfsd_create_setattr - Set a created file's attributes 1386 * @rqstp: RPC transaction being executed 1387 * @fhp: NFS filehandle of parent directory 1388 * @resfhp: NFS filehandle of new object 1389 * @attrs: requested attributes of new object 1390 * 1391 * Returns nfs_ok on success, or an nfsstat in network byte order. 1392 */ 1393 __be32 1394 nfsd_create_setattr(struct svc_rqst *rqstp, struct svc_fh *fhp, 1395 struct svc_fh *resfhp, struct nfsd_attrs *attrs) 1396 { 1397 struct iattr *iap = attrs->na_iattr; 1398 __be32 status; 1399 1400 /* 1401 * Mode has already been set by file creation. 1402 */ 1403 iap->ia_valid &= ~ATTR_MODE; 1404 1405 /* 1406 * Setting uid/gid works only for root. Irix appears to 1407 * send along the gid on create when it tries to implement 1408 * setgid directories via NFS: 1409 */ 1410 if (!uid_eq(current_fsuid(), GLOBAL_ROOT_UID)) 1411 iap->ia_valid &= ~(ATTR_UID|ATTR_GID); 1412 1413 /* 1414 * Callers expect new file metadata to be committed even 1415 * if the attributes have not changed. 1416 */ 1417 if (nfsd_attrs_valid(attrs)) 1418 status = nfsd_setattr(rqstp, resfhp, attrs, NULL); 1419 else 1420 status = nfserrno(commit_metadata(resfhp)); 1421 1422 /* 1423 * Transactional filesystems had a chance to commit changes 1424 * for both parent and child simultaneously making the 1425 * following commit_metadata a noop in many cases. 1426 */ 1427 if (!status) 1428 status = nfserrno(commit_metadata(fhp)); 1429 1430 /* 1431 * Update the new filehandle to pick up the new attributes. 1432 */ 1433 if (!status) 1434 status = fh_update(resfhp); 1435 1436 return status; 1437 } 1438 1439 /* HPUX client sometimes creates a file in mode 000, and sets size to 0. 1440 * setting size to 0 may fail for some specific file systems by the permission 1441 * checking which requires WRITE permission but the mode is 000. 1442 * we ignore the resizing(to 0) on the just new created file, since the size is 1443 * 0 after file created. 1444 * 1445 * call this only after vfs_create() is called. 1446 * */ 1447 static void 1448 nfsd_check_ignore_resizing(struct iattr *iap) 1449 { 1450 if ((iap->ia_valid & ATTR_SIZE) && (iap->ia_size == 0)) 1451 iap->ia_valid &= ~ATTR_SIZE; 1452 } 1453 1454 /* The parent directory should already be locked: */ 1455 __be32 1456 nfsd_create_locked(struct svc_rqst *rqstp, struct svc_fh *fhp, 1457 struct nfsd_attrs *attrs, 1458 int type, dev_t rdev, struct svc_fh *resfhp) 1459 { 1460 struct dentry *dentry, *dchild; 1461 struct inode *dirp; 1462 struct iattr *iap = attrs->na_iattr; 1463 __be32 err; 1464 int host_err = 0; 1465 1466 dentry = fhp->fh_dentry; 1467 dirp = d_inode(dentry); 1468 1469 dchild = dget(resfhp->fh_dentry); 1470 err = nfsd_permission(&rqstp->rq_cred, fhp->fh_export, dentry, 1471 NFSD_MAY_CREATE); 1472 if (err) 1473 goto out; 1474 1475 if (!(iap->ia_valid & ATTR_MODE)) 1476 iap->ia_mode = 0; 1477 iap->ia_mode = (iap->ia_mode & S_IALLUGO) | type; 1478 1479 if (!IS_POSIXACL(dirp)) 1480 iap->ia_mode &= ~current_umask(); 1481 1482 err = 0; 1483 switch (type) { 1484 case S_IFREG: 1485 host_err = vfs_create(&nop_mnt_idmap, dirp, dchild, 1486 iap->ia_mode, true); 1487 if (!host_err) 1488 nfsd_check_ignore_resizing(iap); 1489 break; 1490 case S_IFDIR: 1491 dchild = vfs_mkdir(&nop_mnt_idmap, dirp, dchild, iap->ia_mode); 1492 if (IS_ERR(dchild)) { 1493 host_err = PTR_ERR(dchild); 1494 } else if (d_is_negative(dchild)) { 1495 err = nfserr_serverfault; 1496 goto out; 1497 } else if (unlikely(dchild != resfhp->fh_dentry)) { 1498 dput(resfhp->fh_dentry); 1499 resfhp->fh_dentry = dget(dchild); 1500 } 1501 break; 1502 case S_IFCHR: 1503 case S_IFBLK: 1504 case S_IFIFO: 1505 case S_IFSOCK: 1506 host_err = vfs_mknod(&nop_mnt_idmap, dirp, dchild, 1507 iap->ia_mode, rdev); 1508 break; 1509 default: 1510 printk(KERN_WARNING "nfsd: bad file type %o in nfsd_create\n", 1511 type); 1512 host_err = -EINVAL; 1513 } 1514 if (host_err < 0) 1515 goto out_nfserr; 1516 1517 err = nfsd_create_setattr(rqstp, fhp, resfhp, attrs); 1518 1519 out: 1520 if (!IS_ERR(dchild)) 1521 dput(dchild); 1522 return err; 1523 1524 out_nfserr: 1525 err = nfserrno(host_err); 1526 goto out; 1527 } 1528 1529 /* 1530 * Create a filesystem object (regular, directory, special). 1531 * Note that the parent directory is left locked. 