1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Request reply cache. This is currently a global cache, but this may 4 * change in the future and be a per-client cache. 5 * 6 * This code is heavily inspired by the 44BSD implementation, although 7 * it does things a bit differently. 8 * 9 * Copyright (C) 1995, 1996 Olaf Kirch <okir@monad.swb.de> 10 */ 11 12 #include <linux/sunrpc/svc_xprt.h> 13 #include <linux/slab.h> 14 #include <linux/vmalloc.h> 15 #include <linux/sunrpc/addr.h> 16 #include <linux/highmem.h> 17 #include <linux/log2.h> 18 #include <linux/hash.h> 19 #include <net/checksum.h> 20 21 #include "nfsd.h" 22 #include "cache.h" 23 #include "trace.h" 24 25 /* 26 * We use this value to determine the number of hash buckets from the max 27 * cache size, the idea being that when the cache is at its maximum number 28 * of entries, then this should be the average number of entries per bucket. 29 */ 30 #define TARGET_BUCKET_SIZE 64 31 32 struct nfsd_drc_bucket { 33 struct rb_root rb_head; 34 struct list_head lru_head; 35 spinlock_t cache_lock; 36 }; 37 38 static struct kmem_cache *drc_slab; 39 40 static int nfsd_cache_append(struct svc_rqst *rqstp, struct kvec *vec); 41 static unsigned long nfsd_reply_cache_count(struct shrinker *shrink, 42 struct shrink_control *sc); 43 static unsigned long nfsd_reply_cache_scan(struct shrinker *shrink, 44 struct shrink_control *sc); 45 46 /* 47 * Put a cap on the size of the DRC based on the amount of available 48 * low memory in the machine. 49 * 50 * 64MB: 8192 51 * 128MB: 11585 52 * 256MB: 16384 53 * 512MB: 23170 54 * 1GB: 32768 55 * 2GB: 46340 56 * 4GB: 65536 57 * 8GB: 92681 58 * 16GB: 131072 59 * 60 * ...with a hard cap of 256k entries. In the worst case, each entry will be 61 * ~1k, so the above numbers should give a rough max of the amount of memory 62 * used in k. 63 * 64 * XXX: these limits are per-container, so memory used will increase 65 * linearly with number of containers. Maybe that's OK. 66 */ 67 static unsigned int 68 nfsd_cache_size_limit(void) 69 { 70 unsigned int limit; 71 unsigned long low_pages = totalram_pages() - totalhigh_pages(); 72 73 limit = (16 * int_sqrt(low_pages)) << (PAGE_SHIFT-10); 74 return min_t(unsigned int, limit, 256*1024); 75 } 76 77 /* 78 * Compute the number of hash buckets we need. Divide the max cachesize by 79 * the "target" max bucket size, and round up to next power of two. 80 */ 81 static unsigned int 82 nfsd_hashsize(unsigned int limit) 83 { 84 return roundup_pow_of_two(limit / TARGET_BUCKET_SIZE); 85 } 86 87 static struct svc_cacherep * 88 nfsd_reply_cache_alloc(struct svc_rqst *rqstp, __wsum csum, 89 struct nfsd_net *nn) 90 { 91 struct svc_cacherep *rp; 92 93 rp = kmem_cache_alloc(drc_slab, GFP_KERNEL); 94 if (rp) { 95 rp->c_state = RC_UNUSED; 96 rp->c_type = RC_NOCACHE; 97 RB_CLEAR_NODE(&rp->c_node); 98 INIT_LIST_HEAD(&rp->c_lru); 99 100 memset(&rp->c_key, 0, sizeof(rp->c_key)); 101 rp->c_key.k_xid = rqstp->rq_xid; 102 rp->c_key.k_proc = rqstp->rq_proc; 103 rpc_copy_addr((struct sockaddr *)&rp->c_key.k_addr, svc_addr(rqstp)); 104 rpc_set_port((struct sockaddr *)&rp->c_key.k_addr, rpc_get_port(svc_addr(rqstp))); 105 rp->c_key.k_prot = rqstp->rq_prot; 106 rp->c_key.k_vers = rqstp->rq_vers; 107 rp->c_key.k_len = rqstp->rq_arg.len; 108 rp->c_key.k_csum = csum; 109 } 110 return rp; 111 } 112 113 static void 114 nfsd_reply_cache_free_locked(struct nfsd_drc_bucket *b, struct svc_cacherep *rp, 115 struct nfsd_net *nn) 116 { 117 if (rp->c_type == RC_REPLBUFF && rp->c_replvec.iov_base) { 118 nfsd_stats_drc_mem_usage_sub(nn, rp->c_replvec.iov_len); 119 kfree(rp->c_replvec.iov_base); 120 } 121 if (rp->c_state != RC_UNUSED) { 122 rb_erase(&rp->c_node, &b->rb_head); 123 list_del(&rp->c_lru); 124 atomic_dec(&nn->num_drc_entries); 125 nfsd_stats_drc_mem_usage_sub(nn, sizeof(*rp)); 126 } 127 kmem_cache_free(drc_slab, rp); 128 } 129 130 static void 131 nfsd_reply_cache_free(struct nfsd_drc_bucket *b, struct svc_cacherep *rp, 132 struct nfsd_net *nn) 133 { 134 spin_lock(&b->cache_lock); 135 nfsd_reply_cache_free_locked(b, rp, nn); 136 spin_unlock(&b->cache_lock); 137 } 138 139 int nfsd_drc_slab_create(void) 140 { 141 drc_slab = kmem_cache_create("nfsd_drc", 142 sizeof(struct svc_cacherep), 0, 0, NULL); 143 return drc_slab ? 0: -ENOMEM; 144 } 145 146 void nfsd_drc_slab_free(void) 147 { 148 kmem_cache_destroy(drc_slab); 149 } 150 151 static int nfsd_reply_cache_stats_init(struct nfsd_net *nn) 152 { 153 return nfsd_percpu_counters_init(nn->counter, NFSD_NET_COUNTERS_NUM); 154 } 155 156 static void nfsd_reply_cache_stats_destroy(struct nfsd_net *nn) 157 { 158 nfsd_percpu_counters_destroy(nn->counter, NFSD_NET_COUNTERS_NUM); 159 } 160 161 int nfsd_reply_cache_init(struct nfsd_net *nn) 162 { 163 unsigned int hashsize; 164 unsigned int i; 165 int status = 0; 166 167 nn->max_drc_entries = nfsd_cache_size_limit(); 168 atomic_set(&nn->num_drc_entries, 0); 169 hashsize = nfsd_hashsize(nn->max_drc_entries); 170 nn->maskbits = ilog2(hashsize); 171 172 status = nfsd_reply_cache_stats_init(nn); 173 if (status) 174 goto out_nomem; 175 176 nn->nfsd_reply_cache_shrinker.scan_objects = nfsd_reply_cache_scan; 177 nn->nfsd_reply_cache_shrinker.count_objects = nfsd_reply_cache_count; 178 nn->nfsd_reply_cache_shrinker.seeks = 1; 179 status = register_shrinker(&nn->nfsd_reply_cache_shrinker, 180 "nfsd-reply:%s", nn->nfsd_name); 181 if (status) 182 goto out_stats_destroy; 183 184 nn->drc_hashtbl = kvzalloc(array_size(hashsize, 185 sizeof(*nn->drc_hashtbl)), GFP_KERNEL); 186 if (!nn->drc_hashtbl) 187 goto out_shrinker; 188 189 for (i = 0; i < hashsize; i++) { 190 INIT_LIST_HEAD(&nn->drc_hashtbl[i].lru_head); 191 spin_lock_init(&nn->drc_hashtbl[i].cache_lock); 192 } 193 nn->drc_hashsize = hashsize; 194 195 return 0; 196 out_shrinker: 197 unregister_shrinker(&nn->nfsd_reply_cache_shrinker); 198 out_stats_destroy: 199 nfsd_reply_cache_stats_destroy(nn); 200 out_nomem: 201 printk(KERN_ERR "nfsd: failed to allocate reply cache\n"); 202 return -ENOMEM; 203 } 204 205 void nfsd_reply_cache_shutdown(struct nfsd_net *nn) 206 { 207 struct svc_cacherep *rp; 208 unsigned int i; 209 210 unregister_shrinker(&nn->nfsd_reply_cache_shrinker); 211 212 for (i = 0; i < nn->drc_hashsize; i++) { 213 struct