xref: /linux/fs/nfs/write.c (revision f3d9478b2ce468c3115b02ecae7e975990697f15)
1 /*
2  * linux/fs/nfs/write.c
3  *
4  * Writing file data over NFS.
5  *
6  * We do it like this: When a (user) process wishes to write data to an
7  * NFS file, a write request is allocated that contains the RPC task data
8  * plus some info on the page to be written, and added to the inode's
9  * write chain. If the process writes past the end of the page, an async
10  * RPC call to write the page is scheduled immediately; otherwise, the call
11  * is delayed for a few seconds.
12  *
13  * Just like readahead, no async I/O is performed if wsize < PAGE_SIZE.
14  *
15  * Write requests are kept on the inode's writeback list. Each entry in
16  * that list references the page (portion) to be written. When the
17  * cache timeout has expired, the RPC task is woken up, and tries to
18  * lock the page. As soon as it manages to do so, the request is moved
19  * from the writeback list to the writelock list.
20  *
21  * Note: we must make sure never to confuse the inode passed in the
22  * write_page request with the one in page->inode. As far as I understand
23  * it, these are different when doing a swap-out.
24  *
25  * To understand everything that goes on here and in the NFS read code,
26  * one should be aware that a page is locked in exactly one of the following
27  * cases:
28  *
29  *  -	A write request is in progress.
30  *  -	A user process is in generic_file_write/nfs_update_page
31  *  -	A user process is in generic_file_read
32  *
33  * Also note that because of the way pages are invalidated in
34  * nfs_revalidate_inode, the following assertions hold:
35  *
36  *  -	If a page is dirty, there will be no read requests (a page will
37  *	not be re-read unless invalidated by nfs_revalidate_inode).
38  *  -	If the page is not uptodate, there will be no pending write
39  *	requests, and no process will be in nfs_update_page.
40  *
41  * FIXME: Interaction with the vmscan routines is not optimal yet.
42  * Either vmscan must be made nfs-savvy, or we need a different page
43  * reclaim concept that supports something like FS-independent
44  * buffer_heads with a b_ops-> field.
45  *
46  * Copyright (C) 1996, 1997, Olaf Kirch <okir@monad.swb.de>
47  */
48 
49 #include <linux/config.h>
50 #include <linux/types.h>
51 #include <linux/slab.h>
52 #include <linux/mm.h>
53 #include <linux/pagemap.h>
54 #include <linux/file.h>
55 #include <linux/mpage.h>
56 #include <linux/writeback.h>
57 
58 #include <linux/sunrpc/clnt.h>
59 #include <linux/nfs_fs.h>
60 #include <linux/nfs_mount.h>
61 #include <linux/nfs_page.h>
62 #include <asm/uaccess.h>
63 #include <linux/smp_lock.h>
64 
65 #include "delegation.h"
66 #include "iostat.h"
67 
68 #define NFSDBG_FACILITY		NFSDBG_PAGECACHE
69 
70 #define MIN_POOL_WRITE		(32)
71 #define MIN_POOL_COMMIT		(4)
72 
73 /*
74  * Local function declarations
75  */
76 static struct nfs_page * nfs_update_request(struct nfs_open_context*,
77 					    struct inode *,
78 					    struct page *,
79 					    unsigned int, unsigned int);
80 static int nfs_wait_on_write_congestion(struct address_space *, int);
81 static int nfs_wait_on_requests(struct inode *, unsigned long, unsigned int);
82 static int nfs_flush_inode(struct inode *inode, unsigned long idx_start,
83 			   unsigned int npages, int how);
84 static const struct rpc_call_ops nfs_write_partial_ops;
85 static const struct rpc_call_ops nfs_write_full_ops;
86 static const struct rpc_call_ops nfs_commit_ops;
87 
88 static kmem_cache_t *nfs_wdata_cachep;
89 static mempool_t *nfs_wdata_mempool;
90 static mempool_t *nfs_commit_mempool;
91 
92 static DECLARE_WAIT_QUEUE_HEAD(nfs_write_congestion);
93 
94 struct nfs_write_data *nfs_commit_alloc(unsigned int pagecount)
95 {
96 	struct nfs_write_data *p = mempool_alloc(nfs_commit_mempool, SLAB_NOFS);
97 
98 	if (p) {
99 		memset(p, 0, sizeof(*p));
100 		INIT_LIST_HEAD(&p->pages);
101 		if (pagecount < NFS_PAGEVEC_SIZE)
102 			p->pagevec = &p->page_array[0];
103 		else {
104 			size_t size = ++pagecount * sizeof(struct page *);
105 			p->pagevec = kzalloc(size, GFP_NOFS);
106 			if (!p->pagevec) {
107 				mempool_free(p, nfs_commit_mempool);
108 				p = NULL;
109 			}
110 		}
111 	}
112 	return p;
113 }
114 
115 void nfs_commit_free(struct nfs_write_data *p)
116 {
117 	if (p && (p->pagevec != &p->page_array[0]))
118 		kfree(p->pagevec);
119 	mempool_free(p, nfs_commit_mempool);
120 }
121 
122 struct nfs_write_data *nfs_writedata_alloc(unsigned int pagecount)
123 {
124 	struct nfs_write_data *p = mempool_alloc(nfs_wdata_mempool, SLAB_NOFS);
125 
126 	if (p) {
127 		memset(p, 0, sizeof(*p));
128 		INIT_LIST_HEAD(&p->pages);
129 		if (pagecount < NFS_PAGEVEC_SIZE)
130 			p->pagevec = &p->page_array[0];
131 		else {
132 			size_t size = ++pagecount * sizeof(struct page *);
133 			p->pagevec = kmalloc(size, GFP_NOFS);
134 			if (p->pagevec) {
135 				memset(p->pagevec, 0, size);
136 			} else {
137 				mempool_free(p, nfs_wdata_mempool);
138 				p = NULL;
139 			}
140 		}
141 	}
142 	return p;
143 }
144 
145 void nfs_writedata_free(struct nfs_write_data *p)
146 {
147 	if (p && (p->pagevec != &p->page_array[0]))
148 		kfree(p->pagevec);
149 	mempool_free(p, nfs_wdata_mempool);
150 }
151 
152 void nfs_writedata_release(void *wdata)
153 {
154 	nfs_writedata_free(wdata);
155 }
156 
157 /* Adjust the file length if we're writing beyond the end */
158 static void nfs_grow_file(struct page *page, unsigned int offset, unsigned int count)
159 {
160 	struct inode *inode = page->mapping->host;
161 	loff_t end, i_size = i_size_read(inode);
162 	unsigned long end_index = (i_size - 1) >> PAGE_CACHE_SHIFT;
163 
164 	if (i_size > 0 && page->index < end_index)
165 		return;
166 	end = ((loff_t)page->index << PAGE_CACHE_SHIFT) + ((loff_t)offset+count);
167 	if (i_size >= end)
168 		return;
169 	nfs_inc_stats(inode, NFSIOS_EXTENDWRITE);
170 	i_size_write(inode, end);
171 }
172 
173 /* We can set the PG_uptodate flag if we see that a write request
174  * covers the full page.
175  */
176 static void nfs_mark_uptodate(struct page *page, unsigned int base, unsigned int count)
177 {
178 	loff_t end_offs;
179 
180 	if (PageUptodate(page))
181 		return;
182 	if (base != 0)
183 		return;
184 	if (count == PAGE_CACHE_SIZE) {
185 		SetPageUptodate(page);
186 		return;
187 	}
188 
189 	end_offs = i_size_read(page->mapping->host) - 1;
190 	if (end_offs < 0)
191 		return;
192 	/* Is this the last page? */
193 	if (page->index != (unsigned long)(end_offs >> PAGE_CACHE_SHIFT))
194 		return;
195 	/* This is the last page: set PG_uptodate if we cover the entire
196 	 * extent of the data, then zero the rest of the page.
