xref: /linux/fs/nfsd/nfscache.c (revision 8e07e0e3964ca4e23ce7b68e2096fe660a888942)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Request reply cache. This is currently a global cache, but this may
4  * change in the future and be a per-client cache.
5  *
6  * This code is heavily inspired by the 44BSD implementation, although
7  * it does things a bit differently.
8  *
9  * Copyright (C) 1995, 1996 Olaf Kirch <okir@monad.swb.de>
10  */
11 
12 #include <linux/sunrpc/svc_xprt.h>
13 #include <linux/slab.h>
14 #include <linux/vmalloc.h>
15 #include <linux/sunrpc/addr.h>
16 #include <linux/highmem.h>
17 #include <linux/log2.h>
18 #include <linux/hash.h>
19 #include <net/checksum.h>
20 
21 #include "nfsd.h"
22 #include "cache.h"
23 #include "trace.h"
24 
25 /*
26  * We use this value to determine the number of hash buckets from the max
27  * cache size, the idea being that when the cache is at its maximum number
28  * of entries, then this should be the average number of entries per bucket.
29  */
30 #define TARGET_BUCKET_SIZE	64
31 
32 struct nfsd_drc_bucket {
33 	struct rb_root rb_head;
34 	struct list_head lru_head;
35 	spinlock_t cache_lock;
36 };
37 
38 static struct kmem_cache	*drc_slab;
39 
40 static int	nfsd_cache_append(struct svc_rqst *rqstp, struct kvec *vec);
41 static unsigned long nfsd_reply_cache_count(struct shrinker *shrink,
42 					    struct shrink_control *sc);
43 static unsigned long nfsd_reply_cache_scan(struct shrinker *shrink,
44 					   struct shrink_control *sc);
45 
46 /*
47  * Put a cap on the size of the DRC based on the amount of available
48  * low memory in the machine.
49  *
50  *  64MB:    8192
51  * 128MB:   11585
52  * 256MB:   16384
53  * 512MB:   23170
54  *   1GB:   32768
55  *   2GB:   46340
56  *   4GB:   65536
57  *   8GB:   92681
58  *  16GB:  131072
59  *
60  * ...with a hard cap of 256k entries. In the worst case, each entry will be
61  * ~1k, so the above numbers should give a rough max of the amount of memory
62  * used in k.
63  *
64  * XXX: these limits are per-container, so memory used will increase
65  * linearly with number of containers.  Maybe that's OK.
66  */
67 static unsigned int
68 nfsd_cache_size_limit(void)
69 {
70 	unsigned int limit;
71 	unsigned long low_pages = totalram_pages() - totalhigh_pages();
72 
73 	limit = (16 * int_sqrt(low_pages)) << (PAGE_SHIFT-10);
74 	return min_t(unsigned int, limit, 256*1024);
75 }
76 
77 /*
78  * Compute the number of hash buckets we need. Divide the max cachesize by
79  * the "target" max bucket size, and round up to next power of two.
