1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Request reply cache. This is currently a global cache, but this may 4 * change in the future and be a per-client cache. 5 * 6 * This code is heavily inspired by the 44BSD implementation, although 7 * it does things a bit differently. 8 * 9 * Copyright (C) 1995, 1996 Olaf Kirch <okir@monad.swb.de> 10 */ 11 12 #include <linux/sunrpc/svc_xprt.h> 13 #include <linux/slab.h> 14 #include <linux/vmalloc.h> 15 #include <linux/sunrpc/addr.h> 16 #include <linux/highmem.h> 17 #include <linux/log2.h> 18 #include <linux/hash.h> 19 #include <net/checksum.h> 20 21 #include "nfsd.h" 22 #include "cache.h" 23 #include "trace.h" 24 25 /* 26 * We use this value to determine the number of hash buckets from the max 27 * cache size, the idea being that when the cache is at its maximum number 28 * of entries, then this should be the average number of entries per bucket. 29 */ 30 #define TARGET_BUCKET_SIZE 64 31 32 struct nfsd_drc_bucket { 33 struct rb_root rb_head; 34 struct list_head lru_head; 35 spinlock_t cache_lock; 36 }; 37 38 static struct kmem_cache *drc_slab; 39 40 static int nfsd_cache_append(struct svc_rqst *rqstp, struct kvec *vec); 41 static unsigned long nfsd_reply_cache_count(struct shrinker *shrink, 42 struct shrink_control *sc); 43 static unsigned long nfsd_reply_cache_scan(struct shrinker *shrink, 44 struct shrink_control *sc); 45 46 /* 47 * Put a cap on the size of the DRC based on the amount of available 48 * low memory in the machine. 49 * 50 * 64MB: 8192 51 * 128MB: 11585 52 * 256MB: 16384 53 * 512MB: 23170 54 * 1GB: 32768 55 * 2GB: 46340 56 * 4GB: 65536 57 * 8GB: 92681 58 * 16GB: 131072 59 * 60 * ...with a hard cap of 256k entries. In the worst case, each entry will be 61 * ~1k, so the above numbers should give a rough max of the amount of memory 62 * used in k. 63 * 64 * XXX: these limits are per-container, so memory used will increase 65 * linearly with number of containers. Maybe that's OK. 66 */ 67 static unsigned int 68 nfsd_cache_size_limit(void) 69 { 70 unsigned int limit; 71 unsigned long low_pages = totalram_pages() - totalhigh_pages(); 72 73 limit = (16 * int_sqrt(low_pages)) << (PAGE_SHIFT-10); 74 return min_t(unsigned int, limit, 256*1024); 75 } 76 77 /* 78 * Compute the number of hash buckets we need. Divide the max cachesize by 79 * the "target" max bucket size, and round up to next power of two. 80 */ 81 static unsigned int 82 nfsd_hashsize(unsigned int limit) 83 { 84 return roundup_pow_of_two(limit / TARGET_BUCKET_SIZE); 85 } 86 87 static struct nfsd_cacherep * 88 nfsd_cacherep_alloc(struct svc_rqst *rqstp, __wsum csum, 89 struct nfsd_net *nn) 90 { 91 struct nfsd_cacherep *rp; 92 93 rp = kmem_cache_alloc(drc_slab, GFP_KERNEL); 94 if (rp) { 95 rp->c_state = RC_UNUSED; 96 rp->c_type = RC_NOCACHE; 97 RB_CLEAR_NODE(&rp->c_node); 98 INIT_LIST_HEAD(&rp->c_lru); 99 100 memset(&rp->c_key, 0, sizeof(rp->c_key)); 101 rp->c_key.k_xid = rqstp->rq_xid; 102 rp->c_key.k_proc = rqstp->rq_proc; 103 rpc_copy_addr((struct sockaddr *)&rp->c_key.k_addr, svc_addr(rqstp)); 