197 	 */
198 	if (count == (unsigned int)(end_offs & (PAGE_CACHE_SIZE - 1)) + 1) {
199 		memclear_highpage_flush(page, count, PAGE_CACHE_SIZE - count);
200 		SetPageUptodate(page);
201 	}
202 }
203 
204 /*
205  * Write a page synchronously.
206  * Offset is the data offset within the page.
207  */
208 static int nfs_writepage_sync(struct nfs_open_context *ctx, struct inode *inode,
209 		struct page *page, unsigned int offset, unsigned int count,
210 		int how)
211 {
212 	unsigned int	wsize = NFS_SERVER(inode)->wsize;
213 	int		result, written = 0;
214 	struct nfs_write_data *wdata;
215 
216 	wdata = nfs_writedata_alloc(1);
217 	if (!wdata)
218 		return -ENOMEM;
219 
220 	wdata->flags = how;
221 	wdata->cred = ctx->cred;
222 	wdata->inode = inode;
223 	wdata->args.fh = NFS_FH(inode);
224 	wdata->args.context = ctx;
225 	wdata->args.pages = &page;
226 	wdata->args.stable = NFS_FILE_SYNC;
227 	wdata->args.pgbase = offset;
228 	wdata->args.count = wsize;
229 	wdata->res.fattr = &wdata->fattr;
230 	wdata->res.verf = &wdata->verf;
231 
232 	dprintk("NFS:      nfs_writepage_sync(%s/%Ld %d@%Ld)\n",
233 		inode->i_sb->s_id,
234 		(long long)NFS_FILEID(inode),
235 		count, (long long)(page_offset(page) + offset));
236 
237 	set_page_writeback(page);
238 	nfs_begin_data_update(inode);
239 	do {
240 		if (count < wsize)
241 			wdata->args.count = count;
242 		wdata->args.offset = page_offset(page) + wdata->args.pgbase;
243 
244 		result = NFS_PROTO(inode)->write(wdata);
245 
246 		if (result < 0) {
247 			/* Must mark the page invalid after I/O error */
248 			ClearPageUptodate(page);
249 			goto io_error;
250 		}
251 		if (result < wdata->args.count)
252 			printk(KERN_WARNING "NFS: short write, count=%u, result=%d\n",
253 					wdata->args.count, result);
254 
255 		wdata->args.offset += result;
256 	        wdata->args.pgbase += result;
257 		written += result;
258 		count -= result;
259 		nfs_add_stats(inode, NFSIOS_SERVERWRITTENBYTES, result);
260 	} while (count);
261 	/* Update file length */
262 	nfs_grow_file(page, offset, written);
263 	/* Set the PG_uptodate flag? */
264 	nfs_mark_uptodate(page, offset, written);
265 
266 	if (PageError(page))
267 		ClearPageError(page);
268 
269 io_error:
270 	nfs_end_data_update(inode);
271 	end_page_writeback(page);
272 	nfs_writedata_free(wdata);
273 	return written ? written : result;
274 }
275 
276 static int nfs_writepage_async(struct nfs_open_context *ctx,
277 		struct inode *inode, struct page *page,
278 		unsigned int offset, unsigned int count)
279 {
280 	struct nfs_page	*req;
281 
282 	req = nfs_update_request(ctx, inode, page, offset, count);
283 	if (IS_ERR(req))
284 		return PTR_ERR(req);
285 	/* Update file length */
286 	nfs_grow_file(page, offset, count);
287 	/* Set the PG_uptodate flag? */
288 	nfs_mark_uptodate(page, offset, count);
289 	nfs_unlock_request(req);
290 	return 0;
291 }
292 
293 static int wb_priority(struct writeback_control *wbc)
294 {
295 	if (wbc->for_reclaim)
296 		return FLUSH_HIGHPRI;
297 	if (wbc->for_kupdate)
298 		return FLUSH_LOWPRI;
299 	return 0;
300 }
301 
302 /*
303  * Write an mmapped page to the server.
304  */
305 int nfs_writepage(struct page *page, struct writeback_control *wbc)
306 {
307 	struct nfs_open_context *ctx;
308 	struct inode *inode = page->mapping->host;
309 	unsigned long end_index;
310 	unsigned offset = PAGE_CACHE_SIZE;
311 	loff_t i_size = i_size_read(inode);
312 	int inode_referenced = 0;
313 	int priority = wb_priority(wbc);
314 	int err;
315 
316 	nfs_inc_stats(inode, NFSIOS_VFSWRITEPAGE);
317 	nfs_add_stats(inode, NFSIOS_WRITEPAGES, 1);
318 
319 	/*
320 	 * Note: We need to ensure that we have a reference to the inode
321 	 *       if we are to do asynchronous writes. If not, waiting
322 	 *       in nfs_wait_on_request() may deadlock with clear_inode().
323 	 *
324 	 *       If igrab() fails here, then it is in any case safe to
325 	 *       call nfs_wb_page(), since there will be no pending writes.
326 	 */
327 	if (igrab(inode) != 0)
328 		inode_referenced = 1;
329 	end_index = i_size >> PAGE_CACHE_SHIFT;
330 
331 	/* Ensure we've flushed out any previous writes */
332 	nfs_wb_page_priority(inode, page, priority);
333 
334 	/* easy case */
335 	if (page->index < end_index)
336 		goto do_it;
337 	/* things got complicated... */
338 	offset = i_size & (PAGE_CACHE_SIZE-1);
339 
340 	/* OK, are we completely out? */
341 	err = 0; /* potential race with truncate - ignore */
342 	if (page->index >= end_index+1 || !offset)
343 		goto out;
344 do_it:
345 	ctx = nfs_find_open_context(inode, NULL, FMODE_WRITE);
346 	if (ctx == NULL) {
347 		err = -EBADF;
348 		goto out;
349 	}
350 	lock_kernel();
351 	if (!IS_SYNC(inode) && inode_referenced) {
352 		err = nfs_writepage_async(ctx, inode, page, 0, offset);
353 		if (!wbc->for_writepages)
354 			nfs_flush_inode(inode, 0, 0, wb_priority(wbc));
355 	} else {
356 		err = nfs_writepage_sync(ctx, inode, page, 0,
357 						offset, priority);
358 		if (err >= 0) {
359 			if (err != offset)
360 				redirty_page_for_writepage(wbc, page);
361 			err = 0;
362 		}
363 	}
364 	unlock_kernel();
365 	put_nfs_open_context(ctx);
366 out:
367 	unlock_page(page);
368 	if (inode_referenced)
369 		iput(inode);
370 	return err;
371 }
372 
373 /*
374  * Note: causes nfs_update_request() to block on the assumption
375  * 	 that the writeback is generated due to memory pressure.