80  */
81 static unsigned int
82 nfsd_hashsize(unsigned int limit)
83 {
84 	return roundup_pow_of_two(limit / TARGET_BUCKET_SIZE);
85 }
86 
87 static struct nfsd_cacherep *
88 nfsd_cacherep_alloc(struct svc_rqst *rqstp, __wsum csum,
89 		    struct nfsd_net *nn)
90 {
91 	struct nfsd_cacherep *rp;
92 
93 	rp = kmem_cache_alloc(drc_slab, GFP_KERNEL);
94 	if (rp) {
95 		rp->c_state = RC_UNUSED;
96 		rp->c_type = RC_NOCACHE;
97 		RB_CLEAR_NODE(&rp->c_node);
98 		INIT_LIST_HEAD(&rp->c_lru);
99 
100 		memset(&rp->c_key, 0, sizeof(rp->c_key));
101 		rp->c_key.k_xid = rqstp->rq_xid;
102 		rp->c_key.k_proc = rqstp->rq_proc;
103 		rpc_copy_addr((struct sockaddr *)&rp->c_key.k_addr, svc_addr(rqstp));
104 		rpc_set_port((struct sockaddr *)&rp->c_key.k_addr, rpc_get_port(svc_addr(rqstp)));
105 		rp->c_key.k_prot = rqstp->rq_prot;
106 		rp->c_key.k_vers = rqstp->rq_vers;
107 		rp->c_key.k_len = rqstp->rq_arg.len;
108 		rp->c_key.k_csum = csum;
109 	}
110 	return rp;
111 }
112 
113 static void nfsd_cacherep_free(struct nfsd_cacherep *rp)
114 {
115 	if (rp->c_type == RC_REPLBUFF)
116 		kfree(rp->c_replvec.iov_base);
117 	kmem_cache_free(drc_slab, rp);
118 }
119 
120 static unsigned long
121 nfsd_cacherep_dispose(struct list_head *dispose)
122 {
123 	struct nfsd_cacherep *rp;
124 	unsigned long freed = 0;
125 
126 	while (!list_empty(dispose)) {
127 		rp = list_first_entry(dispose, struct nfsd_cacherep, c_lru);
128 		list_del(&rp->c_lru);
129 		nfsd_cacherep_free(rp);
130 		freed++;
131 	}
132 	return freed;
133 }
134 
135 static void
136 nfsd_cacherep_unlink_locked(struct nfsd_net *nn, struct nfsd_drc_bucket *b,
137 			    struct nfsd_cacherep *rp)
138 {
139 	if (rp->c_type == RC_REPLBUFF && rp->c_replvec.iov_base)
140 		nfsd_stats_drc_mem_usage_sub(nn, rp->c_replvec.iov_len);
141 	if (rp->c_state != RC_UNUSED) {
142 		rb_erase(&rp->c_node, &b->rb_head);
143 		list_del(&rp->c_lru);
144 		atomic_dec(&nn->num_drc_entries);
145 		nfsd_stats_drc_mem_usage_sub(nn, sizeof(*rp));
146 	}
147 }
148 
149 static void
150 nfsd_reply_cache_free_locked(struct nfsd_drc_bucket *b, struct nfsd_cacherep *rp,
151 				struct nfsd_net *nn)
152 {
153 	nfsd_cacherep_unlink_locked(nn, b, rp);
154 	nfsd_cacherep_free(rp);
155 }
156 
157 static void
158 nfsd_reply_cache_free(struct nfsd_drc_bucket *b, struct nfsd_cacherep *rp,
159 			struct nfsd_net *nn)
160 {
161 	spin_lock(&b->cache_lock);
162 	nfsd_cacherep_unlink_locked(nn, b, rp);
163 	spin_unlock(&b->cache_lock);
164 	nfsd_cacherep_free(rp);
165 }
166 
167 int nfsd_drc_slab_create(void)
168 {
169 	drc_slab = kmem_cache_create("nfsd_drc",
170 				sizeof(struct nfsd_cacherep), 0, 0, NULL);
171 	return drc_slab ? 0: -ENOMEM;
172 }
173 
174 void nfsd_drc_slab_free(void)
175 {
176 	kmem_cache_destroy(drc_slab);
177 }
178 
179 /**
180  * nfsd_net_reply_cache_init - per net namespace reply cache set-up
181  * @nn: nfsd_net being initialized
182  *
183  * Returns zero on succes; otherwise a negative errno is returned.
