1 /* 2 * linux/fs/nfs/write.c 3 * 4 * Write file data over NFS. 5 * 6 * Copyright (C) 1996, 1997, Olaf Kirch <okir@monad.swb.de> 7 */ 8 9 #include <linux/types.h> 10 #include <linux/slab.h> 11 #include <linux/mm.h> 12 #include <linux/pagemap.h> 13 #include <linux/file.h> 14 #include <linux/writeback.h> 15 #include <linux/swap.h> 16 #include <linux/migrate.h> 17 18 #include <linux/sunrpc/clnt.h> 19 #include <linux/nfs_fs.h> 20 #include <linux/nfs_mount.h> 21 #include <linux/nfs_page.h> 22 #include <linux/backing-dev.h> 23 #include <linux/export.h> 24 25 #include <asm/uaccess.h> 26 27 #include "delegation.h" 28 #include "internal.h" 29 #include "iostat.h" 30 #include "nfs4_fs.h" 31 #include "fscache.h" 32 #include "pnfs.h" 33 34 #define NFSDBG_FACILITY NFSDBG_PAGECACHE 35 36 #define MIN_POOL_WRITE (32) 37 #define MIN_POOL_COMMIT (4) 38 39 /* 40 * Local function declarations 41 */ 42 static void nfs_pageio_init_write(struct nfs_pageio_descriptor *desc, 43 struct inode *inode, int ioflags); 44 static void nfs_redirty_request(struct nfs_page *req); 45 static const struct rpc_call_ops nfs_write_partial_ops; 46 static const struct rpc_call_ops nfs_write_full_ops; 47 static const struct rpc_call_ops nfs_commit_ops; 48 49 static struct kmem_cache *nfs_wdata_cachep; 50 static mempool_t *nfs_wdata_mempool; 51 static mempool_t *nfs_commit_mempool; 52 53 struct nfs_write_data *nfs_commitdata_alloc(void) 54 { 55 struct nfs_write_data *p = mempool_alloc(nfs_commit_mempool, GFP_NOFS); 56 57 if (p) { 58 memset(p, 0, sizeof(*p)); 59 INIT_LIST_HEAD(&p->pages); 60 } 61 return p; 62 } 63 EXPORT_SYMBOL_GPL(nfs_commitdata_alloc); 64 65 void nfs_commit_free(struct nfs_write_data *p) 66 { 67 if (p && (p->pagevec != &p->page_array[0])) 68 kfree(p->pagevec); 69 mempool_free(p, nfs_commit_mempool); 70 } 71 EXPORT_SYMBOL_GPL(nfs_commit_free); 72 73 struct nfs_write_data *nfs_writedata_alloc(unsigned int pagecount) 74 { 75 struct nfs_write_data *p = mempool_alloc(nfs_wdata_mempool, GFP_NOFS); 76 77 if (p) { 78 memset(p, 0, sizeof(*p)); 79 INIT_LIST_HEAD(&p->pages); 80 p->npages = pagecount; 81 if (pagecount <= ARRAY_SIZE(p->page_array)) 82 p->pagevec = p->page_array; 83 else { 84 p->pagevec = kcalloc(pagecount, sizeof(struct page *), GFP_NOFS); 85 if (!p->pagevec) { 86 mempool_free(p, nfs_wdata_mempool); 87 p = NULL; 88 } 89 } 90 } 91 return p; 92 } 93 94 void nfs_writedata_free(struct nfs_write_data *p) 95 { 96 if (p && (p->pagevec != &p->page_array[0])) 97 kfree(p->pagevec); 98 mempool_free(p, nfs_wdata_mempool); 99 } 100 101 void nfs_writedata_release(struct nfs_write_data *wdata) 102 { 103 put_lseg(wdata->lseg); 104 put_nfs_open_context(wdata->args.context); 105 nfs_writedata_free(wdata); 106 } 107 108 static void nfs_context_set_write_error(struct nfs_open_context *ctx, int error) 109 { 110 ctx->error = error; 111 smp_wmb(); 112 set_bit(NFS_CONTEXT_ERROR_WRITE, &ctx->flags); 113 } 114 115 static struct nfs_page *nfs_page_find_request_locked(struct page *page) 116 { 117 struct nfs_page *req = NULL; 118 119 if (PagePrivate(page)) { 120 req = (struct nfs_page *)page_private(page); 121 if (req != NULL) 122 kref_get(&req->wb_kref); 123 } 124 return req; 125 } 126 127 static struct nfs_page *nfs_page_find_request(struct page *page) 128 { 129 struct inode *inode = page->mapping->host; 130 struct nfs_page *req = NULL; 131 132 spin_lock(&inode->i_lock); 133 req = nfs_page_find_request_locked(page); 134 spin_unlock(&inode->i_lock); 135 return req; 136 } 137 138 /* Adjust the file length if we're writing beyond the end */ 139 static void nfs_grow_file(struct page *page, unsigned int offset, unsigned int count) 140 { 141 struct inode *inode = page->mapping->host; 142 loff_t end, i_size; 143 pgoff_t end_index; 144 145 spin_lock(&inode->i_lock); 146 i_size = i_size_read(inode); 147 end_index = (i_size - 1) >> PAGE_CACHE_SHIFT; 148 if (i_size > 0 && page->index < end_index) 149 goto out; 150 end = ((loff_t)page->index << PAGE_CACHE_SHIFT) + ((loff_t)offset+count); 151 if (i_size >= end) 152 goto out; 153 i_size_write(inode, end); 154 nfs_inc_stats(inode, NFSIOS_EXTENDWRITE); 155 out: 156 spin_unlock(&inode->i_lock); 157 } 158 159 /* A writeback failed: mark the page as bad, and invalidate the page cache */ 160 static void nfs_set_pageerror(struct page *page) 161 { 162 SetPageError(page); 163 nfs_zap_mapping(page->mapping->host, page->mapping); 164 } 165 166 /* We can set the PG_uptodate flag if we see that a write request 167 * covers the full page. 168 */ 169 static void nfs_mark_uptodate(struct page *page, unsigned int base, unsigned int count) 170 { 171 if (PageUptodate(page)) 172 return; 173 if (base != 0) 174 return; 175 if (count != nfs_page_length(page)) 176 return; 177 SetPageUptodate(page); 178 } 179 180 static int wb_priority(struct writeback_control *wbc) 181 { 182 if (wbc->for_reclaim) 183 return FLUSH_HIGHPRI | FLUSH_STABLE; 184 if (wbc->for_kupdate || wbc->for_background) 185 return FLUSH_LOWPRI | FLUSH_COND_STABLE; 186 return FLUSH_COND_STABLE; 187 } 188 189 /* 190 * NFS congestion control 191 */ 192 193 int nfs_congestion_kb; 194 195 #define NFS_CONGESTION_ON_THRESH (nfs_congestion_kb >> (PAGE_SHIFT-10)) 196 #define NFS_CONGESTION_OFF_THRESH \ 197 (NFS_CONGESTION_ON_THRESH - (NFS_CONGESTION_ON_THRESH >> 2)) 198 199 static int nfs_set_page_writeback(struct page *page) 200 { 201 int ret = test_set_page_writeback(page); 202 203 if (!ret) { 204 struct inode *inode = page->mapping->host; 205 struct nfs_server *nfss = NFS_SERVER(inode); 206 207 page_cache_get(page); 208 if (atomic_long_inc_return(&nfss->writeback) > 209 NFS_CONGESTION_ON_THRESH) { 210 set_bdi_congested(&nfss->backing_dev_info, 211 BLK_RW_ASYNC); 212 } 213 } 214 return ret; 215 } 216 217 static void nfs_end_page_writeback(struct page *page) 218 { 219 struct inode *inode = page->mapping->host; 220 struct nfs_server *nfss = NFS_SERVER(inode); 221 222 end_page_writeback(page); 223 page_cache_release(page); 224 if (atomic_long_dec_return(&nfss->writeback) < NFS_CONGESTION_OFF_THRESH) 225 clear_bdi_congested(&nfss->backing_dev_info, BLK_RW_ASYNC); 226 } 227 228 static struct nfs_page *nfs_find_and_lock_request(struct page *page, bool nonblock) 229 { 230 struct inode *inode = page->mapping->host; 231 struct nfs_page *req; 232 int ret; 233 234 spin_lock(&inode->i_lock); 235 for (;;) { 236 req = nfs_page_find_request_locked(page); 237 if (req == NULL) 238 break; 239 if (nfs_set_page_tag_locked(req)) 240 break; 241 /* Note: If we hold the page lock, as is the case in nfs_writepage, 242 * then the call to nfs_set_page_tag_locked() will always 243 * succeed provided that someone hasn't already marked the 244 * request as dirty (in which case we don't care). 