376  */
377 int nfs_writepages(struct address_space *mapping, struct writeback_control *wbc)
378 {
379 	struct backing_dev_info *bdi = mapping->backing_dev_info;
380 	struct inode *inode = mapping->host;
381 	int err;
382 
383 	nfs_inc_stats(inode, NFSIOS_VFSWRITEPAGES);
384 
385 	err = generic_writepages(mapping, wbc);
386 	if (err)
387 		return err;
388 	while (test_and_set_bit(BDI_write_congested, &bdi->state) != 0) {
389 		if (wbc->nonblocking)
390 			return 0;
391 		nfs_wait_on_write_congestion(mapping, 0);
392 	}
393 	err = nfs_flush_inode(inode, 0, 0, wb_priority(wbc));
394 	if (err < 0)
395 		goto out;
396 	nfs_add_stats(inode, NFSIOS_WRITEPAGES, err);
397 	wbc->nr_to_write -= err;
398 	if (!wbc->nonblocking && wbc->sync_mode == WB_SYNC_ALL) {
399 		err = nfs_wait_on_requests(inode, 0, 0);
400 		if (err < 0)
401 			goto out;
402 	}
403 	err = nfs_commit_inode(inode, wb_priority(wbc));
404 	if (err > 0) {
405 		wbc->nr_to_write -= err;
406 		err = 0;
407 	}
408 out:
409 	clear_bit(BDI_write_congested, &bdi->state);
410 	wake_up_all(&nfs_write_congestion);
411 	return err;
412 }
413 
414 /*
415  * Insert a write request into an inode
416  */
417 static int nfs_inode_add_request(struct inode *inode, struct nfs_page *req)
418 {
419 	struct nfs_inode *nfsi = NFS_I(inode);
420 	int error;
421 
422 	error = radix_tree_insert(&nfsi->nfs_page_tree, req->wb_index, req);
423 	BUG_ON(error == -EEXIST);
424 	if (error)
425 		return error;
426 	if (!nfsi->npages) {
427 		igrab(inode);
428 		nfs_begin_data_update(inode);
429 		if (nfs_have_delegation(inode, FMODE_WRITE))
430 			nfsi->change_attr++;
431 	}
432 	SetPagePrivate(req->wb_page);
433 	nfsi->npages++;
434 	atomic_inc(&req->wb_count);
435 	return 0;
436 }
437 
438 /*
439  * Insert a write request into an inode
440  */
441 static void nfs_inode_remove_request(struct nfs_page *req)
442 {
443 	struct inode *inode = req->wb_context->dentry->d_inode;
444 	struct nfs_inode *nfsi = NFS_I(inode);
445 
446 	BUG_ON (!NFS_WBACK_BUSY(req));
447 
448 	spin_lock(&nfsi->req_lock);
449 	ClearPagePrivate(req->wb_page);
450 	radix_tree_delete(&nfsi->nfs_page_tree, req->wb_index);
451 	nfsi->npages--;
452 	if (!nfsi->npages) {
453 		spin_unlock(&nfsi->req_lock);
454 		nfs_end_data_update(inode);
455 		iput(inode);
456 	} else
457 		spin_unlock(&nfsi->req_lock);
458 	nfs_clear_request(req);
459 	nfs_release_request(req);
460 }
461 
462 /*
463  * Find a request
464  */
465 static inline struct nfs_page *
466 _nfs_find_request(struct inode *inode, unsigned long index)
467 {
468 	struct nfs_inode *nfsi = NFS_I(inode);
469 	struct nfs_page *req;
470 
471 	req = (struct nfs_page*)radix_tree_lookup(&nfsi->nfs_page_tree, index);
472 	if (req)
473 		atomic_inc(&req->wb_count);
474 	return req;
475 }
476 
477 static struct nfs_page *
478 nfs_find_request(struct inode *inode, unsigned long index)
479 {
480 	struct nfs_page		*req;
481 	struct nfs_inode	*nfsi = NFS_I(inode);
482 
483 	spin_lock(&nfsi->req_lock);
484 	req = _nfs_find_request(inode, index);
485 	spin_unlock(&nfsi->req_lock);
486 	return req;
487 }
488 
489 /*
490  * Add a request to the inode's dirty list.
491  */
492 static void
493 nfs_mark_request_dirty(struct nfs_page *req)
494 {
495 	struct inode *inode = req->wb_context->dentry->d_inode;
496 	struct nfs_inode *nfsi = NFS_I(inode);
497 
498 	spin_lock(&nfsi->req_lock);
499 	radix_tree_tag_set(&nfsi->nfs_page_tree,
500 			req->wb_index, NFS_PAGE_TAG_DIRTY);
501 	nfs_list_add_request(req, &nfsi->dirty);
502 	nfsi->ndirty++;
503 	spin_unlock(&nfsi->req_lock);
504 	inc_page_state(nr_dirty);
505 	mark_inode_dirty(inode);
506 }
507 
508 /*
509  * Check if a request is dirty
510  */
511 static inline int
512 nfs_dirty_request(struct nfs_page *req)
513 {
514 	struct nfs_inode *nfsi = NFS_I(req->wb_context->dentry->d_inode);
515 	return !list_empty(&req->wb_list) && req->wb_list_head == &nfsi->dirty;
516 }
517 
518 #if defined(CONFIG_NFS_V3) || defined(CONFIG_NFS_V4)
519 /*
520  * Add a request to the inode's commit list.
521  */
522 static void
523 nfs_mark_request_commit(struct nfs_page *req)
524 {
525 	struct inode *inode = req->wb_context->dentry->d_inode;
526 	struct nfs_inode *nfsi = NFS_I(inode);
527 
528 	spin_lock(&nfsi->req_lock);
529 	nfs_list_add_request(req, &nfsi->commit);
530 	nfsi->ncommit++;
531 	spin_unlock(&nfsi->req_lock);
532 	inc_page_state(nr_unstable);
533 	mark_inode_dirty(inode);
534 }
535 #endif
536 
537 /*
538  * Wait for a request to complete.
539  *
540  * Interruptible by signals only if mounted with intr flag.
541  */
542 static int nfs_wait_on_requests_locked(struct inode *inode, unsigned long idx_start, unsigned int npages)
543 {
544 	struct nfs_inode *nfsi = NFS_I(inode);
545 	struct nfs_page *req;
546 	unsigned long		idx_end, next;
547 	unsigned int		res = 0;
548 	int			error;
549 
550 	if (npages == 0)
551 		idx_end = ~0;
552 	else
553 		idx_end = idx_start + npages - 1;
554 
555 	next = idx_start;
556 	while (radix_tree_gang_lookup_tag(&nfsi->nfs_page_tree, (void **)&req, next, 1, NFS_PAGE_TAG_WRITEBACK)) {
557 		if (req->wb_index > idx_end)
558 			break;
559 
560 		next = req->wb_index + 1;
561 		BUG_ON(!NFS_WBACK_BUSY(req));
562 
563 		atomic_inc(&req->wb_count);
564 		spin_unlock(&nfsi->req_lock);
565 		error = nfs_wait_on_request(req);
566 		nfs_release_request(req);
567 		spin_lock(&nfsi->req_lock);
568 		if (error < 0)
569 			return error;
570 		res++;
571 	}
572 	return res;
573 }
574 
575 static int nfs_wait_on_requests(struct inode *inode, unsigned long idx_start, unsigned int npages)
576 {
577 	struct nfs_inode *nfsi = NFS_I(inode);
578 	int ret;
579 
580 	spin_lock(&nfsi->req_lock);
581 	ret = nfs_wait_on_requests_locked(inode, idx_start, npages);
582 	spin_unlock(&nfsi->req_lock);
583 	return ret;
584 }
585 
586 /*
587  * nfs_scan_dirty - Scan an inode for dirty requests
588  * @inode: NFS inode to scan
589  * @dst: destination list
590  * @idx_start: lower bound of page->index to scan.
