1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Request reply cache. This is currently a global cache, but this may 4 * change in the future and be a per-client cache. 5 * 6 * This code is heavily inspired by the 44BSD implementation, although 7 * it does things a bit differently. 8 * 9 * Copyright (C) 1995, 1996 Olaf Kirch <okir@monad.swb.de> 10 */ 11 12 #include <linux/sunrpc/svc_xprt.h> 13 #include <linux/slab.h> 14 #include <linux/vmalloc.h> 15 #include <linux/sunrpc/addr.h> 16 #include <linux/highmem.h> 17 #include <linux/log2.h> 18 #include <linux/hash.h> 19 #include <net/checksum.h> 20 21 #include "nfsd.h" 22 #include "cache.h" 23 #include "trace.h" 24 25 /* 26 * We use this value to determine the number of hash buckets from the max 27 * cache size, the idea being that when the cache is at its maximum number 28 * of entries, then this should be the average number of entries per bucket. 29 */ 30 #define TARGET_BUCKET_SIZE 64 31 32 struct nfsd_drc_bucket { 33 struct rb_root rb_head; 34 struct list_head lru_head; 35 spinlock_t cache_lock; 36 }; 37 38 static struct kmem_cache *drc_slab; 39 40 static int nfsd_cache_append(struct svc_rqst *rqstp, struct kvec *vec); 41 static unsigned long nfsd_reply_cache_count(struct shrinker *shrink, 42 struct shrink_control *sc); 43 static unsigned long nfsd_reply_cache_scan(struct shrinker *shrink, 44 struct shrink_control *sc); 45 46 /* 47 * Put a cap on the size of the DRC based on the amount of available 48 * low memory in the machine. 49 * 50 * 64MB: 8192 51 * 128MB: 11585 52 * 256MB: 16384 53 * 512MB: 23170 54 * 1GB: 32768 55 * 2GB: 46340 56 * 4GB: 65536 57 * 8GB: 92681 58 * 16GB: 131072 59 * 60 * ...with a hard cap of 256k entries. In the worst case, each entry will be 61 * ~1k, so the above numbers should give a rough max of the amount of memory 62 * used in k. 63 * 64 * XXX: these limits are per-container, so memory used will increase 65 * linearly with number of containers. Maybe that's OK. 66 */ 67 static unsigned int 68 nfsd_cache_size_limit(void) 69 { 70 unsigned int limit; 71 unsigned long low_pages = totalram_pages() - totalhigh_pages(); 72 73 limit = (16 * int_sqrt(low_pages)) << (PAGE_SHIFT-10); 74 return min_t(unsigned int, limit, 256*1024); 75 } 76 77 /* 78 * Compute the number of hash buckets we need. Divide the max cachesize by 79 * the "target" max bucket size, and round up to next power of two. 80 */ 81 static unsigned int 82 nfsd_hashsize(unsigned int limit) 83 { 84 return roundup_pow_of_two(limit / TARGET_BUCKET_SIZE); 85 } 86 87 static struct nfsd_cacherep * 88 nfsd_cacherep_alloc(struct svc_rqst *rqstp, __wsum csum, 89 struct nfsd_net *nn) 90 { 91 struct nfsd_cacherep *rp; 92 93 rp = kmem_cache_alloc(drc_slab, GFP_KERNEL); 94 if (rp) { 95 rp->c_state = RC_UNUSED; 96 rp->c_type = RC_NOCACHE; 97 RB_CLEAR_NODE(&rp->c_node); 98 INIT_LIST_HEAD(&rp->c_lru); 99 100 memset(&rp->c_key, 0, sizeof(rp->c_key)); 101 rp->c_key.k_xid = rqstp->rq_xid; 102 rp->c_key.k_proc = rqstp->rq_proc; 103 rpc_copy_addr((struct sockaddr *)&rp->c_key.k_addr, svc_addr(rqstp)); 104 rpc_set_port((struct sockaddr *)&rp->c_key.k_addr, rpc_get_port(svc_addr(rqstp))); 105 rp->c_key.k_prot = rqstp->rq_prot; 106 rp->c_key.k_vers = rqstp->rq_vers; 107 rp->c_key.k_len = rqstp->rq_arg.len; 108 rp->c_key.k_csum = csum; 109 } 110 return rp; 111 } 112 113 static void nfsd_cacherep_free(struct nfsd_cacherep *rp) 114 { 115 if (rp->c_type == RC_REPLBUFF) 116 kfree(rp->c_replvec.iov_base); 117 kmem_cache_free(drc_slab, rp); 118 } 119 120 static unsigned long 121 nfsd_cacherep_dispose(struct list_head *dispose) 122 { 123 struct nfsd_cacherep *rp; 124 unsigned long freed = 0; 125 126 while (!list_empty(dispose)) { 127 rp = list_first_entry(dispose, struct nfsd_cacherep, c_lru); 128 list_del(&rp->c_lru); 129 nfsd_cacherep_free(rp); 130 freed++; 131 } 132 return freed; 133 } 134 135 static void 136 nfsd_cacherep_unlink_locked(struct nfsd_net *nn, struct nfsd_drc_bucket *b, 137 struct nfsd_cacherep *rp) 138 { 139 if (rp->c_type == RC_REPLBUFF && rp->c_replvec.iov_base) 140 nfsd_stats_drc_mem_usage_sub(nn, rp->c_replvec.iov_len); 141 if (rp->c_state != RC_UNUSED) { 142 rb_erase(&rp->c_node, &b->rb_head); 143 list_del(&rp->c_lru); 144 atomic_dec(&nn->num_drc_entries); 145 nfsd_stats_drc_mem_usage_sub(nn, sizeof(*rp)); 146 } 147 } 148 149 static void 150 nfsd_reply_cache_free_locked(struct nfsd_drc_bucket *b, struct nfsd_cacherep *rp, 151 struct nfsd_net *nn) 152 { 153 nfsd_cacherep_unlink_locked(nn, b, rp); 154 nfsd_cacherep_free(rp); 155 } 156 157 static void 158 nfsd_reply_cache_free(struct nfsd_drc_bucket *b, struct nfsd_cacherep *rp, 159 struct nfsd_net *nn) 160 { 161 spin_lock(&b->cache_lock); 162 nfsd_cacherep_unlink_locked(nn, b, rp); 163 spin_unlock(&b->cache_lock); 164 nfsd_cacherep_free(rp); 165 } 166 167 int nfsd_drc_slab_create(void) 168 { 169 drc_slab = kmem_cache_create("nfsd_drc", 170 sizeof(struct nfsd_cacherep), 0, 0, NULL); 171 return drc_slab ? 0: -ENOMEM; 172 } 173 174 void nfsd_drc_slab_free(void) 175 { 176 kmem_cache_destroy(drc_slab); 177 } 178 179 /** 180 * nfsd_net_reply_cache_init - per net namespace reply cache set-up 181 * @nn: nfsd_net being initialized 182 * 183 * Returns zero on succes; otherwise a negative errno is returned. 184 */ 185 int nfsd_net_reply_cache_init(struct nfsd_net *nn) 186 { 187 return nfsd_percpu_counters_init(nn->counter, NFSD_NET_COUNTERS_NUM); 188 } 189 190 /** 191 * nfsd_net_reply_cache_destroy - per net namespace reply cache tear-down 192 * @nn: nfsd_net being freed 193 * 194 */ 195 void nfsd_net_reply_cache_destroy(struct nfsd_net *nn) 196 { 197 nfsd_percpu_counters_destroy(nn->counter, NFSD_NET_COUNTERS_NUM); 198 } 199 200 int nfsd_reply_cache_init(struct nfsd_net *nn) 201 { 202 unsigned int hashsize; 203 unsigned int i; 204 205 nn->max_drc_entries = nfsd_cache_size_limit(); 206 atomic_set(&nn->num_drc_entries, 0); 207 hashsize = nfsd_hashsize(nn->max_drc_entries); 