104 rpc_set_port((struct sockaddr *)&rp->c_key.k_addr, rpc_get_port(svc_addr(rqstp))); 105 rp->c_key.k_prot = rqstp->rq_prot; 106 rp->c_key.k_vers = rqstp->rq_vers; 107 rp->c_key.k_len = rqstp->rq_arg.len; 108 rp->c_key.k_csum = csum; 109 } 110 return rp; 111 } 112 113 static void nfsd_cacherep_free(struct nfsd_cacherep *rp) 114 { 115 if (rp->c_type == RC_REPLBUFF) 116 kfree(rp->c_replvec.iov_base); 117 kmem_cache_free(drc_slab, rp); 118 } 119 120 static unsigned long 121 nfsd_cacherep_dispose(struct list_head *dispose) 122 { 123 struct nfsd_cacherep *rp; 124 unsigned long freed = 0; 125 126 while (!list_empty(dispose)) { 127 rp = list_first_entry(dispose, struct nfsd_cacherep, c_lru); 128 list_del(&rp->c_lru); 129 nfsd_cacherep_free(rp); 130 freed++; 131 } 132 return freed; 133 } 134 135 static void 136 nfsd_cacherep_unlink_locked(struct nfsd_net *nn, struct nfsd_drc_bucket *b, 137 struct nfsd_cacherep *rp) 138 { 139 if (rp->c_type == RC_REPLBUFF && rp->c_replvec.iov_base) 140 nfsd_stats_drc_mem_usage_sub(nn, rp->c_replvec.iov_len); 141 if (rp->c_state != RC_UNUSED) { 142 rb_erase(&rp->c_node, &b->rb_head); 143 list_del(&rp->c_lru); 144 atomic_dec(&nn->num_drc_entries); 145 nfsd_stats_drc_mem_usage_sub(nn, sizeof(*rp)); 146 } 147 } 148 149 static void 150 nfsd_reply_cache_free_locked(struct nfsd_drc_bucket *b, struct nfsd_cacherep *rp, 151 struct nfsd_net *nn) 152 { 153 nfsd_cacherep_unlink_locked(nn, b, rp); 154 nfsd_cacherep_free(rp); 155 } 156 157 static void 158 nfsd_reply_cache_free(struct nfsd_drc_bucket *b, struct nfsd_cacherep *rp, 159 struct nfsd_net *nn) 160 { 161 spin_lock(&b->cache_lock); 162 nfsd_cacherep_unlink_locked(nn, b, rp); 163 spin_unlock(&b->cache_lock); 164 nfsd_cacherep_free(rp); 165 } 166 167 int nfsd_drc_slab_create(void) 168 { 169 drc_slab = kmem_cache_create("nfsd_drc", 170 sizeof(struct nfsd_cacherep), 0, 0, NULL); 171 return drc_slab ? 0: -ENOMEM; 172 } 173 174 void nfsd_drc_slab_free(void) 175 { 176 kmem_cache_destroy(drc_slab); 177 } 178 179 /** 180 * nfsd_net_reply_cache_init - per net namespace reply cache set-up 181 * @nn: nfsd_net being initialized 182 * 183 * Returns zero on succes; otherwise a negative errno is returned. 184 */ 185 int nfsd_net_reply_cache_init(struct nfsd_net *nn) 186 { 187 return nfsd_percpu_counters_init(nn->counter, NFSD_NET_COUNTERS_NUM); 188 } 189 190 /** 191 * nfsd_net_reply_cache_destroy - per net namespace reply cache tear-down 192 * @nn: nfsd_net being freed 193 * 194 */ 195 void nfsd_net_reply_cache_destroy(struct nfsd_net *nn) 196 { 197 nfsd_percpu_counters_destroy(nn->counter, NFSD_NET_COUNTERS_NUM); 198 } 199 200 int nfsd_reply_cache_init(struct nfsd_net *nn) 201 { 202 unsigned int hashsize; 203 unsigned int i; 204 205 nn->max_drc_entries = nfsd_cache_size_limit(); 206 atomic_set(&nn->num_drc_entries, 0); 207 hashsize = nfsd_hashsize(nn->max_drc_entries); 208 nn->maskbits = ilog2(hashsize); 209 210 nn->drc_hashtbl = kvzalloc(array_size(hashsize, 211 sizeof(*nn->drc_hashtbl)), GFP_KERNEL); 212 if (!nn->drc_hashtbl) 213 return -ENOMEM; 214 