1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Request reply cache. This is currently a global cache, but this may 4 * change in the future and be a per-client cache. 5 * 6 * This code is heavily inspired by the 44BSD implementation, although 7 * it does things a bit differently. 8 * 9 * Copyright (C) 1995, 1996 Olaf Kirch <okir@monad.swb.de> 10 */ 11 12 #include <linux/sunrpc/svc_xprt.h> 13 #include <linux/slab.h> 14 #include <linux/vmalloc.h> 15 #include <linux/sunrpc/addr.h> 16 #include <linux/highmem.h> 17 #include <linux/log2.h> 18 #include <linux/hash.h> 19 #include <net/checksum.h> 20 21 #include "nfsd.h" 22 #include "cache.h" 23 #include "trace.h" 24 25 /* 26 * We use this value to determine the number of hash buckets from the max 27 * cache size, the idea being that when the cache is at its maximum number 28 * of entries, then this should be the average number of entries per bucket. 29 */ 30 #define TARGET_BUCKET_SIZE 64 31 32 struct nfsd_drc_bucket { 33 struct rb_root rb_head; 34 struct list_head lru_head; 35 spinlock_t cache_lock; 36 }; 37 38 static struct kmem_cache *drc_slab; 39 40 static int nfsd_cache_append(struct svc_rqst *rqstp, struct kvec *vec); 41 static unsigned long nfsd_reply_cache_count(struct shrinker *shrink, 42 struct shrink_control *sc); 43 static unsigned long nfsd_reply_cache_scan(struct shrinker *shrink, 44 struct shrink_control *sc); 45 46 /* 47 * Put a cap on the size of the DRC based on the amount of available 48 * low memory in the machine. 49 * 50 * 64MB: 8192 51 * 128MB: 11585 52 * 256MB: 16384 53 * 512MB: 23170 54 * 1GB: 32768 55 * 2GB: 46340 56 * 4GB: 65536 57 * 8GB: 92681 58 * 16GB: 131072 59 * 60 * ...with a hard cap of 256k entries. In the worst case, each entry will be 61 * ~1k, so the above numbers should give a rough max of the amount of memory 62 * used in k. 63 * 64 * XXX: these limits are per-container, so memory used will increase 65 * linearly with number of containers. Maybe that's OK. 66 */ 67 static unsigned int 68 nfsd_cache_size_limit(void) 69 { 70 unsigned int limit; 71 unsigned long low_pages = totalram_pages() - totalhigh_pages(); 72 73 limit = (16 * int_sqrt(low_pages)) << (PAGE_SHIFT-10); 74 return min_t(unsigned int, limit, 256*1024); 75 } 76 77 /* 78 * Compute the number of hash buckets we need. Divide the max cachesize by 79 * the "target" max bucket size, and round up to next power of two. 80 */ 81 static unsigned int 82 nfsd_hashsize(unsigned int limit) 83 { 84 return roundup_pow_of_two(limit / TARGET_BUCKET_SIZE); 85 } 86 87 static u32 88 nfsd_cache_hash(__be32 xid, struct nfsd_net *nn) 89 { 90 return hash_32(be32_to_cpu(xid), nn->maskbits); 91 } 92 93 static struct svc_cacherep * 94 nfsd_reply_cache_alloc(struct svc_rqst *rqstp, __wsum csum, 95 struct nfsd_net *nn) 96 { 97 struct svc_cacherep *rp; 98 99 rp = kmem_cache_alloc(drc_slab, GFP_KERNEL); 100 if (rp) { 101 rp->c_state = RC_UNUSED; 102 rp->c_type = RC_NOCACHE; 103 RB_CLEAR_NODE(&rp->c_node); 104 INIT_LIST_HEAD(&rp->c_lru); 