208 nn->maskbits = ilog2(hashsize); 209 210 nn->drc_hashtbl = kvzalloc(array_size(hashsize, 211 sizeof(*nn->drc_hashtbl)), GFP_KERNEL); 212 if (!nn->drc_hashtbl) 213 return -ENOMEM; 214 215 nn->nfsd_reply_cache_shrinker = shrinker_alloc(0, "nfsd-reply:%s", 216 nn->nfsd_name); 217 if (!nn->nfsd_reply_cache_shrinker) 218 goto out_shrinker; 219 220 nn->nfsd_reply_cache_shrinker->scan_objects = nfsd_reply_cache_scan; 221 nn->nfsd_reply_cache_shrinker->count_objects = nfsd_reply_cache_count; 222 nn->nfsd_reply_cache_shrinker->seeks = 1; 223 nn->nfsd_reply_cache_shrinker->private_data = nn; 224 225 shrinker_register(nn->nfsd_reply_cache_shrinker); 226 227 for (i = 0; i < hashsize; i++) { 228 INIT_LIST_HEAD(&nn->drc_hashtbl[i].lru_head); 229 spin_lock_init(&nn->drc_hashtbl[i].cache_lock); 230 } 231 nn->drc_hashsize = hashsize; 232 233 return 0; 234 out_shrinker: 235 kvfree(nn->drc_hashtbl); 236 printk(KERN_ERR "nfsd: failed to allocate reply cache\n"); 237 return -ENOMEM; 238 } 239 240 void nfsd_reply_cache_shutdown(struct nfsd_net *nn) 241 { 242 struct nfsd_cacherep *rp; 243 unsigned int i; 244 245 shrinker_free(nn->nfsd_reply_cache_shrinker); 246 247 for (i = 0; i < nn->drc_hashsize; i++) { 248 struct list_head *head = &nn->drc_hashtbl[i].lru_head; 249 while (!list_empty(head)) { 250 rp = list_first_entry(head, struct nfsd_cacherep, c_lru); 251 nfsd_reply_cache_free_locked(&nn->drc_hashtbl[i], 252 rp, nn); 253 } 254 } 255 256 kvfree(nn->drc_hashtbl); 257 nn->drc_hashtbl = NULL; 258 nn->drc_hashsize = 0; 259 260 } 261 262 /* 263 * Move cache entry to end of LRU list, and queue the cleaner to run if it's 264 * not already scheduled. 265 */ 266 static void 267 lru_put_end(struct nfsd_drc_bucket *b, struct nfsd_cacherep *rp) 268 { 269 rp->c_timestamp = jiffies; 270 list_move_tail(&rp->c_lru, &b->lru_head); 271 } 272 273 static noinline struct nfsd_drc_bucket * 274 nfsd_cache_bucket_find(__be32 xid, struct nfsd_net *nn) 275 { 276 unsigned int hash = hash_32((__force u32)xid, nn->maskbits); 277 278 return &nn->drc_hashtbl[hash]; 279 } 280 281 /* 282 * Remove and return no more than @max expired entries in bucket @b. 283 * If @max is zero, do not limit the number of removed entries. 284 */ 285 static void 286 nfsd_prune_bucket_locked(struct nfsd_net *nn, struct nfsd_drc_bucket *b, 287 unsigned int max, struct list_head *dispose) 288 { 289 unsigned long expiry = jiffies - RC_EXPIRE; 290 struct nfsd_cacherep *rp, *tmp; 291 unsigned int freed = 0; 292 293 lockdep_assert_held(&b->cache_lock); 294 295 /* The bucket LRU is ordered oldest-first. */ 296 list_for_each_entry_safe(rp, tmp, &b->lru_head, c_lru) { 297 /* 298 * Don't free entries attached to calls that are still 299 * in-progress, but do keep scanning the list. 300 */ 301 if (rp->c_state == RC_INPROG) 302 continue; 303 304 if (atomic_read(&nn->num_drc_entries) <= nn->max_drc_entries && 305 time_before(expiry, rp->c_timestamp)) 306 break; 307 308 nfsd_cacherep_unlink_locked(nn, b, rp); 