215 nn->nfsd_reply_cache_shrinker = shrinker_alloc(0, "nfsd-reply:%s", 216 nn->nfsd_name); 217 if (!nn->nfsd_reply_cache_shrinker) 218 goto out_shrinker; 219 220 nn->nfsd_reply_cache_shrinker->scan_objects = nfsd_reply_cache_scan; 221 nn->nfsd_reply_cache_shrinker->count_objects = nfsd_reply_cache_count; 222 nn->nfsd_reply_cache_shrinker->seeks = 1; 223 nn->nfsd_reply_cache_shrinker->private_data = nn; 224 225 shrinker_register(nn->nfsd_reply_cache_shrinker); 226 227 for (i = 0; i < hashsize; i++) { 228 INIT_LIST_HEAD(&nn->drc_hashtbl[i].lru_head); 229 spin_lock_init(&nn->drc_hashtbl[i].cache_lock); 230 } 231 nn->drc_hashsize = hashsize; 232 233 return 0; 234 out_shrinker: 235 kvfree(nn->drc_hashtbl); 236 printk(KERN_ERR "nfsd: failed to allocate reply cache\n"); 237 return -ENOMEM; 238 } 239 240 void nfsd_reply_cache_shutdown(struct nfsd_net *nn) 241 { 242 struct nfsd_cacherep *rp; 243 unsigned int i; 244 245 shrinker_free(nn->nfsd_reply_cache_shrinker); 246 247 for (i = 0; i < nn->drc_hashsize; i++) { 248 struct list_head *head = &nn->drc_hashtbl[i].lru_head; 249 while (!list_empty(head)) { 250 rp = list_first_entry(head, struct nfsd_cacherep, c_lru); 251 nfsd_reply_cache_free_locked(&nn->drc_hashtbl[i], 252 rp, nn); 253 } 254 } 255 256 kvfree(nn->drc_hashtbl); 257 nn->drc_hashtbl = NULL; 258 nn->drc_hashsize = 0; 259 260 } 261 262 /* 263 * Move cache entry to end of LRU list, and queue the cleaner to run if it's 264 * not already scheduled. 265 */ 266 static void 267 lru_put_end(struct nfsd_drc_bucket *b, struct nfsd_cacherep *rp) 268 { 269 rp->c_timestamp = jiffies; 270 list_move_tail(&rp->c_lru, &b->lru_head); 271 } 272 273 static noinline struct nfsd_drc_bucket * 274 nfsd_cache_bucket_find(__be32 xid, struct nfsd_net *nn) 275 { 276 unsigned int hash = hash_32((__force u32)xid, nn->maskbits); 277 278 return &nn->drc_hashtbl[hash]; 279 } 280 281 /* 282 * Remove and return no more than @max expired entries in bucket @b. 283 * If @max is zero, do not limit the number of removed entries. 284 */ 285 static void 286 nfsd_prune_bucket_locked(struct nfsd_net *nn, struct nfsd_drc_bucket *b, 287 unsigned int max, struct list_head *dispose) 288 { 289 unsigned long expiry = jiffies - RC_EXPIRE; 290 struct nfsd_cacherep *rp, *tmp; 291 unsigned int freed = 0; 292 293 lockdep_assert_held(&b->cache_lock); 294 295 /* The bucket LRU is ordered oldest-first. */ 296 list_for_each_entry_safe(rp, tmp, &b->lru_head, c_lru) { 297 /* 298 * Don't free entries attached to calls that are still 299 * in-progress, but do keep scanning the list. 300 */ 301 if (rp->c_state == RC_INPROG) 302 continue; 303 304 if (atomic_read(&nn->num_drc_entries) <= nn->max_drc_entries && 305 time_before(expiry, rp->c_timestamp)) 306 break; 307 308 nfsd_cacherep_unlink_locked(nn, b, rp); 309 list_add(&rp->c_lru, dispose); 310 311 if (max && ++freed > max) 312 break; 313 } 314 } 315 316 /** 317 * nfsd_reply_cache_count - count_objects method for the DRC shrinker 318 * @shrink: our registered shrinker context 319 * @sc: garbage collection parameters 320 * 321 * Returns the total number of entries in the duplicate reply cache. To 322 * keep things simple and quick, this is not the number of expired entries 323 * in the cache (ie, the number that would be removed by a call to 324 * nfsd_reply_cache_scan). 