105 106 memset(&rp->c_key, 0, sizeof(rp->c_key)); 107 rp->c_key.k_xid = rqstp->rq_xid; 108 rp->c_key.k_proc = rqstp->rq_proc; 109 rpc_copy_addr((struct sockaddr *)&rp->c_key.k_addr, svc_addr(rqstp)); 110 rpc_set_port((struct sockaddr *)&rp->c_key.k_addr, rpc_get_port(svc_addr(rqstp))); 111 rp->c_key.k_prot = rqstp->rq_prot; 112 rp->c_key.k_vers = rqstp->rq_vers; 113 rp->c_key.k_len = rqstp->rq_arg.len; 114 rp->c_key.k_csum = csum; 115 } 116 return rp; 117 } 118 119 static void 120 nfsd_reply_cache_free_locked(struct nfsd_drc_bucket *b, struct svc_cacherep *rp, 121 struct nfsd_net *nn) 122 { 123 if (rp->c_type == RC_REPLBUFF && rp->c_replvec.iov_base) { 124 nn->drc_mem_usage -= rp->c_replvec.iov_len; 125 kfree(rp->c_replvec.iov_base); 126 } 127 if (rp->c_state != RC_UNUSED) { 128 rb_erase(&rp->c_node, &b->rb_head); 129 list_del(&rp->c_lru); 130 atomic_dec(&nn->num_drc_entries); 131 nn->drc_mem_usage -= sizeof(*rp); 132 } 133 kmem_cache_free(drc_slab, rp); 134 } 135 136 static void 137 nfsd_reply_cache_free(struct nfsd_drc_bucket *b, struct svc_cacherep *rp, 138 struct nfsd_net *nn) 139 { 140 spin_lock(&b->cache_lock); 141 nfsd_reply_cache_free_locked(b, rp, nn); 142 spin_unlock(&b->cache_lock); 143 } 144 145 int nfsd_drc_slab_create(void) 146 { 147 drc_slab = kmem_cache_create("nfsd_drc", 148 sizeof(struct svc_cacherep), 0, 0, NULL); 149 return drc_slab ? 0: -ENOMEM; 150 } 151 152 void nfsd_drc_slab_free(void) 153 { 154 kmem_cache_destroy(drc_slab); 155 } 156 157 int nfsd_reply_cache_init(struct nfsd_net *nn) 158 { 159 unsigned int hashsize; 160 unsigned int i; 161 int status = 0; 162 163 nn->max_drc_entries = nfsd_cache_size_limit(); 164 atomic_set(&nn->num_drc_entries, 0); 165 hashsize = nfsd_hashsize(nn->max_drc_entries); 166 nn->maskbits = ilog2(hashsize); 167 168 nn->nfsd_reply_cache_shrinker.scan_objects = nfsd_reply_cache_scan; 169 nn->nfsd_reply_cache_shrinker.count_objects = nfsd_reply_cache_count; 170 nn->nfsd_reply_cache_shrinker.seeks = 1; 171 status = register_shrinker(&nn->nfsd_reply_cache_shrinker); 172 if (status) 173 goto out_nomem; 174 175 nn->drc_hashtbl = kcalloc(hashsize, 176 sizeof(*nn->drc_hashtbl), GFP_KERNEL); 177 if (!nn->drc_hashtbl) { 178 nn->drc_hashtbl = vzalloc(array_size(hashsize, 179 sizeof(*nn->drc_hashtbl))); 180 if (!nn->drc_hashtbl) 181 goto out_shrinker; 182 } 183 184 for (i = 0; i < hashsize; i++) { 185 INIT_LIST_HEAD(&nn->drc_hashtbl[i].lru_head); 186 spin_lock_init(&nn->drc_hashtbl[i].cache_lock); 187 } 188 nn->drc_hashsize = hashsize; 189 190 return 0; 191 out_shrinker: 192 unregister_shrinker(&nn->nfsd_reply_cache_shrinker); 193 out_nomem: 194 printk(KERN_ERR "nfsd: failed to allocate reply cache\n"); 195 return -ENOMEM; 196 } 197 198 void nfsd_reply_cache_shutdown(struct nfsd_net *nn) 199 { 200 struct svc_cacherep *rp; 201 unsigned int i; 202 203 unregister_shrinker(&nn->nfsd_reply_cache_shrinker); 204 205 for (i = 0; i < nn->drc_hashsize; i++) { 206 struct list_head *head = &nn->drc_hashtbl[i].lru_head; 207 while (!list_empty(head)) { 208 rp = list_first_entry(head, struct svc_cacherep, c_lru); 209 nfsd_reply_cache_free_locked(&nn->drc_hashtbl[i], 210 rp, nn); 211 } 212 } 213 214 kvfree(nn->drc_hashtbl); 215 nn->drc_hashtbl = NULL; 216 nn->drc_hashsize = 0; 217 218 } 219 220 /* 221 * Move cache entry to end of LRU list, and queue the cleaner to run if it's 222 * not already scheduled. 