309 list_add(&rp->c_lru, dispose); 310 311 if (max && ++freed > max) 312 break; 313 } 314 } 315 316 /** 317 * nfsd_reply_cache_count - count_objects method for the DRC shrinker 318 * @shrink: our registered shrinker context 319 * @sc: garbage collection parameters 320 * 321 * Returns the total number of entries in the duplicate reply cache. To 322 * keep things simple and quick, this is not the number of expired entries 323 * in the cache (ie, the number that would be removed by a call to 324 * nfsd_reply_cache_scan). 325 */ 326 static unsigned long 327 nfsd_reply_cache_count(struct shrinker *shrink, struct shrink_control *sc) 328 { 329 struct nfsd_net *nn = shrink->private_data; 330 331 return atomic_read(&nn->num_drc_entries); 332 } 333 334 /** 335 * nfsd_reply_cache_scan - scan_objects method for the DRC shrinker 336 * @shrink: our registered shrinker context 337 * @sc: garbage collection parameters 338 * 339 * Free expired entries on each bucket's LRU list until we've released 340 * nr_to_scan freed objects. Nothing will be released if the cache 341 * has not exceeded it's max_drc_entries limit. 342 * 343 * Returns the number of entries released by this call. 344 */ 345 static unsigned long 346 nfsd_reply_cache_scan(struct shrinker *shrink, struct shrink_control *sc) 347 { 348 struct nfsd_net *nn = shrink->private_data; 349 unsigned long freed = 0; 350 LIST_HEAD(dispose); 351 unsigned int i; 352 353 for (i = 0; i < nn->drc_hashsize; i++) { 354 struct nfsd_drc_bucket *b = &nn->drc_hashtbl[i]; 355 356 if (list_empty(&b->lru_head)) 357 continue; 358 359 spin_lock(&b->cache_lock); 360 nfsd_prune_bucket_locked(nn, b, 0, &dispose); 361 spin_unlock(&b->cache_lock); 362 363 freed += nfsd_cacherep_dispose(&dispose); 364 if (freed > sc->nr_to_scan) 365 break; 366 } 367 368 trace_nfsd_drc_gc(nn, freed); 369 return freed; 370 } 371 372 /* 373 * Walk an xdr_buf and get a CRC for at most the first RC_CSUMLEN bytes 374 */ 375 static __wsum 376 nfsd_cache_csum(struct svc_rqst *rqstp) 377 { 378 int idx; 379 unsigned int base; 380 __wsum csum; 381 struct xdr_buf *buf = &rqstp->rq_arg; 382 const unsigned char *p = buf->head[0].iov_base; 383 size_t csum_len = min_t(size_t, buf->head[0].iov_len + buf->page_len, 384 RC_CSUMLEN); 385 size_t len = min(buf->head[0].iov_len, csum_len); 386 387 /* rq_arg.head first */ 388 csum = csum_partial(p, len, 0); 389 csum_len -= len; 390 391 /* Continue into page array */ 392 idx = buf->page_base / PAGE_SIZE; 393 base = buf->page_base & ~PAGE_MASK; 394 while (csum_len) { 395 p = page_address(buf->pages[idx]) + base; 396 len = min_t(size_t, PAGE_SIZE - base, csum_len); 397 csum = csum_partial(p, len, csum); 398 csum_len -= len; 399 base = 0; 400 ++idx; 401 } 402 return csum; 403 } 404 405 static int 406 nfsd_cache_key_cmp(const struct nfsd_cacherep *key, 407 const struct nfsd_cacherep *rp, struct nfsd_net *nn) 408 { 409 if (key->c_key.k_xid == rp->c_key.k_xid && 410 key->c_key.k_csum != rp->c_key.k_csum) { 411 nfsd_stats_payload_misses_inc(nn); 412 trace_nfsd_drc_mismatch(nn, key, rp); 413 } 414 415 return memcmp(&key->c_key, &rp->c_key, sizeof(key->c_key)); 416 } 417 418 /* 419 * Search the request hash for an entry that matches the given rqstp. 