xref: /linux/fs/nfs/write.c (revision f24e9f586b377749dff37554696cf3a105540c94)
1 /*
2  * linux/fs/nfs/write.c
3  *
4  * Writing file data over NFS.
5  *
6  * We do it like this: When a (user) process wishes to write data to an
7  * NFS file, a write request is allocated that contains the RPC task data
8  * plus some info on the page to be written, and added to the inode's
9  * write chain. If the process writes past the end of the page, an async
10  * RPC call to write the page is scheduled immediately; otherwise, the call
11  * is delayed for a few seconds.
12  *
13  * Just like readahead, no async I/O is performed if wsize < PAGE_SIZE.
14  *
15  * Write requests are kept on the inode's writeback list. Each entry in
16  * that list references the page (portion) to be written. When the
17  * cache timeout has expired, the RPC task is woken up, and tries to
18  * lock the page. As soon as it manages to do so, the request is moved
19  * from the writeback list to the writelock list.
20  *
21  * Note: we must make sure never to confuse the inode passed in the
22  * write_page request with the one in page->inode. As far as I understand
23  * it, these are different when doing a swap-out.
24  *
25  * To understand everything that goes on here and in the NFS read code,
26  * one should be aware that a page is locked in exactly one of the following
27  * cases:
28  *
29  *  -	A write request is in progress.
30  *  -	A user process is in generic_file_write/nfs_update_page
31  *  -	A user process is in generic_file_read
32  *
33  * Also note that because of the way pages are invalidated in
34  * nfs_revalidate_inode, the following assertions hold:
35  *
36  *  -	If a page is dirty, there will be no read requests (a page will
37  *	not be re-read unless invalidated by nfs_revalidate_inode).
38  *  -	If the page is not uptodate, there will be no pending write
39  *	requests, and no process will be in nfs_update_page.
40  *
41  * FIXME: Interaction with the vmscan routines is not optimal yet.
42  * Either vmscan must be made nfs-savvy, or we need a different page
43  * reclaim concept that supports something like FS-independent
44  * buffer_heads with a b_ops-> field.
45  *
46  * Copyright (C) 1996, 1997, Olaf Kirch <okir@monad.swb.de>
47  */
48 
49 #include <linux/types.h>
50 #include <linux/slab.h>
51 #include <linux/mm.h>
52 #include <linux/pagemap.h>
53 #include <linux/file.h>
54 #include <linux/mpage.h>
55 #include <linux/writeback.h>
56 
57 #include <linux/sunrpc/clnt.h>
58 #include <linux/nfs_fs.h>
59 #include <linux/nfs_mount.h>
60 #include <linux/nfs_page.h>
61 #include <asm/uaccess.h>
62 #include <linux/smp_lock.h>
63 
64 #include "delegation.h"
65 #include "iostat.h"
66 
67 #define NFSDBG_FACILITY		NFSDBG_PAGECACHE
68 
69 #define MIN_POOL_WRITE		(32)
70 #define MIN_POOL_COMMIT		(4)
71 
72 /*
73  * Local function declarations
74  */
75 static struct nfs_page * nfs_update_request(struct nfs_open_context*,
76 					    struct inode *,
77 					    struct page *,
78 					    unsigned int, unsigned int);
79 static int nfs_wait_on_write_congestion(struct address_space *, int);
80 static int nfs_wait_on_requests(struct inode *, unsigned long, unsigned int);
81 static int nfs_flush_inode(struct inode *inode, unsigned long idx_start,
82 			   unsigned int npages, int how);
83 static const struct rpc_call_ops nfs_write_partial_ops;
84 static const struct rpc_call_ops nfs_write_full_ops;
85 static const struct rpc_call_ops nfs_commit_ops;
86 
87 static kmem_cache_t *nfs_wdata_cachep;
88 static mempool_t *nfs_wdata_mempool;
89 static mempool_t *nfs_commit_mempool;
90 
91 static DECLARE_WAIT_QUEUE_HEAD(nfs_write_congestion);
92 
93 struct nfs_write_data *nfs_commit_alloc(void)
94 {
95 	struct nfs_write_data *p = mempool_alloc(nfs_commit_mempool, SLAB_NOFS);
96 
97 	if (p) {
98 		memset(p, 0, sizeof(*p));
99 		INIT_LIST_HEAD(&p->pages);
100 	}
101 	return p;
102 }