325 */ 326 static unsigned long 327 nfsd_reply_cache_count(struct shrinker *shrink, struct shrink_control *sc) 328 { 329 struct nfsd_net *nn = shrink->private_data; 330 331 return atomic_read(&nn->num_drc_entries); 332 } 333 334 /** 335 * nfsd_reply_cache_scan - scan_objects method for the DRC shrinker 336 * @shrink: our registered shrinker context 337 * @sc: garbage collection parameters 338 * 339 * Free expired entries on each bucket's LRU list until we've released 340 * nr_to_scan freed objects. Nothing will be released if the cache 341 * has not exceeded it's max_drc_entries limit. 342 * 343 * Returns the number of entries released by this call. 344 */ 345 static unsigned long 346 nfsd_reply_cache_scan(struct shrinker *shrink, struct shrink_control *sc) 347 { 348 struct nfsd_net *nn = shrink->private_data; 349 unsigned long freed = 0; 350 LIST_HEAD(dispose); 351 unsigned int i; 352 353 for (i = 0; i < nn->drc_hashsize; i++) { 354 struct nfsd_drc_bucket *b = &nn->drc_hashtbl[i]; 355 356 if (list_empty(&b->lru_head)) 357 continue; 358 359 spin_lock(&b->cache_lock); 360 nfsd_prune_bucket_locked(nn, b, 0, &dispose); 361 spin_unlock(&b->cache_lock); 362 363 freed += nfsd_cacherep_dispose(&dispose); 364 if (freed > sc->nr_to_scan) 365 break; 366 } 367 368 trace_nfsd_drc_gc(nn, freed); 369 return freed; 370 } 371 372 /** 373 * nfsd_cache_csum - Checksum incoming NFS Call arguments 374 * @buf: buffer containing a whole RPC Call message 375 * @start: starting byte of the NFS Call header 376 * @remaining: size of the NFS Call header, in bytes 377 * 378 * Compute a weak checksum of the leading bytes of an NFS procedure 379 * call header to help verify that a retransmitted Call matches an 380 * entry in the duplicate reply cache. 381 * 382 * To avoid assumptions about how the RPC message is laid out in 383 * @buf and what else it might contain (eg, a GSS MIC suffix), the 384 * caller passes us the exact location and length of the NFS Call 385 * header. 386 * 387 * Returns a 32-bit checksum value, as defined in RFC 793. 388 */ 389 static __wsum nfsd_cache_csum(struct xdr_buf *buf, unsigned int start, 390 unsigned int remaining) 391 { 392 unsigned int base, len; 393 struct xdr_buf subbuf; 394 __wsum csum = 0; 395 void *p; 396 int idx; 397 398 if (remaining > RC_CSUMLEN) 399 remaining = RC_CSUMLEN; 400 if (xdr_buf_subsegment(buf, &subbuf, start, remaining)) 401 return csum; 402 403 /* rq_arg.head first */ 404 if (subbuf.head[0].iov_len) { 405 len = min_t(unsigned int, subbuf.head[0].iov_len, remaining); 406 csum = csum_partial(subbuf.head[0].iov_base, len, csum); 407 remaining -= len; 408 } 409 410 /* Continue into page array */ 411 idx = subbuf.page_base / PAGE_SIZE; 412 base = subbuf.page_base & ~PAGE_MASK; 413 while (remaining) { 414 p = page_address(subbuf.pages[idx]) + base; 