1532 * 1533 * N.B. Every call to nfsd_create needs an fh_put for _both_ fhp and resfhp 1534 */ 1535 __be32 1536 nfsd_create(struct svc_rqst *rqstp, struct svc_fh *fhp, 1537 char *fname, int flen, struct nfsd_attrs *attrs, 1538 int type, dev_t rdev, struct svc_fh *resfhp) 1539 { 1540 struct dentry *dentry, *dchild = NULL; 1541 __be32 err; 1542 int host_err; 1543 1544 if (isdotent(fname, flen)) 1545 return nfserr_exist; 1546 1547 err = fh_verify(rqstp, fhp, S_IFDIR, NFSD_MAY_NOP); 1548 if (err) 1549 return err; 1550 1551 dentry = fhp->fh_dentry; 1552 1553 host_err = fh_want_write(fhp); 1554 if (host_err) 1555 return nfserrno(host_err); 1556 1557 inode_lock_nested(dentry->d_inode, I_MUTEX_PARENT); 1558 dchild = lookup_one(&nop_mnt_idmap, &QSTR_LEN(fname, flen), dentry); 1559 host_err = PTR_ERR(dchild); 1560 if (IS_ERR(dchild)) { 1561 err = nfserrno(host_err); 1562 goto out_unlock; 1563 } 1564 err = fh_compose(resfhp, fhp->fh_export, dchild, fhp); 1565 /* 1566 * We unconditionally drop our ref to dchild as fh_compose will have 1567 * already grabbed its own ref for it. 1568 */ 1569 dput(dchild); 1570 if (err) 1571 goto out_unlock; 1572 err = fh_fill_pre_attrs(fhp); 1573 if (err != nfs_ok) 1574 goto out_unlock; 1575 err = nfsd_create_locked(rqstp, fhp, attrs, type, rdev, resfhp); 1576 fh_fill_post_attrs(fhp); 1577 out_unlock: 1578 inode_unlock(dentry->d_inode); 1579 return err; 1580 } 1581 1582 /* 1583 * Read a symlink. On entry, *lenp must contain the maximum path length that 1584 * fits into the buffer. On return, it contains the true length. 1585 * N.B. After this call fhp needs an fh_put 1586 */ 1587 __be32 1588 nfsd_readlink(struct svc_rqst *rqstp, struct svc_fh *fhp, char *buf, int *lenp) 1589 { 1590 __be32 err; 1591 const char *link; 1592 struct path path; 1593 DEFINE_DELAYED_CALL(done); 1594 int len; 1595 1596 err = fh_verify(rqstp, fhp, S_IFLNK, NFSD_MAY_NOP); 1597 if (unlikely(err)) 1598 return err; 1599 1600 path.mnt = fhp->fh_export->ex_path.mnt; 1601 path.dentry = fhp->fh_dentry; 1602 1603 if (unlikely(!d_is_symlink(path.dentry))) 1604 return nfserr_inval; 1605 1606 touch_atime(&path); 1607 1608 link = vfs_get_link(path.dentry, &done); 1609 if (IS_ERR(link)) 1610 return nfserrno(PTR_ERR(link)); 1611 1612 len = strlen(link); 1613 if (len < *lenp) 1614 *lenp = len; 1615 memcpy(buf, link, *lenp); 1616 do_delayed_call(&done); 1617 return 0; 1618 } 1619 1620 /** 1621 * nfsd_symlink - Create a symlink and look up its inode 1622 * @rqstp: RPC transaction being executed 1623 * @fhp: NFS filehandle of parent directory 1624 * @fname: filename of the new symlink 1625 * @flen: length of @fname 1626 * @path: content of the new symlink (NUL-terminated) 1627 * @attrs: requested attributes of new object 1628 * @resfhp: NFS filehandle of new object 1629 * 1630 * N.B. After this call _both_ fhp and resfhp need an fh_put 1631 * 1632 * Returns nfs_ok on success, or an nfsstat in network byte order. 1633 */ 1634 __be32 1635 nfsd_symlink(struct svc_rqst *rqstp, struct svc_fh *fhp, 1636 char *fname, int flen, 1637 char *path, struct nfsd_attrs *attrs, 1638 struct svc_fh *resfhp) 1639 { 1640 struct dentry *dentry, *dnew; 1641 __be32 err, cerr; 1642 int host_err; 1643 1644 err = nfserr_noent; 1645 if (!flen || path[0] == '\0') 1646 goto out; 1647 err = nfserr_exist; 1648 if (isdotent(fname, flen)) 1649 goto out; 1650 1651 err = fh_verify(rqstp, fhp, S_IFDIR, NFSD_MAY_CREATE); 1652 if (err) 1653 goto out; 1654 1655 host_err = fh_want_write(fhp); 1656 if (host_err) { 1657 err = nfserrno(host_err); 1658 goto out; 1659 } 1660 1661 dentry = fhp->fh_dentry; 1662 inode_lock_nested(dentry->d_inode, I_MUTEX_PARENT); 1663 dnew = lookup_one(&nop_mnt_idmap, &QSTR_LEN(fname, flen), dentry); 1664 if (IS_ERR(dnew)) { 1665 err = nfserrno(PTR_ERR(dnew)); 1666 inode_unlock(dentry->d_inode); 1667 goto out_drop_write; 1668 } 1669 err = fh_fill_pre_attrs(fhp); 1670 if (err != nfs_ok) 1671 goto out_unlock; 1672 host_err = vfs_symlink(&nop_mnt_idmap, d_inode(dentry), dnew, path); 1673 err = nfserrno(host_err); 1674 cerr = fh_compose(resfhp, fhp->fh_export, dnew, fhp); 1675 if (!err) 1676 nfsd_create_setattr(rqstp, fhp, resfhp, attrs); 1677 fh_fill_post_attrs(fhp); 1678 out_unlock: 1679 inode_unlock(dentry->d_inode); 1680 if (!err) 1681 err = nfserrno(commit_metadata(fhp)); 1682 dput(dnew); 1683 if (err==0) err = cerr; 1684 out_drop_write: 1685 fh_drop_write(fhp); 1686 out: 1687 return err; 1688 } 1689 1690 /** 1691 * nfsd_link - create a link 1692 * @rqstp: RPC transaction context 1693 * @ffhp: the file handle of the directory where the new link is to be created 1694 * @name: the filename of the new link 1695 * @len: the length of @name in octets 1696 * @tfhp: the file handle of an existing file object 1697 * 1698 * After this call _both_ ffhp and tfhp need an fh_put. 1699 * 1700 * Returns a generic NFS status code in network byte-order. 