245 */ 246 spin_unlock(&inode->i_lock); 247 if (!nonblock) 248 ret = nfs_wait_on_request(req); 249 else 250 ret = -EAGAIN; 251 nfs_release_request(req); 252 if (ret != 0) 253 return ERR_PTR(ret); 254 spin_lock(&inode->i_lock); 255 } 256 spin_unlock(&inode->i_lock); 257 return req; 258 } 259 260 /* 261 * Find an associated nfs write request, and prepare to flush it out 262 * May return an error if the user signalled nfs_wait_on_request(). 263 */ 264 static int nfs_page_async_flush(struct nfs_pageio_descriptor *pgio, 265 struct page *page, bool nonblock) 266 { 267 struct nfs_page *req; 268 int ret = 0; 269 270 req = nfs_find_and_lock_request(page, nonblock); 271 if (!req) 272 goto out; 273 ret = PTR_ERR(req); 274 if (IS_ERR(req)) 275 goto out; 276 277 ret = nfs_set_page_writeback(page); 278 BUG_ON(ret != 0); 279 BUG_ON(test_bit(PG_CLEAN, &req->wb_flags)); 280 281 if (!nfs_pageio_add_request(pgio, req)) { 282 nfs_redirty_request(req); 283 ret = pgio->pg_error; 284 } 285 out: 286 return ret; 287 } 288 289 static int nfs_do_writepage(struct page *page, struct writeback_control *wbc, struct nfs_pageio_descriptor *pgio) 290 { 291 struct inode *inode = page->mapping->host; 292 int ret; 293 294 nfs_inc_stats(inode, NFSIOS_VFSWRITEPAGE); 295 nfs_add_stats(inode, NFSIOS_WRITEPAGES, 1); 296 297 nfs_pageio_cond_complete(pgio, page->index); 298 ret = nfs_page_async_flush(pgio, page, wbc->sync_mode == WB_SYNC_NONE); 299 if (ret == -EAGAIN) { 300 redirty_page_for_writepage(wbc, page); 301 ret = 0; 302 } 303 return ret; 304 } 305 306 /* 307 * Write an mmapped page to the server. 308 */ 309 static int nfs_writepage_locked(struct page *page, struct writeback_control *wbc) 310 { 311 struct nfs_pageio_descriptor pgio; 312 int err; 313 314 nfs_pageio_init_write(&pgio, page->mapping->host, wb_priority(wbc)); 315 err = nfs_do_writepage(page, wbc, &pgio); 316 nfs_pageio_complete(&pgio); 317 if (err < 0) 318 return err; 319 if (pgio.pg_error < 0) 320 return pgio.pg_error; 321 return 0; 322 } 323 324 int nfs_writepage(struct page *page, struct writeback_control *wbc) 325 { 326 int ret; 327 328 ret = nfs_writepage_locked(page, wbc); 329 unlock_page(page); 330 return ret; 331 } 332 333 static int nfs_writepages_callback(struct page *page, struct writeback_control *wbc, void *data) 334 { 335 int ret; 336 337 ret = nfs_do_writepage(page, wbc, data); 338 unlock_page(page); 339 return ret; 340 } 341 342 int nfs_writepages(struct address_space *mapping, struct writeback_control *wbc) 343 { 344 struct inode *inode = mapping->host; 345 unsigned long *bitlock = &NFS_I(inode)->flags; 346 struct nfs_pageio_descriptor pgio; 347 int err; 348 349 /* Stop dirtying of new pages while we sync */ 350 err = wait_on_bit_lock(bitlock, NFS_INO_FLUSHING, 351 nfs_wait_bit_killable, TASK_KILLABLE); 352 if (err) 353 goto out_err; 354 355 nfs_inc_stats(inode, NFSIOS_VFSWRITEPAGES); 356 357 nfs_pageio_init_write(&pgio, inode, wb_priority(wbc)); 358 err = write_cache_pages(mapping, wbc, nfs_writepages_callback, &pgio); 359 nfs_pageio_complete(&pgio); 360 361 clear_bit_unlock(NFS_INO_FLUSHING, bitlock); 362 smp_mb__after_clear_bit(); 363 wake_up_bit(bitlock, NFS_INO_FLUSHING); 364 365 if (err < 0) 366 goto out_err; 367 err = pgio.pg_error; 368 if (err < 0) 369 goto out_err; 370 return 0; 371 out_err: 372 return err; 373 } 374 375 /* 376 * Insert a write request into an inode 377 */ 378 static int nfs_inode_add_request(struct inode *inode, struct nfs_page *req) 379 { 380 struct nfs_inode *nfsi = NFS_I(inode); 381 int error; 382 383 error = radix_tree_preload(GFP_NOFS); 384 if (error != 0) 385 goto out; 386 387 /* Lock the request! */ 388 nfs_lock_request_dontget(req); 389 390 spin_lock(&inode->i_lock); 391 error = radix_tree_insert(&nfsi->nfs_page_tree, req->wb_index, req); 392 BUG_ON(error); 393 if (!nfsi->npages && nfs_have_delegation(inode, FMODE_WRITE)) 394 inode->i_version++; 395 set_bit(PG_MAPPED, &req->wb_flags); 396 SetPagePrivate(req->wb_page); 397 set_page_private(req->wb_page, (unsigned long)req); 398 nfsi->npages++; 399 kref_get(&req->wb_kref); 400 radix_tree_tag_set(&nfsi->nfs_page_tree, req->wb_index, 401 NFS_PAGE_TAG_LOCKED); 402 spin_unlock(&inode->i_lock); 403 radix_tree_preload_end(); 404 out: 405 return error; 406 } 407 408 /* 409 * Remove a write request from an inode 410 */ 411 static void nfs_inode_remove_request(struct nfs_page *req) 412 { 413 struct inode *inode = req->wb_context->dentry->d_inode; 414 struct nfs_inode *nfsi = NFS_I(inode); 415 416 BUG_ON (!NFS_WBACK_BUSY(req)); 417 418 spin_lock(&inode->i_lock); 419 set_page_private(req->wb_page, 0); 420 ClearPagePrivate(req->wb_page); 421 clear_bit(PG_MAPPED, &req->wb_flags); 422 radix_tree_delete(&nfsi->nfs_page_tree, req->wb_index); 423 nfsi->npages--; 424 spin_unlock(&inode->i_lock); 425 nfs_release_request(req); 426 } 427 428 static void 429 nfs_mark_request_dirty(struct nfs_page *req) 430 { 431 __set_page_dirty_nobuffers(req->wb_page); 432 } 433 434 #if defined(CONFIG_NFS_V3) || defined(CONFIG_NFS_V4) 435 /* 436 * Add a request to the inode's commit list. 437 */ 438 static void 439 nfs_mark_request_commit(struct nfs_page *req, struct pnfs_layout_segment *lseg) 440 { 441 struct inode *inode = req->wb_context->dentry->d_inode; 442 struct nfs_inode *nfsi = NFS_I(inode); 443 444 spin_lock(&inode->i_lock); 445 set_bit(PG_CLEAN, &(req)->wb_flags); 446 radix_tree_tag_set(&nfsi->nfs_page_tree, 447 req->wb_index, 448 NFS_PAGE_TAG_COMMIT); 449 nfsi->ncommit++; 450 spin_unlock(&inode->i_lock); 451 pnfs_mark_request_commit(req, lseg); 452 inc_zone_page_state(req->wb_page, NR_UNSTABLE_NFS); 453 inc_bdi_stat(req->wb_page->mapping->backing_dev_info, BDI_RECLAIMABLE); 454 __mark_inode_dirty(inode, I_DIRTY_DATASYNC); 455 } 456 457 static int 458 nfs_clear_request_commit(struct nfs_page *req) 459 { 460 struct page *page = req->wb_page; 461 462 if (test_and_clear_bit(PG_CLEAN, &(req)->wb_flags)) { 463 dec_zone_page_state(page, NR_UNSTABLE_NFS); 464 dec_bdi_stat(page->mapping->backing_dev_info, BDI_RECLAIMABLE); 465 return 1; 466 } 467 