1 /* 2 * Request reply cache. This is currently a global cache, but this may 3 * change in the future and be a per-client cache. 4 * 5 * This code is heavily inspired by the 44BSD implementation, although 6 * it does things a bit differently. 7 * 8 * Copyright (C) 1995, 1996 Olaf Kirch <okir@monad.swb.de> 9 */ 10 11 #include <linux/slab.h> 12 #include <linux/vmalloc.h> 13 #include <linux/sunrpc/addr.h> 14 #include <linux/highmem.h> 15 #include <linux/log2.h> 16 #include <linux/hash.h> 17 #include <net/checksum.h> 18 19 #include "nfsd.h" 20 #include "cache.h" 21 22 #define NFSDDBG_FACILITY NFSDDBG_REPCACHE 23 24 /* 25 * We use this value to determine the number of hash buckets from the max 26 * cache size, the idea being that when the cache is at its maximum number 27 * of entries, then this should be the average number of entries per bucket. 28 */ 29 #define TARGET_BUCKET_SIZE 64 30 31 struct nfsd_drc_bucket { 32 struct list_head lru_head; 33 spinlock_t cache_lock; 34 }; 35 36 static struct nfsd_drc_bucket *drc_hashtbl; 37 static struct kmem_cache *drc_slab; 38 39 /* max number of entries allowed in the cache */ 40 static unsigned int max_drc_entries; 41 42 /* number of significant bits in the hash value */ 43 static unsigned int maskbits; 44 static unsigned int drc_hashsize; 45 46 /* 47 * Stats and other tracking of on the duplicate reply cache. All of these and 48 * the "rc" fields in nfsdstats are protected by the cache_lock 49 */ 50 51 /* total number of entries */ 52 static atomic_t num_drc_entries; 53 54 /* cache misses due only to checksum comparison failures */ 55 static unsigned int payload_misses; 56 57 /* amount of memory (in bytes) currently consumed by the DRC */ 58 static unsigned int drc_mem_usage; 59 60 /* longest hash chain seen */ 61 static unsigned int longest_chain; 62 63 /* size of cache when we saw the longest hash chain */ 64 static unsigned int longest_chain_cachesize; 65 66 static int nfsd_cache_append(struct svc_rqst *rqstp, struct kvec *vec); 67 static unsigned long nfsd_reply_cache_count(struct shrinker *shrink, 68 struct shrink_control *sc); 69 static unsigned long nfsd_reply_cache_scan(struct shrinker *shrink, 70 struct shrink_control *sc); 71 72 static struct shrinker nfsd_reply_cache_shrinker = { 73 .scan_objects = nfsd_reply_cache_scan, 74 .count_objects = nfsd_reply_cache_count, 75 .seeks = 1, 76 }; 77 78 /* 79 * Put a cap on the size of the DRC based on the amount of available 80 * low memory in the machine. 81 * 82 * 64MB: 8192 83 * 128MB: 11585 84 * 256MB: 16384 85 * 512MB: 23170 86 * 1GB: 32768 87 * 2GB: 46340 88 * 4GB: 65536 89 * 8GB: 92681 90 * 16GB: 131072 91 * 92 * ...with a hard cap of 256k entries. In the worst case, each entry will be 93 * ~1k, so the above numbers should give a rough max of the amount of memory 94 * used in k. 95 */ 96 static unsigned int 97 nfsd_cache_size_limit(void) 98 { 99 unsigned int limit; 100 unsigned long low_pages = totalram_pages - totalhigh_pages; 101 102 limit = (16 * int_sqrt(low_pages)) << (PAGE_SHIFT-10); 103 return min_t(unsigned int, limit, 256*1024); 104 } 105 106 /* 107 * Compute the number of hash buckets we need. Divide the max cachesize by 108 * the "target" max bucket size, and round up to next power of two. 109 */ 110 static unsigned int 111 nfsd_hashsize(unsigned int limit) 112 { 113 return roundup_pow_of_two(limit / TARGET_BUCKET_SIZE); 114 } 115 116 static u32 117 nfsd_cache_hash(__be32 xid) 118 { 119 return