1701 */ 1702 __be32 1703 nfsd_link(struct svc_rqst *rqstp, struct svc_fh *ffhp, 1704 char *name, int len, struct svc_fh *tfhp) 1705 { 1706 struct dentry *ddir, *dnew, *dold; 1707 struct inode *dirp; 1708 int type; 1709 __be32 err; 1710 int host_err; 1711 1712 err = fh_verify(rqstp, ffhp, S_IFDIR, NFSD_MAY_CREATE); 1713 if (err) 1714 goto out; 1715 err = fh_verify(rqstp, tfhp, 0, NFSD_MAY_NOP); 1716 if (err) 1717 goto out; 1718 err = nfserr_isdir; 1719 if (d_is_dir(tfhp->fh_dentry)) 1720 goto out; 1721 err = nfserr_perm; 1722 if (!len) 1723 goto out; 1724 err = nfserr_exist; 1725 if (isdotent(name, len)) 1726 goto out; 1727 1728 err = nfs_ok; 1729 type = d_inode(tfhp->fh_dentry)->i_mode & S_IFMT; 1730 host_err = fh_want_write(tfhp); 1731 if (host_err) 1732 goto out; 1733 1734 ddir = ffhp->fh_dentry; 1735 dirp = d_inode(ddir); 1736 inode_lock_nested(dirp, I_MUTEX_PARENT); 1737 1738 dnew = lookup_one(&nop_mnt_idmap, &QSTR_LEN(name, len), ddir); 1739 if (IS_ERR(dnew)) { 1740 host_err = PTR_ERR(dnew); 1741 goto out_unlock; 1742 } 1743 1744 dold = tfhp->fh_dentry; 1745 1746 err = nfserr_noent; 1747 if (d_really_is_negative(dold)) 1748 goto out_dput; 1749 err = fh_fill_pre_attrs(ffhp); 1750 if (err != nfs_ok) 1751 goto out_dput; 1752 host_err = vfs_link(dold, &nop_mnt_idmap, dirp, dnew, NULL); 1753 fh_fill_post_attrs(ffhp); 1754 inode_unlock(dirp); 1755 if (!host_err) { 1756 host_err = commit_metadata(ffhp); 1757 if (!host_err) 1758 host_err = commit_metadata(tfhp); 1759 } 1760 1761 dput(dnew); 1762 out_drop_write: 1763 fh_drop_write(tfhp); 1764 if (host_err == -EBUSY) { 1765 /* 1766 * See RFC 8881 Section 18.9.4 para 1-2: NFSv4 LINK 1767 * wants a status unique to the object type. 1768 */ 1769 if (type != S_IFDIR) 1770 err = nfserr_file_open; 1771 else 1772 err = nfserr_acces; 1773 } 1774 out: 1775 return err != nfs_ok ? err : nfserrno(host_err); 1776 1777 out_dput: 1778 dput(dnew); 1779 out_unlock: 1780 inode_unlock(dirp); 1781 goto out_drop_write; 1782 } 1783 1784 static void 1785 nfsd_close_cached_files(struct dentry *dentry) 1786 { 1787 struct inode *inode = d_inode(dentry); 1788 1789 if (inode && S_ISREG(inode->i_mode)) 1790 nfsd_file_close_inode_sync(inode); 1791 } 1792 1793 static bool 1794 nfsd_has_cached_files(struct dentry *dentry) 1795 { 1796 bool ret = false; 1797 struct inode *inode = d_inode(dentry); 1798 1799 if (inode && S_ISREG(inode->i_mode)) 1800 ret = nfsd_file_is_cached(inode); 1801 return ret; 1802 } 1803 1804 /** 1805 * nfsd_rename - rename a directory entry 1806 * @rqstp: RPC transaction context 1807 * @ffhp: the file handle of parent directory containing the entry to be renamed 1808 * @fname: the filename of directory entry to be renamed 1809 * @flen: the length of @fname in octets 1810 * @tfhp: the file handle of parent directory to contain the renamed entry 1811 * @tname: the filename of the new entry 1812 * @tlen: the length of @tlen in octets 1813 * 1814 * After this call _both_ ffhp and tfhp need an fh_put. 1815 * 1816 * Returns a generic NFS status code in network byte-order. 1817 */ 1818 __be32 1819 nfsd_rename(struct svc_rqst *rqstp, struct svc_fh *ffhp, char *fname, int flen, 1820 struct svc_fh *tfhp, char *tname, int tlen) 1821 { 1822 struct dentry *fdentry, *tdentry, *odentry, *ndentry, *trap; 1823 struct inode *fdir, *tdir; 1824 int type = S_IFDIR; 1825 __be32 err; 1826 int host_err; 1827 bool close_cached = false; 1828 1829 err = fh_verify(rqstp, ffhp, S_IFDIR, NFSD_MAY_REMOVE); 1830 if (err) 1831 goto out; 1832 err = fh_verify(rqstp, tfhp, S_IFDIR, NFSD_MAY_CREATE); 1833 if (err) 1834 goto out; 1835 1836 fdentry = ffhp->fh_dentry; 1837 fdir = d_inode(fdentry); 1838 1839 tdentry = tfhp->fh_dentry; 1840 tdir = d_inode(tdentry); 1841 1842 