223 */ 224 static void 225 lru_put_end(struct nfsd_drc_bucket *b, struct svc_cacherep *rp) 226 { 227 rp->c_timestamp = jiffies; 228 list_move_tail(&rp->c_lru, &b->lru_head); 229 } 230 231 static long 232 prune_bucket(struct nfsd_drc_bucket *b, struct nfsd_net *nn) 233 { 234 struct svc_cacherep *rp, *tmp; 235 long freed = 0; 236 237 list_for_each_entry_safe(rp, tmp, &b->lru_head, c_lru) { 238 /* 239 * Don't free entries attached to calls that are still 240 * in-progress, but do keep scanning the list. 241 */ 242 if (rp->c_state == RC_INPROG) 243 continue; 244 if (atomic_read(&nn->num_drc_entries) <= nn->max_drc_entries && 245 time_before(jiffies, rp->c_timestamp + RC_EXPIRE)) 246 break; 247 nfsd_reply_cache_free_locked(b, rp, nn); 248 freed++; 249 } 250 return freed; 251 } 252 253 /* 254 * Walk the LRU list and prune off entries that are older than RC_EXPIRE. 255 * Also prune the oldest ones when the total exceeds the max number of entries. 256 */ 257 static long 258 prune_cache_entries(struct nfsd_net *nn) 259 { 260 unsigned int i; 261 long freed = 0; 262 263 for (i = 0; i < nn->drc_hashsize; i++) { 264 struct nfsd_drc_bucket *b = &nn->drc_hashtbl[i]; 265 266 if (list_empty(&b->lru_head)) 267 continue; 268 spin_lock(&b->cache_lock); 269 freed += prune_bucket(b, nn); 270 spin_unlock(&b->cache_lock); 271 } 272 return freed; 273 } 274 275 static unsigned long 276 nfsd_reply_cache_count(struct shrinker *shrink, struct shrink_control *sc) 277 { 278 struct nfsd_net *nn = container_of(shrink, 279 struct nfsd_net, nfsd_reply_cache_shrinker); 280 281 return atomic_read(&nn->num_drc_entries); 282 } 283 284 static unsigned long 285 nfsd_reply_cache_scan(struct shrinker *shrink, struct shrink_control *sc) 286 { 287 struct nfsd_net *nn = container_of(shrink, 288 struct nfsd_net, nfsd_reply_cache_shrinker); 289 290 return prune_cache_entries(nn); 291 } 292 /* 293 * Walk an xdr_buf and get a CRC for at most the first RC_CSUMLEN bytes 294 */ 295 static __wsum 296 nfsd_cache_csum(struct svc_rqst *rqstp) 297 { 298 int idx; 299 unsigned int base; 300 __wsum csum; 301 struct xdr_buf *buf = &rqstp->rq_arg; 302 const unsigned char *p = buf->head[0].iov_base; 303 size_t csum_len = min_t(size_t, buf->head[0].iov_len + buf->page_len, 304 RC_CSUMLEN); 305 size_t len = min(buf->head[0].iov_len, csum_len); 306 307 /* rq_arg.head first */ 308 csum = csum_partial(p, len, 0); 309 csum_len -= len; 310 311 /* Continue into page array */ 312 idx = buf->page_base / PAGE_SIZE; 313 base = buf->page_base & ~PAGE_MASK; 314 while (csum_len) { 315 p = page_address(buf->pages[idx]) + base; 316 len = min_t(size_t, PAGE_SIZE - base, csum_len); 317 csum = csum_partial(p, len, csum); 318 csum_len -= len; 319 base = 0; 320 ++idx; 321 } 322 return csum; 323 } 324 325 static int 326 nfsd_cache_key_cmp(const struct svc_cacherep *key, 327 const struct svc_cacherep *rp, struct nfsd_net *nn) 328 { 329 if (key->c_key.k_xid == rp->c_key.k_xid && 330 key->c_key.k_csum != rp->c_key.k_csum) { 331 ++nn->payload_misses; 332 trace_nfsd_drc_mismatch(nn, key, rp); 333 } 334 335 return memcmp(&key->c_key, &rp->c_key, sizeof(key->c_key)); 336 } 337 338 /* 339 * Search the request hash for an entry that matches the given rqstp. 340 * Must be called with cache_lock held. Returns the found entry or 341 * inserts an empty key on failure. 342 */ 343 static struct svc_cacherep * 344 nfsd_cache_insert(struct nfsd_drc_bucket *b, struct svc_cacherep *key, 345 struct nfsd_net *nn) 346 { 347 struct svc_cacherep *rp, *ret = key; 348 struct rb_node **p = &b->rb_head.rb_node, 349 *parent = NULL; 350 unsigned int entries = 0; 351 int cmp; 352 353 while (*p != NULL) { 354 ++entries; 355 parent = *p; 356 rp = rb_entry(parent, struct svc_cacherep, c_node); 357 358 cmp = nfsd_cache_key_cmp(key, rp, nn); 359 if (cmp < 0) 360 p = &parent->rb_left; 361 else if (cmp > 0) 362 p = &parent->rb_right; 363 else { 364 ret = rp; 365 goto out; 366 } 367 } 368 rb_link_node(&key->c_node, parent, p); 369 rb_insert_color(&key->c_node, &b->rb_head); 370 out: 371 /* tally hash chain length stats */ 372 if (entries > nn->longest_chain) { 373 nn->longest_chain = entries; 374 nn->longest_chain_cachesize = atomic_read(&nn->num_drc_entries); 375 } else if (entries == nn->longest_chain) { 376 /* prefer to keep the smallest cachesize possible here */ 377 nn->longest_chain_cachesize = min_t(unsigned int, 378 nn->longest_chain_cachesize, 379 atomic_read(&nn->num_drc_entries)); 380 } 381 382 lru_put_end(b, ret); 383 return ret; 384 } 385 386 /** 387 * nfsd_cache_lookup - Find an entry in the duplicate reply cache 388 * @rqstp: Incoming Call to find 389 * 390 * Try to find an entry matching the current call in the cache. When none 391 * is found, we try to grab the oldest expired entry off the LRU list. If 392 * a suitable one isn't there, then drop the cache_lock and allocate a 393 * new one, then search again in case one got inserted while this thread 394 * didn't hold the lock. 395 * 396 * Return values: 397 * %RC_DOIT: Process the request normally 398 * %RC_REPLY: Reply from cache 399 * %RC_DROPIT: Do not process the request further 400 */ 401 int nfsd_cache_lookup(struct svc_rqst *rqstp) 402 { 403 struct nfsd_net *nn = net_generic(SVC_NET(rqstp), nfsd_net_id); 404 struct svc_cacherep *rp, *found; 405 __be32 xid = rqstp->rq_xid; 406 __wsum csum; 407 u32 hash = nfsd_cache_hash(xid, nn); 408 struct nfsd_drc_bucket *b = &nn->drc_hashtbl[hash]; 409 int type = rqstp->rq_cachetype; 410 int rtn = RC_DOIT; 411 412 rqstp->rq_cacherep = NULL; 413 if (type == RC_NOCACHE) { 414 nfsdstats.rcnocache++; 415 goto out; 416 } 417 418 csum = nfsd_cache_csum(rqstp); 419 420 /* 421 * Since the common case is a cache miss followed by an insert, 422 * preallocate an entry. 