1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Request reply cache. This is currently a global cache, but this may 4 * change in the future and be a per-client cache. 5 * 6 * This code is heavily inspired by the 44BSD implementation, although 7 * it does things a bit differently. 8 * 9 * Copyright (C) 1995, 1996 Olaf Kirch <okir@monad.swb.de> 10 */ 11 12 #include <linux/sunrpc/svc_xprt.h> 13 #include <linux/slab.h> 14 #include <linux/vmalloc.h> 15 #include <linux/sunrpc/addr.h> 16 #include <linux/highmem.h> 17 #include <linux/log2.h> 18 #include <linux/hash.h> 19 #include <net/checksum.h> 20 21 #include "nfsd.h" 22 #include "cache.h" 23 #include "trace.h" 24 25 /* 26 * We use this value to determine the number of hash buckets from the max 27 * cache size, the idea being that when the cache is at its maximum number 28 * of entries, then this should be the average number of entries per bucket. 29 */ 30 #define TARGET_BUCKET_SIZE 64 31 32 struct nfsd_drc_bucket { 33 struct rb_root rb_head; 34 struct list_head lru_head; 35 spinlock_t cache_lock; 36 }; 37 38 static struct kmem_cache *drc_slab; 39 40 static int nfsd_cache_append(struct svc_rqst *rqstp, struct kvec *vec); 41 static unsigned long nfsd_reply_cache_count(struct shrinker *shrink, 42 struct shrink_control *sc); 43 static unsigned long nfsd_reply_cache_scan(struct shrinker *shrink, 44 struct shrink_control *sc); 45 46 /* 47 * Put a cap on the size of the DRC based on the amount of available 48 * low memory in the machine. 49 * 50 * 64MB: 8192 51 * 128MB: 11585 52 * 256MB: 16384 53 * 512MB: 23170 54 * 1GB: 32768 55 * 2GB: 46340 56 * 4GB: 65536 57 * 8GB: 92681 58 * 16GB: 131072 59 * 60 * ...with a hard cap of 256k entries. In the worst case, each entry will be 61 * ~1k, so the above numbers should give a rough max of the amount of memory 62 * used in k. 63 * 64 * XXX: these limits are per-container, so memory used will increase 65 * linearly with number of containers. Maybe that's OK. 66 */ 67 static unsigned int 68 nfsd_cache_size_limit(void) 69 { 70 unsigned int limit; 71 unsigned long low_pages = totalram_pages() - totalhigh_pages(); 72 73 limit = (16 * int_sqrt(low_pages)) << (PAGE_SHIFT-10); 74 return min_t(unsigned int, limit, 256*1024); 75 } 76 77 /* 78 * Compute the number of hash buckets we need. Divide the max cachesize by 79 * the "target" max bucket size, and round up to next power of two. 80 */ 81 static unsigned int 82 nfsd_hashsize(unsigned int limit) 83 { 84 return roundup_pow_of_two(limit / TARGET_BUCKET_SIZE); 85 } 86 87 static u32 88 nfsd_cache_hash(__be32 xid, struct nfsd_net *nn) 89 { 90 return hash_32(be32_to_cpu(xid), nn->maskbits); 91 } 92 93 static struct svc_cacherep * 94 nfsd_reply_cache_alloc(struct svc_rqst *rqstp, __wsum csum, 95 struct nfsd_net *nn) 96 { 97 struct svc_cacherep *rp; 98 99 rp = kmem_cache_alloc(drc_slab, GFP_KERNEL); 100 if (rp) { 101 rp->c_state = RC_UNUSED; 102 rp->c_type = RC_NOCACHE; 103 RB_CLEAR_NODE(&rp->c_node); 104 INIT_LIST_HEAD(&rp->c_lru); 105 106 memset(&rp->c_key, 0, sizeof(rp->c_key)); 107 rp->c_key.k_xid = rqstp->rq_xid; 108 rp->c_key.k_proc = rqstp->rq_proc; 