err = nfserr_perm; 1843 if (!flen || isdotent(fname, flen) || !tlen || isdotent(tname, tlen)) 1844 goto out; 1845 1846 err = nfserr_xdev; 1847 if (ffhp->fh_export->ex_path.mnt != tfhp->fh_export->ex_path.mnt) 1848 goto out; 1849 if (ffhp->fh_export->ex_path.dentry != tfhp->fh_export->ex_path.dentry) 1850 goto out; 1851 1852 retry: 1853 host_err = fh_want_write(ffhp); 1854 if (host_err) { 1855 err = nfserrno(host_err); 1856 goto out; 1857 } 1858 1859 trap = lock_rename(tdentry, fdentry); 1860 if (IS_ERR(trap)) { 1861 err = nfserr_xdev; 1862 goto out_want_write; 1863 } 1864 err = fh_fill_pre_attrs(ffhp); 1865 if (err != nfs_ok) 1866 goto out_unlock; 1867 err = fh_fill_pre_attrs(tfhp); 1868 if (err != nfs_ok) 1869 goto out_unlock; 1870 1871 odentry = lookup_one(&nop_mnt_idmap, &QSTR_LEN(fname, flen), fdentry); 1872 host_err = PTR_ERR(odentry); 1873 if (IS_ERR(odentry)) 1874 goto out_nfserr; 1875 1876 host_err = -ENOENT; 1877 if (d_really_is_negative(odentry)) 1878 goto out_dput_old; 1879 host_err = -EINVAL; 1880 if (odentry == trap) 1881 goto out_dput_old; 1882 type = d_inode(odentry)->i_mode & S_IFMT; 1883 1884 ndentry = lookup_one(&nop_mnt_idmap, &QSTR_LEN(tname, tlen), tdentry); 1885 host_err = PTR_ERR(ndentry); 1886 if (IS_ERR(ndentry)) 1887 goto out_dput_old; 1888 if (d_inode(ndentry)) 1889 type = d_inode(ndentry)->i_mode & S_IFMT; 1890 host_err = -ENOTEMPTY; 1891 if (ndentry == trap) 1892 goto out_dput_new; 1893 1894 if ((ndentry->d_sb->s_export_op->flags & EXPORT_OP_CLOSE_BEFORE_UNLINK) && 1895 nfsd_has_cached_files(ndentry)) { 1896 close_cached = true; 1897 goto out_dput_old; 1898 } else { 1899 struct renamedata rd = { 1900 .old_mnt_idmap = &nop_mnt_idmap, 1901 .old_dir = fdir, 1902 .old_dentry = odentry, 1903 .new_mnt_idmap = &nop_mnt_idmap, 1904 .new_dir = tdir, 1905 .new_dentry = ndentry, 1906 }; 1907 int retries; 1908 1909 for (retries = 1;;) { 1910 host_err = vfs_rename(&rd); 1911 if (host_err != -EAGAIN || !retries--) 1912 break; 1913 if (!nfsd_wait_for_delegreturn(rqstp, d_inode(odentry))) 1914 break; 1915 } 1916 if (!host_err) { 1917 host_err = commit_metadata(tfhp); 1918 if (!host_err) 1919 host_err = commit_metadata(ffhp); 1920 } 1921 } 1922 out_dput_new: 1923 dput(ndentry); 1924 out_dput_old: 1925 dput(odentry); 1926 out_nfserr: 1927 if (host_err == -EBUSY) { 1928 /* 1929 * See RFC 8881 Section 18.26.4 para 1-3: NFSv4 RENAME 1930 * wants a status unique to the object type. 1931 */ 1932 if (type != S_IFDIR) 1933 err = nfserr_file_open; 1934 else 1935 err = nfserr_acces; 1936 } else { 1937 err = nfserrno(host_err); 1938 } 1939 1940 if (!close_cached) { 1941 fh_fill_post_attrs(ffhp); 1942 fh_fill_post_attrs(tfhp); 1943 } 1944 out_unlock: 1945 unlock_rename(tdentry, fdentry); 1946 out_want_write: 1947 fh_drop_write(ffhp); 1948 1949 /* 1950 * If the target dentry has cached open files, then we need to 1951 * try to close them prior to doing the rename. Final fput 1952 * shouldn't be done with locks held however, so we delay it 1953 * until this point and then reattempt the whole shebang. 1954 */ 1955 if (close_cached) { 1956 close_cached = false; 1957 nfsd_close_cached_files(ndentry); 1958 dput(ndentry); 1959 goto retry; 1960 } 1961 out: 1962 return err; 1963 } 1964 1965 /** 1966 * nfsd_unlink - remove a directory entry 1967 * @rqstp: RPC transaction context 1968 * @fhp: the file handle of the parent directory to be modified 1969 * @type: enforced file type of the object to be removed 1970 * @fname: the name of directory entry to be removed 1971 * @flen: length of @fname in octets 1972 * 1973 * After this call fhp needs an fh_put. 1974 * 1975 * Returns a generic NFS status code in network byte-order. 