184  */
185 int nfsd_net_reply_cache_init(struct nfsd_net *nn)
186 {
187 	return nfsd_percpu_counters_init(nn->counter, NFSD_NET_COUNTERS_NUM);
188 }
189 
190 /**
191  * nfsd_net_reply_cache_destroy - per net namespace reply cache tear-down
192  * @nn: nfsd_net being freed
193  *
194  */
195 void nfsd_net_reply_cache_destroy(struct nfsd_net *nn)
196 {
197 	nfsd_percpu_counters_destroy(nn->counter, NFSD_NET_COUNTERS_NUM);
198 }
199 
200 int nfsd_reply_cache_init(struct nfsd_net *nn)
201 {
202 	unsigned int hashsize;
203 	unsigned int i;
204 
205 	nn->max_drc_entries = nfsd_cache_size_limit();
206 	atomic_set(&nn->num_drc_entries, 0);
207 	hashsize = nfsd_hashsize(nn->max_drc_entries);
208 	nn->maskbits = ilog2(hashsize);
209 
210 	nn->drc_hashtbl = kvzalloc(array_size(hashsize,
211 				sizeof(*nn->drc_hashtbl)), GFP_KERNEL);
212 	if (!nn->drc_hashtbl)
213 		return -ENOMEM;
214 
215 	nn->nfsd_reply_cache_shrinker = shrinker_alloc(0, "nfsd-reply:%s",
216 						       nn->nfsd_name);
217 	if (!nn->nfsd_reply_cache_shrinker)
218 		goto out_shrinker;
219 
220 	nn->nfsd_reply_cache_shrinker->scan_objects = nfsd_reply_cache_scan;
221 	nn->nfsd_reply_cache_shrinker->count_objects = nfsd_reply_cache_count;
222 	nn->nfsd_reply_cache_shrinker->seeks = 1;
223 	nn->nfsd_reply_cache_shrinker->private_data = nn;
224 
225 	shrinker_register(nn->nfsd_reply_cache_shrinker);
226 
227 	for (i = 0; i < hashsize; i++) {
228 		INIT_LIST_HEAD(&nn->drc_hashtbl[i].lru_head);
229 		spin_lock_init(&nn->drc_hashtbl[i].cache_lock);
230 	}
231 	nn->drc_hashsize = hashsize;
232 
233 	return 0;
234 out_shrinker:
235 	kvfree(nn->drc_hashtbl);
236 	printk(KERN_ERR "nfsd: failed to allocate reply cache\n");
237 	return -ENOMEM;
238 }
239 
240 void nfsd_reply_cache_shutdown(struct nfsd_net *nn)
241 {
242 	struct nfsd_cacherep *rp;
243 	unsigned int i;
244 
245 	shrinker_free(nn->nfsd_reply_cache_shrinker);
246 
247 	for (i = 0; i < nn->drc_hashsize; i++) {
248 		struct list_head *head = &nn->drc_hashtbl[i].lru_head;
249 		while (!list_empty(head)) {
250 			rp = list_first_entry(head, struct nfsd_cacherep, c_lru);
251 			nfsd_reply_cache_free_locked(&nn->drc_hashtbl[i],
252 									rp, nn);
253 		}
254 	}
255 
256 	kvfree(nn->drc_hashtbl);
257 	nn->drc_hashtbl = NULL;
258 	nn->drc_hashsize = 0;
259 
260 }
261 
262 /*
263  * Move cache entry to end of LRU list, and queue the cleaner to run if it's
264  * not already scheduled.
265  */
266 static void
267 lru_put_end(struct nfsd_drc_bucket *b, struct nfsd_cacherep *rp)
268 {
269 	rp->c_timestamp = jiffies;
270 	list_move_tail(&rp->c_lru, &b->lru_head);
271 }
272 
273 static noinline struct nfsd_drc_bucket *
274 nfsd_cache_bucket_find(__be32 xid, struct nfsd_net *nn)
275 {
276 	unsigned int hash = hash_32((__force u32)xid, nn->maskbits);
277 
278 	return &nn->drc_hashtbl[hash];
279 }
280 
281 /*
282  * Remove and return no more than @max expired entries in bucket @b.
283  * If @max is zero, do not limit the number of removed entries.
284  */
285 static void
286 nfsd_prune_bucket_locked(struct nfsd_net *nn, struct nfsd_drc_bucket *b,
287 			 unsigned int max, struct list_head *dispose)
288 {
289 	unsigned long expiry = jiffies - RC_EXPIRE;
290 	struct nfsd_cacherep *rp, *tmp;
291 	unsigned int freed = 0;
292 
293 	lockdep_assert_held(&b->cache_lock);
294 
295 	/* The bucket LRU is ordered oldest-first. */
296 	list_for_each_entry_safe(rp, tmp, &b->lru_head, c_lru) {
297 		/*
298 		 * Don't free entries attached to calls that are still
299 		 * in-progress, but do keep scanning the list.