591  * @npages: idx_start + npages sets the upper bound to scan.
592  *
593  * Moves requests from the inode's dirty page list.
594  * The requests are *not* checked to ensure that they form a contiguous set.
595  */
596 static int
597 nfs_scan_dirty(struct inode *inode, struct list_head *dst, unsigned long idx_start, unsigned int npages)
598 {
599 	struct nfs_inode *nfsi = NFS_I(inode);
600 	int res = 0;
601 
602 	if (nfsi->ndirty != 0) {
603 		res = nfs_scan_lock_dirty(nfsi, dst, idx_start, npages);
604 		nfsi->ndirty -= res;
605 		sub_page_state(nr_dirty,res);
606 		if ((nfsi->ndirty == 0) != list_empty(&nfsi->dirty))
607 			printk(KERN_ERR "NFS: desynchronized value of nfs_i.ndirty.\n");
608 	}
609 	return res;
610 }
611 
612 #if defined(CONFIG_NFS_V3) || defined(CONFIG_NFS_V4)
613 /*
614  * nfs_scan_commit - Scan an inode for commit requests
615  * @inode: NFS inode to scan
616  * @dst: destination list
617  * @idx_start: lower bound of page->index to scan.
618  * @npages: idx_start + npages sets the upper bound to scan.
619  *
620  * Moves requests from the inode's 'commit' request list.
621  * The requests are *not* checked to ensure that they form a contiguous set.
622  */
623 static int
624 nfs_scan_commit(struct inode *inode, struct list_head *dst, unsigned long idx_start, unsigned int npages)
625 {
626 	struct nfs_inode *nfsi = NFS_I(inode);
627 	int res = 0;
628 
629 	if (nfsi->ncommit != 0) {
630 		res = nfs_scan_list(&nfsi->commit, dst, idx_start, npages);
631 		nfsi->ncommit -= res;
632 		if ((nfsi->ncommit == 0) != list_empty(&nfsi->commit))
633 			printk(KERN_ERR "NFS: desynchronized value of nfs_i.ncommit.\n");
634 	}
635 	return res;
636 }
637 #else
638 static inline int nfs_scan_commit(struct inode *inode, struct list_head *dst, unsigned long idx_start, unsigned int npages)
639 {
640 	return 0;
641 }
642 #endif
643 
644 static int nfs_wait_on_write_congestion(struct address_space *mapping, int intr)
645 {
646 	struct backing_dev_info *bdi = mapping->backing_dev_info;
647 	DEFINE_WAIT(wait);
648 	int ret = 0;
649 
650 	might_sleep();
651 
652 	if (!bdi_write_congested(bdi))
653 		return 0;
654 
655 	nfs_inc_stats(mapping->host, NFSIOS_CONGESTIONWAIT);
656 
657 	if (intr) {
658 		struct rpc_clnt *clnt = NFS_CLIENT(mapping->host);
659 		sigset_t oldset;
660 
661 		rpc_clnt_sigmask(clnt, &oldset);
662 		prepare_to_wait(&nfs_write_congestion, &wait, TASK_INTERRUPTIBLE);
663 		if (bdi_write_congested(bdi)) {
664 			if (signalled())
665 				ret = -ERESTARTSYS;
666 			else
667 				schedule();
668 		}
669 		rpc_clnt_sigunmask(clnt, &oldset);
670 	} else {
671 		prepare_to_wait(&nfs_write_congestion, &wait, TASK_UNINTERRUPTIBLE);
672 		if (bdi_write_congested(bdi))
673 			schedule();
674 	}
675 	finish_wait(&nfs_write_congestion, &wait);
676 	return ret;
677 }
678 
679 
680 /*
681  * Try to update any existing write request, or create one if there is none.
682  * In order to match, the request's credentials must match those of
683  * the calling process.
684  *
685  * Note: Should always be called with the Page Lock held!
686  */
687 static struct nfs_page * nfs_update_request(struct nfs_open_context* ctx,
688 		struct inode *inode, struct page *page,
689 		unsigned int offset, unsigned int bytes)
690 {
691 	struct nfs_server *server = NFS_SERVER(inode);
692 	struct nfs_inode *nfsi = NFS_I(inode);
693 	struct nfs_page		*req, *new = NULL;
694 	unsigned long		rqend, end;
695 
696 	end = offset + bytes;
697 
698 	if (nfs_wait_on_write_congestion(page->mapping, server->flags & NFS_MOUNT_INTR))
699 		return ERR_PTR(-ERESTARTSYS);
700 	for (;;) {
701 		/* Loop over all inode entries and see if we find
702 		 * A request for the page we wish to update
703 		 */
704 		spin_lock(&nfsi->req_lock);
705 		req = _nfs_find_request(inode, page->index);
706 		if (req) {
707 			if (!nfs_lock_request_dontget(req)) {
708 				int error;
709 				spin_unlock(&nfsi->req_lock);
710 				error = nfs_wait_on_request(req);
711 				nfs_release_request(req);
712 				if (error < 0) {
713 					if (new)
714 						nfs_release_request(new);
715 					return ERR_PTR(error);
716 				}
717 				continue;
718 			}
719 			spin_unlock(&nfsi->req_lock);
720 			if (new)
721 				nfs_release_request(new);
722 			break;
723 		}
724 
725 		if (new) {
726 			int error;
727 			nfs_lock_request_dontget(new);
728 			error = nfs_inode_add_request(inode, new);
729 			if (error) {
730 				spin_unlock(&nfsi->req_lock);
731 				nfs_unlock_request(new);
732 				return ERR_PTR(error);
733 			}
734 			spin_unlock(&nfsi->req_lock);
735 			nfs_mark_request_dirty(new);
736 			return new;
737 		}
738 		spin_unlock(&nfsi->req_lock);
739 
740 		new = nfs_create_request(ctx, inode, page, offset, bytes);
741 		if (IS_ERR(new))
742 			return new;
743 	}
744 
745 	/* We have a request for our page.
746 	 * If the creds don't match, or the
747 	 * page addresses don't match,
748 	 * tell the caller to wait on the conflicting
749 	 * request.
750 	 */
751 	rqend = req->wb_offset + req->wb_bytes;
752 	if (req->wb_context != ctx
753 	    || req->wb_page != page
754 	    || !nfs_dirty_request(req)
755 	    || offset > rqend || end < req->wb_offset) {
756 		nfs_unlock_request(req);
757 		return ERR_PTR(-EBUSY);
758 	}
759 
760 	/* Okay, the request matches. Update the region */
761 	if (offset < req->wb_offset) {
762 		req->wb_offset = offset;
763 		req->wb_pgbase = offset;
764 		req->wb_bytes = rqend - req->wb_offset;
765 	}
766 
767 	if (end > rqend)
768 		req->wb_bytes = end - req->wb_offset;
769 
770 	return req;
771 }
772 
773 int nfs_flush_incompatible(struct file *file, struct page *page)
774 {
775 	struct nfs_open_context *ctx = (struct nfs_open_context *)file->private_data;
776 	struct inode	*inode = page->mapping->host;
777 	struct nfs_page	*req;
778 	int		status = 0;
779 	/*
780 	 * Look for a request corresponding to this page. If there
781 	 * is one, and it belongs to another file, we flush it out
782 	 * before we try to copy anything into the page. Do this
783 	 * due to the lack of an ACCESS-type call in NFSv2.
784 	 * Also do the same if we find a request from an existing
785 	 * dropped page.