109 rpc_copy_addr((struct sockaddr *)&rp->c_key.k_addr, svc_addr(rqstp)); 110 rpc_set_port((struct sockaddr *)&rp->c_key.k_addr, rpc_get_port(svc_addr(rqstp))); 111 rp->c_key.k_prot = rqstp->rq_prot; 112 rp->c_key.k_vers = rqstp->rq_vers; 113 rp->c_key.k_len = rqstp->rq_arg.len; 114 rp->c_key.k_csum = csum; 115 } 116 return rp; 117 } 118 119 static void 120 nfsd_reply_cache_free_locked(struct nfsd_drc_bucket *b, struct svc_cacherep *rp, 121 struct nfsd_net *nn) 122 { 123 if (rp->c_type == RC_REPLBUFF && rp->c_replvec.iov_base) { 124 nfsd_stats_drc_mem_usage_sub(nn, rp->c_replvec.iov_len); 125 kfree(rp->c_replvec.iov_base); 126 } 127 if (rp->c_state != RC_UNUSED) { 128 rb_erase(&rp->c_node, &b->rb_head); 129 list_del(&rp->c_lru); 130 atomic_dec(&nn->num_drc_entries); 131 nfsd_stats_drc_mem_usage_sub(nn, sizeof(*rp)); 132 } 133 kmem_cache_free(drc_slab, rp); 134 } 135 136 static void 137 nfsd_reply_cache_free(struct nfsd_drc_bucket *b, struct svc_cacherep *rp, 138 struct nfsd_net *nn) 139 { 140 spin_lock(&b->cache_lock); 141 nfsd_reply_cache_free_locked(b, rp, nn); 142 spin_unlock(&b->cache_lock); 143 } 144 145 int nfsd_drc_slab_create(void) 146 { 147 drc_slab = kmem_cache_create("nfsd_drc", 148 sizeof(struct svc_cacherep), 0, 0, NULL); 149 return drc_slab ? 0: -ENOMEM; 150 } 151 152 void nfsd_drc_slab_free(void) 153 { 154 kmem_cache_destroy(drc_slab); 155 } 156 157 static int nfsd_reply_cache_stats_init(struct nfsd_net *nn) 158 { 159 return nfsd_percpu_counters_init(nn->counter, NFSD_NET_COUNTERS_NUM); 160 } 161 162 static void nfsd_reply_cache_stats_destroy(struct nfsd_net *nn) 163 { 164 nfsd_percpu_counters_destroy(nn->counter, NFSD_NET_COUNTERS_NUM); 165 } 166 167 int nfsd_reply_cache_init(struct nfsd_net *nn) 168 { 169 unsigned int hashsize; 170 unsigned int i; 171 int status = 0; 172 173 nn->max_drc_entries = nfsd_cache_size_limit(); 174 atomic_set(&nn->num_drc_entries, 0); 175 hashsize = nfsd_hashsize(nn->max_drc_entries); 176 nn->maskbits = ilog2(hashsize); 177 178 status = nfsd_reply_cache_stats_init(nn); 179 if (status) 180 goto out_nomem; 181 182 nn->nfsd_reply_cache_shrinker.scan_objects = nfsd_reply_cache_scan; 183 nn->nfsd_reply_cache_shrinker.count_objects = nfsd_reply_cache_count; 184 nn->nfsd_reply_cache_shrinker.seeks = 1; 185 status = register_shrinker(&nn->nfsd_reply_cache_shrinker); 186 if (status) 187 goto out_stats_destroy; 188 189 nn->drc_hashtbl = kvzalloc(array_size(hashsize, 190 sizeof(*nn->drc_hashtbl)), GFP_KERNEL); 191 if (!nn->drc_hashtbl) 192 goto out_shrinker; 193 194 for (i = 0; i < hashsize; i++) { 195 INIT_LIST_HEAD(&nn->drc_hashtbl[i].lru_head); 196 spin_lock_init(&nn->drc_hashtbl[i].cache_lock); 197 } 198 nn->drc_hashsize = hashsize; 199 200 return 0; 201 out_shrinker: 202 unregister_shrinker(&nn->nfsd_reply_cache_shrinker); 203 out_stats_destroy: 204 nfsd_reply_cache_stats_destroy(nn); 205 out_nomem: 206 printk(KERN_ERR "nfsd: failed to allocate reply cache\n"); 207 return -ENOMEM; 208 } 209 210 void nfsd_reply_cache_shutdown(struct nfsd_net *nn) 211 { 212 struct svc_cacherep *rp; 213 unsigned int i; 214 215 nfsd_reply_cache_stats_destroy(nn); 