list_head *head = &nn->drc_hashtbl[i].lru_head; 214 while (!list_empty(head)) { 215 rp = list_first_entry(head, struct svc_cacherep, c_lru); 216 nfsd_reply_cache_free_locked(&nn->drc_hashtbl[i], 217 rp, nn); 218 } 219 } 220 nfsd_reply_cache_stats_destroy(nn); 221 222 kvfree(nn->drc_hashtbl); 223 nn->drc_hashtbl = NULL; 224 nn->drc_hashsize = 0; 225 226 } 227 228 /* 229 * Move cache entry to end of LRU list, and queue the cleaner to run if it's 230 * not already scheduled. 231 */ 232 static void 233 lru_put_end(struct nfsd_drc_bucket *b, struct svc_cacherep *rp) 234 { 235 rp->c_timestamp = jiffies; 236 list_move_tail(&rp->c_lru, &b->lru_head); 237 } 238 239 static noinline struct nfsd_drc_bucket * 240 nfsd_cache_bucket_find(__be32 xid, struct nfsd_net *nn) 241 { 242 unsigned int hash = hash_32((__force u32)xid, nn->maskbits); 243 244 return &nn->drc_hashtbl[hash]; 245 } 246 247 static long prune_bucket(struct nfsd_drc_bucket *b, struct nfsd_net *nn, 248 unsigned int max) 249 { 250 struct svc_cacherep *rp, *tmp; 251 long freed = 0; 252 253 list_for_each_entry_safe(rp, tmp, &b->lru_head, c_lru) { 254 /* 255 * Don't free entries attached to calls that are still 256 * in-progress, but do keep scanning the list. 257 */ 258 if (rp->c_state == RC_INPROG) 259 continue; 260 if (atomic_read(&nn->num_drc_entries) <= nn->max_drc_entries && 261 time_before(jiffies, rp->c_timestamp + RC_EXPIRE)) 262 break; 263 nfsd_reply_cache_free_locked(b, rp, nn); 264 if (max && freed++ > max) 265 break; 266 } 267 return freed; 268 } 269 270 static long nfsd_prune_bucket(struct nfsd_drc_bucket *b, struct nfsd_net *nn) 271 { 272 return prune_bucket(b, nn, 3); 273 } 274 275 /* 276 * Walk the LRU list and prune off entries that are older than RC_EXPIRE. 277 * Also prune the oldest ones when the total exceeds the max number of entries. 278 */ 279 static long 280 prune_cache_entries(struct nfsd_net *nn) 281 { 282 unsigned int i; 283 long freed = 0; 284 285 for (i = 0; i < nn->drc_hashsize; i++) { 286 struct nfsd_drc_bucket *b = &nn->drc_hashtbl[i]; 287 288 if (list_empty(&b->lru_head)) 289 continue; 290 spin_lock(&b->cache_lock); 291 freed += prune_bucket(b, nn, 0); 292 spin_unlock(&b->cache_lock); 293 } 294 return freed; 295 } 296 297 static unsigned long 298 nfsd_reply_cache_count(struct shrinker *shrink, struct shrink_control *sc) 299 { 300 struct nfsd_net *nn = container_of(shrink, 301 struct nfsd_net, nfsd_reply_cache_shrinker); 302 303 return atomic_read(&nn->num_drc_entries); 304 } 305 306 static unsigned long 307 nfsd_reply_cache_scan(struct shrinker *shrink, struct shrink_control *sc) 308 { 309 struct nfsd_net *nn = container_of(shrink, 310 struct nfsd_net, nfsd_reply_cache_shrinker); 311 312 return prune_cache_entries(nn); 313 } 314 /* 315 * Walk an xdr_buf and get a CRC for at most the first RC_CSUMLEN bytes 316 */ 317 static __wsum 318 nfsd_cache_csum(struct svc_rqst *rqstp) 319 { 320 int idx; 321 unsigned int base; 322 __wsum csum; 323 struct xdr_buf *buf = &rqstp->rq_arg; 324 const unsigned char *p = buf->head[0].iov_base; 325 size_t csum_len = min_t(size_t, buf->head[0].iov_len + buf->page_len, 