300 		 */
301 		if (rp->c_state == RC_INPROG)
302 			continue;
303 
304 		if (atomic_read(&nn->num_drc_entries) <= nn->max_drc_entries &&
305 		    time_before(expiry, rp->c_timestamp))
306 			break;
307 
308 		nfsd_cacherep_unlink_locked(nn, b, rp);
309 		list_add(&rp->c_lru, dispose);
310 
311 		if (max && ++freed > max)
312 			break;
313 	}
314 }
315 
316 /**
317  * nfsd_reply_cache_count - count_objects method for the DRC shrinker
318  * @shrink: our registered shrinker context
319  * @sc: garbage collection parameters
320  *
321  * Returns the total number of entries in the duplicate reply cache. To
322  * keep things simple and quick, this is not the number of expired entries
323  * in the cache (ie, the number that would be removed by a call to
324  * nfsd_reply_cache_scan).
325  */
326 static unsigned long
327 nfsd_reply_cache_count(struct shrinker *shrink, struct shrink_control *sc)
328 {
329 	struct nfsd_net *nn = shrink->private_data;
330 
331 	return atomic_read(&nn->num_drc_entries);
332 }
333 
334 /**
335  * nfsd_reply_cache_scan - scan_objects method for the DRC shrinker
336  * @shrink: our registered shrinker context
337  * @sc: garbage collection parameters
338  *
339  * Free expired entries on each bucket's LRU list until we've released
340  * nr_to_scan freed objects. Nothing will be released if the cache
341  * has not exceeded it's max_drc_entries limit.
342  *
343  * Returns the number of entries released by this call.
344  */
345 static unsigned long
346 nfsd_reply_cache_scan(struct shrinker *shrink, struct shrink_control *sc)
347 {
348 	struct nfsd_net *nn = shrink->private_data;
349 	unsigned long freed = 0;
350 	LIST_HEAD(dispose);
351 	unsigned int i;
352 
353 	for (i = 0; i < nn->drc_hashsize; i++) {
354 		struct nfsd_drc_bucket *b = &nn->drc_hashtbl[i];
355 
356 		if (list_empty(&b->lru_head))
357 			continue;
358 
359 		spin_lock(&b->cache_lock);
360 		nfsd_prune_bucket_locked(nn, b, 0, &dispose);
361 		spin_unlock(&b->cache_lock);
362 
363 		freed += nfsd_cacherep_dispose(&dispose);
364 		if (freed > sc->nr_to_scan)
365 			break;
366 	}
367 
368 	trace_nfsd_drc_gc(nn, freed);
369 	return freed;
370 }
371 
372 /**
373  * nfsd_cache_csum - Checksum incoming NFS Call arguments
374  * @buf: buffer containing a whole RPC Call message
375  * @start: starting byte of the NFS Call header
376  * @remaining: size of the NFS Call header, in bytes
377  *
378  * Compute a weak checksum of the leading bytes of an NFS procedure
379  * call header to help verify that a retransmitted Call matches an
380  * entry in the duplicate reply cache.
381  *
382  * To avoid assumptions about how the RPC message is laid out in
383  * @buf and what else it might contain (eg, a GSS MIC suffix), the
384  * caller passes us the exact location and length of the NFS Call
385  * header.
386  *
387  * Returns a 32-bit checksum value, as defined in RFC 793.
388  */
389 static __wsum nfsd_cache_csum(struct xdr_buf *buf, unsigned int start,
390 			      unsigned int remaining)
391 {
392 	unsigned int base, len;
393 	struct xdr_buf subbuf;
394 	__wsum csum = 0;
395 	void *p;
396 	int idx;
397 
398 	if (remaining > RC_CSUMLEN)
399 		remaining = RC_CSUMLEN;
400 	if (xdr_buf_subsegment(buf, &subbuf, start, remaining))
401 		return csum;
402 
403 	/* rq_arg.head first */
404 	if (subbuf.head[0].iov_len) {
405 		len = min_t(unsigned int, subbuf.head[0].iov_len, remaining);
406 		csum = csum_partial(subbuf.head[0].iov_base, len, csum);
407 		remaining -= len;
408 	}
409 
410 	/* Continue into page array */
411 	idx = subbuf.page_base / PAGE_SIZE;
412 	base = subbuf.page_base & ~PAGE_MASK;
413 	while (remaining) {
414 		p = page_address(subbuf.pages[idx]) + base;
415 		len = min_t(unsigned int, PAGE_SIZE - base, remaining);
416 		csum = csum_partial(p, len, csum);
417 		remaining -= len;
418 		base = 0;
419 		++idx;
420 	}
421 	return csum;
422 }
423 
424 static int
425 nfsd_cache_key_cmp(const struct nfsd_cacherep *key,
426 		   const struct nfsd_cacherep *rp, struct nfsd_net *nn)
427 {
428 	if (key->c_key.k_xid == rp->c_key.k_xid &&
429 	    key->c_key.k_csum != rp->c_key.k_csum) {
430 		nfsd_stats_payload_misses_inc(nn);
431 		trace_nfsd_drc_mismatch(nn, key, rp);
432 	}
433 
434 	return memcmp(&key->c_key, &rp->c_key, sizeof(key->c_key));
435 }
436 
437 /*
438  * Search the request hash for an entry that matches the given rqstp.