415 len = min_t(unsigned int, PAGE_SIZE - base, remaining); 416 csum = csum_partial(p, len, csum); 417 remaining -= len; 418 base = 0; 419 ++idx; 420 } 421 return csum; 422 } 423 424 static int 425 nfsd_cache_key_cmp(const struct nfsd_cacherep *key, 426 const struct nfsd_cacherep *rp, struct nfsd_net *nn) 427 { 428 if (key->c_key.k_xid == rp->c_key.k_xid && 429 key->c_key.k_csum != rp->c_key.k_csum) { 430 nfsd_stats_payload_misses_inc(nn); 431 trace_nfsd_drc_mismatch(nn, key, rp); 432 } 433 434 return memcmp(&key->c_key, &rp->c_key, sizeof(key->c_key)); 435 } 436 437 /* 438 * Search the request hash for an entry that matches the given rqstp. 439 * Must be called with cache_lock held. Returns the found entry or 440 * inserts an empty key on failure. 441 */ 442 static struct nfsd_cacherep * 443 nfsd_cache_insert(struct nfsd_drc_bucket *b, struct nfsd_cacherep *key, 444 struct nfsd_net *nn) 445 { 446 struct nfsd_cacherep *rp, *ret = key; 447 struct rb_node **p = &b->rb_head.rb_node, 448 *parent = NULL; 449 unsigned int entries = 0; 450 int cmp; 451 452 while (*p != NULL) { 453 ++entries; 454 parent = *p; 455 rp = rb_entry(parent, struct nfsd_cacherep, c_node); 456 457 cmp = nfsd_cache_key_cmp(key, rp, nn); 458 if (cmp < 0) 459 p = &parent->rb_left; 460 else if (cmp > 0) 461 p = &parent->rb_right; 462 else { 463 ret = rp; 464 goto out; 465 } 466 } 467 rb_link_node(&key->c_node, parent, p); 468 rb_insert_color(&key->c_node, &b->rb_head); 469 out: 470 /* tally hash chain length stats */ 471 if (entries > nn->longest_chain) { 472 nn->longest_chain = entries; 473 nn->longest_chain_cachesize = atomic_read(&nn->num_drc_entries); 474 } else if (entries == nn->longest_chain) { 475 /* prefer to keep the smallest cachesize possible here */ 476 nn->longest_chain_cachesize = min_t(unsigned int, 477 nn->longest_chain_cachesize, 478 atomic_read(&nn->num_drc_entries)); 479 } 480 481 lru_put_end(b, ret); 482 return ret; 483 } 484 485 /** 486 * nfsd_cache_lookup - Find an entry in the duplicate reply cache 487 * @rqstp: Incoming Call to find 488 * @start: starting byte in @rqstp->rq_arg of the NFS Call header 489 * @len: size of the NFS Call header, in bytes 490 * @cacherep: OUT: DRC entry for this request 491 * 492 * Try to find an entry matching the current call in the cache. When none 493 * is found, we try to grab the oldest expired entry off the LRU list. If 494 * a suitable one isn't there, then drop the cache_lock and allocate a 495 * new one, then search again in case one got inserted while this thread 496 * didn't hold the lock. 497 * 498 * Return values: 499 * %RC_DOIT: Process the request normally 500 * %RC_REPLY: Reply from cache 501 * %RC_DROPIT: Do not process the request further 502 */ 503 int nfsd_cache_lookup(struct svc_rqst *rqstp, unsigned int start, 504 unsigned int len, struct nfsd_cacherep **cacherep) 505 { 506 struct nfsd_net *nn; 507 struct nfsd_cacherep *rp, *found; 508 __wsum csum; 509 struct nfsd_drc_bucket *b; 510 int type = rqstp->rq_cachetype; 511 unsigned long freed; 512 LIST_HEAD(dispose); 513 int rtn = RC_DOIT; 514 515 if (type == RC_NOCACHE) { 516 nfsd_stats_rc_nocache_inc(); 517 goto out; 518 } 519 520 csum = nfsd_cache_csum(&rqstp->rq_arg, start, len); 521 522 /* 523 * Since the common case is a cache miss followed by an insert, 524 * preallocate an entry. 