326 RC_CSUMLEN); 327 size_t len = min(buf->head[0].iov_len, csum_len); 328 329 /* rq_arg.head first */ 330 csum = csum_partial(p, len, 0); 331 csum_len -= len; 332 333 /* Continue into page array */ 334 idx = buf->page_base / PAGE_SIZE; 335 base = buf->page_base & ~PAGE_MASK; 336 while (csum_len) { 337 p = page_address(buf->pages[idx]) + base; 338 len = min_t(size_t, PAGE_SIZE - base, csum_len); 339 csum = csum_partial(p, len, csum); 340 csum_len -= len; 341 base = 0; 342 ++idx; 343 } 344 return csum; 345 } 346 347 static int 348 nfsd_cache_key_cmp(const struct svc_cacherep *key, 349 const struct svc_cacherep *rp, struct nfsd_net *nn) 350 { 351 if (key->c_key.k_xid == rp->c_key.k_xid && 352 key->c_key.k_csum != rp->c_key.k_csum) { 353 nfsd_stats_payload_misses_inc(nn); 354 trace_nfsd_drc_mismatch(nn, key, rp); 355 } 356 357 return memcmp(&key->c_key, &rp->c_key, sizeof(key->c_key)); 358 } 359 360 /* 361 * Search the request hash for an entry that matches the given rqstp. 362 * Must be called with cache_lock held. Returns the found entry or 363 * inserts an empty key on failure. 364 */ 365 static struct svc_cacherep * 366 nfsd_cache_insert(struct nfsd_drc_bucket *b, struct svc_cacherep *key, 367 struct nfsd_net *nn) 368 { 369 struct svc_cacherep *rp, *ret = key; 370 struct rb_node **p = &b->rb_head.rb_node, 371 *parent = NULL; 372 unsigned int entries = 0; 373 int cmp; 374 375 while (*p != NULL) { 376 ++entries; 377 parent = *p; 378 rp = rb_entry(parent, struct svc_cacherep, c_node); 379 380 cmp = nfsd_cache_key_cmp(key, rp, nn); 381 if (cmp < 0) 382 p = &parent->rb_left; 383 else if (cmp > 0) 384 p = &parent->rb_right; 385 else { 386 ret = rp; 387 goto out; 388 } 389 } 390 rb_link_node(&key->c_node, parent, p); 391 rb_insert_color(&key->c_node, &b->rb_head); 392 out: 393 /* tally hash chain length stats */ 394 if (entries > nn->longest_chain) { 395 nn->longest_chain = entries; 396 nn->longest_chain_cachesize = atomic_read(&nn->num_drc_entries); 397 } else if (entries == nn->longest_chain) { 398 /* prefer to keep the smallest cachesize possible here */ 399 nn->longest_chain_cachesize = min_t(unsigned int, 400 nn->longest_chain_cachesize, 401 atomic_read(&nn->num_drc_entries)); 402 } 403 404 lru_put_end(b, ret); 405 return ret; 406 } 407 408 /** 409 * nfsd_cache_lookup - Find an entry in the duplicate reply cache 410 * @rqstp: Incoming Call to find 411 * 412 * Try to find an entry matching the current call in the cache. When none 413 * is found, we try to grab the oldest expired entry off the LRU list. If 414 * a suitable one isn't there, then drop the cache_lock and allocate a 415 * new one, then search again in case one got inserted while this thread 416 * didn't hold the lock. 417 * 418 * Return values: 419 * %RC_DOIT: Process the request normally 420 * %RC_REPLY: Reply from cache 421 * %RC_DROPIT: Do not process the request further 422 */ 423 int nfsd_cache_lookup(struct svc_rqst *rqstp) 424 { 425 struct nfsd_net *nn; 426 struct svc_cacherep *rp, *found; 427 __wsum csum; 428 struct nfsd_drc_bucket *b; 429 int type = rqstp->rq_cachetype; 430 int rtn = RC_DOIT; 431 432 rqstp->rq_cacherep = NULL; 433 if (type == RC_NOCACHE) { 434 nfsd_stats_rc_nocache_inc(); 435 goto out; 436 } 437 438 csum = nfsd_cache_csum(rqstp); 439 440 /* 441 * Since the common case is a cache miss followed by an insert, 442 * preallocate an entry. 