1976 */ 1977 __be32 1978 nfsd_unlink(struct svc_rqst *rqstp, struct svc_fh *fhp, int type, 1979 char *fname, int flen) 1980 { 1981 struct dentry *dentry, *rdentry; 1982 struct inode *dirp; 1983 struct inode *rinode; 1984 __be32 err; 1985 int host_err; 1986 1987 err = nfserr_acces; 1988 if (!flen || isdotent(fname, flen)) 1989 goto out; 1990 err = fh_verify(rqstp, fhp, S_IFDIR, NFSD_MAY_REMOVE); 1991 if (err) 1992 goto out; 1993 1994 host_err = fh_want_write(fhp); 1995 if (host_err) 1996 goto out_nfserr; 1997 1998 dentry = fhp->fh_dentry; 1999 dirp = d_inode(dentry); 2000 inode_lock_nested(dirp, I_MUTEX_PARENT); 2001 2002 rdentry = lookup_one(&nop_mnt_idmap, &QSTR_LEN(fname, flen), dentry); 2003 host_err = PTR_ERR(rdentry); 2004 if (IS_ERR(rdentry)) 2005 goto out_unlock; 2006 2007 if (d_really_is_negative(rdentry)) { 2008 dput(rdentry); 2009 host_err = -ENOENT; 2010 goto out_unlock; 2011 } 2012 rinode = d_inode(rdentry); 2013 err = fh_fill_pre_attrs(fhp); 2014 if (err != nfs_ok) 2015 goto out_unlock; 2016 2017 ihold(rinode); 2018 if (!type) 2019 type = d_inode(rdentry)->i_mode & S_IFMT; 2020 2021 if (type != S_IFDIR) { 2022 int retries; 2023 2024 if (rdentry->d_sb->s_export_op->flags & EXPORT_OP_CLOSE_BEFORE_UNLINK) 2025 nfsd_close_cached_files(rdentry); 2026 2027 for (retries = 1;;) { 2028 host_err = vfs_unlink(&nop_mnt_idmap, dirp, rdentry, NULL); 2029 if (host_err != -EAGAIN || !retries--) 2030 break; 2031 if (!nfsd_wait_for_delegreturn(rqstp, rinode)) 2032 break; 2033 } 2034 } else { 2035 host_err = vfs_rmdir(&nop_mnt_idmap, dirp, rdentry); 2036 } 2037 fh_fill_post_attrs(fhp); 2038 2039 inode_unlock(dirp); 2040 if (!host_err) 2041 host_err = commit_metadata(fhp); 2042 dput(rdentry); 2043 iput(rinode); /* truncate the inode here */ 2044 2045 out_drop_write: 2046 fh_drop_write(fhp); 2047 out_nfserr: 2048 if (host_err == -EBUSY) { 2049 /* 2050 * See RFC 8881 Section 18.25.4 para 4: NFSv4 REMOVE 2051 * wants a status unique to the object type. 2052 */ 2053 if (type != S_IFDIR) 2054 err = nfserr_file_open; 2055 else 2056 err = nfserr_acces; 2057 } 2058 out: 2059 return err != nfs_ok ? err : nfserrno(host_err); 2060 out_unlock: 2061 inode_unlock(dirp); 2062 goto out_drop_write; 2063 } 2064 2065 /* 2066 * We do this buffering because we must not call back into the file 2067 * system's ->lookup() method from the filldir callback. That may well 2068 * deadlock a number of file systems. 2069 * 2070 * This is based heavily on the implementation of same in XFS. 2071 */ 2072 struct buffered_dirent { 2073 u64 ino; 2074 loff_t offset; 2075 int namlen; 2076 unsigned int d_type; 2077 char name[]; 2078 }; 2079 2080 struct readdir_data { 2081 struct dir_context ctx; 2082 char *dirent; 2083 size_t used; 2084 int full; 2085 }; 2086 2087 static bool nfsd_buffered_filldir(struct dir_context *ctx, const char *name, 2088 int namlen, loff_t offset, u64 ino, 2089 unsigned int d_type) 2090 { 2091 struct readdir_data *buf = 2092 container_of(ctx, struct readdir_data, ctx); 2093 struct buffered_dirent *de = (void *)(buf->dirent + buf->used); 2094 unsigned int reclen; 2095 2096 reclen = ALIGN(sizeof(struct buffered_dirent) + namlen, sizeof(u64)); 2097 if (buf->used + reclen > PAGE_SIZE) { 2098 buf->full = 1; 2099 return false; 2100 } 2101 2102 de->namlen = namlen; 2103 de->offset = offset; 2104 de->ino = ino; 2105 de->d_type = d_type; 2106 memcpy(de->name, name, namlen); 2107 buf->used += reclen; 2108 2109 return true; 2110 } 2111 2112 static __be32 nfsd_buffered_readdir(struct file *file, struct svc_fh *fhp, 2113 nfsd_filldir_t func, struct readdir_cd *cdp, 2114 loff_t *offsetp) 2115 { 2116 struct buffered_dirent *de; 2117 int host_err; 2118 int size; 2119 loff_t offset; 2120 struct readdir_data buf = { 2121 .ctx.actor = nfsd_buffered_filldir, 2122 .dirent = (void *)__get_free_page(GFP_KERNEL) 2123 }; 2124 2125 if (!buf.dirent) 2126 return nfserrno(-ENOMEM); 2127 2128 offset = *offsetp; 2129 2130 while (1) { 2131 unsigned int reclen; 2132 2133 cdp->err = nfserr_eof; /* will be cleared on successful read */ 2134 buf.used = 0; 2135 buf.full = 0; 2136 2137 host_err = iterate_dir(file, &buf.ctx); 2138 if (buf.full) 2139 host_err = 0; 2140 2141 if (host_err < 0) 2142 break; 2143 2144 size = buf.used; 2145 2146 if (!size) 2147 break; 2148 2149 de = (struct buffered_dirent *)buf.dirent; 2150 while (size > 0) { 2151 offset = de->offset; 2152 2153 if (func(cdp, de->name, de->namlen, de->offset, 2154 de->ino, de->d_type)) 2155 break; 2156 2157 if (cdp->err != nfs_ok) 2158 break; 2159 2160 trace_nfsd_dirent(fhp, de->ino, de->name, de->namlen); 2161 2162 reclen = ALIGN(sizeof(*de) + de->namlen, 2163 sizeof(u64)); 2164 size -= reclen; 2165 de = (struct buffered_dirent *)((char *)de + reclen); 2166 } 2167 if (size > 0) /* We bailed out early */ 2168 break; 2169 2170 offset = vfs_llseek(file, 0, SEEK_CUR); 2171 } 2172 2173 free_page((unsigned long)(buf.dirent)); 2174 2175 if (host_err) 2176 return nfserrno(host_err); 2177 2178 *offsetp = offset; 2179 return cdp->err; 2180 } 2181 2182 /** 2183 * nfsd_readdir - Read entries from a directory 2184 * @rqstp: RPC transaction context 2185 * @fhp: NFS file handle of directory to be read 2186 * @offsetp: OUT: seek offset of final entry that was read 2187 * @cdp: OUT: an eof error value 2188 * @func: entry filler actor 2189 * 2190 * This implementation ignores the NFSv3/4 verifier cookie. 