hash_32(be32_to_cpu(xid), maskbits); 120 } 121 122 static struct svc_cacherep * 123 nfsd_reply_cache_alloc(void) 124 { 125 struct svc_cacherep *rp; 126 127 rp = kmem_cache_alloc(drc_slab, GFP_KERNEL); 128 if (rp) { 129 rp->c_state = RC_UNUSED; 130 rp->c_type = RC_NOCACHE; 131 INIT_LIST_HEAD(&rp->c_lru); 132 } 133 return rp; 134 } 135 136 static void 137 nfsd_reply_cache_free_locked(struct svc_cacherep *rp) 138 { 139 if (rp->c_type == RC_REPLBUFF && rp->c_replvec.iov_base) { 140 drc_mem_usage -= rp->c_replvec.iov_len; 141 kfree(rp->c_replvec.iov_base); 142 } 143 list_del(&rp->c_lru); 144 atomic_dec(&num_drc_entries); 145 drc_mem_usage -= sizeof(*rp); 146 kmem_cache_free(drc_slab, rp); 147 } 148 149 static void 150 nfsd_reply_cache_free(struct nfsd_drc_bucket *b, struct svc_cacherep *rp) 151 { 152 spin_lock(&b->cache_lock); 153 nfsd_reply_cache_free_locked(rp); 154 spin_unlock(&b->cache_lock); 155 } 156 157 int nfsd_reply_cache_init(void) 158 { 159 unsigned int hashsize; 160 unsigned int i; 161 int status = 0; 162 163 max_drc_entries = nfsd_cache_size_limit(); 164 atomic_set(&num_drc_entries, 0); 165 hashsize = nfsd_hashsize(max_drc_entries); 166 maskbits = ilog2(hashsize); 167 168 status = register_shrinker(&nfsd_reply_cache_shrinker); 169 if (status) 170 return status; 171 172 drc_slab = kmem_cache_create("nfsd_drc", sizeof(struct svc_cacherep), 173 0, 0, NULL); 174 if (!drc_slab) 175 goto out_nomem; 176 177 drc_hashtbl = kcalloc(hashsize, sizeof(*drc_hashtbl), GFP_KERNEL); 178 if (!drc_hashtbl) { 179 drc_hashtbl = vzalloc(hashsize * sizeof(*drc_hashtbl)); 180 if (!drc_hashtbl) 181 goto out_nomem; 182 } 183 184 for (i = 0; i < hashsize; i++) { 185 INIT_LIST_HEAD(&drc_hashtbl[i].lru_head); 186 spin_lock_init(&drc_hashtbl[i].cache_lock); 187 } 188 drc_hashsize = hashsize; 189 190 return 0; 191 out_nomem: 192 printk(KERN_ERR "nfsd: failed to allocate reply cache\n"); 193 nfsd_reply_cache_shutdown(); 194 return -ENOMEM; 195 } 196 197 void nfsd_reply_cache_shutdown(void) 198 { 199 struct svc_cacherep *rp; 200 unsigned int i; 201 202 unregister_shrinker(&nfsd_reply_cache_shrinker); 203 204 for (i = 0; i < drc_hashsize; i++) { 205 struct list_head *head = &drc_hashtbl[i].lru_head; 206 while (!list_empty(head)) { 207 rp = list_first_entry(head, struct svc_cacherep, c_lru); 208 nfsd_reply_cache_free_locked(rp); 209 } 210 } 211 212 kvfree(drc_hashtbl); 213 drc_hashtbl = NULL; 214 drc_hashsize = 0; 215 216 kmem_cache_destroy(drc_slab); 217 drc_slab = NULL; 218 } 219 220 /* 221 * Move cache entry to end of LRU list, and queue the cleaner to run if it's 222 * not already scheduled. 223 */ 224 static void 225 lru_put_end(struct nfsd_drc_bucket *b, struct svc_cacherep *rp) 226 { 227 rp->c_timestamp = jiffies; 228 list_move_tail(&rp->c_lru, &b->lru_head); 229 } 230 231 static long 232 prune_bucket(struct nfsd_drc_bucket *b) 233 { 234 struct svc_cacherep *rp, *tmp; 235 long freed = 0; 236 237 list_for_each_entry_safe(rp, tmp, &b->lru_head, c_lru) { 238 /* 239 * Don't free entries attached to calls that are still 240 * in-progress, but do keep scanning the list. 241 */ 242 if (rp->c_state == RC_INPROG) 243 continue; 244 if (atomic_read(&num_drc_entries) <= max_drc_entries && 245 time_before(jiffies, rp->c_timestamp + RC_EXPIRE)) 246 break; 247 nfsd_reply_cache_free_locked(rp); 248 freed++; 249 } 250 return freed; 251 } 252 253 /* 254 * Walk the LRU list and prune off entries that are older than RC_EXPIRE. 