103 
104 void nfs_commit_free(struct nfs_write_data *p)
105 {
106 	if (p && (p->pagevec != &p->page_array[0]))
107 		kfree(p->pagevec);
108 	mempool_free(p, nfs_commit_mempool);
109 }
110 
111 struct nfs_write_data *nfs_writedata_alloc(size_t len)
112 {
113 	unsigned int pagecount = (len + PAGE_SIZE - 1) >> PAGE_SHIFT;
114 	struct nfs_write_data *p = mempool_alloc(nfs_wdata_mempool, SLAB_NOFS);
115 
116 	if (p) {
117 		memset(p, 0, sizeof(*p));
118 		INIT_LIST_HEAD(&p->pages);
119 		p->npages = pagecount;
120 		if (pagecount <= ARRAY_SIZE(p->page_array))
121 			p->pagevec = p->page_array;
122 		else {
123 			p->pagevec = kcalloc(pagecount, sizeof(struct page *), GFP_NOFS);
124 			if (!p->pagevec) {
125 				mempool_free(p, nfs_wdata_mempool);
126 				p = NULL;
127 			}
128 		}
129 	}
130 	return p;
131 }
132 
133 static void nfs_writedata_free(struct nfs_write_data *p)
134 {
135 	if (p && (p->pagevec != &p->page_array[0]))
136 		kfree(p->pagevec);
137 	mempool_free(p, nfs_wdata_mempool);
138 }
139 
140 void nfs_writedata_release(void *wdata)
141 {
142 	nfs_writedata_free(wdata);
143 }
144 
145 /* Adjust the file length if we're writing beyond the end */
146 static void nfs_grow_file(struct page *page, unsigned int offset, unsigned int count)
147 {
148 	struct inode *inode = page->mapping->host;
149 	loff_t end, i_size = i_size_read(inode);
150 	unsigned long end_index = (i_size - 1) >> PAGE_CACHE_SHIFT;
151 
152 	if (i_size > 0 && page->index < end_index)
153 		return;
154 	end = ((loff_t)page->index << PAGE_CACHE_SHIFT) + ((loff_t)offset+count);
155 	if (i_size >= end)
156 		return;
157 	nfs_inc_stats(inode, NFSIOS_EXTENDWRITE);
158 	i_size_write(inode, end);
159 }
160 
161 /* We can set the PG_uptodate flag if we see that a write request
162  * covers the full page.
163  */
164 static void nfs_mark_uptodate(struct page *page, unsigned int base, unsigned int count)
165 {
166 	loff_t end_offs;
167 
168 	if (PageUptodate(page))
169 		return;
170 	if (base != 0)
171 		return;
172 	if (count == PAGE_CACHE_SIZE) {
173 		SetPageUptodate(page);
174 		return;
175 	}
176 
177 	end_offs = i_size_read(page->mapping->host) - 1;
178 	if (end_offs < 0)
179 		return;
180 	/* Is this the last page? */
181 	if (page->index != (unsigned long)(end_offs >> PAGE_CACHE_SHIFT))
182 		return;
183 	/* This is the last page: set PG_uptodate if we cover the entire
184 	 * extent of the data, then zero the rest of the page.
185 	 */
186 	if (count == (unsigned int)(end_offs & (PAGE_CACHE_SIZE - 1)) + 1) {
187 		memclear_highpage_flush(page, count, PAGE_CACHE_SIZE - count);
188 		SetPageUptodate(page);
189 	}
190 }
191 
192 /*
193  * Write a page synchronously.
194  * Offset is the data offset within the page.
195  */
196 static int nfs_writepage_sync(struct nfs_open_context *ctx, struct inode *inode,
197 		struct page *page, unsigned int offset, unsigned int count,
198 		int how)
199 {
200 	unsigned int	wsize = NFS_SERVER(inode)->wsize;
201 	int		result, written = 0;
202 	struct nfs_write_data *wdata;
203 
204 	wdata = nfs_writedata_alloc(wsize);
205 	if (!wdata)
206 		return -ENOMEM;
207 
208 	wdata->flags = how;
209 	wdata->cred = ctx->cred;
210 	wdata->inode = inode;
211 	wdata->args.fh = NFS_FH(inode);
212 	wdata->args.context = ctx;
213 	wdata->args.pages = &page;
214 	wdata->args.stable = NFS_FILE_SYNC;
215 	wdata->args.pgbase = offset;
216 	wdata->args.count = wsize;
217 	wdata->res.fattr = &wdata->fattr;
218 	wdata->res.verf = &wdata->verf;
219 
220 	dprintk("NFS:      nfs_writepage_sync(%s/%Ld %d@%Ld)\n",
221 		inode->i_sb->s_id,
222 		(long long)NFS_FILEID(inode),
223 		count, (long long)(page_offset(page) + offset));
224 
225 	set_page_writeback(page);
226 	nfs_begin_data_update(inode);
227 	do {
228 		if (count < wsize)
229 			wdata->args.count = count;
230 		wdata->args.offset = page_offset(page) + wdata->args.pgbase;
231 
232 		result = NFS_PROTO(inode)->write(wdata);