return 0; 468 } 469 470 static inline 471 int nfs_write_need_commit(struct nfs_write_data *data) 472 { 473 if (data->verf.committed == NFS_DATA_SYNC) 474 return data->lseg == NULL; 475 else 476 return data->verf.committed != NFS_FILE_SYNC; 477 } 478 479 static inline 480 int nfs_reschedule_unstable_write(struct nfs_page *req, 481 struct nfs_write_data *data) 482 { 483 if (test_and_clear_bit(PG_NEED_COMMIT, &req->wb_flags)) { 484 nfs_mark_request_commit(req, data->lseg); 485 return 1; 486 } 487 if (test_and_clear_bit(PG_NEED_RESCHED, &req->wb_flags)) { 488 nfs_mark_request_dirty(req); 489 return 1; 490 } 491 return 0; 492 } 493 #else 494 static inline void 495 nfs_mark_request_commit(struct nfs_page *req, struct pnfs_layout_segment *lseg) 496 { 497 } 498 499 static inline int 500 nfs_clear_request_commit(struct nfs_page *req) 501 { 502 return 0; 503 } 504 505 static inline 506 int nfs_write_need_commit(struct nfs_write_data *data) 507 { 508 return 0; 509 } 510 511 static inline 512 int nfs_reschedule_unstable_write(struct nfs_page *req, 513 struct nfs_write_data *data) 514 { 515 return 0; 516 } 517 #endif 518 519 #if defined(CONFIG_NFS_V3) || defined(CONFIG_NFS_V4) 520 static int 521 nfs_need_commit(struct nfs_inode *nfsi) 522 { 523 return radix_tree_tagged(&nfsi->nfs_page_tree, NFS_PAGE_TAG_COMMIT); 524 } 525 526 /* 527 * nfs_scan_commit - Scan an inode for commit requests 528 * @inode: NFS inode to scan 529 * @dst: destination list 530 * @idx_start: lower bound of page->index to scan. 531 * @npages: idx_start + npages sets the upper bound to scan. 532 * 533 * Moves requests from the inode's 'commit' request list. 534 * The requests are *not* checked to ensure that they form a contiguous set. 535 */ 536 static int 537 nfs_scan_commit(struct inode *inode, struct list_head *dst, pgoff_t idx_start, unsigned int npages) 538 { 539 struct nfs_inode *nfsi = NFS_I(inode); 540 int ret; 541 542 if (!nfs_need_commit(nfsi)) 543 return 0; 544 545 spin_lock(&inode->i_lock); 546 ret = nfs_scan_list(nfsi, dst, idx_start, npages, NFS_PAGE_TAG_COMMIT); 547 if (ret > 0) 548 nfsi->ncommit -= ret; 549 spin_unlock(&inode->i_lock); 550 551 if (nfs_need_commit(NFS_I(inode))) 552 __mark_inode_dirty(inode, I_DIRTY_DATASYNC); 553 554 return ret; 555 } 556 #else 557 static inline int nfs_need_commit(struct nfs_inode *nfsi) 558 { 559 return 0; 560 } 561 562 static inline int nfs_scan_commit(struct inode *inode, struct list_head *dst, pgoff_t idx_start, unsigned int npages) 563 { 564 return 0; 565 } 566 #endif 567 568 /* 569 * Search for an existing write request, and attempt to update 570 * it to reflect a new dirty region on a given page. 571 * 572 * If the attempt fails, then the existing request is flushed out 573 * to disk. 574 */ 575 static struct nfs_page *nfs_try_to_update_request(struct inode *inode, 576 struct page *page, 577 unsigned int offset, 578 unsigned int bytes) 579 { 580 struct nfs_page *req; 581 unsigned int rqend; 582 unsigned int end; 583 int error; 584 585 if (!PagePrivate(page)) 586 return NULL; 587 588 end = offset + bytes; 589 spin_lock(&inode->i_lock); 590 591 for (;;) { 592 req = nfs_page_find_request_locked(page); 593 if (req == NULL) 594 goto out_unlock; 595 596 rqend = req->wb_offset + req->wb_bytes; 597 /* 598 * Tell the caller to flush out the request if 599 * the offsets are non-contiguous. 600 * Note: nfs_flush_incompatible() will already 601 * have flushed out requests having wrong owners. 602 */ 603 if (offset > rqend 604 || end < req->wb_offset) 605 goto out_flushme; 606 607 if (nfs_set_page_tag_locked(req)) 608 break; 609 610 /* The request is locked, so wait and then retry */ 611 spin_unlock(&inode->i_lock); 612 error = nfs_wait_on_request(req); 613 nfs_release_request(req); 614 if (error != 0) 615 goto out_err; 616 spin_lock(&inode->i_lock); 617 } 618 619 if (nfs_clear_request_commit(req) && 620 radix_tree_tag_clear(&NFS_I(inode)->nfs_page_tree, 621 req->wb_index, NFS_PAGE_TAG_COMMIT) != NULL) { 622 NFS_I(inode)->ncommit--; 623 pnfs_clear_request_commit(req); 624 } 625 626 /* Okay, the request matches. Update the region */ 627 if (offset < req->wb_offset) { 628 req->wb_offset = offset; 629 req->wb_pgbase = offset; 630 } 631 if (end > rqend) 632 req->wb_bytes = end - req->wb_offset; 633 else 634 req->wb_bytes = rqend - req->wb_offset; 635 out_unlock: 636 spin_unlock(&inode->i_lock); 637 return req; 638 out_flushme: 639 spin_unlock(&inode->i_lock); 640 nfs_release_request(req); 641 error = nfs_wb_page(inode, page); 642 out_err: 643 return ERR_PTR(error); 644 } 645 646 /* 647 * Try to update an existing write request, or create one if there is none. 648 * 649 * Note: Should always be called with the Page Lock held to prevent races 650 * if we have to add a new request. Also assumes that the caller has 651 * already called nfs_flush_incompatible() if necessary. 652 */ 653 static struct nfs_page * nfs_setup_write_request(struct nfs_open_context* ctx, 654 struct page *page, unsigned int offset, unsigned int bytes) 655 { 656 struct inode *inode = page->mapping->host; 657 struct nfs_page *req; 658 int error; 659 660 req = nfs_try_to_update_request(inode, page, offset, bytes); 661 if (req != NULL) 662 goto out; 663 req = nfs_create_request(ctx, inode, page, offset, bytes); 664 if (IS_ERR(req)) 665 goto out; 666 error = nfs_inode_add_request(inode, req); 667 if (error != 0) { 668 nfs_release_request(req); 669 req = ERR_PTR(error); 670 } 671 out: 672 return req; 673 } 674 675 static int nfs_writepage_setup(struct nfs_open_context *ctx, struct page *page, 676 unsigned int offset, unsigned int count) 677 { 678 struct nfs_page *req; 679 680 req = nfs_setup_write_request(ctx, page, offset, count); 681 if (IS_ERR(req)) 682 return PTR_ERR(req); 683 /* Update file length */ 684 nfs_grow_file(page, offset, count); 685 nfs_mark_uptodate(page, req->wb_pgbase, req->wb_bytes); 686 nfs_mark_request_dirty(req); 687 nfs_clear_page_tag_locked(req); 688 return 0; 689 } 690 691 int nfs_flush_incompatible(struct file *file, struct page *page) 692 { 693 struct nfs_open_context *ctx = nfs_file_open_context(file); 694 struct nfs_page *req; 695 int do_flush, status; 696 /* 697 * Look for a request corresponding to this page. If there 698 * is one, and it belongs to another file, we flush it out 699 * before we try to copy anything into the page. Do this 700 * due to the lack of an ACCESS-type call in NFSv2. 