2191 * 2192 * NB: normal system calls hold file->f_pos_lock when calling 2193 * ->iterate_shared and ->llseek, but nfsd_readdir() does not. 2194 * Because the struct file acquired here is not visible to other 2195 * threads, it's internal state does not need mutex protection. 2196 * 2197 * Returns nfs_ok on success, otherwise an nfsstat code is 2198 * returned. 2199 */ 2200 __be32 2201 nfsd_readdir(struct svc_rqst *rqstp, struct svc_fh *fhp, loff_t *offsetp, 2202 struct readdir_cd *cdp, nfsd_filldir_t func) 2203 { 2204 __be32 err; 2205 struct file *file; 2206 loff_t offset = *offsetp; 2207 int may_flags = NFSD_MAY_READ; 2208 2209 err = nfsd_open(rqstp, fhp, S_IFDIR, may_flags, &file); 2210 if (err) 2211 goto out; 2212 2213 if (fhp->fh_64bit_cookies) 2214 file->f_mode |= FMODE_64BITHASH; 2215 else 2216 file->f_mode |= FMODE_32BITHASH; 2217 2218 offset = vfs_llseek(file, offset, SEEK_SET); 2219 if (offset < 0) { 2220 err = nfserrno((int)offset); 2221 goto out_close; 2222 } 2223 2224 err = nfsd_buffered_readdir(file, fhp, func, cdp, offsetp); 2225 2226 if (err == nfserr_eof || err == nfserr_toosmall) 2227 err = nfs_ok; /* can still be found in ->err */ 2228 out_close: 2229 nfsd_filp_close(file); 2230 out: 2231 return err; 2232 } 2233 2234 /** 2235 * nfsd_filp_close: close a file synchronously 2236 * @fp: the file to close 2237 * 2238 * nfsd_filp_close() is similar in behaviour to filp_close(). 2239 * The difference is that if this is the final close on the 2240 * file, the that finalisation happens immediately, rather then 2241 * being handed over to a work_queue, as it the case for 2242 * filp_close(). 2243 * When a user-space process closes a file (even when using 2244 * filp_close() the finalisation happens before returning to 2245 * userspace, so it is effectively synchronous. When a kernel thread 2246 * uses file_close(), on the other hand, the handling is completely 2247 * asynchronous. This means that any cost imposed by that finalisation 2248 * is not imposed on the nfsd thread, and nfsd could potentually 2249 * close files more quickly than the work queue finalises the close, 2250 * which would lead to unbounded growth in the queue. 2251 * 2252 * In some contexts is it not safe to synchronously wait for 2253 * close finalisation (see comment for __fput_sync()), but nfsd 2254 * does not match those contexts. In partcilarly it does not, at the 2255 * time that this function is called, hold and locks and no finalisation 2256 * of any file, socket, or device driver would have any cause to wait 2257 * for nfsd to make progress. 2258 */ 2259 void nfsd_filp_close(struct file *fp) 2260 { 2261 get_file(fp); 2262 filp_close(fp, NULL); 2263 __fput_sync(fp); 2264 } 2265 2266 /* 2267 * Get file system stats 2268 * N.B. After this call fhp needs an fh_put 2269 */ 2270 __be32 2271 nfsd_statfs(struct svc_rqst *rqstp, struct svc_fh *fhp, struct kstatfs *stat, int access) 2272 { 2273 __be32 err; 2274 2275 err = fh_verify(rqstp, fhp, 0, NFSD_MAY_NOP | access); 2276 if (!err) { 2277 struct path path = { 2278 .mnt = fhp->fh_export->ex_path.mnt, 2279 .dentry = fhp->fh_dentry, 2280 }; 2281 if (vfs_statfs(&path, stat)) 2282 err = nfserr_io; 2283 } 2284 return err; 2285 } 2286 2287 static int exp_rdonly(struct svc_cred *cred, struct svc_export *exp) 2288 { 2289 return nfsexp_flags(cred, exp) & NFSEXP_READONLY; 2290 } 2291 2292 #ifdef CONFIG_NFSD_V4 2293 /* 2294 * Helper function to translate error numbers. In the case of xattr operations, 2295 * some error codes need to be translated outside of the standard translations. 2296 * 2297 * ENODATA needs to be translated to nfserr_noxattr. 