233 
234 		if (result < 0) {
235 			/* Must mark the page invalid after I/O error */
236 			ClearPageUptodate(page);
237 			goto io_error;
238 		}
239 		if (result < wdata->args.count)
240 			printk(KERN_WARNING "NFS: short write, count=%u, result=%d\n",
241 					wdata->args.count, result);
242 
243 		wdata->args.offset += result;
244 	        wdata->args.pgbase += result;
245 		written += result;
246 		count -= result;
247 		nfs_add_stats(inode, NFSIOS_SERVERWRITTENBYTES, result);
248 	} while (count);
249 	/* Update file length */
250 	nfs_grow_file(page, offset, written);
251 	/* Set the PG_uptodate flag? */
252 	nfs_mark_uptodate(page, offset, written);
253 
254 	if (PageError(page))
255 		ClearPageError(page);
256 
257 io_error:
258 	nfs_end_data_update(inode);
259 	end_page_writeback(page);
260 	nfs_writedata_free(wdata);
261 	return written ? written : result;
262 }
263 
264 static int nfs_writepage_async(struct nfs_open_context *ctx,
265 		struct inode *inode, struct page *page,
266 		unsigned int offset, unsigned int count)
267 {
268 	struct nfs_page	*req;
269 
270 	req = nfs_update_request(ctx, inode, page, offset, count);
271 	if (IS_ERR(req))
272 		return PTR_ERR(req);
273 	/* Update file length */
274 	nfs_grow_file(page, offset, count);
275 	/* Set the PG_uptodate flag? */
276 	nfs_mark_uptodate(page, offset, count);
277 	nfs_unlock_request(req);
278 	return 0;
279 }
280 
281 static int wb_priority(struct writeback_control *wbc)
282 {
283 	if (wbc->for_reclaim)
284 		return FLUSH_HIGHPRI;
285 	if (wbc->for_kupdate)
286 		return FLUSH_LOWPRI;
287 	return 0;
288 }
289 
290 /*
291  * Write an mmapped page to the server.
292  */
293 int nfs_writepage(struct page *page, struct writeback_control *wbc)
294 {
295 	struct nfs_open_context *ctx;
296 	struct inode *inode = page->mapping->host;
297 	unsigned long end_index;
298 	unsigned offset = PAGE_CACHE_SIZE;
299 	loff_t i_size = i_size_read(inode);
300 	int inode_referenced = 0;
301 	int priority = wb_priority(wbc);
302 	int err;
303 
304 	nfs_inc_stats(inode, NFSIOS_VFSWRITEPAGE);
305 	nfs_add_stats(inode, NFSIOS_WRITEPAGES, 1);
306 
307 	/*
308 	 * Note: We need to ensure that we have a reference to the inode
309 	 *       if we are to do asynchronous writes. If not, waiting
310 	 *       in nfs_wait_on_request() may deadlock with clear_inode().
311 	 *
312 	 *       If igrab() fails here, then it is in any case safe to
313 	 *       call nfs_wb_page(), since there will be no pending writes.
314 	 */
315 	if (igrab(inode) != 0)
316 		inode_referenced = 1;
317 	end_index = i_size >> PAGE_CACHE_SHIFT;
318 
319 	/* Ensure we've flushed out any previous writes */
320 	nfs_wb_page_priority(inode, page, priority);
321 
322 	/* easy case */
323 	if (page->index < end_index)
324 		goto do_it;
325 	/* things got complicated... */
326 	offset = i_size & (PAGE_CACHE_SIZE-1);
327 
328 	/* OK, are we completely out? */
329 	err = 0; /* potential race with truncate - ignore */
330 	if (page->index >= end_index+1 || !offset)
331 		goto out;
332 do_it:
333 	ctx = nfs_find_open_context(inode, NULL, FMODE_WRITE);
334 	if (ctx == NULL) {
335 		err = -EBADF;
336 		goto out;
337 	}
338 	lock_kernel();
339 	if (!IS_SYNC(inode) && inode_referenced) {
340 		err = nfs_writepage_async(ctx, inode, page, 0, offset);
341 		if (!wbc->for_writepages)
342 			nfs_flush_inode(inode, 0, 0, wb_priority(wbc));
343 	} else {
344 		err = nfs_writepage_sync(ctx, inode, page, 0,
345 						offset, priority);
346 		if (err >= 0) {
347 			if (err != offset)
348 				redirty_page_for_writepage(wbc, page);
349 			err = 0;
350 		}
351 	}
352 	unlock_kernel();
353 	put_nfs_open_context(ctx);
354 out:
355 	unlock_page(page);
356 	if (inode_referenced)
357 		iput(inode);
358 	return err;
359 }
360 
361 /*
362  * Note: causes nfs_update_request() to block on the assumption
363  * 	 that the writeback is generated due to memory pressure.