786 	 */
787 	req = nfs_find_request(inode, page->index);
788 	if (req) {
789 		if (req->wb_page != page || ctx != req->wb_context)
790 			status = nfs_wb_page(inode, page);
791 		nfs_release_request(req);
792 	}
793 	return (status < 0) ? status : 0;
794 }
795 
796 /*
797  * Update and possibly write a cached page of an NFS file.
798  *
799  * XXX: Keep an eye on generic_file_read to make sure it doesn't do bad
800  * things with a page scheduled for an RPC call (e.g. invalidate it).
801  */
802 int nfs_updatepage(struct file *file, struct page *page,
803 		unsigned int offset, unsigned int count)
804 {
805 	struct nfs_open_context *ctx = (struct nfs_open_context *)file->private_data;
806 	struct inode	*inode = page->mapping->host;
807 	struct nfs_page	*req;
808 	int		status = 0;
809 
810 	nfs_inc_stats(inode, NFSIOS_VFSUPDATEPAGE);
811 
812 	dprintk("NFS:      nfs_updatepage(%s/%s %d@%Ld)\n",
813 		file->f_dentry->d_parent->d_name.name,
814 		file->f_dentry->d_name.name, count,
815 		(long long)(page_offset(page) +offset));
816 
817 	if (IS_SYNC(inode)) {
818 		status = nfs_writepage_sync(ctx, inode, page, offset, count, 0);
819 		if (status > 0) {
820 			if (offset == 0 && status == PAGE_CACHE_SIZE)
821 				SetPageUptodate(page);
822 			return 0;
823 		}
824 		return status;
825 	}
826 
827 	/* If we're not using byte range locks, and we know the page
828 	 * is entirely in cache, it may be more efficient to avoid
829 	 * fragmenting write requests.
830 	 */
831 	if (PageUptodate(page) && inode->i_flock == NULL && !(file->f_mode & O_SYNC)) {
832 		loff_t end_offs = i_size_read(inode) - 1;
833 		unsigned long end_index = end_offs >> PAGE_CACHE_SHIFT;
834 
835 		count += offset;
836 		offset = 0;
837 		if (unlikely(end_offs < 0)) {
838 			/* Do nothing */
839 		} else if (page->index == end_index) {
840 			unsigned int pglen;
841 			pglen = (unsigned int)(end_offs & (PAGE_CACHE_SIZE-1)) + 1;
842 			if (count < pglen)
843 				count = pglen;
844 		} else if (page->index < end_index)
845 			count = PAGE_CACHE_SIZE;
846 	}
847 
848 	/*
849 	 * Try to find an NFS request corresponding to this page
850 	 * and update it.
851 	 * If the existing request cannot be updated, we must flush
852 	 * it out now.
853 	 */
854 	do {
855 		req = nfs_update_request(ctx, inode, page, offset, count);
856 		status = (IS_ERR(req)) ? PTR_ERR(req) : 0;
857 		if (status != -EBUSY)
858 			break;
859 		/* Request could not be updated. Flush it out and try again */
860 		status = nfs_wb_page(inode, page);
861 	} while (status >= 0);
862 	if (status < 0)
863 		goto done;
864 
865 	status = 0;
866 
867 	/* Update file length */
868 	nfs_grow_file(page, offset, count);
869 	/* Set the PG_uptodate flag? */
870 	nfs_mark_uptodate(page, req->wb_pgbase, req->wb_bytes);
871 	nfs_unlock_request(req);
872 done:
873         dprintk("NFS:      nfs_updatepage returns %d (isize %Ld)\n",
874 			status, (long long)i_size_read(inode));
875 	if (status < 0)
876 		ClearPageUptodate(page);
877 	return status;
878 }
879 
880 static void nfs_writepage_release(struct nfs_page *req)
881 {
882 	end_page_writeback(req->wb_page);
883 
884 #if defined(CONFIG_NFS_V3) || defined(CONFIG_NFS_V4)
885 	if (!PageError(req->wb_page)) {
886 		if (NFS_NEED_RESCHED(req)) {
887 			nfs_mark_request_dirty(req);
888 			goto out;
889 		} else if (NFS_NEED_COMMIT(req)) {
890 			nfs_mark_request_commit(req);
891 			goto out;
892 		}
893 	}
894 	nfs_inode_remove_request(req);
895 
896 out:
897 	nfs_clear_commit(req);
898 	nfs_clear_reschedule(req);
899 #else
900 	nfs_inode_remove_request(req);
901 #endif
902 	nfs_clear_page_writeback(req);
903 }
904 
905 static inline int flush_task_priority(int how)
906 {
907 	switch (how & (FLUSH_HIGHPRI|FLUSH_LOWPRI)) {
908 		case FLUSH_HIGHPRI:
909 			return RPC_PRIORITY_HIGH;
910 		case FLUSH_LOWPRI:
911 			return RPC_PRIORITY_LOW;
912 	}
913 	return RPC_PRIORITY_NORMAL;
914 }
915 
916 /*
917  * Set up the argument/result storage required for the RPC call.
918  */
919 static void nfs_write_rpcsetup(struct nfs_page *req,
920 		struct nfs_write_data *data,
921 		const struct rpc_call_ops *call_ops,
922 		unsigned int count, unsigned int offset,
923 		int how)
924 {
925 	struct inode		*inode;
926 	int flags;
927 
928 	/* Set up the RPC argument and reply structs
929 	 * NB: take care not to mess about with data->commit et al. */
930 
931 	data->req = req;
932 	data->inode = inode = req->wb_context->dentry->d_inode;
933 	data->cred = req->wb_context->cred;
934 
935 	data->args.fh     = NFS_FH(inode);
936 	data->args.offset = req_offset(req) + offset;
937 	data->args.pgbase = req->wb_pgbase + offset;
938 	data->args.pages  = data->pagevec;
939 	data->args.count  = count;
940 	data->args.context = req->wb_context;
941 
942 	data->res.fattr   = &data->fattr;
943 	data->res.count   = count;
944 	data->res.verf    = &data->verf;
945 	nfs_fattr_init(&data->fattr);
946 
947 	/* Set up the initial task struct.  */
948 	flags = (how & FLUSH_SYNC) ? 0 : RPC_TASK_ASYNC;
949 	rpc_init_task(&data->task, NFS_CLIENT(inode), flags, call_ops, data);
950 	NFS_PROTO(inode)->write_setup(data, how);
951 
952 	data->task.tk_priority = flush_task_priority(how);
953 	data->task.tk_cookie = (unsigned long)inode;
954 
955 	dprintk("NFS: %4d initiated write call (req %s/%Ld, %u bytes @ offset %Lu)\n",
956 		data->task.tk_pid,
957 		inode->i_sb->s_id,
958 		(long long)NFS_FILEID(inode),
959 		count,
960 		(unsigned long long)data->args.offset);
961 }
962 
963 static void nfs_execute_write(struct nfs_write_data *data)
964 {
965 	struct rpc_clnt *clnt = NFS_CLIENT(data->inode);
966 	sigset_t oldset;
967 
968 	rpc_clnt_sigmask(clnt, &oldset);
969 	lock_kernel();
970 	rpc_execute(&data->task);
971 	unlock_kernel();
972 	rpc_clnt_sigunmask(clnt, &oldset);
973 }
974 
975 /*
976  * Generate multiple small requests to write out a single
977  * contiguous dirty area on one page.