701 * Also do the same if we find a request from an existing 702 * dropped page. 703 */ 704 do { 705 req = nfs_page_find_request(page); 706 if (req == NULL) 707 return 0; 708 do_flush = req->wb_page != page || req->wb_context != ctx || 709 req->wb_lock_context->lockowner != current->files || 710 req->wb_lock_context->pid != current->tgid; 711 nfs_release_request(req); 712 if (!do_flush) 713 return 0; 714 status = nfs_wb_page(page->mapping->host, page); 715 } while (status == 0); 716 return status; 717 } 718 719 /* 720 * If the page cache is marked as unsafe or invalid, then we can't rely on 721 * the PageUptodate() flag. In this case, we will need to turn off 722 * write optimisations that depend on the page contents being correct. 723 */ 724 static int nfs_write_pageuptodate(struct page *page, struct inode *inode) 725 { 726 return PageUptodate(page) && 727 !(NFS_I(inode)->cache_validity & (NFS_INO_REVAL_PAGECACHE|NFS_INO_INVALID_DATA)); 728 } 729 730 /* 731 * Update and possibly write a cached page of an NFS file. 732 * 733 * XXX: Keep an eye on generic_file_read to make sure it doesn't do bad 734 * things with a page scheduled for an RPC call (e.g. invalidate it). 735 */ 736 int nfs_updatepage(struct file *file, struct page *page, 737 unsigned int offset, unsigned int count) 738 { 739 struct nfs_open_context *ctx = nfs_file_open_context(file); 740 struct inode *inode = page->mapping->host; 741 int status = 0; 742 743 nfs_inc_stats(inode, NFSIOS_VFSUPDATEPAGE); 744 745 dprintk("NFS: nfs_updatepage(%s/%s %d@%lld)\n", 746 file->f_path.dentry->d_parent->d_name.name, 747 file->f_path.dentry->d_name.name, count, 748 (long long)(page_offset(page) + offset)); 749 750 /* If we're not using byte range locks, and we know the page 751 * is up to date, it may be more efficient to extend the write 752 * to cover the entire page in order to avoid fragmentation 753 * inefficiencies. 754 */ 755 if (nfs_write_pageuptodate(page, inode) && 756 inode->i_flock == NULL && 757 !(file->f_flags & O_DSYNC)) { 758 count = max(count + offset, nfs_page_length(page)); 759 offset = 0; 760 } 761 762 status = nfs_writepage_setup(ctx, page, offset, count); 763 if (status < 0) 764 nfs_set_pageerror(page); 765 else 766 __set_page_dirty_nobuffers(page); 767 768 dprintk("NFS: nfs_updatepage returns %d (isize %lld)\n", 769 status, (long long)i_size_read(inode)); 770 return status; 771 } 772 773 static void nfs_writepage_release(struct nfs_page *req, 774 struct nfs_write_data *data) 775 { 776 struct page *page = req->wb_page; 777 778 if (PageError(req->wb_page) || !nfs_reschedule_unstable_write(req, data)) 779 nfs_inode_remove_request(req); 780 nfs_clear_page_tag_locked(req); 781 nfs_end_page_writeback(page); 782 } 783 784 static int flush_task_priority(int how) 785 { 786 switch (how & (FLUSH_HIGHPRI|FLUSH_LOWPRI)) { 787 case FLUSH_HIGHPRI: 788 return RPC_PRIORITY_HIGH; 789 case FLUSH_LOWPRI: 790 return RPC_PRIORITY_LOW; 791 } 792 return RPC_PRIORITY_NORMAL; 793 } 794 795 int nfs_initiate_write(struct nfs_write_data *data, 796 struct rpc_clnt *clnt, 797 const struct rpc_call_ops *call_ops, 798 int how) 799 { 800 struct inode *inode = data->inode; 801 int priority = flush_task_priority(how); 802 struct rpc_task *task; 803 struct rpc_message msg = { 804 .rpc_argp = &data->args, 805 .rpc_resp = &data->res, 806 .rpc_cred = data->cred, 807 }; 808 struct rpc_task_setup task_setup_data = { 809 .rpc_client = clnt, 810 .task = &data->task, 811 .rpc_message = &msg, 812 .callback_ops = call_ops, 813 .callback_data = data, 814 .workqueue = nfsiod_workqueue, 815 .flags = RPC_TASK_ASYNC, 816 .priority = priority, 817 }; 818 int ret = 0; 819 820 /* Set up the initial task struct. */ 821 NFS_PROTO(inode)->write_setup(data, &msg); 822 823 dprintk("NFS: %5u initiated write call " 824 "(req %s/%lld, %u bytes @ offset %llu)\n", 825 data->task.tk_pid, 826 inode->i_sb->s_id, 827 (long long)NFS_FILEID(inode), 828 data->args.count, 829 (unsigned long long)data->args.offset); 830 831 task = rpc_run_task(&task_setup_data); 832 if (IS_ERR(task)) { 833 ret = PTR_ERR(task); 834 goto out; 835 } 836 if (how & FLUSH_SYNC) { 837 ret = rpc_wait_for_completion_task(task); 838 if (ret == 0) 839 ret = task->tk_status; 840 } 841 rpc_put_task(task); 842 out: 843 return ret; 844 } 845 EXPORT_SYMBOL_GPL(nfs_initiate_write); 846 847 /* 848 * Set up the argument/result storage required for the RPC call. 849 */ 850 static void nfs_write_rpcsetup(struct nfs_page *req, 851 struct nfs_write_data *data, 852 unsigned int count, unsigned int offset, 853 int how) 854 { 855 struct inode *inode = req->wb_context->dentry->d_inode; 856 857 /* Set up the RPC argument and reply structs 858 * NB: take care not to mess about with data->commit et al. */ 859 860 data->req = req; 861 data->inode = inode = req->wb_context->dentry->d_inode; 862 data->cred = req->wb_context->cred; 863 864 data->args.fh = NFS_FH(inode); 865 data->args.offset = req_offset(req) + offset; 866 /* pnfs_set_layoutcommit needs this */ 867 data->mds_offset = data->args.offset; 868 data->args.pgbase = req->wb_pgbase + offset; 869 data->args.pages = data->pagevec; 870 data->args.count = count; 871 data->args.context = get_nfs_open_context(req->wb_context); 872 data->args.lock_context = req->wb_lock_context; 873 data->args.stable = NFS_UNSTABLE; 874 switch (how & (FLUSH_STABLE | FLUSH_COND_STABLE)) { 875 case 0: 876 break; 877 case FLUSH_COND_STABLE: 878 if (nfs_need_commit(NFS_I(inode))) 879 break; 880 default: 881 data->args.stable = NFS_FILE_SYNC; 882 } 883 884 data->res.fattr = &data->fattr; 885 data->res.count = count; 886 data->res.verf = &data->verf; 887 nfs_fattr_init(&data->fattr); 888 } 889 890 static int nfs_do_write(struct nfs_write_data *data, 891 const struct rpc_call_ops *call_ops, 892 int how) 893 { 894 struct inode *inode = data->args.context->dentry->d_inode; 895 896 return nfs_initiate_write(data, NFS_CLIENT(inode), call_ops, how); 897 } 898 899 static int nfs_do_multiple_writes(struct list_head *head, 900 const struct rpc_call_ops *call_ops, 901 int how) 902 { 903 struct nfs_write_data *data; 904 int ret = 0; 905 906 while (!list_empty(head)) { 907 int ret2; 908 909 data = list_entry(head->next, struct nfs_write_data, list); 910 list_del_init(&data->list); 911 912 ret2 = nfs_do_write(data, call_ops, how); 913 if (ret == 0) 914 ret = ret2; 915 } 916 