364  */
365 int nfs_writepages(struct address_space *mapping, struct writeback_control *wbc)
366 {
367 	struct backing_dev_info *bdi = mapping->backing_dev_info;
368 	struct inode *inode = mapping->host;
369 	int err;
370 
371 	nfs_inc_stats(inode, NFSIOS_VFSWRITEPAGES);
372 
373 	err = generic_writepages(mapping, wbc);
374 	if (err)
375 		return err;
376 	while (test_and_set_bit(BDI_write_congested, &bdi->state) != 0) {
377 		if (wbc->nonblocking)
378 			return 0;
379 		nfs_wait_on_write_congestion(mapping, 0);
380 	}
381 	err = nfs_flush_inode(inode, 0, 0, wb_priority(wbc));
382 	if (err < 0)
383 		goto out;
384 	nfs_add_stats(inode, NFSIOS_WRITEPAGES, err);
385 	wbc->nr_to_write -= err;
386 	if (!wbc->nonblocking && wbc->sync_mode == WB_SYNC_ALL) {
387 		err = nfs_wait_on_requests(inode, 0, 0);
388 		if (err < 0)
389 			goto out;
390 	}
391 	err = nfs_commit_inode(inode, wb_priority(wbc));
392 	if (err > 0) {
393 		wbc->nr_to_write -= err;
394 		err = 0;
395 	}
396 out:
397 	clear_bit(BDI_write_congested, &bdi->state);
398 	wake_up_all(&nfs_write_congestion);
399 	return err;
400 }
401 
402 /*
403  * Insert a write request into an inode
404  */
405 static int nfs_inode_add_request(struct inode *inode, struct nfs_page *req)
406 {
407 	struct nfs_inode *nfsi = NFS_I(inode);
408 	int error;
409 
410 	error = radix_tree_insert(&nfsi->nfs_page_tree, req->wb_index, req);
411 	BUG_ON(error == -EEXIST);
412 	if (error)
413 		return error;
414 	if (!nfsi->npages) {
415 		igrab(inode);
416 		nfs_begin_data_update(inode);
417 		if (nfs_have_delegation(inode, FMODE_WRITE))
418 			nfsi->change_attr++;
419 	}
420 	SetPagePrivate(req->wb_page);
421 	nfsi->npages++;
422 	atomic_inc(&req->wb_count);
423 	return 0;
424 }
425 
426 /*
427  * Insert a write request into an inode
428  */
429 static void nfs_inode_remove_request(struct nfs_page *req)
430 {
431 	struct inode *inode = req->wb_context->dentry->d_inode;
432 	struct nfs_inode *nfsi = NFS_I(inode);
433 
434 	BUG_ON (!NFS_WBACK_BUSY(req));
435 
436 	spin_lock(&nfsi->req_lock);
437 	ClearPagePrivate(req->wb_page);
438 	radix_tree_delete(&nfsi->nfs_page_tree, req->wb_index);
439 	nfsi->npages--;
440 	if (!nfsi->npages) {
441 		spin_unlock(&nfsi->req_lock);
442 		nfs_end_data_update(inode);
443 		iput(inode);
444 	} else
445 		spin_unlock(&nfsi->req_lock);
446 	nfs_clear_request(req);
447 	nfs_release_request(req);
448 }
449 
450 /*
451  * Find a request
452  */
453 static inline struct nfs_page *
454 _nfs_find_request(struct inode *inode, unsigned long index)
455 {
456 	struct nfs_inode *nfsi = NFS_I(inode);
457 	struct nfs_page *req;
458 
459 	req = (struct nfs_page*)radix_tree_lookup(&nfsi->nfs_page_tree, index);
460 	if (req)
461 		atomic_inc(&req->wb_count);
462 	return req;
463 }
464 
465 static struct nfs_page *
466 nfs_find_request(struct inode *inode, unsigned long index)
467 {
468 	struct nfs_page		*req;
469 	struct nfs_inode	*nfsi = NFS_I(inode);
470 
471 	spin_lock(&nfsi->req_lock);
472 	req = _nfs_find_request(inode, index);
473 	spin_unlock(&nfsi->req_lock);
474 	return req;
475 }
476 
477 /*
478  * Add a request to the inode's dirty list.
479  */
480 static void
481 nfs_mark_request_dirty(struct nfs_page *req)
482 {
483 	struct inode *inode = req->wb_context->dentry->d_inode;
484 	struct nfs_inode *nfsi = NFS_I(inode);
485 
486 	spin_lock(&nfsi->req_lock);
487 	radix_tree_tag_set(&nfsi->nfs_page_tree,
488 			req->wb_index, NFS_PAGE_TAG_DIRTY);
489 	nfs_list_add_request(req, &nfsi->dirty);
490 	nfsi->ndirty++;
491 	spin_unlock(&nfsi->req_lock);
492 	inc_zone_page_state(req->wb_page, NR_FILE_DIRTY);
493 	mark_inode_dirty(inode);
494 }
495 
496 /*
497  * Check if a request is dirty
498  */
499 static inline int
500 nfs_dirty_request(struct nfs_page *req)
501 {
502 	struct nfs_inode *nfsi = NFS_I(req->wb_context->dentry->d_inode);
503 	return !list_empty(&req->wb_list) && req->wb_list_head == &nfsi->dirty;
504 }
505 
506 #if defined(CONFIG_NFS_V3) || defined(CONFIG_NFS_V4)
507 /*
508  * Add a request to the inode's commit list.