978  */
979 static int nfs_flush_multi(struct inode *inode, struct list_head *head, int how)
980 {
981 	struct nfs_page *req = nfs_list_entry(head->next);
982 	struct page *page = req->wb_page;
983 	struct nfs_write_data *data;
984 	unsigned int wsize = NFS_SERVER(inode)->wsize;
985 	unsigned int nbytes, offset;
986 	int requests = 0;
987 	LIST_HEAD(list);
988 
989 	nfs_list_remove_request(req);
990 
991 	nbytes = req->wb_bytes;
992 	for (;;) {
993 		data = nfs_writedata_alloc(1);
994 		if (!data)
995 			goto out_bad;
996 		list_add(&data->pages, &list);
997 		requests++;
998 		if (nbytes <= wsize)
999 			break;
1000 		nbytes -= wsize;
1001 	}
1002 	atomic_set(&req->wb_complete, requests);
1003 
1004 	ClearPageError(page);
1005 	set_page_writeback(page);
1006 	offset = 0;
1007 	nbytes = req->wb_bytes;
1008 	do {
1009 		data = list_entry(list.next, struct nfs_write_data, pages);
1010 		list_del_init(&data->pages);
1011 
1012 		data->pagevec[0] = page;
1013 
1014 		if (nbytes > wsize) {
1015 			nfs_write_rpcsetup(req, data, &nfs_write_partial_ops,
1016 					wsize, offset, how);
1017 			offset += wsize;
1018 			nbytes -= wsize;
1019 		} else {
1020 			nfs_write_rpcsetup(req, data, &nfs_write_partial_ops,
1021 					nbytes, offset, how);
1022 			nbytes = 0;
1023 		}
1024 		nfs_execute_write(data);
1025 	} while (nbytes != 0);
1026 
1027 	return 0;
1028 
1029 out_bad:
1030 	while (!list_empty(&list)) {
1031 		data = list_entry(list.next, struct nfs_write_data, pages);
1032 		list_del(&data->pages);
1033 		nfs_writedata_free(data);
1034 	}
1035 	nfs_mark_request_dirty(req);
1036 	nfs_clear_page_writeback(req);
1037 	return -ENOMEM;
1038 }
1039 
1040 /*
1041  * Create an RPC task for the given write request and kick it.
1042  * The page must have been locked by the caller.
1043  *
1044  * It may happen that the page we're passed is not marked dirty.
1045  * This is the case if nfs_updatepage detects a conflicting request
1046  * that has been written but not committed.
1047  */
1048 static int nfs_flush_one(struct inode *inode, struct list_head *head, int how)
1049 {
1050 	struct nfs_page		*req;
1051 	struct page		**pages;
1052 	struct nfs_write_data	*data;
1053 	unsigned int		count;
1054 
1055 	data = nfs_writedata_alloc(NFS_SERVER(inode)->wpages);
1056 	if (!data)
1057 		goto out_bad;
1058 
1059 	pages = data->pagevec;
1060 	count = 0;
1061 	while (!list_empty(head)) {
1062 		req = nfs_list_entry(head->next);
1063 		nfs_list_remove_request(req);
1064 		nfs_list_add_request(req, &data->pages);
1065 		ClearPageError(req->wb_page);
1066 		set_page_writeback(req->wb_page);
1067 		*pages++ = req->wb_page;
1068 		count += req->wb_bytes;
1069 	}
1070 	req = nfs_list_entry(data->pages.next);
1071 
1072 	/* Set up the argument struct */
1073 	nfs_write_rpcsetup(req, data, &nfs_write_full_ops, count, 0, how);
1074 
1075 	nfs_execute_write(data);
1076 	return 0;
1077  out_bad:
1078 	while (!list_empty(head)) {
1079 		struct nfs_page *req = nfs_list_entry(head->next);
1080 		nfs_list_remove_request(req);
1081 		nfs_mark_request_dirty(req);
1082 		nfs_clear_page_writeback(req);
1083 	}
1084 	return -ENOMEM;
1085 }
1086 
1087 static int nfs_flush_list(struct inode *inode, struct list_head *head, int npages, int how)
1088 {
1089 	LIST_HEAD(one_request);
1090 	int (*flush_one)(struct inode *, struct list_head *, int);
1091 	struct nfs_page	*req;
1092 	int wpages = NFS_SERVER(inode)->wpages;
1093 	int wsize = NFS_SERVER(inode)->wsize;
1094 	int error;
1095 
1096 	flush_one = nfs_flush_one;
1097 	if (wsize < PAGE_CACHE_SIZE)
1098 		flush_one = nfs_flush_multi;
1099 	/* For single writes, FLUSH_STABLE is more efficient */
1100 	if (npages <= wpages && npages == NFS_I(inode)->npages
1101 			&& nfs_list_entry(head->next)->wb_bytes <= wsize)
1102 		how |= FLUSH_STABLE;
1103 
1104 	do {
1105 		nfs_coalesce_requests(head, &one_request, wpages);
1106 		req = nfs_list_entry(one_request.next);
1107 		error = flush_one(inode, &one_request, how);
1108 		if (error < 0)
1109 			goto out_err;
1110 	} while (!list_empty(head));
1111 	return 0;
1112 out_err:
1113 	while (!list_empty(head)) {
1114 		req = nfs_list_entry(head->next);
1115 		nfs_list_remove_request(req);
1116 		nfs_mark_request_dirty(req);
1117 		nfs_clear_page_writeback(req);
1118 	}
1119 	return error;
1120 }
1121 
1122 /*
1123  * Handle a write reply that flushed part of a page.
1124  */
1125 static void nfs_writeback_done_partial(struct rpc_task *task, void *calldata)
1126 {
1127 	struct nfs_write_data	*data = calldata;
1128 	struct nfs_page		*req = data->req;
1129 	struct page		*page = req->wb_page;
1130 
1131 	dprintk("NFS: write (%s/%Ld %d@%Ld)",
1132 		req->wb_context->dentry->d_inode->i_sb->s_id,
1133 		(long long)NFS_FILEID(req->wb_context->dentry->d_inode),
1134 		req->wb_bytes,
1135 		(long long)req_offset(req));
1136 
1137 	if (nfs_writeback_done(task, data) != 0)
1138 		return;
1139 
1140 	if (task->tk_status < 0) {
1141 		ClearPageUptodate(page);
1142 		SetPageError(page);
1143 		req->wb_context->error = task->tk_status;
1144 		dprintk(", error = %d\n", task->tk_status);
1145 	} else {
1146 #if defined(CONFIG_NFS_V3) || defined(CONFIG_NFS_V4)
1147 		if (data->verf.committed < NFS_FILE_SYNC) {
1148 			if (!NFS_NEED_COMMIT(req)) {
1149 				nfs_defer_commit(req);
1150 				memcpy(&req->wb_verf, &data->verf, sizeof(req->wb_verf));
1151 				dprintk(" defer commit\n");
1152 			} else if (memcmp(&req->wb_verf, &data->verf, sizeof(req->wb_verf))) {
1153 				nfs_defer_reschedule(req);
1154 				dprintk(" server reboot detected\n");
1155 			}
1156 		} else
1157 #endif
1158 			dprintk(" OK\n");
1159 	}
1160 
1161 	if (atomic_dec_and_test(&req->wb_complete))
1162 		nfs_writepage_release(req);
1163 }
1164 
1165 static const struct rpc_call_ops nfs_write_partial_ops = {
1166 	.rpc_call_done = nfs_writeback_done_partial,
1167 	.rpc_release = nfs_writedata_release,
1168 };
1169 
1170 /*
1171  * Handle a write reply that flushes a whole page.