return ret; 917 } 918 919 /* If a nfs_flush_* function fails, it should remove reqs from @head and 920 * call this on each, which will prepare them to be retried on next 921 * writeback using standard nfs. 922 */ 923 static void nfs_redirty_request(struct nfs_page *req) 924 { 925 struct page *page = req->wb_page; 926 927 nfs_mark_request_dirty(req); 928 nfs_clear_page_tag_locked(req); 929 nfs_end_page_writeback(page); 930 } 931 932 /* 933 * Generate multiple small requests to write out a single 934 * contiguous dirty area on one page. 935 */ 936 static int nfs_flush_multi(struct nfs_pageio_descriptor *desc, struct list_head *res) 937 { 938 struct nfs_page *req = nfs_list_entry(desc->pg_list.next); 939 struct page *page = req->wb_page; 940 struct nfs_write_data *data; 941 size_t wsize = desc->pg_bsize, nbytes; 942 unsigned int offset; 943 int requests = 0; 944 int ret = 0; 945 946 nfs_list_remove_request(req); 947 948 if ((desc->pg_ioflags & FLUSH_COND_STABLE) && 949 (desc->pg_moreio || NFS_I(desc->pg_inode)->ncommit || 950 desc->pg_count > wsize)) 951 desc->pg_ioflags &= ~FLUSH_COND_STABLE; 952 953 954 offset = 0; 955 nbytes = desc->pg_count; 956 do { 957 size_t len = min(nbytes, wsize); 958 959 data = nfs_writedata_alloc(1); 960 if (!data) 961 goto out_bad; 962 data->pagevec[0] = page; 963 nfs_write_rpcsetup(req, data, len, offset, desc->pg_ioflags); 964 list_add(&data->list, res); 965 requests++; 966 nbytes -= len; 967 offset += len; 968 } while (nbytes != 0); 969 atomic_set(&req->wb_complete, requests); 970 desc->pg_rpc_callops = &nfs_write_partial_ops; 971 return ret; 972 973 out_bad: 974 while (!list_empty(res)) { 975 data = list_entry(res->next, struct nfs_write_data, list); 976 list_del(&data->list); 977 nfs_writedata_free(data); 978 } 979 nfs_redirty_request(req); 980 return -ENOMEM; 981 } 982 983 /* 984 * Create an RPC task for the given write request and kick it. 985 * The page must have been locked by the caller. 986 * 987 * It may happen that the page we're passed is not marked dirty. 988 * This is the case if nfs_updatepage detects a conflicting request 989 * that has been written but not committed. 990 */ 991 static int nfs_flush_one(struct nfs_pageio_descriptor *desc, struct list_head *res) 992 { 993 struct nfs_page *req; 994 struct page **pages; 995 struct nfs_write_data *data; 996 struct list_head *head = &desc->pg_list; 997 int ret = 0; 998 999 data = nfs_writedata_alloc(nfs_page_array_len(desc->pg_base, 1000 desc->pg_count)); 1001 if (!data) { 1002 while (!list_empty(head)) { 1003 req = nfs_list_entry(head->next); 1004 nfs_list_remove_request(req); 1005 nfs_redirty_request(req); 1006 } 1007 ret = -ENOMEM; 1008 goto out; 1009 } 1010 pages = data->pagevec; 1011 while (!list_empty(head)) { 1012 req = nfs_list_entry(head->next); 1013 nfs_list_remove_request(req); 1014 nfs_list_add_request(req, &data->pages); 1015 *pages++ = req->wb_page; 1016 } 1017 req = nfs_list_entry(data->pages.next); 1018 1019 if ((desc->pg_ioflags & FLUSH_COND_STABLE) && 1020 (desc->pg_moreio || NFS_I(desc->pg_inode)->ncommit)) 1021 desc->pg_ioflags &= ~FLUSH_COND_STABLE; 1022 1023 /* Set up the argument struct */ 1024 nfs_write_rpcsetup(req, data, desc->pg_count, 0, desc->pg_ioflags); 1025 list_add(&data->list, res); 1026 desc->pg_rpc_callops = &nfs_write_full_ops; 1027 out: 1028 return ret; 1029 } 1030 1031 int nfs_generic_flush(struct nfs_pageio_descriptor *desc, struct list_head *head) 1032 { 1033 if (desc->pg_bsize < PAGE_CACHE_SIZE) 1034 return nfs_flush_multi(desc, head); 1035 return nfs_flush_one(desc, head); 1036 } 1037 1038 static int nfs_generic_pg_writepages(struct nfs_pageio_descriptor *desc) 1039 { 1040 LIST_HEAD(head); 1041 int ret; 1042 1043 ret = nfs_generic_flush(desc, &head); 1044 if (ret == 0) 1045 ret = nfs_do_multiple_writes(&head, desc->pg_rpc_callops, 1046 desc->pg_ioflags); 1047 return ret; 1048 } 1049 1050 static const struct nfs_pageio_ops nfs_pageio_write_ops = { 1051 .pg_test = nfs_generic_pg_test, 1052 .pg_doio = nfs_generic_pg_writepages, 1053 }; 1054 1055 static void nfs_pageio_init_write_mds(struct nfs_pageio_descriptor *pgio, 1056 struct inode *inode, int ioflags) 1057 { 1058 nfs_pageio_init(pgio, inode, &nfs_pageio_write_ops, 1059 NFS_SERVER(inode)->wsize, ioflags); 1060 } 1061 1062 void nfs_pageio_reset_write_mds(struct nfs_pageio_descriptor *pgio) 1063 { 1064 pgio->pg_ops = &nfs_pageio_write_ops; 1065 pgio->pg_bsize = NFS_SERVER(pgio->pg_inode)->wsize; 1066 } 1067 EXPORT_SYMBOL_GPL(nfs_pageio_reset_write_mds); 1068 1069 static void nfs_pageio_init_write(struct nfs_pageio_descriptor *pgio, 1070 struct inode *inode, int ioflags) 1071 { 1072 if (!pnfs_pageio_init_write(pgio, inode, ioflags)) 1073 nfs_pageio_init_write_mds(pgio, inode, ioflags); 1074 } 1075 1076 /* 1077 * Handle a write reply that flushed part of a page. 1078 */ 1079 static void nfs_writeback_done_partial(struct rpc_task *task, void *calldata) 1080 { 1081 struct nfs_write_data *data = calldata; 1082 1083 dprintk("NFS: %5u write(%s/%lld %d@%lld)", 1084 task->tk_pid, 1085 data->req->wb_context->dentry->d_inode->i_sb->s_id, 1086 (long long) 1087 NFS_FILEID(data->req->wb_context->dentry->d_inode), 1088 data->req->wb_bytes, (long long)req_offset(data->req)); 1089 1090 nfs_writeback_done(task, data); 1091 } 1092 1093 static void nfs_writeback_release_partial(void *calldata) 1094 { 1095 struct nfs_write_data *data = calldata; 1096 struct nfs_page *req = data->req; 1097 struct page *page = req->wb_page; 1098 int status = data->task.tk_status; 1099 1100 if (status < 0) { 1101 nfs_set_pageerror(page); 1102 nfs_context_set_write_error(req->wb_context, status); 1103 dprintk(", error = %d\n", status); 1104 goto out; 1105 } 1106 1107 if (nfs_write_need_commit(data)) { 1108 struct inode *inode = page->mapping->host; 1109 1110 spin_lock(&inode->i_lock); 1111 if (test_bit(PG_NEED_RESCHED, &req->wb_flags)) { 1112 /* Do nothing we need to resend the writes */ 1113 } else if (!test_and_set_bit(PG_NEED_COMMIT, &req->wb_flags)) { 1114 memcpy(&req->wb_verf, &data->verf, sizeof(req->wb_verf)); 1115 dprintk(" defer commit\n"); 1116 } else if (memcmp(&req->wb_verf, &data->verf, sizeof(req->wb_verf))) { 1117 set_bit(PG_NEED_RESCHED, &req->wb_flags); 1118 clear_bit(PG_NEED_COMMIT, &req->wb_flags); 1119 dprintk(" server reboot detected\n"); 1120 } 1121 spin_unlock(&inode->i_lock); 1122 } else 1123 