509  */
510 static void
511 nfs_mark_request_commit(struct nfs_page *req)
512 {
513 	struct inode *inode = req->wb_context->dentry->d_inode;
514 	struct nfs_inode *nfsi = NFS_I(inode);
515 
516 	spin_lock(&nfsi->req_lock);
517 	nfs_list_add_request(req, &nfsi->commit);
518 	nfsi->ncommit++;
519 	spin_unlock(&nfsi->req_lock);
520 	inc_zone_page_state(req->wb_page, NR_UNSTABLE_NFS);
521 	mark_inode_dirty(inode);
522 }
523 #endif
524 
525 /*
526  * Wait for a request to complete.
527  *
528  * Interruptible by signals only if mounted with intr flag.
529  */
530 static int nfs_wait_on_requests_locked(struct inode *inode, unsigned long idx_start, unsigned int npages)
531 {
532 	struct nfs_inode *nfsi = NFS_I(inode);
533 	struct nfs_page *req;
534 	unsigned long		idx_end, next;
535 	unsigned int		res = 0;
536 	int			error;
537 
538 	if (npages == 0)
539 		idx_end = ~0;
540 	else
541 		idx_end = idx_start + npages - 1;
542 
543 	next = idx_start;
544 	while (radix_tree_gang_lookup_tag(&nfsi->nfs_page_tree, (void **)&req, next, 1, NFS_PAGE_TAG_WRITEBACK)) {
545 		if (req->wb_index > idx_end)
546 			break;
547 
548 		next = req->wb_index + 1;
549 		BUG_ON(!NFS_WBACK_BUSY(req));
550 
551 		atomic_inc(&req->wb_count);
552 		spin_unlock(&nfsi->req_lock);
553 		error = nfs_wait_on_request(req);
554 		nfs_release_request(req);
555 		spin_lock(&nfsi->req_lock);
556 		if (error < 0)
557 			return error;
558 		res++;
559 	}
560 	return res;
561 }
562 
563 static int nfs_wait_on_requests(struct inode *inode, unsigned long idx_start, unsigned int npages)
564 {
565 	struct nfs_inode *nfsi = NFS_I(inode);
566 	int ret;
567 
568 	spin_lock(&nfsi->req_lock);
569 	ret = nfs_wait_on_requests_locked(inode, idx_start, npages);
570 	spin_unlock(&nfsi->req_lock);
571 	return ret;
572 }
573 
574 static void nfs_cancel_dirty_list(struct list_head *head)
575 {
576 	struct nfs_page *req;
577 	while(!list_empty(head)) {
578 		req = nfs_list_entry(head->next);
579 		nfs_list_remove_request(req);
580 		nfs_inode_remove_request(req);
581 		nfs_clear_page_writeback(req);
582 	}
583 }
584 
585 static void nfs_cancel_commit_list(struct list_head *head)
586 {
587 	struct nfs_page *req;
588 
589 	while(!list_empty(head)) {
590 		req = nfs_list_entry(head->next);
591 		nfs_list_remove_request(req);
592 		nfs_inode_remove_request(req);
593 		dec_zone_page_state(req->wb_page, NR_UNSTABLE_NFS);
594 		nfs_clear_page_writeback(req);
595 	}
596 }
597 
598 /*
599  * nfs_scan_dirty - Scan an inode for dirty requests
600  * @inode: NFS inode to scan
601  * @dst: destination list
602  * @idx_start: lower bound of page->index to scan.
603  * @npages: idx_start + npages sets the upper bound to scan.
604  *
605  * Moves requests from the inode's dirty page list.
606  * The requests are *not* checked to ensure that they form a contiguous set.
607  */
608 static int
609 nfs_scan_dirty(struct inode *inode, struct list_head *dst, unsigned long idx_start, unsigned int npages)
610 {
611 	struct nfs_inode *nfsi = NFS_I(inode);
612 	int res = 0;
613 
614 	if (nfsi->ndirty != 0) {
615 		res = nfs_scan_lock_dirty(nfsi, dst, idx_start, npages);
616 		nfsi->ndirty -= res;
617 		if ((nfsi->ndirty == 0) != list_empty(&nfsi->dirty))
618 			printk(KERN_ERR "NFS: desynchronized value of nfs_i.ndirty.\n");
619 	}
620 	return res;
621 }
622 
623 #if defined(CONFIG_NFS_V3) || defined(CONFIG_NFS_V4)
624 /*
625  * nfs_scan_commit - Scan an inode for commit requests
626  * @inode: NFS inode to scan
627  * @dst: destination list
628  * @idx_start: lower bound of page->index to scan.