1172  *
1173  * FIXME: There is an inherent race with invalidate_inode_pages and
1174  *	  writebacks since the page->count is kept > 1 for as long
1175  *	  as the page has a write request pending.
1176  */
1177 static void nfs_writeback_done_full(struct rpc_task *task, void *calldata)
1178 {
1179 	struct nfs_write_data	*data = calldata;
1180 	struct nfs_page		*req;
1181 	struct page		*page;
1182 
1183 	if (nfs_writeback_done(task, data) != 0)
1184 		return;
1185 
1186 	/* Update attributes as result of writeback. */
1187 	while (!list_empty(&data->pages)) {
1188 		req = nfs_list_entry(data->pages.next);
1189 		nfs_list_remove_request(req);
1190 		page = req->wb_page;
1191 
1192 		dprintk("NFS: write (%s/%Ld %d@%Ld)",
1193 			req->wb_context->dentry->d_inode->i_sb->s_id,
1194 			(long long)NFS_FILEID(req->wb_context->dentry->d_inode),
1195 			req->wb_bytes,
1196 			(long long)req_offset(req));
1197 
1198 		if (task->tk_status < 0) {
1199 			ClearPageUptodate(page);
1200 			SetPageError(page);
1201 			req->wb_context->error = task->tk_status;
1202 			end_page_writeback(page);
1203 			nfs_inode_remove_request(req);
1204 			dprintk(", error = %d\n", task->tk_status);
1205 			goto next;
1206 		}
1207 		end_page_writeback(page);
1208 
1209 #if defined(CONFIG_NFS_V3) || defined(CONFIG_NFS_V4)
1210 		if (data->args.stable != NFS_UNSTABLE || data->verf.committed == NFS_FILE_SYNC) {
1211 			nfs_inode_remove_request(req);
1212 			dprintk(" OK\n");
1213 			goto next;
1214 		}
1215 		memcpy(&req->wb_verf, &data->verf, sizeof(req->wb_verf));
1216 		nfs_mark_request_commit(req);
1217 		dprintk(" marked for commit\n");
1218 #else
1219 		nfs_inode_remove_request(req);
1220 #endif
1221 	next:
1222 		nfs_clear_page_writeback(req);
1223 	}
1224 }
1225 
1226 static const struct rpc_call_ops nfs_write_full_ops = {
1227 	.rpc_call_done = nfs_writeback_done_full,
1228 	.rpc_release = nfs_writedata_release,
1229 };
1230 
1231 
1232 /*
1233  * This function is called when the WRITE call is complete.
1234  */
1235 int nfs_writeback_done(struct rpc_task *task, struct nfs_write_data *data)
1236 {
1237 	struct nfs_writeargs	*argp = &data->args;
1238 	struct nfs_writeres	*resp = &data->res;
1239 	int status;
1240 
1241 	dprintk("NFS: %4d nfs_writeback_done (status %d)\n",
1242 		task->tk_pid, task->tk_status);
1243 
1244 	/* Call the NFS version-specific code */
1245 	status = NFS_PROTO(data->inode)->write_done(task, data);
1246 	if (status != 0)
1247 		return status;
1248 	nfs_add_stats(data->inode, NFSIOS_SERVERWRITTENBYTES, resp->count);
1249 
1250 #if defined(CONFIG_NFS_V3) || defined(CONFIG_NFS_V4)
1251 	if (resp->verf->committed < argp->stable && task->tk_status >= 0) {
1252 		/* We tried a write call, but the server did not
1253 		 * commit data to stable storage even though we
1254 		 * requested it.
1255 		 * Note: There is a known bug in Tru64 < 5.0 in which
1256 		 *	 the server reports NFS_DATA_SYNC, but performs
1257 		 *	 NFS_FILE_SYNC. We therefore implement this checking
1258 		 *	 as a dprintk() in order to avoid filling syslog.
1259 		 */
1260 		static unsigned long    complain;
1261 
1262 		if (time_before(complain, jiffies)) {
1263 			dprintk("NFS: faulty NFS server %s:"
1264 				" (committed = %d) != (stable = %d)\n",
1265 				NFS_SERVER(data->inode)->hostname,
1266 				resp->verf->committed, argp->stable);
1267 			complain = jiffies + 300 * HZ;
1268 		}
1269 	}
1270 #endif
1271 	/* Is this a short write? */
1272 	if (task->tk_status >= 0 && resp->count < argp->count) {
1273 		static unsigned long    complain;
1274 
1275 		nfs_inc_stats(data->inode, NFSIOS_SHORTWRITE);
1276 
1277 		/* Has the server at least made some progress? */
1278 		if (resp->count != 0) {
1279 			/* Was this an NFSv2 write or an NFSv3 stable write? */
1280 			if (resp->verf->committed != NFS_UNSTABLE) {
1281 				/* Resend from where the server left off */
1282 				argp->offset += resp->count;
1283 				argp->pgbase += resp->count;
1284 				argp->count -= resp->count;
1285 			} else {
1286 				/* Resend as a stable write in order to avoid
1287 				 * headaches in the case of a server crash.
1288 				 */
1289 				argp->stable = NFS_FILE_SYNC;
1290 			}
1291 			rpc_restart_call(task);
1292 			return -EAGAIN;
1293 		}
1294 		if (time_before(complain, jiffies)) {
1295 			printk(KERN_WARNING
1296 			       "NFS: Server wrote zero bytes, expected %u.\n",
1297 					argp->count);
1298 			complain = jiffies + 300 * HZ;
1299 		}
1300 		/* Can't do anything about it except throw an error. */
1301 		task->tk_status = -EIO;
1302 	}
1303 	return 0;
1304 }
1305 
1306 
1307 #if defined(CONFIG_NFS_V3) || defined(CONFIG_NFS_V4)
1308 void nfs_commit_release(void *wdata)
1309 {
1310 	nfs_commit_free(wdata);
1311 }
1312 
1313 /*
1314  * Set up the argument/result storage required for the RPC call.