216 unregister_shrinker(&nn->nfsd_reply_cache_shrinker); 217 218 for (i = 0; i < nn->drc_hashsize; i++) { 219 struct list_head *head = &nn->drc_hashtbl[i].lru_head; 220 while (!list_empty(head)) { 221 rp = list_first_entry(head, struct svc_cacherep, c_lru); 222 nfsd_reply_cache_free_locked(&nn->drc_hashtbl[i], 223 rp, nn); 224 } 225 } 226 227 kvfree(nn->drc_hashtbl); 228 nn->drc_hashtbl = NULL; 229 nn->drc_hashsize = 0; 230 231 } 232 233 /* 234 * Move cache entry to end of LRU list, and queue the cleaner to run if it's 235 * not already scheduled. 236 */ 237 static void 238 lru_put_end(struct nfsd_drc_bucket *b, struct svc_cacherep *rp) 239 { 240 rp->c_timestamp = jiffies; 241 list_move_tail(&rp->c_lru, &b->lru_head); 242 } 243 244 static long 245 prune_bucket(struct nfsd_drc_bucket *b, struct nfsd_net *nn) 246 { 247 struct svc_cacherep *rp, *tmp; 248 long freed = 0; 249 250 list_for_each_entry_safe(rp, tmp, &b->lru_head, c_lru) { 251 /* 252 * Don't free entries attached to calls that are still 253 * in-progress, but do keep scanning the list. 254 */ 255 if (rp->c_state == RC_INPROG) 256 continue; 257 if (atomic_read(&nn->num_drc_entries) <= nn->max_drc_entries && 258 time_before(jiffies, rp->c_timestamp + RC_EXPIRE)) 259 break; 260 nfsd_reply_cache_free_locked(b, rp, nn); 261 freed++; 262 } 263 return freed; 264 } 265 266 /* 267 * Walk the LRU list and prune off entries that are older than RC_EXPIRE. 268 * Also prune the oldest ones when the total exceeds the max number of entries. 269 */ 270 static long 271 prune_cache_entries(struct nfsd_net *nn) 272 { 273 unsigned int i; 274 long freed = 0; 275 276 for (i = 0; i < nn->drc_hashsize; i++) { 277 struct nfsd_drc_bucket *b = &nn->drc_hashtbl[i]; 278 279 if (list_empty(&b->lru_head)) 280 continue; 281 spin_lock(&b->cache_lock); 282 freed += prune_bucket(b, nn); 283 spin_unlock(&b->cache_lock); 284 } 285 return freed; 286 } 287 288 static unsigned long 289 nfsd_reply_cache_count(struct shrinker *shrink, struct shrink_control *sc) 290 { 291 struct nfsd_net *nn = container_of(shrink, 292 struct nfsd_net, nfsd_reply_cache_shrinker); 293 294 return atomic_read(&nn->num_drc_entries); 295 } 296 297 static unsigned long 298 nfsd_reply_cache_scan(struct shrinker *shrink, struct shrink_control *sc) 299 { 300 struct nfsd_net *nn = container_of(shrink, 301 struct nfsd_net, nfsd_reply_cache_shrinker); 302 303 return prune_cache_entries(nn); 304 } 305 /* 306 * Walk an xdr_buf and get a CRC for at most the first RC_CSUMLEN bytes 307 */ 308 static __wsum 309 nfsd_cache_csum(struct svc_rqst *rqstp) 310 { 311 int idx; 312 unsigned int base; 313 __wsum csum; 314 struct xdr_buf *buf = &rqstp->rq_arg; 315 const unsigned char *p = buf->head[0].iov_base; 316 size_t csum_len = min_t(size_t, buf->head[0].iov_len + buf->page_len, 317 RC_CSUMLEN); 318 size_t len = min(buf->head[0].iov_len, csum_len); 319 320 /* rq_arg.head first */ 321 csum = csum_partial(p, len, 0); 322 csum_len -= len; 323 324 /* Continue into page array */ 325 idx = buf->page_base / PAGE_SIZE; 326 base = buf->page_base & ~PAGE_MASK; 327 while (csum_len) { 328 p = page_address(buf->pages[idx]) + base; 329 len = min_t(size_t, PAGE_SIZE - base, csum_len); 330 csum = csum_partial(p, len, csum); 331 csum_len -= len; 332 base = 0; 333 ++idx; 334 } 335 return csum; 336 } 337 338 static int 339 nfsd_cache_key_cmp(const struct svc_cacherep *key, 340 const struct svc_cacherep *rp, struct nfsd_net *nn) 341 { 342 if (key->c_key.k_xid == rp->c_key.k_xid && 343 key->c_key.k_csum != rp->c_key.k_csum) { 344 nfsd_stats_payload_misses_inc(nn); 345 trace_nfsd_drc_mismatch(nn, key, rp); 346 } 347 348 return memcmp(&key->c_key, &rp->c_key, sizeof(key->c_key)); 349 } 350 351 /* 352 * Search the request hash for an entry that matches the given rqstp. 353 * Must be called with cache_lock held. Returns the found entry or 354 * inserts an empty key on failure. 355 */ 356 static struct svc_cacherep * 357 nfsd_cache_insert(struct nfsd_drc_bucket *b, struct svc_cacherep *key, 358 struct nfsd_net *nn) 359 { 360 struct svc_cacherep *rp, *ret = key; 361 struct rb_node **p = &b->rb_head.rb_node, 362 *parent = NULL; 363 unsigned int entries = 0; 364 int cmp; 365 366 while (*p != NULL) { 367 ++entries; 368 parent = *p; 369 rp = rb_entry(parent, struct svc_cacherep, c_node); 370 371 cmp = nfsd_cache_key_cmp(key, rp, nn); 372 if (cmp < 0) 373 p = &parent->rb_left; 374 else if (cmp > 0) 375 p = &parent->rb_right; 376 else { 377 ret = rp; 378 goto out; 379 } 380 } 381 rb_link_node(&key->c_node, parent, p); 382 rb_insert_color(&key->c_node, &b->rb_head); 383 out: 384 /* tally hash chain length stats */ 385 if (entries > nn->longest_chain) { 386 nn->longest_chain = entries; 387 nn->longest_chain_cachesize = atomic_read(&nn->num_drc_entries); 388 } else if (entries == nn->longest_chain) { 389 /* prefer to keep the smallest cachesize possible here */ 390 nn->longest_chain_cachesize = min_t(unsigned int, 391 nn->longest_chain_cachesize, 392 atomic_read(&nn->num_drc_entries)); 393 } 394 395 lru_put_end(b, ret); 396 return ret; 397 } 398 399 /** 400 * nfsd_cache_lookup - Find an entry in the duplicate reply cache 401 * @rqstp: Incoming Call to find 402 * 403 * Try to find an entry matching the current call in the cache. When none 404 * is found, we try to grab the oldest expired entry off the LRU list. If 405 * a suitable one isn't there, then drop the cache_lock and allocate a 406 * new one, then search again in case one got inserted while this thread 407 * didn't hold the lock. 408 * 409 * Return values: 410 * %RC_DOIT: Process the request normally 411 * %RC_REPLY: Reply from cache 412 * %RC_DROPIT: Do not process the request further 413 */ 414 int nfsd_cache_lookup(struct svc_rqst *rqstp) 415 { 416 struct nfsd_net *nn = net_generic(SVC_NET(rqstp), nfsd_net_id); 417 struct svc_cacherep *rp, *found; 418 __be32 xid = rqstp->rq_xid; 419 __wsum csum; 420 u32 hash = nfsd_cache_hash(xid, nn); 421 struct nfsd_drc_bucket *b = &nn->drc_hashtbl[hash]; 422 int type = rqstp->rq_cachetype; 423 int rtn = RC_DOIT; 424 425 rqstp->rq_cacherep = NULL; 426 if (type == RC_NOCACHE) { 427 nfsd_stats_rc_nocache_inc(); 428 goto out; 429 } 430 431 csum = nfsd_cache_csum(rqstp); 432 433 /* 434 * Since the common case is a cache miss followed by an insert, 435 * preallocate an entry. 