420 * Must be called with cache_lock held. Returns the found entry or 421 * inserts an empty key on failure. 422 */ 423 static struct nfsd_cacherep * 424 nfsd_cache_insert(struct nfsd_drc_bucket *b, struct nfsd_cacherep *key, 425 struct nfsd_net *nn) 426 { 427 struct nfsd_cacherep *rp, *ret = key; 428 struct rb_node **p = &b->rb_head.rb_node, 429 *parent = NULL; 430 unsigned int entries = 0; 431 int cmp; 432 433 while (*p != NULL) { 434 ++entries; 435 parent = *p; 436 rp = rb_entry(parent, struct nfsd_cacherep, c_node); 437 438 cmp = nfsd_cache_key_cmp(key, rp, nn); 439 if (cmp < 0) 440 p = &parent->rb_left; 441 else if (cmp > 0) 442 p = &parent->rb_right; 443 else { 444 ret = rp; 445 goto out; 446 } 447 } 448 rb_link_node(&key->c_node, parent, p); 449 rb_insert_color(&key->c_node, &b->rb_head); 450 out: 451 /* tally hash chain length stats */ 452 if (entries > nn->longest_chain) { 453 nn->longest_chain = entries; 454 nn->longest_chain_cachesize = atomic_read(&nn->num_drc_entries); 455 } else if (entries == nn->longest_chain) { 456 /* prefer to keep the smallest cachesize possible here */ 457 nn->longest_chain_cachesize = min_t(unsigned int, 458 nn->longest_chain_cachesize, 459 atomic_read(&nn->num_drc_entries)); 460 } 461 462 lru_put_end(b, ret); 463 return ret; 464 } 465 466 /** 467 * nfsd_cache_lookup - Find an entry in the duplicate reply cache 468 * @rqstp: Incoming Call to find 469 * @cacherep: OUT: DRC entry for this request 470 * 471 * Try to find an entry matching the current call in the cache. When none 472 * is found, we try to grab the oldest expired entry off the LRU list. If 473 * a suitable one isn't there, then drop the cache_lock and allocate a 474 * new one, then search again in case one got inserted while this thread 475 * didn't hold the lock. 476 * 477 * Return values: 478 * %RC_DOIT: Process the request normally 479 * %RC_REPLY: Reply from cache 480 * %RC_DROPIT: Do not process the request further 481 */ 482 int nfsd_cache_lookup(struct svc_rqst *rqstp, struct nfsd_cacherep **cacherep) 483 { 484 struct nfsd_net *nn; 485 struct nfsd_cacherep *rp, *found; 486 __wsum csum; 487 struct nfsd_drc_bucket *b; 488 int type = rqstp->rq_cachetype; 489 unsigned long freed; 490 LIST_HEAD(dispose); 491 int rtn = RC_DOIT; 492 493 if (type == RC_NOCACHE) { 494 nfsd_stats_rc_nocache_inc(); 495 goto out; 496 } 497 498 csum = nfsd_cache_csum(rqstp); 499 500 /* 501 * Since the common case is a cache miss followed by an insert, 502 * preallocate an entry. 