443 */ 444 nn = net_generic(SVC_NET(rqstp), nfsd_net_id); 445 rp = nfsd_reply_cache_alloc(rqstp, csum, nn); 446 if (!rp) 447 goto out; 448 449 b = nfsd_cache_bucket_find(rqstp->rq_xid, nn); 450 spin_lock(&b->cache_lock); 451 found = nfsd_cache_insert(b, rp, nn); 452 if (found != rp) 453 goto found_entry; 454 455 nfsd_stats_rc_misses_inc(); 456 rqstp->rq_cacherep = rp; 457 rp->c_state = RC_INPROG; 458 459 atomic_inc(&nn->num_drc_entries); 460 nfsd_stats_drc_mem_usage_add(nn, sizeof(*rp)); 461 462 nfsd_prune_bucket(b, nn); 463 464 out_unlock: 465 spin_unlock(&b->cache_lock); 466 out: 467 return rtn; 468 469 found_entry: 470 /* We found a matching entry which is either in progress or done. */ 471 nfsd_reply_cache_free_locked(NULL, rp, nn); 472 nfsd_stats_rc_hits_inc(); 473 rtn = RC_DROPIT; 474 rp = found; 475 476 /* Request being processed */ 477 if (rp->c_state == RC_INPROG) 478 goto out_trace; 479 480 /* From the hall of fame of impractical attacks: 481 * Is this a user who tries to snoop on the cache? */ 482 rtn = RC_DOIT; 483 if (!test_bit(RQ_SECURE, &rqstp->rq_flags) && rp->c_secure) 484 goto out_trace; 485 486 /* Compose RPC reply header */ 487 switch (rp->c_type) { 488 case RC_NOCACHE: 489 break; 490 case RC_REPLSTAT: 491 svc_putu32(&rqstp->rq_res.head[0], rp->c_replstat); 492 rtn = RC_REPLY; 493 break; 494 case RC_REPLBUFF: 495 if (!nfsd_cache_append(rqstp, &rp->c_replvec)) 496 goto out_unlock; /* should not happen */ 497 rtn = RC_REPLY; 498 break; 499 default: 500 WARN_ONCE(1, "nfsd: bad repcache type %d\n", rp->c_type); 501 } 502 503 out_trace: 504 trace_nfsd_drc_found(nn, rqstp, rtn); 505 goto out_unlock; 506 } 507 508 /** 509 * nfsd_cache_update - Update an entry in the duplicate reply cache. 510 * @rqstp: svc_rqst with a finished Reply 511 * @cachetype: which cache to update 512 * @statp: Reply's status code 513 * 514 * This is called from nfsd_dispatch when the procedure has been 515 * executed and the complete reply is in rqstp->rq_res. 516 * 517 * We're copying around data here rather than swapping buffers because 518 * the toplevel loop requires max-sized buffers, which would be a waste 519 * of memory for a cache with a max reply size of 100 bytes (diropokres). 520 * 521 * If we should start to use different types of cache entries tailored 522 * specifically for attrstat and fh's, we may save even more space. 523 * 524 * Also note that a cachetype of RC_NOCACHE can legally be passed when 525 * nfsd failed to encode a reply that otherwise would have been cached. 