436 */ 437 rp = nfsd_reply_cache_alloc(rqstp, csum, nn); 438 if (!rp) 439 goto out; 440 441 spin_lock(&b->cache_lock); 442 found = nfsd_cache_insert(b, rp, nn); 443 if (found != rp) { 444 nfsd_reply_cache_free_locked(NULL, rp, nn); 445 rp = found; 446 goto found_entry; 447 } 448 449 nfsd_stats_rc_misses_inc(); 450 rqstp->rq_cacherep = rp; 451 rp->c_state = RC_INPROG; 452 453 atomic_inc(&nn->num_drc_entries); 454 nfsd_stats_drc_mem_usage_add(nn, sizeof(*rp)); 455 456 /* go ahead and prune the cache */ 457 prune_bucket(b, nn); 458 459 out_unlock: 460 spin_unlock(&b->cache_lock); 461 out: 462 return rtn; 463 464 found_entry: 465 /* We found a matching entry which is either in progress or done. */ 466 nfsd_stats_rc_hits_inc(); 467 rtn = RC_DROPIT; 468 469 /* Request being processed */ 470 if (rp->c_state == RC_INPROG) 471 goto out_trace; 472 473 /* From the hall of fame of impractical attacks: 474 * Is this a user who tries to snoop on the cache? */ 475 rtn = RC_DOIT; 476 if (!test_bit(RQ_SECURE, &rqstp->rq_flags) && rp->c_secure) 477 goto out_trace; 478 479 /* Compose RPC reply header */ 480 switch (rp->c_type) { 481 case RC_NOCACHE: 482 break; 483 case RC_REPLSTAT: 484 svc_putu32(&rqstp->rq_res.head[0], rp->c_replstat); 485 rtn = RC_REPLY; 486 break; 487 case RC_REPLBUFF: 488 if (!nfsd_cache_append(rqstp, &rp->c_replvec)) 489 goto out_unlock; /* should not happen */ 490 rtn = RC_REPLY; 491 break; 492 default: 493 WARN_ONCE(1, "nfsd: bad repcache type %d\n", rp->c_type); 494 } 495 496 out_trace: 497 trace_nfsd_drc_found(nn, rqstp, rtn); 498 goto out_unlock; 499 } 500 501 /** 502 * nfsd_cache_update - Update an entry in the duplicate reply cache. 503 * @rqstp: svc_rqst with a finished Reply 504 * @cachetype: which cache to update 505 * @statp: Reply's status code 506 * 507 * This is called from nfsd_dispatch when the procedure has been 508 * executed and the complete reply is in rqstp->rq_res. 509 * 510 * We're copying around data here rather than swapping buffers because 511 * the toplevel loop requires max-sized buffers, which would be a waste 512 * of memory for a cache with a max reply size of 100 bytes (diropokres). 513 * 514 * If we should start to use different types of cache entries tailored 515 * specifically for attrstat and fh's, we may save even more space. 516 * 517 * Also note that a cachetype of RC_NOCACHE can legally be passed when 518 * nfsd failed to encode a reply that otherwise would have been cached. 519 * In this case, nfsd_cache_update is called with statp == NULL. 520 */ 521 void nfsd_cache_update(struct svc_rqst *rqstp, int cachetype, __be32 *statp) 522 { 523 struct nfsd_net *nn = net_generic(SVC_NET(rqstp), nfsd_net_id); 524 struct svc_cacherep *rp = rqstp->rq_cacherep; 525 struct kvec *resv = &rqstp->rq_res.head[0], *cachv; 526 u32 hash; 527 struct nfsd_drc_bucket *b; 528 int len; 529 size_t bufsize = 0; 530 531 if (!rp) 532 return; 533 534 hash = nfsd_cache_hash(rp->c_key.k_xid, nn); 535 b = &nn->drc_hashtbl[hash]; 536 537 len = resv->iov_len - ((char*)statp - (char*)resv->iov_base); 538 len >>= 2; 539 540 /* Don't cache excessive amounts of data and XDR failures */ 541 if (!statp || len > (256 >> 2)) { 542 nfsd_reply_cache_free(b, rp, nn); 543 return; 544 } 545 546 switch (cachetype) { 547 case RC_REPLSTAT: 548 if (len != 1) 549 printk("nfsd: RC_REPLSTAT/reply len %d!