629  * @npages: idx_start + npages sets the upper bound to scan.
630  *
631  * Moves requests from the inode's 'commit' request list.
632  * The requests are *not* checked to ensure that they form a contiguous set.
633  */
634 static int
635 nfs_scan_commit(struct inode *inode, struct list_head *dst, unsigned long idx_start, unsigned int npages)
636 {
637 	struct nfs_inode *nfsi = NFS_I(inode);
638 	int res = 0;
639 
640 	if (nfsi->ncommit != 0) {
641 		res = nfs_scan_list(nfsi, &nfsi->commit, dst, idx_start, npages);
642 		nfsi->ncommit -= res;
643 		if ((nfsi->ncommit == 0) != list_empty(&nfsi->commit))
644 			printk(KERN_ERR "NFS: desynchronized value of nfs_i.ncommit.\n");
645 	}
646 	return res;
647 }
648 #else
649 static inline int nfs_scan_commit(struct inode *inode, struct list_head *dst, unsigned long idx_start, unsigned int npages)
650 {
651 	return 0;
652 }
653 #endif
654 
655 static int nfs_wait_on_write_congestion(struct address_space *mapping, int intr)
656 {
657 	struct backing_dev_info *bdi = mapping->backing_dev_info;
658 	DEFINE_WAIT(wait);
659 	int ret = 0;
660 
661 	might_sleep();
662 
663 	if (!bdi_write_congested(bdi))
664 		return 0;
665 
666 	nfs_inc_stats(mapping->host, NFSIOS_CONGESTIONWAIT);
667 
668 	if (intr) {
669 		struct rpc_clnt *clnt = NFS_CLIENT(mapping->host);
670 		sigset_t oldset;
671 
672 		rpc_clnt_sigmask(clnt, &oldset);
673 		prepare_to_wait(&nfs_write_congestion, &wait, TASK_INTERRUPTIBLE);
674 		if (bdi_write_congested(bdi)) {
675 			if (signalled())
676 				ret = -ERESTARTSYS;
677 			else
678 				schedule();
679 		}
680 		rpc_clnt_sigunmask(clnt, &oldset);
681 	} else {
682 		prepare_to_wait(&nfs_write_congestion, &wait, TASK_UNINTERRUPTIBLE);
683 		if (bdi_write_congested(bdi))
684 			schedule();
685 	}
686 	finish_wait(&nfs_write_congestion, &wait);
687 	return ret;
688 }
689 
690 
691 /*
692  * Try to update any existing write request, or create one if there is none.
693  * In order to match, the request's credentials must match those of
694  * the calling process.
695  *
696  * Note: Should always be called with the Page Lock held!
697  */
698 static struct nfs_page * nfs_update_request(struct nfs_open_context* ctx,
699 		struct inode *inode, struct page *page,
700 		unsigned int offset, unsigned int bytes)
701 {
702 	struct nfs_server *server = NFS_SERVER(inode);
703 	struct nfs_inode *nfsi = NFS_I(inode);
704 	struct nfs_page		*req, *new = NULL;
705 	unsigned long		rqend, end;
706 
707 	end = offset + bytes;
708 
709 	if (nfs_wait_on_write_congestion(page->mapping, server->flags & NFS_MOUNT_INTR))
710 		return ERR_PTR(-ERESTARTSYS);
711 	for (;;) {
712 		/* Loop over all inode entries and see if we find
713 		 * A request for the page we wish to update
714 		 */
715 		spin_lock(&nfsi->req_lock);
716 		req = _nfs_find_request(inode, page->index);
717 		if (req) {
718 			if (!nfs_lock_request_dontget(req)) {
719 				int error;
720 				spin_unlock(&nfsi->req_lock);
721 				error = nfs_wait_on_request(req);
722 				nfs_release_request(req);
723 				if (error < 0) {
724 					if (new)
725 						nfs_release_request(new);
726 					return ERR_PTR(error);
727 				}
728 				continue;
729 			}
730 			spin_unlock(&nfsi->req_lock);
731 			if (new)
732 				nfs_release_request(new);
733 			break;
734 		}
735 
736 		if (new) {
737 			int error;
738 			nfs_lock_request_dontget(new);
739 			error = nfs_inode_add_request(inode, new);
740 			if (error) {
741 				spin_unlock(&nfsi->req_lock);
742 				nfs_unlock_request(new);
743 				return ERR_PTR(error);
744 			}
745 			spin_unlock(&nfsi->req_lock);
746 			nfs_mark_request_dirty(new);
747 			return new;
748 		}
749 		spin_unlock(&nfsi->req_lock);
750 
751 		new = nfs_create_request(ctx, inode, page, offset, bytes);
752 		if (IS_ERR(new))
753 			return new;
754 	}
755 
756 	/* We have a request for our page.