439  * Must be called with cache_lock held. Returns the found entry or
440  * inserts an empty key on failure.
441  */
442 static struct nfsd_cacherep *
443 nfsd_cache_insert(struct nfsd_drc_bucket *b, struct nfsd_cacherep *key,
444 			struct nfsd_net *nn)
445 {
446 	struct nfsd_cacherep	*rp, *ret = key;
447 	struct rb_node		**p = &b->rb_head.rb_node,
448 				*parent = NULL;
449 	unsigned int		entries = 0;
450 	int cmp;
451 
452 	while (*p != NULL) {
453 		++entries;
454 		parent = *p;
455 		rp = rb_entry(parent, struct nfsd_cacherep, c_node);
456 
457 		cmp = nfsd_cache_key_cmp(key, rp, nn);
458 		if (cmp < 0)
459 			p = &parent->rb_left;
460 		else if (cmp > 0)
461 			p = &parent->rb_right;
462 		else {
463 			ret = rp;
464 			goto out;
465 		}
466 	}
467 	rb_link_node(&key->c_node, parent, p);
468 	rb_insert_color(&key->c_node, &b->rb_head);
469 out:
470 	/* tally hash chain length stats */
471 	if (entries > nn->longest_chain) {
472 		nn->longest_chain = entries;
473 		nn->longest_chain_cachesize = atomic_read(&nn->num_drc_entries);
474 	} else if (entries == nn->longest_chain) {
475 		/* prefer to keep the smallest cachesize possible here */
476 		nn->longest_chain_cachesize = min_t(unsigned int,
477 				nn->longest_chain_cachesize,
478 				atomic_read(&nn->num_drc_entries));
479 	}
480 
481 	lru_put_end(b, ret);
482 	return ret;
483 }
484 
485 /**
486  * nfsd_cache_lookup - Find an entry in the duplicate reply cache
487  * @rqstp: Incoming Call to find
488  * @start: starting byte in @rqstp->rq_arg of the NFS Call header
489  * @len: size of the NFS Call header, in bytes
490  * @cacherep: OUT: DRC entry for this request
491  *
492  * Try to find an entry matching the current call in the cache. When none
493  * is found, we try to grab the oldest expired entry off the LRU list. If
494  * a suitable one isn't there, then drop the cache_lock and allocate a
495  * new one, then search again in case one got inserted while this thread
496  * didn't hold the lock.
497  *
498  * Return values:
499  *   %RC_DOIT: Process the request normally
500  *   %RC_REPLY: Reply from cache
501  *   %RC_DROPIT: Do not process the request further
502  */
503 int nfsd_cache_lookup(struct svc_rqst *rqstp, unsigned int start,
504 		      unsigned int len, struct nfsd_cacherep **cacherep)
505 {
506 	struct nfsd_net		*nn;
507 	struct nfsd_cacherep	*rp, *found;
508 	__wsum			csum;
509 	struct nfsd_drc_bucket	*b;
510 	int type = rqstp->rq_cachetype;
511 	unsigned long freed;
512 	LIST_HEAD(dispose);
513 	int rtn = RC_DOIT;
514 
515 	if (type == RC_NOCACHE) {
516 		nfsd_stats_rc_nocache_inc();
517 		goto out;
518 	}
519 
520 	csum = nfsd_cache_csum(&rqstp->rq_arg, start, len);
521 
522 	/*
523 	 * Since the common case is a cache miss followed by an insert,
524 	 * preallocate an entry.