255 * Also prune the oldest ones when the total exceeds the max number of entries. 256 */ 257 static long 258 prune_cache_entries(void) 259 { 260 unsigned int i; 261 long freed = 0; 262 263 for (i = 0; i < drc_hashsize; i++) { 264 struct nfsd_drc_bucket *b = &drc_hashtbl[i]; 265 266 if (list_empty(&b->lru_head)) 267 continue; 268 spin_lock(&b->cache_lock); 269 freed += prune_bucket(b); 270 spin_unlock(&b->cache_lock); 271 } 272 return freed; 273 } 274 275 static unsigned long 276 nfsd_reply_cache_count(struct shrinker *shrink, struct shrink_control *sc) 277 { 278 return atomic_read(&num_drc_entries); 279 } 280 281 static unsigned long 282 nfsd_reply_cache_scan(struct shrinker *shrink, struct shrink_control *sc) 283 { 284 return prune_cache_entries(); 285 } 286 /* 287 * Walk an xdr_buf and get a CRC for at most the first RC_CSUMLEN bytes 288 */ 289 static __wsum 290 nfsd_cache_csum(struct svc_rqst *rqstp) 291 { 292 int idx; 293 unsigned int base; 294 __wsum csum; 295 struct xdr_buf *buf = &rqstp->rq_arg; 296 const unsigned char *p = buf->head[0].iov_base; 297 size_t csum_len = min_t(size_t, buf->head[0].iov_len + buf->page_len, 298 RC_CSUMLEN); 299 size_t len = min(buf->head[0].iov_len, csum_len); 300 301 /* rq_arg.head first */ 302 csum = csum_partial(p, len, 0); 303 csum_len -= len; 304 305 /* Continue into page array */ 306 idx = buf->page_base / PAGE_SIZE; 307 base = buf->page_base & ~PAGE_MASK; 308 while (csum_len) { 309 p = page_address(buf->pages[idx]) + base; 310 len = min_t(size_t, PAGE_SIZE - base, csum_len); 311 csum = csum_partial(p, len, csum); 312 csum_len -= len; 313 base = 0; 314 ++idx; 315 } 316 return csum; 317 } 318 319 static bool 320 nfsd_cache_match(struct svc_rqst *rqstp, __wsum csum, struct svc_cacherep *rp) 321 { 322 /* Check RPC XID first */ 323 if (rqstp->rq_xid != rp->c_xid) 324 return false; 325 /* compare checksum of NFS data */ 326 if (csum != rp->c_csum) { 327 ++payload_misses; 328 return false; 329 } 330 331 /* Other discriminators */ 332 if (rqstp->rq_proc != rp->c_proc || 333 rqstp->rq_prot != rp->c_prot || 334 rqstp->rq_vers != rp->c_vers || 335 rqstp->rq_arg.len != rp->c_len || 336 !rpc_cmp_addr(svc_addr(rqstp), (struct sockaddr *)&rp->c_addr) || 337 rpc_get_port(svc_addr(rqstp)) != rpc_get_port((struct sockaddr *)&rp->c_addr)) 338 return false; 339 340 return true; 341 } 342 343 /* 344 * Search the request hash for an entry that matches the given rqstp. 345 * Must be called with cache_lock held. Returns the found entry or 346 * NULL on failure. 347 */ 348 static struct svc_cacherep * 349 nfsd_cache_search(struct nfsd_drc_bucket *b, struct svc_rqst *rqstp, 350 __wsum csum) 351 { 352 struct svc_cacherep *rp, *ret = NULL; 353 struct list_head *rh = &b->lru_head; 354 unsigned int entries = 0; 355 356 list_for_each_entry(rp, rh, c_lru) { 357 ++entries; 358 if (nfsd_cache_match(rqstp, csum, rp)) { 359 ret = rp; 360 break; 361 } 362 } 363 364 /* tally hash chain length stats */ 365 if (entries > longest_chain) { 366 longest_chain = entries; 367 longest_chain_cachesize = atomic_read(&num_drc_entries); 368 } else if (entries == longest_chain) { 369 /* prefer to keep the smallest cachesize possible here */ 370 longest_chain_cachesize = min_t(unsigned int, 371 longest_chain_cachesize, 372 atomic_read(&num_drc_entries)); 373 } 374 375 return ret; 376 } 377 378 /* 379 * Try to find an entry matching the current call in the cache. When none 380 * is found, we try to grab the oldest expired entry off the LRU list. If 