423 */ 424 rp = nfsd_reply_cache_alloc(rqstp, csum, nn); 425 if (!rp) 426 goto out; 427 428 spin_lock(&b->cache_lock); 429 found = nfsd_cache_insert(b, rp, nn); 430 if (found != rp) { 431 nfsd_reply_cache_free_locked(NULL, rp, nn); 432 rp = found; 433 goto found_entry; 434 } 435 436 nfsdstats.rcmisses++; 437 rqstp->rq_cacherep = rp; 438 rp->c_state = RC_INPROG; 439 440 atomic_inc(&nn->num_drc_entries); 441 nn->drc_mem_usage += sizeof(*rp); 442 443 /* go ahead and prune the cache */ 444 prune_bucket(b, nn); 445 446 out_unlock: 447 spin_unlock(&b->cache_lock); 448 out: 449 return rtn; 450 451 found_entry: 452 /* We found a matching entry which is either in progress or done. */ 453 nfsdstats.rchits++; 454 rtn = RC_DROPIT; 455 456 /* Request being processed */ 457 if (rp->c_state == RC_INPROG) 458 goto out_trace; 459 460 /* From the hall of fame of impractical attacks: 461 * Is this a user who tries to snoop on the cache? */ 462 rtn = RC_DOIT; 463 if (!test_bit(RQ_SECURE, &rqstp->rq_flags) && rp->c_secure) 464 goto out_trace; 465 466 /* Compose RPC reply header */ 467 switch (rp->c_type) { 468 case RC_NOCACHE: 469 break; 470 case RC_REPLSTAT: 471 svc_putu32(&rqstp->rq_res.head[0], rp->c_replstat); 472 rtn = RC_REPLY; 473 break; 474 case RC_REPLBUFF: 475 if (!nfsd_cache_append(rqstp, &rp->c_replvec)) 476 goto out_unlock; /* should not happen */ 477 rtn = RC_REPLY; 478 break; 479 default: 480 WARN_ONCE(1, "nfsd: bad repcache type %d\n", rp->c_type); 481 } 482 483 out_trace: 484 trace_nfsd_drc_found(nn, rqstp, rtn); 485 goto out_unlock; 486 } 487 488 /** 489 * nfsd_cache_update - Update an entry in the duplicate reply cache. 490 * @rqstp: svc_rqst with a finished Reply 491 * @cachetype: which cache to update 492 * @statp: Reply's status code 493 * 494 * This is called from nfsd_dispatch when the procedure has been 495 * executed and the complete reply is in rqstp->rq_res. 496 * 497 * We're copying around data here rather than swapping buffers because 498 * the toplevel loop requires max-sized buffers, which would be a waste 499 * of memory for a cache with a max reply size of 100 bytes (diropokres). 500 * 501 * If we should start to use different types of cache entries tailored 502 * specifically for attrstat and fh's, we may save even more space. 503 * 504 * Also note that a cachetype of RC_NOCACHE can legally be passed when 505 * nfsd failed to encode a reply that otherwise would have been cached. 