525 	 */
526 	nn = net_generic(SVC_NET(rqstp), nfsd_net_id);
527 	rp = nfsd_cacherep_alloc(rqstp, csum, nn);
528 	if (!rp)
529 		goto out;
530 
531 	b = nfsd_cache_bucket_find(rqstp->rq_xid, nn);
532 	spin_lock(&b->cache_lock);
533 	found = nfsd_cache_insert(b, rp, nn);
534 	if (found != rp)
535 		goto found_entry;
536 	*cacherep = rp;
537 	rp->c_state = RC_INPROG;
538 	nfsd_prune_bucket_locked(nn, b, 3, &dispose);
539 	spin_unlock(&b->cache_lock);
540 
541 	freed = nfsd_cacherep_dispose(&dispose);
542 	trace_nfsd_drc_gc(nn, freed);
543 
544 	nfsd_stats_rc_misses_inc();
545 	atomic_inc(&nn->num_drc_entries);
546 	nfsd_stats_drc_mem_usage_add(nn, sizeof(*rp));
547 	goto out;
548 
549 found_entry:
550 	/* We found a matching entry which is either in progress or done. */
551 	nfsd_reply_cache_free_locked(NULL, rp, nn);
552 	nfsd_stats_rc_hits_inc();
553 	rtn = RC_DROPIT;
554 	rp = found;
555 
556 	/* Request being processed */
557 	if (rp->c_state == RC_INPROG)
558 		goto out_trace;
559 
560 	/* From the hall of fame of impractical attacks:
561 	 * Is this a user who tries to snoop on the cache? */
562 	rtn = RC_DOIT;
563 	if (!test_bit(RQ_SECURE, &rqstp->rq_flags) && rp->c_secure)
564 		goto out_trace;
565 
566 	/* Compose RPC reply header */
567 	switch (rp->c_type) {
568 	case RC_NOCACHE:
569 		break;
570 	case RC_REPLSTAT:
571 		xdr_stream_encode_be32(&rqstp->rq_res_stream, rp->c_replstat);
572 		rtn = RC_REPLY;
573 		break;
574 	case RC_REPLBUFF:
575 		if (!nfsd_cache_append(rqstp, &rp->c_replvec))
576 			goto out_unlock; /* should not happen */
577 		rtn = RC_REPLY;
578 		break;
579 	default:
580 		WARN_ONCE(1, "nfsd: bad repcache type %d\n", rp->c_type);
581 	}
582 
583 out_trace:
584 	trace_nfsd_drc_found(nn, rqstp, rtn);
585 out_unlock:
586 	spin_unlock(&b->cache_lock);
587 out:
588 	return rtn;
589 }
590 
591 /**
592  * nfsd_cache_update - Update an entry in the duplicate reply cache.
593  * @rqstp: svc_rqst with a finished Reply
594  * @rp: IN: DRC entry for this request
595  * @cachetype: which cache to update
596  * @statp: pointer to Reply's NFS status code, or NULL
597  *
598  * This is called from nfsd_dispatch when the procedure has been
599  * executed and the complete reply is in rqstp->rq_res.
600  *
601  * We're copying around data here rather than swapping buffers because
602  * the toplevel loop requires max-sized buffers, which would be a waste
603  * of memory for a cache with a max reply size of 100 bytes (diropokres).
604  *
605  * If we should start to use different types of cache entries tailored
606  * specifically for attrstat and fh's, we may save even more space.
607  *
608  * Also note that a cachetype of RC_NOCACHE can legally be passed when
609  * nfsd failed to encode a reply that otherwise would have been cached.
610  * In this case, nfsd_cache_update is called with statp == NULL.