381 * a suitable one isn't there, then drop the cache_lock and allocate a 382 * new one, then search again in case one got inserted while this thread 383 * didn't hold the lock. 384 */ 385 int 386 nfsd_cache_lookup(struct svc_rqst *rqstp) 387 { 388 struct svc_cacherep *rp, *found; 389 __be32 xid = rqstp->rq_xid; 390 u32 proto = rqstp->rq_prot, 391 vers = rqstp->rq_vers, 392 proc = rqstp->rq_proc; 393 __wsum csum; 394 u32 hash = nfsd_cache_hash(xid); 395 struct nfsd_drc_bucket *b = &drc_hashtbl[hash]; 396 unsigned long age; 397 int type = rqstp->rq_cachetype; 398 int rtn = RC_DOIT; 399 400 rqstp->rq_cacherep = NULL; 401 if (type == RC_NOCACHE) { 402 nfsdstats.rcnocache++; 403 return rtn; 404 } 405 406 csum = nfsd_cache_csum(rqstp); 407 408 /* 409 * Since the common case is a cache miss followed by an insert, 410 * preallocate an entry. 411 */ 412 rp = nfsd_reply_cache_alloc(); 413 spin_lock(&b->cache_lock); 414 if (likely(rp)) { 415 atomic_inc(&num_drc_entries); 416 drc_mem_usage += sizeof(*rp); 417 } 418 419 /* go ahead and prune the cache */ 420 prune_bucket(b); 421 422 found = nfsd_cache_search(b, rqstp, csum); 423 if (found) { 424 if (likely(rp)) 425 nfsd_reply_cache_free_locked(rp); 426 rp = found; 427 goto found_entry; 428 } 429 430 if (!rp) { 431 dprintk("nfsd: unable to allocate DRC entry!\n"); 432 goto out; 433 } 434 435 nfsdstats.rcmisses++; 436 rqstp->rq_cacherep = rp; 437 rp->c_state = RC_INPROG; 438 rp->c_xid = xid; 439 rp->c_proc = proc; 440 rpc_copy_addr((struct sockaddr *)&rp->c_addr, svc_addr(rqstp)); 441 rpc_set_port((struct sockaddr *)&rp->c_addr, rpc_get_port(svc_addr(rqstp))); 442 rp->c_prot = proto; 443 rp->c_vers = vers; 444 rp->c_len = rqstp->rq_arg.len; 445 rp->c_csum = csum; 446 447 lru_put_end(b, rp); 448 449 /* release any buffer */ 450 if (rp->c_type == RC_REPLBUFF) { 451 drc_mem_usage -= rp->c_replvec.iov_len; 452 kfree(rp->c_replvec.iov_base); 453 rp->c_replvec.iov_base = NULL; 454 } 455 rp->c_type = RC_NOCACHE; 456 out: 457 spin_unlock(&b->cache_lock); 458 return rtn; 459 460 found_entry: 461 nfsdstats.rchits++; 462 /* We found a matching entry which is either in progress or done. */ 463 age = jiffies - rp->c_timestamp; 464 lru_put_end(b, rp); 465 466 rtn = RC_DROPIT; 467 /* Request being processed or excessive rexmits */ 468 if (rp->c_state == RC_INPROG || age < RC_DELAY) 469 goto out; 470 471 /* From the hall of fame of impractical attacks: 472 * Is this a user who tries to snoop on the cache? */ 473 rtn = RC_DOIT; 474 if (!test_bit(RQ_SECURE, &rqstp->rq_flags) && rp->c_secure) 475 goto out; 476 477 /* Compose RPC reply header */ 478 switch (rp->c_type) { 479 case RC_NOCACHE: 480 break; 481 case RC_REPLSTAT: 482 svc_putu32(&rqstp->rq_res.head[0], rp->c_replstat); 483 rtn = RC_REPLY; 484 break; 485 case RC_REPLBUFF: 486 if (!nfsd_cache_append(rqstp, &rp->c_replvec)) 487 goto out; /* should not happen */ 488 rtn = RC_REPLY; 489 break; 490 default: 491 printk(KERN_WARNING "nfsd: bad repcache type %d\n", rp->c_type); 492 nfsd_reply_cache_free_locked(rp); 493 } 494 495 goto out; 496 } 497 498 /* 499 * Update a cache entry. This is called from nfsd_dispatch when 500 * the procedure has been executed and the complete reply is in 501 * rqstp->rq_res. 502 * 503 * We're copying around data here rather than swapping buffers because 504 * the toplevel loop requires max-sized buffers, which would be a waste 505 * of memory for a cache with a max reply size of 100 bytes (diropokres). 