506 * In this case, nfsd_cache_update is called with statp == NULL. 507 */ 508 void nfsd_cache_update(struct svc_rqst *rqstp, int cachetype, __be32 *statp) 509 { 510 struct nfsd_net *nn = net_generic(SVC_NET(rqstp), nfsd_net_id); 511 struct svc_cacherep *rp = rqstp->rq_cacherep; 512 struct kvec *resv = &rqstp->rq_res.head[0], *cachv; 513 u32 hash; 514 struct nfsd_drc_bucket *b; 515 int len; 516 size_t bufsize = 0; 517 518 if (!rp) 519 return; 520 521 hash = nfsd_cache_hash(rp->c_key.k_xid, nn); 522 b = &nn->drc_hashtbl[hash]; 523 524 len = resv->iov_len - ((char*)statp - (char*)resv->iov_base); 525 len >>= 2; 526 527 /* Don't cache excessive amounts of data and XDR failures */ 528 if (!statp || len > (256 >> 2)) { 529 nfsd_reply_cache_free(b, rp, nn); 530 return; 531 } 532 533 switch (cachetype) { 534 case RC_REPLSTAT: 535 if (len != 1) 536 printk("nfsd: RC_REPLSTAT/reply len %d!\n",len); 537 rp->c_replstat = *statp; 538 break; 539 case RC_REPLBUFF: 540 cachv = &rp->c_replvec; 541 bufsize = len << 2; 542 cachv->iov_base = kmalloc(bufsize, GFP_KERNEL); 543 if (!cachv->iov_base) { 544 nfsd_reply_cache_free(b, rp, nn); 545 return; 546 } 547 cachv->iov_len = bufsize; 548 memcpy(cachv->iov_base, statp, bufsize); 549 break; 550 case RC_NOCACHE: 551 nfsd_reply_cache_free(b, rp, nn); 552 return; 553 } 554 spin_lock(&b->cache_lock); 555 nn->drc_mem_usage += bufsize; 556 lru_put_end(b, rp); 557 rp->c_secure = test_bit(RQ_SECURE, &rqstp->rq_flags); 558 rp->c_type = cachetype; 559 rp->c_state = RC_DONE; 560 spin_unlock(&b->cache_lock); 561 return; 562 } 563 564 /* 565 * Copy cached reply to current reply buffer. Should always fit. 566 * FIXME as reply is in a page, we should just attach the page, and 567 * keep a refcount.... 568 */ 569 static int 570 nfsd_cache_append(struct svc_rqst *rqstp, struct kvec *data) 571 { 572 struct kvec *vec = &rqstp->rq_res.head[0]; 573 574 if (vec->iov_len + data->iov_len > PAGE_SIZE) { 575 printk(KERN_WARNING "nfsd: cached reply too large (%zd).\n", 576 data->iov_len); 577 return 0; 578 } 579 memcpy((char*)vec->iov_base + vec->iov_len, data->iov_base, data->iov_len); 580 vec->iov_len += data->iov_len; 581 return 1; 582 } 583 584 /* 585 * Note that fields may be added, removed or reordered in the future. Programs 586 * scraping this file for info should test the labels to ensure they're 587 * getting the correct field. 588 */ 589 static int nfsd_reply_cache_stats_show(struct seq_file *m, void *v) 590 { 591 struct nfsd_net *nn = m->private; 592 593 seq_printf(m, "max entries: %u\n", nn->max_drc_entries); 594 seq_printf(m, "num entries: %u\n", 595 atomic_read(&nn->num_drc_entries)); 596 seq_printf(m, "hash buckets: %u\n", 1 << nn->maskbits); 597 seq_printf(m, "mem usage: %u\n", nn->drc_mem_usage); 598 seq_printf(m, "cache hits: %u\n", nfsdstats.rchits); 599 seq_printf(m, "cache misses: %u\n", nfsdstats.rcmisses); 600 seq_printf(m, "not cached: %u\n", nfsdstats.rcnocache); 601 seq_printf(m, "payload misses: %u\n", nn->payload_misses); 602 seq_printf(m, "longest chain len: %u\n", nn->longest_chain); 603 seq_printf(m, "cachesize at longest: %u\n", nn->longest_chain_cachesize); 604 return 0; 605 } 606 607 int nfsd_reply_cache_stats_open(struct inode *inode, struct file *file) 608 { 609 struct nfsd_net *nn = net_generic(file_inode(file)->i_sb->s_fs_info, 610 nfsd_net_id); 611 612 return single_open(file, nfsd_reply_cache_stats_show, nn); 613 } 614