611  */
612 void nfsd_cache_update(struct svc_rqst *rqstp, struct nfsd_cacherep *rp,
613 		       int cachetype, __be32 *statp)
614 {
615 	struct nfsd_net *nn = net_generic(SVC_NET(rqstp), nfsd_net_id);
616 	struct kvec	*resv = &rqstp->rq_res.head[0], *cachv;
617 	struct nfsd_drc_bucket *b;
618 	int		len;
619 	size_t		bufsize = 0;
620 
621 	if (!rp)
622 		return;
623 
624 	b = nfsd_cache_bucket_find(rp->c_key.k_xid, nn);
625 
626 	len = resv->iov_len - ((char*)statp - (char*)resv->iov_base);
627 	len >>= 2;
628 
629 	/* Don't cache excessive amounts of data and XDR failures */
630 	if (!statp || len > (256 >> 2)) {
631 		nfsd_reply_cache_free(b, rp, nn);
632 		return;
633 	}
634 
635 	switch (cachetype) {
636 	case RC_REPLSTAT:
637 		if (len != 1)
638 			printk("nfsd: RC_REPLSTAT/reply len %d!\n",len);
639 		rp->c_replstat = *statp;
640 		break;
641 	case RC_REPLBUFF:
642 		cachv = &rp->c_replvec;
643 		bufsize = len << 2;
644 		cachv->iov_base = kmalloc(bufsize, GFP_KERNEL);
645 		if (!cachv->iov_base) {
646 			nfsd_reply_cache_free(b, rp, nn);
647 			return;
648 		}
649 		cachv->iov_len = bufsize;
650 		memcpy(cachv->iov_base, statp, bufsize);
651 		break;
652 	case RC_NOCACHE:
653 		nfsd_reply_cache_free(b, rp, nn);
654 		return;
655 	}
656 	spin_lock(&b->cache_lock);
657 	nfsd_stats_drc_mem_usage_add(nn, bufsize);
658 	lru_put_end(b, rp);
659 	rp->c_secure = test_bit(RQ_SECURE, &rqstp->rq_flags);
660 	rp->c_type = cachetype;
661 	rp->c_state = RC_DONE;
662 	spin_unlock(&b->cache_lock);
663 	return;
664 }
665 
666 static int
667 nfsd_cache_append(struct svc_rqst *rqstp, struct kvec *data)
668 {
669 	__be32 *p;
670 
671 	p = xdr_reserve_space(&rqstp->rq_res_stream, data->iov_len);
672 	if (unlikely(!p))
673 		return false;
674 	memcpy(p, data->iov_base, data->iov_len);
675 	xdr_commit_encode(&rqstp->rq_res_stream);
676 	return true;
677 }
678 
679 /*
680  * Note that fields may be added, removed or reordered in the future. Programs
681  * scraping this file for info should test the labels to ensure they're
682  * getting the correct field.
683  */
684 int nfsd_reply_cache_stats_show(struct seq_file *m, void *v)
685 {
686 	struct nfsd_net *nn = net_generic(file_inode(m->file)->i_sb->s_fs_info,
687 					  nfsd_net_id);
688 
689 	seq_printf(m, "max entries:           %u\n", nn->max_drc_entries);
690 	seq_printf(m, "num entries:           %u\n",
691 		   atomic_read(&nn->num_drc_entries));
692 	seq_printf(m, "hash buckets:          %u\n", 1 << nn->maskbits);
693 	seq_printf(m, "mem usage:             %lld\n",
694 		   percpu_counter_sum_positive(&nn->counter[NFSD_NET_DRC_MEM_USAGE]));
695 	seq_printf(m, "cache hits:            %lld\n",
696 		   percpu_counter_sum_positive(&nfsdstats.counter[NFSD_STATS_RC_HITS]));
697 	seq_printf(m, "cache misses:          %lld\n",
698 		   percpu_counter_sum_positive(&nfsdstats.counter[NFSD_STATS_RC_MISSES]));
699 	seq_printf(m, "not cached:            %lld\n",
700 		   percpu_counter_sum_positive(&nfsdstats.counter[NFSD_STATS_RC_NOCACHE]));
701 	seq_printf(m, "payload misses:        %lld\n",
702 		   percpu_counter_sum_positive(&nn->counter[NFSD_NET_PAYLOAD_MISSES]));
703 	seq_printf(m, "longest chain len:     %u\n", nn->longest_chain);
704 	seq_printf(m, "cachesize at longest:  %u\n", nn->longest_chain_cachesize);
705 	return 0;
706 }
707