dprintk(" OK\n"); 1124 1125 out: 1126 if (atomic_dec_and_test(&req->wb_complete)) 1127 nfs_writepage_release(req, data); 1128 nfs_writedata_release(calldata); 1129 } 1130 1131 #if defined(CONFIG_NFS_V4_1) 1132 void nfs_write_prepare(struct rpc_task *task, void *calldata) 1133 { 1134 struct nfs_write_data *data = calldata; 1135 1136 if (nfs4_setup_sequence(NFS_SERVER(data->inode), 1137 &data->args.seq_args, 1138 &data->res.seq_res, 1, task)) 1139 return; 1140 rpc_call_start(task); 1141 } 1142 #endif /* CONFIG_NFS_V4_1 */ 1143 1144 static const struct rpc_call_ops nfs_write_partial_ops = { 1145 #if defined(CONFIG_NFS_V4_1) 1146 .rpc_call_prepare = nfs_write_prepare, 1147 #endif /* CONFIG_NFS_V4_1 */ 1148 .rpc_call_done = nfs_writeback_done_partial, 1149 .rpc_release = nfs_writeback_release_partial, 1150 }; 1151 1152 /* 1153 * Handle a write reply that flushes a whole page. 1154 * 1155 * FIXME: There is an inherent race with invalidate_inode_pages and 1156 * writebacks since the page->count is kept > 1 for as long 1157 * as the page has a write request pending. 1158 */ 1159 static void nfs_writeback_done_full(struct rpc_task *task, void *calldata) 1160 { 1161 struct nfs_write_data *data = calldata; 1162 1163 nfs_writeback_done(task, data); 1164 } 1165 1166 static void nfs_writeback_release_full(void *calldata) 1167 { 1168 struct nfs_write_data *data = calldata; 1169 int ret, status = data->task.tk_status; 1170 struct nfs_pageio_descriptor pgio; 1171 1172 if (data->pnfs_error) { 1173 nfs_pageio_init_write_mds(&pgio, data->inode, FLUSH_STABLE); 1174 pgio.pg_recoalesce = 1; 1175 } 1176 1177 /* Update attributes as result of writeback. */ 1178 while (!list_empty(&data->pages)) { 1179 struct nfs_page *req = nfs_list_entry(data->pages.next); 1180 struct page *page = req->wb_page; 1181 1182 nfs_list_remove_request(req); 1183 1184 dprintk("NFS: %5u write (%s/%lld %d@%lld)", 1185 data->task.tk_pid, 1186 req->wb_context->dentry->d_inode->i_sb->s_id, 1187 (long long)NFS_FILEID(req->wb_context->dentry->d_inode), 1188 req->wb_bytes, 1189 (long long)req_offset(req)); 1190 1191 if (data->pnfs_error) { 1192 dprintk(", pnfs error = %d\n", data->pnfs_error); 1193 goto next; 1194 } 1195 1196 if (status < 0) { 1197 nfs_set_pageerror(page); 1198 nfs_context_set_write_error(req->wb_context, status); 1199 dprintk(", error = %d\n", status); 1200 goto remove_request; 1201 } 1202 1203 if (nfs_write_need_commit(data)) { 1204 memcpy(&req->wb_verf, &data->verf, sizeof(req->wb_verf)); 1205 nfs_mark_request_commit(req, data->lseg); 1206 dprintk(" marked for commit\n"); 1207 goto next; 1208 } 1209 dprintk(" OK\n"); 1210 remove_request: 1211 nfs_inode_remove_request(req); 1212 next: 1213 nfs_clear_page_tag_locked(req); 1214 nfs_end_page_writeback(page); 1215 if (data->pnfs_error) { 1216 lock_page(page); 1217 nfs_pageio_cond_complete(&pgio, page->index); 1218 ret = nfs_page_async_flush(&pgio, page, 0); 1219 if (ret) { 1220 nfs_set_pageerror(page); 1221 dprintk("rewrite to MDS error = %d\n", ret); 1222 } 1223 unlock_page(page); 1224 } 1225 } 1226 if (data->pnfs_error) 1227 nfs_pageio_complete(&pgio); 1228 nfs_writedata_release(calldata); 1229 } 1230 1231 static const struct rpc_call_ops nfs_write_full_ops = { 1232 #if defined(CONFIG_NFS_V4_1) 1233 .rpc_call_prepare = nfs_write_prepare, 1234 #endif /* CONFIG_NFS_V4_1 */ 1235 .rpc_call_done = nfs_writeback_done_full, 1236 .rpc_release = nfs_writeback_release_full, 1237 }; 1238 1239 1240 /* 1241 * This function is called when the WRITE call is complete. 1242 */ 1243 void nfs_writeback_done(struct rpc_task *task, struct nfs_write_data *data) 1244 { 1245 struct nfs_writeargs *argp = &data->args; 1246 struct nfs_writeres *resp = &data->res; 1247 int status; 1248 1249 dprintk("NFS: %5u nfs_writeback_done (status %d)\n", 1250 task->tk_pid, task->tk_status); 1251 1252 /* 1253 * ->write_done will attempt to use post-op attributes to detect 1254 * conflicting writes by other clients. A strict interpretation 1255 * of close-to-open would allow us to continue caching even if 1256 * another writer had changed the file, but some applications 1257 * depend on tighter cache coherency when writing. 1258 */ 1259 status = NFS_PROTO(data->inode)->write_done(task, data); 1260 if (status != 0) 1261 return; 1262 nfs_add_stats(data->inode, NFSIOS_SERVERWRITTENBYTES, resp->count); 1263 1264 #if defined(CONFIG_NFS_V3) || defined(CONFIG_NFS_V4) 1265 if (resp->verf->committed < argp->stable && task->tk_status >= 0) { 1266 /* We tried a write call, but the server did not 1267 * commit data to stable storage even though we 1268 * requested it. 1269 * Note: There is a known bug in Tru64 < 5.0 in which 1270 * the server reports NFS_DATA_SYNC, but performs 1271 * NFS_FILE_SYNC. We therefore implement this checking 1272 * as a dprintk() in order to avoid filling syslog. 1273 */ 1274 static unsigned long complain; 1275 1276 /* Note this will print the MDS for a DS write */ 1277 if (time_before(complain, jiffies)) { 1278 dprintk("NFS: faulty NFS server %s:" 1279 " (committed = %d) != (stable = %d)\n", 1280 NFS_SERVER(data->inode)->nfs_client->cl_hostname, 1281 resp->verf->committed, argp->stable); 1282 complain = jiffies + 300 * HZ; 1283 } 1284 } 1285 #endif 1286 /* Is this a short write? */ 1287 if (task->tk_status >= 0 && resp->count < argp->count) { 1288 static unsigned long complain; 1289 1290 nfs_inc_stats(data->inode, NFSIOS_SHORTWRITE); 1291 1292 /* Has the server at least made some progress? */ 1293 if (resp->count != 0) { 1294 /* Was this an NFSv2 write or an NFSv3 stable write? */ 1295 if (resp->verf->committed != NFS_UNSTABLE) { 1296 /* Resend from where the server left off */ 1297 data->mds_offset += resp->count; 1298 argp->offset += resp->count; 1299 argp->pgbase += resp->count; 1300 argp->count -= resp->count; 1301 } else { 1302 /* Resend as a stable write in order to avoid 1303 * headaches in the case of a server crash. 1304 */ 1305 argp->stable = NFS_FILE_SYNC; 1306 } 1307 rpc_restart_call_prepare(task); 1308 return; 1309 } 1310 if (time_before(complain, jiffies)) { 1311 printk(KERN_WARNING 1312 "NFS: Server wrote zero bytes, expected %u.