526 * In this case, nfsd_cache_update is called with statp == NULL. 527 */ 528 void nfsd_cache_update(struct svc_rqst *rqstp, int cachetype, __be32 *statp) 529 { 530 struct nfsd_net *nn = net_generic(SVC_NET(rqstp), nfsd_net_id); 531 struct svc_cacherep *rp = rqstp->rq_cacherep; 532 struct kvec *resv = &rqstp->rq_res.head[0], *cachv; 533 struct nfsd_drc_bucket *b; 534 int len; 535 size_t bufsize = 0; 536 537 if (!rp) 538 return; 539 540 b = nfsd_cache_bucket_find(rp->c_key.k_xid, nn); 541 542 len = resv->iov_len - ((char*)statp - (char*)resv->iov_base); 543 len >>= 2; 544 545 /* Don't cache excessive amounts of data and XDR failures */ 546 if (!statp || len > (256 >> 2)) { 547 nfsd_reply_cache_free(b, rp, nn); 548 return; 549 } 550 551 switch (cachetype) { 552 case RC_REPLSTAT: 553 if (len != 1) 554 printk("nfsd: RC_REPLSTAT/reply len %d!\n",len); 555 rp->c_replstat = *statp; 556 break; 557 case RC_REPLBUFF: 558 cachv = &rp->c_replvec; 559 bufsize = len << 2; 560 cachv->iov_base = kmalloc(bufsize, GFP_KERNEL); 561 if (!cachv->iov_base) { 562 nfsd_reply_cache_free(b, rp, nn); 563 return; 564 } 565 cachv->iov_len = bufsize; 566 memcpy(cachv->iov_base, statp, bufsize); 567 break; 568 case RC_NOCACHE: 569 nfsd_reply_cache_free(b, rp, nn); 570 return; 571 } 572 spin_lock(&b->cache_lock); 573 nfsd_stats_drc_mem_usage_add(nn, bufsize); 574 lru_put_end(b, rp); 575 rp->c_secure = test_bit(RQ_SECURE, &rqstp->rq_flags); 576 rp->c_type = cachetype; 577 rp->c_state = RC_DONE; 578 spin_unlock(&b->cache_lock); 579 return; 580 } 581 582 /* 583 * Copy cached reply to current reply buffer. Should always fit. 584 * FIXME as reply is in a page, we should just attach the page, and 585 * keep a refcount.... 586 */ 587 static int 588 nfsd_cache_append(struct svc_rqst *rqstp, struct kvec *data) 589 { 590 struct kvec *vec = &rqstp->rq_res.head[0]; 591 592 if (vec->iov_len + data->iov_len > PAGE_SIZE) { 593 printk(KERN_WARNING "nfsd: cached reply too large (%zd).\n", 594 data->iov_len); 595 return 0; 596 } 597 memcpy((char*)vec->iov_base + vec->iov_len, data->iov_base, data->iov_len); 598 vec->iov_len += data->iov_len; 599 return 1; 600 } 601 602 /* 603 * Note that fields may be added, removed or reordered in the future. Programs 604 * scraping this file for info should test the labels to ensure they're 605 * getting the correct field. 606 */ 607 int nfsd_reply_cache_stats_show(struct seq_file *m, void *v) 608 { 609 struct nfsd_net *nn = net_generic(file_inode(m->file)->i_sb->s_fs_info, 610 nfsd_net_id); 611 612 seq_printf(m, "max entries: %u\n", nn->max_drc_entries); 613 seq_printf(m, "num entries: %u\n", 614 atomic_read(&nn->num_drc_entries)); 615 seq_printf(m, "hash buckets: %u\n", 1 << nn->maskbits); 616 seq_printf(m, "mem usage: %lld\n", 617 percpu_counter_sum_positive(&nn->counter[NFSD_NET_DRC_MEM_USAGE])); 618 seq_printf(m, "cache hits: %lld\n", 619 percpu_counter_sum_positive(&nfsdstats.counter[NFSD_STATS_RC_HITS])); 620 seq_printf(m, "cache misses: %lld\n", 621 percpu_counter_sum_positive(&nfsdstats.counter[NFSD_STATS_RC_MISSES])); 622 seq_printf(m, "not cached: %lld\n", 623 percpu_counter_sum_positive(&nfsdstats.counter[NFSD_STATS_RC_NOCACHE])); 624 seq_printf(m, "payload misses: %lld\n", 625 percpu_counter_sum_positive(&nn->counter[NFSD_NET_PAYLOAD_MISSES])); 626 seq_printf(m, "longest chain len: %u\n", nn->longest_chain); 627 seq_printf(m, "cachesize at longest: %u\n", nn->longest_chain_cachesize); 628 return 0; 629 } 630