506 * 507 * If we should start to use different types of cache entries tailored 508 * specifically for attrstat and fh's, we may save even more space. 509 * 510 * Also note that a cachetype of RC_NOCACHE can legally be passed when 511 * nfsd failed to encode a reply that otherwise would have been cached. 512 * In this case, nfsd_cache_update is called with statp == NULL. 513 */ 514 void 515 nfsd_cache_update(struct svc_rqst *rqstp, int cachetype, __be32 *statp) 516 { 517 struct svc_cacherep *rp = rqstp->rq_cacherep; 518 struct kvec *resv = &rqstp->rq_res.head[0], *cachv; 519 u32 hash; 520 struct nfsd_drc_bucket *b; 521 int len; 522 size_t bufsize = 0; 523 524 if (!rp) 525 return; 526 527 hash = nfsd_cache_hash(rp->c_xid); 528 b = &drc_hashtbl[hash]; 529 530 len = resv->iov_len - ((char*)statp - (char*)resv->iov_base); 531 len >>= 2; 532 533 /* Don't cache excessive amounts of data and XDR failures */ 534 if (!statp || len > (256 >> 2)) { 535 nfsd_reply_cache_free(b, rp); 536 return; 537 } 538 539 switch (cachetype) { 540 case RC_REPLSTAT: 541 if (len != 1) 542 printk("nfsd: RC_REPLSTAT/reply len %d!\n",len); 543 rp->c_replstat = *statp; 544 break; 545 case RC_REPLBUFF: 546 cachv = &rp->c_replvec; 547 bufsize = len << 2; 548 cachv->iov_base = kmalloc(bufsize, GFP_KERNEL); 549 if (!cachv->iov_base) { 550 nfsd_reply_cache_free(b, rp); 551 return; 552 } 553 cachv->iov_len = bufsize; 554 memcpy(cachv->iov_base, statp, bufsize); 555 break; 556 case RC_NOCACHE: 557 nfsd_reply_cache_free(b, rp); 558 return; 559 } 560 spin_lock(&b->cache_lock); 561 drc_mem_usage += bufsize; 562 lru_put_end(b, rp); 563 rp->c_secure = test_bit(RQ_SECURE, &rqstp->rq_flags); 564 rp->c_type = cachetype; 565 rp->c_state = RC_DONE; 566 spin_unlock(&b->cache_lock); 567 return; 568 } 569 570 /* 571 * Copy cached reply to current reply buffer. Should always fit. 572 * FIXME as reply is in a page, we should just attach the page, and 573 * keep a refcount.... 574 */ 575 static int 576 nfsd_cache_append(struct svc_rqst *rqstp, struct kvec *data) 577 { 578 struct kvec *vec = &rqstp->rq_res.head[0]; 579 580 if (vec->iov_len + data->iov_len > PAGE_SIZE) { 581 printk(KERN_WARNING "nfsd: cached reply too large (%Zd).\n", 582 data->iov_len); 583 return 0; 584 } 585 memcpy((char*)vec->iov_base + vec->iov_len, data->iov_base, data->iov_len); 586 vec->iov_len += data->iov_len; 587 return 1; 588 } 589 590 /* 591 * Note that fields may be added, removed or reordered in the future. Programs 592 * scraping this file for info should test the labels to ensure they're 593 * getting the correct field. 594 */ 595 static int nfsd_reply_cache_stats_show(struct seq_file *m, void *v) 596 { 597 seq_printf(m, "max entries: %u\n", max_drc_entries); 598 seq_printf(m, "num entries: %u\n", 599 atomic_read(&num_drc_entries)); 600 seq_printf(m, "hash buckets: %u\n", 1 << maskbits); 601 seq_printf(m, "mem usage: %u\n", drc_mem_usage); 602 seq_printf(m, "cache hits: %u\n", nfsdstats.rchits); 603 seq_printf(m, "cache misses: %u\n", nfsdstats.rcmisses); 604 seq_printf(m, "not cached: %u\n", nfsdstats.rcnocache); 605 seq_printf(m, "payload misses: %u\n", payload_misses); 606 seq_printf(m, "longest chain len: %u\n", longest_chain); 607 seq_printf(m, "cachesize at longest: %u\n", longest_chain_cachesize); 608 return 0; 609 } 610 611 int nfsd_reply_cache_stats_open(struct inode *inode, struct file *file) 612 { 613 return single_open(file, nfsd_reply_cache_stats_show, NULL); 614 } 615