2298 * E2BIG to nfserr_xattr2big. 2299 * 2300 * Additionally, vfs_listxattr can return -ERANGE. This means that the 2301 * file has too many extended attributes to retrieve inside an 2302 * XATTR_LIST_MAX sized buffer. This is a bug in the xattr implementation: 2303 * filesystems will allow the adding of extended attributes until they hit 2304 * their own internal limit. This limit may be larger than XATTR_LIST_MAX. 2305 * So, at that point, the attributes are present and valid, but can't 2306 * be retrieved using listxattr, since the upper level xattr code enforces 2307 * the XATTR_LIST_MAX limit. 2308 * 2309 * This bug means that we need to deal with listxattr returning -ERANGE. The 2310 * best mapping is to return TOOSMALL. 2311 */ 2312 static __be32 2313 nfsd_xattr_errno(int err) 2314 { 2315 switch (err) { 2316 case -ENODATA: 2317 return nfserr_noxattr; 2318 case -E2BIG: 2319 return nfserr_xattr2big; 2320 case -ERANGE: 2321 return nfserr_toosmall; 2322 } 2323 return nfserrno(err); 2324 } 2325 2326 /* 2327 * Retrieve the specified user extended attribute. To avoid always 2328 * having to allocate the maximum size (since we are not getting 2329 * a maximum size from the RPC), do a probe + alloc. Hold a reader 2330 * lock on i_rwsem to prevent the extended attribute from changing 2331 * size while we're doing this. 2332 */ 2333 __be32 2334 nfsd_getxattr(struct svc_rqst *rqstp, struct svc_fh *fhp, char *name, 2335 void **bufp, int *lenp) 2336 { 2337 ssize_t len; 2338 __be32 err; 2339 char *buf; 2340 struct inode *inode; 2341 struct dentry *dentry; 2342 2343 err = fh_verify(rqstp, fhp, 0, NFSD_MAY_READ); 2344 if (err) 2345 return err; 2346 2347 err = nfs_ok; 2348 dentry = fhp->fh_dentry; 2349 inode = d_inode(dentry); 2350 2351 inode_lock_shared(inode); 2352 2353 len = vfs_getxattr(&nop_mnt_idmap, dentry, name, NULL, 0); 2354 2355 /* 2356 * Zero-length attribute, just return. 2357 */ 2358 if (len == 0) { 2359 *bufp = NULL; 2360 *lenp = 0; 2361 goto out; 2362 } 2363 2364 if (len < 0) { 2365 err = nfsd_xattr_errno(len); 2366 goto out; 2367 } 2368 2369 if (len > *lenp) { 2370 err = nfserr_toosmall; 2371 goto out; 2372 } 2373 2374 buf = kvmalloc(len, GFP_KERNEL); 2375 if (buf == NULL) { 2376 err = nfserr_jukebox; 2377 goto out; 2378 } 2379 2380 len = vfs_getxattr(&nop_mnt_idmap, dentry, name, buf, len); 2381 if (len <= 0) { 2382 kvfree(buf); 2383 buf = NULL; 2384 err = nfsd_xattr_errno(len); 2385 } 2386 2387 *lenp = len; 2388 *bufp = buf; 2389 2390 out: 2391 inode_unlock_shared(inode); 2392 2393 return err; 2394 } 2395 2396 /* 2397 * Retrieve the xattr names. Since we can't know how many are 2398 * user extended attributes, we must get all attributes here, 2399 * and have the XDR encode filter out the "user." ones. 2400 * 2401 * While this could always just allocate an XATTR_LIST_MAX 2402 * buffer, that's a waste, so do a probe + allocate. To 2403 * avoid any changes between the probe and allocate, wrap 2404 * this in inode_lock. 2405 */ 2406 __be32 2407 nfsd_listxattr(struct svc_rqst *rqstp, struct svc_fh *fhp, char **bufp, 2408 int *lenp) 2409 { 2410 ssize_t len; 2411 __be32 err; 2412 char *buf; 2413 struct inode *inode; 2414 struct dentry *dentry; 2415 2416 err = fh_verify(rqstp, fhp, 0, NFSD_MAY_READ); 2417 if (err) 2418 return err; 2419 2420 dentry = fhp->fh_dentry; 2421 inode = d_inode(dentry); 2422 *lenp = 0; 2423 2424 inode_lock_shared(inode); 2425 2426 len = vfs_listxattr(dentry, NULL, 0); 2427 if (len <= 0) { 2428 err = nfsd_xattr_errno(len); 2429 goto out; 2430 } 2431 2432 if (len > XATTR_LIST_MAX) { 2433 err = nfserr_xattr2big; 2434 goto out; 2435 } 2436 2437 buf = kvmalloc(len, GFP_KERNEL); 2438 if (buf == NULL) { 2439 err = nfserr_jukebox; 2440 goto out; 2441 } 2442 2443 len = vfs_listxattr(dentry, buf, len); 2444 if (len <= 0) { 2445 kvfree(buf); 2446 err = nfsd_xattr_errno(len); 2447 goto out; 2448 } 2449 2450 *lenp = len; 2451 *bufp = buf; 2452 2453 err = nfs_ok; 2454 out: 2455 inode_unlock_shared(inode); 2456 2457 return err; 2458 } 2459 2460 /** 2461 * nfsd_removexattr - Remove an extended attribute 2462 * @rqstp: RPC transaction being executed 2463 * @fhp: NFS filehandle of object with xattr to remove 2464 * @name: name of xattr to remove (NUL-terminate) 2465 * 2466 * Pass in a NULL pointer for delegated_inode, and let the client deal 2467 * with NFS4ERR_DELAY (same as with e.g. setattr and remove). 2468 * 2469 * Returns nfs_ok on success, or an nfsstat in network byte order. 