757 	 * If the creds don't match, or the
758 	 * page addresses don't match,
759 	 * tell the caller to wait on the conflicting
760 	 * request.
761 	 */
762 	rqend = req->wb_offset + req->wb_bytes;
763 	if (req->wb_context != ctx
764 	    || req->wb_page != page
765 	    || !nfs_dirty_request(req)
766 	    || offset > rqend || end < req->wb_offset) {
767 		nfs_unlock_request(req);
768 		return ERR_PTR(-EBUSY);
769 	}
770 
771 	/* Okay, the request matches. Update the region */
772 	if (offset < req->wb_offset) {
773 		req->wb_offset = offset;
774 		req->wb_pgbase = offset;
775 		req->wb_bytes = rqend - req->wb_offset;
776 	}
777 
778 	if (end > rqend)
779 		req->wb_bytes = end - req->wb_offset;
780 
781 	return req;
782 }
783 
784 int nfs_flush_incompatible(struct file *file, struct page *page)
785 {
786 	struct nfs_open_context *ctx = (struct nfs_open_context *)file->private_data;
787 	struct inode	*inode = page->mapping->host;
788 	struct nfs_page	*req;
789 	int		status = 0;
790 	/*
791 	 * Look for a request corresponding to this page. If there
792 	 * is one, and it belongs to another file, we flush it out
793 	 * before we try to copy anything into the page. Do this
794 	 * due to the lack of an ACCESS-type call in NFSv2.
795 	 * Also do the same if we find a request from an existing
796 	 * dropped page.
797 	 */
798 	req = nfs_find_request(inode, page->index);
799 	if (req) {
800 		if (req->wb_page != page || ctx != req->wb_context)
801 			status = nfs_wb_page(inode, page);
802 		nfs_release_request(req);
803 	}
804 	return (status < 0) ? status : 0;
805 }
806 
807 /*
808  * Update and possibly write a cached page of an NFS file.
809  *
810  * XXX: Keep an eye on generic_file_read to make sure it doesn't do bad
811  * things with a page scheduled for an RPC call (e.g. invalidate it).
812  */
813 int nfs_updatepage(struct file *file, struct page *page,
814 		unsigned int offset, unsigned int count)
815 {
816 	struct nfs_open_context *ctx = (struct nfs_open_context *)file->private_data;
817 	struct inode	*inode = page->mapping->host;
818 	struct nfs_page	*req;
819 	int		status = 0;
820 
821 	nfs_inc_stats(inode, NFSIOS_VFSUPDATEPAGE);
822 
823 	dprintk("NFS:      nfs_updatepage(%s/%s %d@%Ld)\n",
824 		file->f_dentry->d_parent->d_name.name,
825 		file->f_dentry->d_name.name, count,
826 		(long long)(page_offset(page) +offset));
827 
828 	if (IS_SYNC(inode)) {
829 		status = nfs_writepage_sync(ctx, inode, page, offset, count, 0);
830 		if (status > 0) {
831 			if (offset == 0 && status == PAGE_CACHE_SIZE)
832 				SetPageUptodate(page);
833 			return 0;
834 		}
835 		return status;
836 	}
837 
838 	/* If we're not using byte range locks, and we know the page
839 	 * is entirely in cache, it may be more efficient to avoid
840 	 * fragmenting write requests.
841 	 */
842 	if (PageUptodate(page) && inode->i_flock == NULL && !(file->f_mode & O_SYNC)) {
843 		loff_t end_offs = i_size_read(inode) - 1;
844 		unsigned long end_index = end_offs >> PAGE_CACHE_SHIFT;
845 
846 		count += offset;
847 		offset = 0;
848 		if (unlikely(end_offs < 0)) {
849 			/* Do nothing */
850 		} else if (page->index == end_index) {
851 			unsigned int pglen;
852 			pglen = (unsigned int)(end_offs & (PAGE_CACHE_SIZE-1)) + 1;
853 			if (count < pglen)
854 				count = pglen;
855 		} else if (page->index < end_index)
856 			count = PAGE_CACHE_SIZE;
857 	}
858 
859 	/*
860 	 * Try to find an NFS request corresponding to this page
861 	 * and update it.
862 	 * If the existing request cannot be updated, we must flush
863 	 * it out now.