525 */ 526 nn = net_generic(SVC_NET(rqstp), nfsd_net_id); 527 rp = nfsd_cacherep_alloc(rqstp, csum, nn); 528 if (!rp) 529 goto out; 530 531 b = nfsd_cache_bucket_find(rqstp->rq_xid, nn); 532 spin_lock(&b->cache_lock); 533 found = nfsd_cache_insert(b, rp, nn); 534 if (found != rp) 535 goto found_entry; 536 *cacherep = rp; 537 rp->c_state = RC_INPROG; 538 nfsd_prune_bucket_locked(nn, b, 3, &dispose); 539 spin_unlock(&b->cache_lock); 540 541 freed = nfsd_cacherep_dispose(&dispose); 542 trace_nfsd_drc_gc(nn, freed); 543 544 nfsd_stats_rc_misses_inc(); 545 atomic_inc(&nn->num_drc_entries); 546 nfsd_stats_drc_mem_usage_add(nn, sizeof(*rp)); 547 goto out; 548 549 found_entry: 550 /* We found a matching entry which is either in progress or done. */ 551 nfsd_reply_cache_free_locked(NULL, rp, nn); 552 nfsd_stats_rc_hits_inc(); 553 rtn = RC_DROPIT; 554 rp = found; 555 556 /* Request being processed */ 557 if (rp->c_state == RC_INPROG) 558 goto out_trace; 559 560 /* From the hall of fame of impractical attacks: 561 * Is this a user who tries to snoop on the cache? */ 562 rtn = RC_DOIT; 563 if (!test_bit(RQ_SECURE, &rqstp->rq_flags) && rp->c_secure) 564 goto out_trace; 565 566 /* Compose RPC reply header */ 567 switch (rp->c_type) { 568 case RC_NOCACHE: 569 break; 570 case RC_REPLSTAT: 571 xdr_stream_encode_be32(&rqstp->rq_res_stream, rp->c_replstat); 572 rtn = RC_REPLY; 573 break; 574 case RC_REPLBUFF: 575 if (!nfsd_cache_append(rqstp, &rp->c_replvec)) 576 goto out_unlock; /* should not happen */ 577 rtn = RC_REPLY; 578 break; 579 default: 580 WARN_ONCE(1, "nfsd: bad repcache type %d\n", rp->c_type); 581 } 582 583 out_trace: 584 trace_nfsd_drc_found(nn, rqstp, rtn); 585 out_unlock: 586 spin_unlock(&b->cache_lock); 587 out: 588 return rtn; 589 } 590 591 /** 592 * nfsd_cache_update - Update an entry in the duplicate reply cache. 593 * @rqstp: svc_rqst with a finished Reply 594 * @rp: IN: DRC entry for this request 595 * @cachetype: which cache to update 596 * @statp: pointer to Reply's NFS status code, or NULL 597 * 598 * This is called from nfsd_dispatch when the procedure has been 599 * executed and the complete reply is in rqstp->rq_res. 600 * 601 * We're copying around data here rather than swapping buffers because 602 * the toplevel loop requires max-sized buffers, which would be a waste 603 * of memory for a cache with a max reply size of 100 bytes (diropokres). 604 * 605 * If we should start to use different types of cache entries tailored 606 * specifically for attrstat and fh's, we may save even more space. 607 * 608 * Also note that a cachetype of RC_NOCACHE can legally be passed when 609 * nfsd failed to encode a reply that otherwise would have been cached. 