2470 */ 2471 __be32 2472 nfsd_removexattr(struct svc_rqst *rqstp, struct svc_fh *fhp, char *name) 2473 { 2474 __be32 err; 2475 int ret; 2476 2477 err = fh_verify(rqstp, fhp, 0, NFSD_MAY_WRITE); 2478 if (err) 2479 return err; 2480 2481 ret = fh_want_write(fhp); 2482 if (ret) 2483 return nfserrno(ret); 2484 2485 inode_lock(fhp->fh_dentry->d_inode); 2486 err = fh_fill_pre_attrs(fhp); 2487 if (err != nfs_ok) 2488 goto out_unlock; 2489 ret = __vfs_removexattr_locked(&nop_mnt_idmap, fhp->fh_dentry, 2490 name, NULL); 2491 err = nfsd_xattr_errno(ret); 2492 fh_fill_post_attrs(fhp); 2493 out_unlock: 2494 inode_unlock(fhp->fh_dentry->d_inode); 2495 fh_drop_write(fhp); 2496 2497 return err; 2498 } 2499 2500 __be32 2501 nfsd_setxattr(struct svc_rqst *rqstp, struct svc_fh *fhp, char *name, 2502 void *buf, u32 len, u32 flags) 2503 { 2504 __be32 err; 2505 int ret; 2506 2507 err = fh_verify(rqstp, fhp, 0, NFSD_MAY_WRITE); 2508 if (err) 2509 return err; 2510 2511 ret = fh_want_write(fhp); 2512 if (ret) 2513 return nfserrno(ret); 2514 inode_lock(fhp->fh_dentry->d_inode); 2515 err = fh_fill_pre_attrs(fhp); 2516 if (err != nfs_ok) 2517 goto out_unlock; 2518 ret = __vfs_setxattr_locked(&nop_mnt_idmap, fhp->fh_dentry, 2519 name, buf, len, flags, NULL); 2520 fh_fill_post_attrs(fhp); 2521 err = nfsd_xattr_errno(ret); 2522 out_unlock: 2523 inode_unlock(fhp->fh_dentry->d_inode); 2524 fh_drop_write(fhp); 2525 return err; 2526 } 2527 #endif 2528 2529 /* 2530 * Check for a user's access permissions to this inode. 2531 */ 2532 __be32 2533 nfsd_permission(struct svc_cred *cred, struct svc_export *exp, 2534 struct dentry *dentry, int acc) 2535 { 2536 struct inode *inode = d_inode(dentry); 2537 int err; 2538 2539 if ((acc & NFSD_MAY_MASK) == NFSD_MAY_NOP) 2540 return 0; 2541 #if 0 2542 dprintk("nfsd: permission 0x%x%s%s%s%s%s%s%s mode 0%o%s%s%s\n", 2543 acc, 2544 (acc & NFSD_MAY_READ)? " read" : "", 2545 (acc & NFSD_MAY_WRITE)? " write" : "", 2546 (acc & NFSD_MAY_EXEC)? " exec" : "", 2547 (acc & NFSD_MAY_SATTR)? " sattr" : "", 2548 (acc & NFSD_MAY_TRUNC)? " trunc" : "", 2549 (acc & NFSD_MAY_NLM)? " nlm" : "", 2550 (acc & NFSD_MAY_OWNER_OVERRIDE)? " owneroverride" : "", 2551 inode->i_mode, 2552 IS_IMMUTABLE(inode)? " immut" : "", 2553 IS_APPEND(inode)? " append" : "", 2554 __mnt_is_readonly(exp->ex_path.mnt)? " ro" : ""); 2555 dprintk(" owner %d/%d user %d/%d\n", 2556 inode->i_uid, inode->i_gid, current_fsuid(), current_fsgid()); 2557 #endif 2558 2559 /* Normally we reject any write/sattr etc access on a read-only file 2560 * system. But if it is IRIX doing check on write-access for a 2561 * device special file, we ignore rofs. 2562 */ 2563 if (!(acc & NFSD_MAY_LOCAL_ACCESS)) 2564 if (acc & (NFSD_MAY_WRITE | NFSD_MAY_SATTR | NFSD_MAY_TRUNC)) { 2565 if (exp_rdonly(cred, exp) || 2566 __mnt_is_readonly(exp->ex_path.mnt)) 2567 return nfserr_rofs; 2568 if (/* (acc & NFSD_MAY_WRITE) && */ IS_IMMUTABLE(inode)) 2569 return nfserr_perm; 2570 } 2571 if ((acc & NFSD_MAY_TRUNC) && IS_APPEND(inode)) 2572 return nfserr_perm; 2573 2574 /* 2575 * The file owner always gets access permission for accesses that 2576 * would normally be checked at open time. This is to make 2577 * file access work even when the client has done a fchmod(fd, 0). 2578 * 2579 * However, `cp foo bar' should fail nevertheless when bar is 2580 * readonly. A sensible way to do this might be to reject all 2581 * attempts to truncate a read-only file, because a creat() call 2582 * always implies file truncation. 2583 * ... but this isn't really fair. A process may reasonably call 2584 * ftruncate on an open file descriptor on a file with perm 000. 2585 * We must trust the client to do permission checking - using "ACCESS" 2586 * with NFSv3. 2587 */ 2588 if ((acc & NFSD_MAY_OWNER_OVERRIDE) && 2589 uid_eq(inode->i_uid, current_fsuid())) 2590 return 0; 2591 2592 /* This assumes NFSD_MAY_{READ,WRITE,EXEC} == MAY_{READ,WRITE,EXEC} */ 2593 err = inode_permission(&nop_mnt_idmap, inode, 2594 acc & (MAY_READ | MAY_WRITE | MAY_EXEC)); 2595 2596 /* Allow read access to binaries even when mode 111 */ 2597 if (err == -EACCES && S_ISREG(inode->i_mode) && 2598 (acc == (NFSD_MAY_READ | NFSD_MAY_OWNER_OVERRIDE) || 2599 acc == (NFSD_MAY_READ | NFSD_MAY_READ_IF_EXEC))) 2600 err = inode_permission(&nop_mnt_idmap, inode, MAY_EXEC); 2601 2602 return err? nfserrno(err) : 0; 2603 } 2604