1315  */
1316 static void nfs_commit_rpcsetup(struct list_head *head,
1317 		struct nfs_write_data *data,
1318 		int how)
1319 {
1320 	struct nfs_page		*first;
1321 	struct inode		*inode;
1322 	int flags;
1323 
1324 	/* Set up the RPC argument and reply structs
1325 	 * NB: take care not to mess about with data->commit et al. */
1326 
1327 	list_splice_init(head, &data->pages);
1328 	first = nfs_list_entry(data->pages.next);
1329 	inode = first->wb_context->dentry->d_inode;
1330 
1331 	data->inode	  = inode;
1332 	data->cred	  = first->wb_context->cred;
1333 
1334 	data->args.fh     = NFS_FH(data->inode);
1335 	/* Note: we always request a commit of the entire inode */
1336 	data->args.offset = 0;
1337 	data->args.count  = 0;
1338 	data->res.count   = 0;
1339 	data->res.fattr   = &data->fattr;
1340 	data->res.verf    = &data->verf;
1341 	nfs_fattr_init(&data->fattr);
1342 
1343 	/* Set up the initial task struct.  */
1344 	flags = (how & FLUSH_SYNC) ? 0 : RPC_TASK_ASYNC;
1345 	rpc_init_task(&data->task, NFS_CLIENT(inode), flags, &nfs_commit_ops, data);
1346 	NFS_PROTO(inode)->commit_setup(data, how);
1347 
1348 	data->task.tk_priority = flush_task_priority(how);
1349 	data->task.tk_cookie = (unsigned long)inode;
1350 
1351 	dprintk("NFS: %4d initiated commit call\n", data->task.tk_pid);
1352 }
1353 
1354 /*
1355  * Commit dirty pages
1356  */
1357 static int
1358 nfs_commit_list(struct inode *inode, struct list_head *head, int how)
1359 {
1360 	struct nfs_write_data	*data;
1361 	struct nfs_page         *req;
1362 
1363 	data = nfs_commit_alloc(NFS_SERVER(inode)->wpages);
1364 
1365 	if (!data)
1366 		goto out_bad;
1367 
1368 	/* Set up the argument struct */
1369 	nfs_commit_rpcsetup(head, data, how);
1370 
1371 	nfs_execute_write(data);
1372 	return 0;
1373  out_bad:
1374 	while (!list_empty(head)) {
1375 		req = nfs_list_entry(head->next);
1376 		nfs_list_remove_request(req);
1377 		nfs_mark_request_commit(req);
1378 		nfs_clear_page_writeback(req);
1379 	}
1380 	return -ENOMEM;
1381 }
1382 
1383 /*
1384  * COMMIT call returned
1385  */
1386 static void nfs_commit_done(struct rpc_task *task, void *calldata)
1387 {
1388 	struct nfs_write_data	*data = calldata;
1389 	struct nfs_page		*req;
1390 	int res = 0;
1391 
1392         dprintk("NFS: %4d nfs_commit_done (status %d)\n",
1393                                 task->tk_pid, task->tk_status);
1394 
1395 	/* Call the NFS version-specific code */
1396 	if (NFS_PROTO(data->inode)->commit_done(task, data) != 0)
1397 		return;
1398 
1399 	while (!list_empty(&data->pages)) {
1400 		req = nfs_list_entry(data->pages.next);
1401 		nfs_list_remove_request(req);
1402 
1403 		dprintk("NFS: commit (%s/%Ld %d@%Ld)",
1404 			req->wb_context->dentry->d_inode->i_sb->s_id,
1405 			(long long)NFS_FILEID(req->wb_context->dentry->d_inode),
1406 			req->wb_bytes,
1407 			(long long)req_offset(req));
1408 		if (task->tk_status < 0) {
1409 			req->wb_context->error = task->tk_status;
1410 			nfs_inode_remove_request(req);
1411 			dprintk(", error = %d\n", task->tk_status);
1412 			goto next;
1413 		}
1414 
1415 		/* Okay, COMMIT succeeded, apparently. Check the verifier
1416 		 * returned by the server against all stored verfs. */
1417 		if (!memcmp(req->wb_verf.verifier, data->verf.verifier, sizeof(data->verf.verifier))) {
1418 			/* We have a match */
1419 			nfs_inode_remove_request(req);
1420 			dprintk(" OK\n");
1421 			goto next;
1422 		}
1423 		/* We have a mismatch. Write the page again */
1424 		dprintk(" mismatch\n");
1425 		nfs_mark_request_dirty(req);
1426 	next:
1427 		nfs_clear_page_writeback(req);
1428 		res++;
1429 	}
1430 	sub_page_state(nr_unstable,res);
1431 }
1432 
1433 static const struct rpc_call_ops nfs_commit_ops = {
1434 	.rpc_call_done = nfs_commit_done,
1435 	.rpc_release = nfs_commit_release,
1436 };
1437 #else
1438 static inline int nfs_commit_list(struct inode *inode, struct list_head *head, int how)
1439 {
1440 	return 0;
1441 }
1442 #endif
1443 
1444 static int nfs_flush_inode(struct inode *inode, unsigned long idx_start,
1445 			   unsigned int npages, int how)
1446 {
1447 	struct nfs_inode *nfsi = NFS_I(inode);
1448 	LIST_HEAD(head);
1449 	int res;
1450 
1451 	spin_lock(&nfsi->req_lock);
1452 	res = nfs_scan_dirty(inode, &head, idx_start, npages);
1453 	spin_unlock(&nfsi->req_lock);
1454 	if (res) {
1455 		int error = nfs_flush_list(inode, &head, res, how);
1456 		if (error < 0)
1457 			return error;
1458 	}
1459 	return res;
1460 }
1461 
1462 #if defined(CONFIG_NFS_V3) || defined(CONFIG_NFS_V4)
1463 int nfs_commit_inode(struct inode *inode, int how)
1464 {
1465 	struct nfs_inode *nfsi = NFS_I(inode);
1466 	LIST_HEAD(head);
1467 	int res;
1468 
1469 	spin_lock(&nfsi->req_lock);
1470 	res = nfs_scan_commit(inode, &head, 0, 0);
1471 	spin_unlock(&nfsi->req_lock);
1472 	if (res) {
1473 		int error = nfs_commit_list(inode, &head, how);
1474 		if (error < 0)
1475 			return error;
1476 	}
1477 	return res;
1478 }
1479 #endif
1480 
1481 int nfs_sync_inode_wait(struct inode *inode, unsigned long idx_start,
1482 		unsigned int npages, int how)
1483 {
1484 	struct nfs_inode *nfsi = NFS_I(inode);
1485 	LIST_HEAD(head);
1486 	int nocommit = how & FLUSH_NOCOMMIT;
1487 	int pages, ret;
1488 
1489 	how &= ~FLUSH_NOCOMMIT;
1490 	spin_lock(&nfsi->req_lock);
1491 	do {
1492 		ret = nfs_wait_on_requests_locked(inode, idx_start, npages);
1493 		if (ret != 0)
1494 			continue;
1495 		pages = nfs_scan_dirty(inode, &head, idx_start, npages);
1496 		if (pages != 0) {
1497 			spin_unlock(&nfsi->req_lock);
1498 			ret = nfs_flush_list(inode, &head, pages, how);
1499 			spin_lock(&nfsi->req_lock);
1500 			continue;
1501 		}
1502 		if (nocommit)
1503 			break;
1504 		pages = nfs_scan_commit(inode, &head, 0, 0);
1505 		if (pages == 0)
1506 			break;
1507 		spin_unlock(&nfsi->req_lock);
1508 		ret = nfs_commit_list(inode, &head, how);
1509 		spin_lock(&nfsi->req_lock);
1510 	} while (ret >= 0);
1511 	spin_unlock(&nfsi->req_lock);
1512 	return ret;
1513 }
1514 
1515 int nfs_init_writepagecache(void)
1516 {
1517 	nfs_wdata_cachep = kmem_cache_create("nfs_write_data",
1518 					     sizeof(struct nfs_write_data),
1519 					     0, SLAB_HWCACHE_ALIGN,
1520 					     NULL, NULL);
1521 	if (nfs_wdata_cachep == NULL)
1522 		return -ENOMEM;
1523 
1524 	nfs_wdata_mempool = mempool_create_slab_pool(MIN_POOL_WRITE,
1525 						     nfs_wdata_cachep);
1526 	if (nfs_wdata_mempool == NULL)
1527 		return -ENOMEM;
1528 
1529 	nfs_commit_mempool = mempool_create_slab_pool(MIN_POOL_COMMIT,
1530 						      nfs_wdata_cachep);
1531 	if (nfs_commit_mempool == NULL)
1532 		return -ENOMEM;
1533 
1534 	return 0;
1535 }
1536 
1537 void nfs_destroy_writepagecache(void)
1538 {
1539 	mempool_destroy(nfs_commit_mempool);
1540 	mempool_destroy(nfs_wdata_mempool);
1541 	if (kmem_cache_destroy(nfs_wdata_cachep))
1542 		printk(KERN_INFO "nfs_write_data: not all structures were freed\n");
1543 }
1544 
1545