610 * In this case, nfsd_cache_update is called with statp == NULL. 611 */ 612 void nfsd_cache_update(struct svc_rqst *rqstp, struct nfsd_cacherep *rp, 613 int cachetype, __be32 *statp) 614 { 615 struct nfsd_net *nn = net_generic(SVC_NET(rqstp), nfsd_net_id); 616 struct kvec *resv = &rqstp->rq_res.head[0], *cachv; 617 struct nfsd_drc_bucket *b; 618 int len; 619 size_t bufsize = 0; 620 621 if (!rp) 622 return; 623 624 b = nfsd_cache_bucket_find(rp->c_key.k_xid, nn); 625 626 len = resv->iov_len - ((char*)statp - (char*)resv->iov_base); 627 len >>= 2; 628 629 /* Don't cache excessive amounts of data and XDR failures */ 630 if (!statp || len > (256 >> 2)) { 631 nfsd_reply_cache_free(b, rp, nn); 632 return; 633 } 634 635 switch (cachetype) { 636 case RC_REPLSTAT: 637 if (len != 1) 638 printk("nfsd: RC_REPLSTAT/reply len %d!\n",len); 639 rp->c_replstat = *statp; 640 break; 641 case RC_REPLBUFF: 642 cachv = &rp->c_replvec; 643 bufsize = len << 2; 644 cachv->iov_base = kmalloc(bufsize, GFP_KERNEL); 645 if (!cachv->iov_base) { 646 nfsd_reply_cache_free(b, rp, nn); 647 return; 648 } 649 cachv->iov_len = bufsize; 650 memcpy(cachv->iov_base, statp, bufsize); 651 break; 652 case RC_NOCACHE: 653 nfsd_reply_cache_free(b, rp, nn); 654 return; 655 } 656 spin_lock(&b->cache_lock); 657 nfsd_stats_drc_mem_usage_add(nn, bufsize); 658 lru_put_end(b, rp); 659 rp->c_secure = test_bit(RQ_SECURE, &rqstp->rq_flags); 660 rp->c_type = cachetype; 661 rp->c_state = RC_DONE; 662 spin_unlock(&b->cache_lock); 663 return; 664 } 665 666 static int 667 nfsd_cache_append(struct svc_rqst *rqstp, struct kvec *data) 668 { 669 __be32 *p; 670 671 p = xdr_reserve_space(&rqstp->rq_res_stream, data->iov_len); 672 if (unlikely(!p)) 673 return false; 674 memcpy(p, data->iov_base, data->iov_len); 675 xdr_commit_encode(&rqstp->rq_res_stream); 676 return true; 677 } 678 679 /* 680 * Note that fields may be added, removed or reordered in the future. Programs 681 * scraping this file for info should test the labels to ensure they're 682 * getting the correct field. 683 */ 684 int nfsd_reply_cache_stats_show(struct seq_file *m, void *v) 685 { 686 struct nfsd_net *nn = net_generic(file_inode(m->file)->i_sb->s_fs_info, 687 nfsd_net_id); 688 689 seq_printf(m, "max entries: %u\n", nn->max_drc_entries); 690 seq_printf(m, "num entries: %u\n", 691 atomic_read(&nn->num_drc_entries)); 692 seq_printf(m, "hash buckets: %u\n", 1 << nn->maskbits); 693 seq_printf(m, "mem usage: %lld\n", 694 percpu_counter_sum_positive(&nn->counter[NFSD_NET_DRC_MEM_USAGE])); 695 seq_printf(m, "cache hits: %lld\n", 696 percpu_counter_sum_positive(&nfsdstats.counter[NFSD_STATS_RC_HITS])); 697 seq_printf(m, "cache misses: %lld\n", 698 percpu_counter_sum_positive(&nfsdstats.counter[NFSD_STATS_RC_MISSES])); 699 seq_printf(m, "not cached: %lld\n", 700 percpu_counter_sum_positive(&nfsdstats.counter[NFSD_STATS_RC_NOCACHE])); 701 seq_printf(m, "payload misses: %lld\n", 702 percpu_counter_sum_positive(&nn->counter[NFSD_NET_PAYLOAD_MISSES])); 703 seq_printf(m, "longest chain len: %u\n", nn->longest_chain); 704 seq_printf(m, "cachesize at longest: %u\n", nn->longest_chain_cachesize); 705 return 0; 706 } 707