503 */ 504 nn = net_generic(SVC_NET(rqstp), nfsd_net_id); 505 rp = nfsd_cacherep_alloc(rqstp, csum, nn); 506 if (!rp) 507 goto out; 508 509 b = nfsd_cache_bucket_find(rqstp->rq_xid, nn); 510 spin_lock(&b->cache_lock); 511 found = nfsd_cache_insert(b, rp, nn); 512 if (found != rp) 513 goto found_entry; 514 *cacherep = rp; 515 rp->c_state = RC_INPROG; 516 nfsd_prune_bucket_locked(nn, b, 3, &dispose); 517 spin_unlock(&b->cache_lock); 518 519 freed = nfsd_cacherep_dispose(&dispose); 520 trace_nfsd_drc_gc(nn, freed); 521 522 nfsd_stats_rc_misses_inc(); 523 atomic_inc(&nn->num_drc_entries); 524 nfsd_stats_drc_mem_usage_add(nn, sizeof(*rp)); 525 goto out; 526 527 found_entry: 528 /* We found a matching entry which is either in progress or done. */ 529 nfsd_reply_cache_free_locked(NULL, rp, nn); 530 nfsd_stats_rc_hits_inc(); 531 rtn = RC_DROPIT; 532 rp = found; 533 534 /* Request being processed */ 535 if (rp->c_state == RC_INPROG) 536 goto out_trace; 537 538 /* From the hall of fame of impractical attacks: 539 * Is this a user who tries to snoop on the cache? */ 540 rtn = RC_DOIT; 541 if (!test_bit(RQ_SECURE, &rqstp->rq_flags) && rp->c_secure) 542 goto out_trace; 543 544 /* Compose RPC reply header */ 545 switch (rp->c_type) { 546 case RC_NOCACHE: 547 break; 548 case RC_REPLSTAT: 549 xdr_stream_encode_be32(&rqstp->rq_res_stream, rp->c_replstat); 550 rtn = RC_REPLY; 551 break; 552 case RC_REPLBUFF: 553 if (!nfsd_cache_append(rqstp, &rp->c_replvec)) 554 goto out_unlock; /* should not happen */ 555 rtn = RC_REPLY; 556 break; 557 default: 558 WARN_ONCE(1, "nfsd: bad repcache type %d\n", rp->c_type); 559 } 560 561 out_trace: 562 trace_nfsd_drc_found(nn, rqstp, rtn); 563 out_unlock: 564 spin_unlock(&b->cache_lock); 565 out: 566 return rtn; 567 } 568 569 /** 570 * nfsd_cache_update - Update an entry in the duplicate reply cache. 571 * @rqstp: svc_rqst with a finished Reply 572 * @rp: IN: DRC entry for this request 573 * @cachetype: which cache to update 574 * @statp: pointer to Reply's NFS status code, or NULL 575 * 576 * This is called from nfsd_dispatch when the procedure has been 577 * executed and the complete reply is in rqstp->rq_res. 578 * 579 * We're copying around data here rather than swapping buffers because 580 * the toplevel loop requires max-sized buffers, which would be a waste 581 * of memory for a cache with a max reply size of 100 bytes (diropokres). 582 * 583 * If we should start to use different types of cache entries tailored 584 * specifically for attrstat and fh's, we may save even more space. 585 * 586 * Also note that a cachetype of RC_NOCACHE can legally be passed when 587 * nfsd failed to encode a reply that otherwise would have been cached. 588 * In this case, nfsd_cache_update is called with statp == NULL. 589 */ 590 void nfsd_cache_update(struct svc_rqst *rqstp, struct nfsd_cacherep *rp, 591 int cachetype, __be32 *statp) 592 { 593 struct nfsd_net *nn = net_generic(SVC_NET(rqstp), nfsd_net_id); 594 struct kvec *resv = &rqstp->rq_res.head[0], *cachv; 595 struct nfsd_drc_bucket *b; 596 int len; 597 size_t bufsize = 0; 598 599 if (!rp) 600 return; 601 602 b = nfsd_cache_bucket_find(rp->c_key.k_xid, nn); 603 604 len = resv->iov_len - ((char*)statp - (char*)resv->iov_base); 605 len >>= 2; 606 607 /* Don't cache excessive amounts of data and XDR failures */ 608 if (!statp || len > (256 >> 2)) { 609 nfsd_reply_cache_free(b, rp, nn); 610 return; 611 } 612 613 switch (cachetype) { 614 case RC_REPLSTAT: 615 if (len != 1) 616 printk("nfsd: RC_REPLSTAT/reply len %d!