\n", 1313 argp->count); 1314 complain = jiffies + 300 * HZ; 1315 } 1316 /* Can't do anything about it except throw an error. */ 1317 task->tk_status = -EIO; 1318 } 1319 return; 1320 } 1321 1322 1323 #if defined(CONFIG_NFS_V3) || defined(CONFIG_NFS_V4) 1324 static int nfs_commit_set_lock(struct nfs_inode *nfsi, int may_wait) 1325 { 1326 int ret; 1327 1328 if (!test_and_set_bit(NFS_INO_COMMIT, &nfsi->flags)) 1329 return 1; 1330 if (!may_wait) 1331 return 0; 1332 ret = out_of_line_wait_on_bit_lock(&nfsi->flags, 1333 NFS_INO_COMMIT, 1334 nfs_wait_bit_killable, 1335 TASK_KILLABLE); 1336 return (ret < 0) ? ret : 1; 1337 } 1338 1339 void nfs_commit_clear_lock(struct nfs_inode *nfsi) 1340 { 1341 clear_bit(NFS_INO_COMMIT, &nfsi->flags); 1342 smp_mb__after_clear_bit(); 1343 wake_up_bit(&nfsi->flags, NFS_INO_COMMIT); 1344 } 1345 EXPORT_SYMBOL_GPL(nfs_commit_clear_lock); 1346 1347 void nfs_commitdata_release(void *data) 1348 { 1349 struct nfs_write_data *wdata = data; 1350 1351 put_lseg(wdata->lseg); 1352 put_nfs_open_context(wdata->args.context); 1353 nfs_commit_free(wdata); 1354 } 1355 EXPORT_SYMBOL_GPL(nfs_commitdata_release); 1356 1357 int nfs_initiate_commit(struct nfs_write_data *data, struct rpc_clnt *clnt, 1358 const struct rpc_call_ops *call_ops, 1359 int how) 1360 { 1361 struct rpc_task *task; 1362 int priority = flush_task_priority(how); 1363 struct rpc_message msg = { 1364 .rpc_argp = &data->args, 1365 .rpc_resp = &data->res, 1366 .rpc_cred = data->cred, 1367 }; 1368 struct rpc_task_setup task_setup_data = { 1369 .task = &data->task, 1370 .rpc_client = clnt, 1371 .rpc_message = &msg, 1372 .callback_ops = call_ops, 1373 .callback_data = data, 1374 .workqueue = nfsiod_workqueue, 1375 .flags = RPC_TASK_ASYNC, 1376 .priority = priority, 1377 }; 1378 /* Set up the initial task struct. */ 1379 NFS_PROTO(data->inode)->commit_setup(data, &msg); 1380 1381 dprintk("NFS: %5u initiated commit call\n", data->task.tk_pid); 1382 1383 task = rpc_run_task(&task_setup_data); 1384 if (IS_ERR(task)) 1385 return PTR_ERR(task); 1386 if (how & FLUSH_SYNC) 1387 rpc_wait_for_completion_task(task); 1388 rpc_put_task(task); 1389 return 0; 1390 } 1391 EXPORT_SYMBOL_GPL(nfs_initiate_commit); 1392 1393 /* 1394 * Set up the argument/result storage required for the RPC call. 1395 */ 1396 void nfs_init_commit(struct nfs_write_data *data, 1397 struct list_head *head, 1398 struct pnfs_layout_segment *lseg) 1399 { 1400 struct nfs_page *first = nfs_list_entry(head->next); 1401 struct inode *inode = first->wb_context->dentry->d_inode; 1402 1403 /* Set up the RPC argument and reply structs 1404 * NB: take care not to mess about with data->commit et al. */ 1405 1406 list_splice_init(head, &data->pages); 1407 1408 data->inode = inode; 1409 data->cred = first->wb_context->cred; 1410 data->lseg = lseg; /* reference transferred */ 1411 data->mds_ops = &nfs_commit_ops; 1412 1413 data->args.fh = NFS_FH(data->inode); 1414 /* Note: we always request a commit of the entire inode */ 1415 data->args.offset = 0; 1416 data->args.count = 0; 1417 data->args.context = get_nfs_open_context(first->wb_context); 1418 data->res.count = 0; 1419 data->res.fattr = &data->fattr; 1420 data->res.verf = &data->verf; 1421 nfs_fattr_init(&data->fattr); 1422 } 1423 EXPORT_SYMBOL_GPL(nfs_init_commit); 1424 1425 void nfs_retry_commit(struct list_head *page_list, 1426 struct pnfs_layout_segment *lseg) 1427 { 1428 struct nfs_page *req; 1429 1430 while (!list_empty(page_list)) { 1431 req = nfs_list_entry(page_list->next); 1432 nfs_list_remove_request(req); 1433 nfs_mark_request_commit(req, lseg); 1434 dec_zone_page_state(req->wb_page, NR_UNSTABLE_NFS); 1435 dec_bdi_stat(req->wb_page->mapping->backing_dev_info, 1436 BDI_RECLAIMABLE); 1437 nfs_clear_page_tag_locked(req); 1438 } 1439 } 1440 EXPORT_SYMBOL_GPL(nfs_retry_commit); 1441 1442 /* 1443 * Commit dirty pages 1444 */ 1445 static int 1446 nfs_commit_list(struct inode *inode, struct list_head *head, int how) 1447 { 1448 struct nfs_write_data *data; 1449 1450 data = nfs_commitdata_alloc(); 1451 1452 if (!data) 1453 goto out_bad; 1454 1455 /* Set up the argument struct */ 1456 nfs_init_commit(data, head, NULL); 1457 return nfs_initiate_commit(data, NFS_CLIENT(inode), data->mds_ops, how); 1458 out_bad: 1459 nfs_retry_commit(head, NULL); 1460 nfs_commit_clear_lock(NFS_I(inode)); 1461 return -ENOMEM; 1462 } 1463 1464 /* 1465 * COMMIT call returned 1466 */ 1467 static void nfs_commit_done(struct rpc_task *task, void *calldata) 1468 { 1469 struct nfs_write_data *data = calldata; 1470 1471 dprintk("NFS: %5u nfs_commit_done (status %d)\n", 1472 task->tk_pid, task->tk_status); 1473 1474 /* Call the NFS version-specific code */ 1475 NFS_PROTO(data->inode)->commit_done(task, data); 1476 } 1477 1478 void nfs_commit_release_pages(struct nfs_write_data *data) 1479 { 1480 struct nfs_page *req; 1481 int status = data->task.tk_status; 1482 1483 while (!list_empty(&data->pages)) { 1484 req = nfs_list_entry(data->pages.next); 1485 nfs_list_remove_request(req); 1486 nfs_clear_request_commit(req); 1487 1488 dprintk("NFS: commit (%s/%lld %d@%lld)", 1489 req->wb_context->dentry->d_sb->s_id, 1490 (long long)NFS_FILEID(req->wb_context->dentry->d_inode), 1491 req->wb_bytes, 1492 (long long)req_offset(req)); 1493 if (status < 0) { 1494 nfs_context_set_write_error(req->wb_context, status); 1495 nfs_inode_remove_request(req); 1496 dprintk(", error = %d\n", status); 1497 goto next; 1498 } 1499 1500 /* Okay, COMMIT succeeded, apparently. Check the verifier 1501 * returned by the server against all stored verfs. */ 1502 if (!memcmp(req->wb_verf.verifier, data->verf.verifier, sizeof(data->verf.verifier))) { 1503 /* We have a match */ 1504 nfs_inode_remove_request(req); 1505 dprintk(" OK\n"); 1506 goto next; 1507 } 1508 /* We have a mismatch. Write the page again */ 1509 dprintk(" mismatch\n"); 1510 nfs_mark_request_dirty(req); 1511 next: 1512 nfs_clear_page_tag_locked(req); 1513 } 1514 } 1515 EXPORT_SYMBOL_GPL(nfs_commit_release_pages); 1516 1517 static void nfs_commit_release(void *calldata) 1518 { 1519 struct nfs_write_data *data = calldata; 1520 1521 nfs_commit_release_pages(data); 1522 nfs_commit_clear_lock(NFS_I(data->inode)); 1523 nfs_commitdata_release(calldata); 1524 } 1525 1526 static const struct rpc_call_ops nfs_commit_ops = { 1527 #if defined(CONFIG_NFS_V4_1) 1528 .rpc_call_prepare = nfs_write_prepare, 1529 #endif /* CONFIG_NFS_V4_1 */ 1530 .rpc_call_done = nfs_commit_done, 1531 .rpc_release = nfs_commit_release, 1532 }; 1533 1534 int nfs_commit_inode(struct inode *inode, int how) 1535 { 1536 LIST_HEAD(head); 1537 int may_wait = how & FLUSH_SYNC; 1538 int res; 1539 1540 res = nfs_commit_set_lock(NFS_I(inode), may_wait); 1541 if (res <= 0) 1542 goto out_mark_dirty; 1543 res = nfs_scan_commit(inode, &head, 0, 0); 1544 if (res) { 1545 int error; 1546 1547 error = pnfs_commit_list(inode, &head, how); 1548 if (error == PNFS_NOT_ATTEMPTED) 1549 error = nfs_commit_list(inode, &head, how); 1550 if (error < 0) 1551 return error; 1552 if (!may_wait) 1553 goto out_mark_dirty; 1554 error = wait_on_bit(&NFS_I(inode)->flags, 1555 NFS_INO_COMMIT, 1556 nfs_wait_bit_killable, 1557 TASK_KILLABLE); 1558 if (error < 0) 1559 return error; 1560 } else 1561 nfs_commit_clear_lock(NFS_I(inode)); 1562 return res; 1563 /* Note: If we exit without ensuring that the commit is complete, 1564 * we must mark the inode as dirty. Otherwise, future calls to 1565 * sync_inode() with the WB_SYNC_ALL flag set will fail to ensure 1566 * that the data is on the disk. 1567 */ 1568 out_mark_dirty: 1569 __mark_inode_dirty(inode, I_DIRTY_DATASYNC); 1570 return res; 1571 } 1572 1573 static int nfs_commit_unstable_pages(struct inode *inode, struct writeback_control *wbc) 1574 { 1575 struct nfs_inode *nfsi = NFS_I(inode); 1576 int flags = FLUSH_SYNC; 1577 int ret = 0; 1578 1579 /* no commits means nothing needs to be done */ 1580 if (!nfsi->ncommit) 1581 return ret; 1582 1583 if (wbc->sync_mode == WB_SYNC_NONE) { 1584 /* Don't commit yet if this is a non-blocking flush and there 1585 * are a lot of outstanding writes for this mapping. 1586 */ 1587 if (nfsi->ncommit <= (nfsi->npages >> 1)) 1588 goto out_mark_dirty; 1589 1590 /* don't wait for the COMMIT response */ 1591 flags = 0; 1592 } 1593 1594 ret = nfs_commit_inode(inode, flags); 1595 if (ret >= 0) { 1596 if (wbc->sync_mode == WB_SYNC_NONE) { 1597 if (ret < wbc->nr_to_write) 1598 wbc->nr_to_write -= ret; 1599 else 1600 wbc->nr_to_write = 0; 1601 } 1602 return 0; 1603 } 1604 out_mark_dirty: 1605 __mark_inode_dirty(inode, I_DIRTY_DATASYNC); 1606 return ret; 1607 } 1608 #else 1609 static int nfs_commit_unstable_pages(struct inode *inode, struct writeback_control *wbc) 1610 { 1611 return 0; 1612 } 1613 #endif 1614 1615 int nfs_write_inode(struct inode *inode, struct writeback_control *wbc) 1616 { 1617 int ret; 1618 1619 ret = nfs_commit_unstable_pages(inode, wbc); 1620 if (ret >= 0 && test_bit(NFS_INO_LAYOUTCOMMIT, &NFS_I(inode)->flags)) { 1621 int status; 1622 bool sync = true; 1623 1624 if (wbc->sync_mode == WB_SYNC_NONE) 1625 sync = false; 1626 1627 status = pnfs_layoutcommit_inode(inode, sync); 1628 if (status < 0) 1629 return status; 1630 } 1631 return ret; 1632 } 1633 1634 /* 1635 * flush the inode to disk. 1636 */ 1637 int nfs_wb_all(struct inode *inode) 1638 { 1639 struct writeback_control wbc = { 1640 .sync_mode = WB_SYNC_ALL, 1641 .nr_to_write = LONG_MAX, 1642 .range_start = 0, 1643 .range_end = LLONG_MAX, 1644 }; 1645 1646 return sync_inode(inode, &wbc); 1647 } 1648 1649 int nfs_wb_page_cancel(struct inode *inode, struct page *page) 1650 { 1651 struct nfs_page *req; 1652 int ret = 0; 1653 1654 BUG_ON(!PageLocked(page)); 1655 for (;;) { 1656 wait_on_page_writeback(page); 1657 req = nfs_page_find_request(page); 1658 if (req == NULL) 1659 break; 1660 if (nfs_lock_request_dontget(req)) { 1661 nfs_inode_remove_request(req); 1662 /* 1663 * In case nfs_inode_remove_request has marked the 1664 * page as being dirty 1665 */ 1666 cancel_dirty_page(page, PAGE_CACHE_SIZE); 1667 nfs_unlock_request(req); 1668 break; 1669 } 1670 ret = nfs_wait_on_request(req); 1671 nfs_release_request(req); 1672 if (ret < 0) 1673 break; 1674 } 1675 return ret; 1676 } 1677 1678 /* 1679 * Write back all requests on one page - we do this before reading it. 1680 */ 1681 int nfs_wb_page(struct inode *inode, struct page *page) 1682 { 1683 loff_t range_start = page_offset(page); 1684 loff_t range_end = range_start + (loff_t)(PAGE_CACHE_SIZE - 1); 1685 struct writeback_control wbc = { 1686 .sync_mode = WB_SYNC_ALL, 1687 .nr_to_write = 0, 1688 .range_start = range_start, 1689 .range_end = range_end, 1690 }; 1691 int ret; 1692 1693 for (;;) { 1694 wait_on_page_writeback(page); 1695 if (clear_page_dirty_for_io(page)) { 1696 ret = nfs_writepage_locked(page, &wbc); 1697 if (ret < 0) 1698 goto out_error; 1699 continue; 1700 } 1701 if (!PagePrivate(page)) 1702 break; 1703 ret = nfs_commit_inode(inode, FLUSH_SYNC); 1704 if (ret < 0) 1705 goto out_error; 1706 } 1707 return 0; 1708 out_error: 1709 return ret; 1710 } 1711 1712 #ifdef CONFIG_MIGRATION 1713 int nfs_migrate_page(struct address_space *mapping, struct page *newpage, 1714 struct page *page) 1715 { 1716 /* 1717 * If PagePrivate is set, then the page is currently associated with 1718 * an in-progress read or write request. Don't try to migrate it. 1719 * 1720 * FIXME: we could do this in principle, but we'll need a way to ensure 1721 * that we can safely release the inode reference while holding 1722 * the page lock. 1723 */ 1724 if (PagePrivate(page)) 1725 return -EBUSY; 1726 1727 nfs_fscache_release_page(page, GFP_KERNEL); 1728 1729 return migrate_page(mapping, newpage, page); 1730 } 1731 #endif 1732 1733 int __init nfs_init_writepagecache(void) 1734 { 1735 nfs_wdata_cachep = kmem_cache_create("nfs_write_data", 1736 sizeof(struct nfs_write_data), 1737 0, SLAB_HWCACHE_ALIGN, 1738 NULL); 1739 if (nfs_wdata_cachep == NULL) 1740 return -ENOMEM; 1741 1742 nfs_wdata_mempool = mempool_create_slab_pool(MIN_POOL_WRITE, 1743 nfs_wdata_cachep); 1744 if (nfs_wdata_mempool == NULL) 1745 return -ENOMEM; 1746 1747 nfs_commit_mempool = mempool_create_slab_pool(MIN_POOL_COMMIT, 1748 nfs_wdata_cachep); 1749 if (nfs_commit_mempool == NULL) 1750 return -ENOMEM; 1751 1752 /* 1753 * NFS congestion size, scale with available memory. 1754 * 1755 * 64MB: 8192k 1756 * 128MB: 11585k 1757 * 256MB: 16384k 1758 * 512MB: 23170k 1759 * 1GB: 32768k 1760 * 2GB: 46340k 1761 * 4GB: 65536k 1762 * 8GB: 92681k 1763 * 16GB: 131072k 1764 * 1765 * This allows larger machines to have larger/more transfers. 1766 * Limit the default to 256M 1767 */ 1768 nfs_congestion_kb = (16*int_sqrt(totalram_pages)) << (PAGE_SHIFT-10); 1769 if (nfs_congestion_kb > 256*1024) 1770 nfs_congestion_kb = 256*1024; 1771 1772 return 0; 1773 } 1774 1775 void nfs_destroy_writepagecache(void) 1776 { 1777 mempool_destroy(nfs_commit_mempool); 1778 mempool_destroy(nfs_wdata_mempool); 1779 kmem_cache_destroy(nfs_wdata_cachep); 1780 } 1781 1782