\n",len); 550 rp->c_replstat = *statp; 551 break; 552 case RC_REPLBUFF: 553 cachv = &rp->c_replvec; 554 bufsize = len << 2; 555 cachv->iov_base = kmalloc(bufsize, GFP_KERNEL); 556 if (!cachv->iov_base) { 557 nfsd_reply_cache_free(b, rp, nn); 558 return; 559 } 560 cachv->iov_len = bufsize; 561 memcpy(cachv->iov_base, statp, bufsize); 562 break; 563 case RC_NOCACHE: 564 nfsd_reply_cache_free(b, rp, nn); 565 return; 566 } 567 spin_lock(&b->cache_lock); 568 nfsd_stats_drc_mem_usage_add(nn, bufsize); 569 lru_put_end(b, rp); 570 rp->c_secure = test_bit(RQ_SECURE, &rqstp->rq_flags); 571 rp->c_type = cachetype; 572 rp->c_state = RC_DONE; 573 spin_unlock(&b->cache_lock); 574 return; 575 } 576 577 /* 578 * Copy cached reply to current reply buffer. Should always fit. 579 * FIXME as reply is in a page, we should just attach the page, and 580 * keep a refcount.... 581 */ 582 static int 583 nfsd_cache_append(struct svc_rqst *rqstp, struct kvec *data) 584 { 585 struct kvec *vec = &rqstp->rq_res.head[0]; 586 587 if (vec->iov_len + data->iov_len > PAGE_SIZE) { 588 printk(KERN_WARNING "nfsd: cached reply too large (%zd).\n", 589 data->iov_len); 590 return 0; 591 } 592 memcpy((char*)vec->iov_base + vec->iov_len, data->iov_base, data->iov_len); 593 vec->iov_len += data->iov_len; 594 return 1; 595 } 596 597 /* 598 * Note that fields may be added, removed or reordered in the future. Programs 599 * scraping this file for info should test the labels to ensure they're 600 * getting the correct field. 601 */ 602 static int nfsd_reply_cache_stats_show(struct seq_file *m, void *v) 603 { 604 struct nfsd_net *nn = m->private; 605 606 seq_printf(m, "max entries: %u\n", nn->max_drc_entries); 607 seq_printf(m, "num entries: %u\n", 608 atomic_read(&nn->num_drc_entries)); 609 seq_printf(m, "hash buckets: %u\n", 1 << nn->maskbits); 610 seq_printf(m, "mem usage: %lld\n", 611 percpu_counter_sum_positive(&nn->counter[NFSD_NET_DRC_MEM_USAGE])); 612 seq_printf(m, "cache hits: %lld\n", 613 percpu_counter_sum_positive(&nfsdstats.counter[NFSD_STATS_RC_HITS])); 614 seq_printf(m, "cache misses: %lld\n", 615 percpu_counter_sum_positive(&nfsdstats.counter[NFSD_STATS_RC_MISSES])); 616 seq_printf(m, "not cached: %lld\n", 617 percpu_counter_sum_positive(&nfsdstats.counter[NFSD_STATS_RC_NOCACHE])); 618 seq_printf(m, "payload misses: %lld\n", 619 percpu_counter_sum_positive(&nn->counter[NFSD_NET_PAYLOAD_MISSES])); 620 seq_printf(m, "longest chain len: %u\n", nn->longest_chain); 621 seq_printf(m, "cachesize at longest: %u\n", nn->longest_chain_cachesize); 622 return 0; 623 } 624 625 int nfsd_reply_cache_stats_open(struct inode *inode, struct file *file) 626 { 627 struct nfsd_net *nn = net_generic(file_inode(file)->i_sb->s_fs_info, 628 nfsd_net_id); 629 630 return single_open(file, nfsd_reply_cache_stats_show, nn); 631 } 632