\n",len); 617 rp->c_replstat = *statp; 618 break; 619 case RC_REPLBUFF: 620 cachv = &rp->c_replvec; 621 bufsize = len << 2; 622 cachv->iov_base = kmalloc(bufsize, GFP_KERNEL); 623 if (!cachv->iov_base) { 624 nfsd_reply_cache_free(b, rp, nn); 625 return; 626 } 627 cachv->iov_len = bufsize; 628 memcpy(cachv->iov_base, statp, bufsize); 629 break; 630 case RC_NOCACHE: 631 nfsd_reply_cache_free(b, rp, nn); 632 return; 633 } 634 spin_lock(&b->cache_lock); 635 nfsd_stats_drc_mem_usage_add(nn, bufsize); 636 lru_put_end(b, rp); 637 rp->c_secure = test_bit(RQ_SECURE, &rqstp->rq_flags); 638 rp->c_type = cachetype; 639 rp->c_state = RC_DONE; 640 spin_unlock(&b->cache_lock); 641 return; 642 } 643 644 /* 645 * Copy cached reply to current reply buffer. Should always fit. 646 * FIXME as reply is in a page, we should just attach the page, and 647 * keep a refcount.... 648 */ 649 static int 650 nfsd_cache_append(struct svc_rqst *rqstp, struct kvec *data) 651 { 652 struct kvec *vec = &rqstp->rq_res.head[0]; 653 654 if (vec->iov_len + data->iov_len > PAGE_SIZE) { 655 printk(KERN_WARNING "nfsd: cached reply too large (%zd).\n", 656 data->iov_len); 657 return 0; 658 } 659 memcpy((char*)vec->iov_base + vec->iov_len, data->iov_base, data->iov_len); 660 vec->iov_len += data->iov_len; 661 return 1; 662 } 663 664 /* 665 * Note that fields may be added, removed or reordered in the future. Programs 666 * scraping this file for info should test the labels to ensure they're 667 * getting the correct field. 668 */ 669 int nfsd_reply_cache_stats_show(struct seq_file *m, void *v) 670 { 671 struct nfsd_net *nn = net_generic(file_inode(m->file)->i_sb->s_fs_info, 672 nfsd_net_id); 673 674 seq_printf(m, "max entries: %u\n", nn->max_drc_entries); 675 seq_printf(m, "num entries: %u\n", 676 atomic_read(&nn->num_drc_entries)); 677 seq_printf(m, "hash buckets: %u\n", 1 << nn->maskbits); 678 seq_printf(m, "mem usage: %lld\n", 679 percpu_counter_sum_positive(&nn->counter[NFSD_NET_DRC_MEM_USAGE])); 680 seq_printf(m, "cache hits: %lld\n", 681 percpu_counter_sum_positive(&nfsdstats.counter[NFSD_STATS_RC_HITS])); 682 seq_printf(m, "cache misses: %lld\n", 683 percpu_counter_sum_positive(&nfsdstats.counter[NFSD_STATS_RC_MISSES])); 684 seq_printf(m, "not cached: %lld\n", 685 percpu_counter_sum_positive(&nfsdstats.counter[NFSD_STATS_RC_NOCACHE])); 686 seq_printf(m, "payload misses: %lld\n", 687 percpu_counter_sum_positive(&nn->counter[NFSD_NET_PAYLOAD_MISSES])); 688 seq_printf(m, "longest chain len: %u\n", nn->longest_chain); 689 seq_printf(m, "cachesize at longest: %u\n", nn->longest_chain_cachesize); 690 return 0; 691 } 692