864 	 */
865 	do {
866 		req = nfs_update_request(ctx, inode, page, offset, count);
867 		status = (IS_ERR(req)) ? PTR_ERR(req) : 0;
868 		if (status != -EBUSY)
869 			break;
870 		/* Request could not be updated. Flush it out and try again */
871 		status = nfs_wb_page(inode, page);
872 	} while (status >= 0);
873 	if (status < 0)
874 		goto done;
875 
876 	status = 0;
877 
878 	/* Update file length */
879 	nfs_grow_file(page, offset, count);
880 	/* Set the PG_uptodate flag? */
881 	nfs_mark_uptodate(page, req->wb_pgbase, req->wb_bytes);
882 	nfs_unlock_request(req);
883 done:
884         dprintk("NFS:      nfs_updatepage returns %d (isize %Ld)\n",
885 			status, (long long)i_size_read(inode));
886 	if (status < 0)
887 		ClearPageUptodate(page);
888 	return status;
889 }
890 
891 static void nfs_writepage_release(struct nfs_page *req)
892 {
893 	end_page_writeback(req->wb_page);
894 
895 #if defined(CONFIG_NFS_V3) || defined(CONFIG_NFS_V4)
896 	if (!PageError(req->wb_page)) {
897 		if (NFS_NEED_RESCHED(req)) {
898 			nfs_mark_request_dirty(req);
899 			goto out;
900 		} else if (NFS_NEED_COMMIT(req)) {
901 			nfs_mark_request_commit(req);
902 			goto out;
903 		}
904 	}
905 	nfs_inode_remove_request(req);
906 
907 out:
908 	nfs_clear_commit(req);
909 	nfs_clear_reschedule(req);
910 #else
911 	nfs_inode_remove_request(req);
912 #endif
913 	nfs_clear_page_writeback(req);
914 }
915 
916 static inline int flush_task_priority(int how)
917 {
918 	switch (how & (FLUSH_HIGHPRI|FLUSH_LOWPRI)) {
919 		case FLUSH_HIGHPRI:
920 			return RPC_PRIORITY_HIGH;
921 		case FLUSH_LOWPRI:
922 			return RPC_PRIORITY_LOW;
923 	}
924 	return RPC_PRIORITY_NORMAL;
925 }
926 
927 /*
928  * Set up the argument/result storage required for the RPC call.
929  */
930 static void nfs_write_rpcsetup(struct nfs_page *req,
931 		struct nfs_write_data *data,
932 		const struct rpc_call_ops *call_ops,
933 		unsigned int count, unsigned int offset,
934 		int how)
935 {
936 	struct inode		*inode;
937 	int flags;
938 
939 	/* Set up the RPC argument and reply structs
940 	 * NB: take care not to mess about with data->commit et al. */
941 
942 	data->req = req;
943 	data->inode = inode = req->wb_context->dentry->d_inode;
944 	data->cred = req->wb_context->cred;
945 
946 	data->args.fh     = NFS_FH(inode);
947 	data->args.offset = req_offset(req) + offset;
948 	data->args.pgbase = req->wb_pgbase + offset;
949 	data->args.pages  = data->pagevec;
950 	data->args.count  = count;
951 	data->args.context = req->wb_context;
952 
953 	data->res.fattr   = &data->fattr;
954 	data->res.count   = count;
955 	data->res.verf    = &data->verf;
956 	nfs_fattr_init(&data->fattr);
957 
958 	/* Set up the initial task struct.  */
959 	flags = (how & FLUSH_SYNC) ? 0 : RPC_TASK_ASYNC;
960 	rpc_init_task(&data->task, NFS_CLIENT(inode), flags, call_ops, data);
961 	NFS_PROTO(inode)->write_setup(data, how);
962 
963 	data->task.tk_priority = flush_task_priority(how);
964 	data->task.tk_cookie = (unsigned long)inode;
965 
966 	dprintk("NFS: %4d initiated write call (req %s/%Ld, %u bytes @ offset %Lu)\n",
967 		data->task.tk_pid,
968 		inode->i_sb->s_id,
969 		(long long)NFS_FILEID(inode),
970 		count,
971 		(unsigned long long)data->args.offset);
972 }
973 
974 static void nfs_execute_write(struct nfs_write_data *data)
975 {
976 	struct rpc_clnt *clnt = NFS_CLIENT(data->inode);
977 	sigset_t oldset;
978 
979 	rpc_clnt_sigmask(clnt, &oldset);
980 	lock_kernel();
981 	rpc_execute(&data->task);
982 	unlock_kernel();
983 	rpc_clnt_sigunmask(clnt, &oldset);
984 }
985 
986 /*
987  * Generate multiple small requests to write out a single
988  * contiguous dirty area on one page.
989  */
990 static int nfs_flush_multi(struct inode *inode, struct list_head *head, int how)
991 {
992 	struct nfs_page *req = nfs_list_entry(head->next);
993 	struct page *page = req->wb_page;
994 	struct nfs_write_data *data;
995 	size_t wsize = NFS_SERVER(inode)->wsize, nbytes;
996 	unsigned int offset;
997 	int requests = 0;
998 	LIST_HEAD(list);
999 
1000 	nfs_list_remove_request(req);
1001 
1002 	nbytes = req->wb_bytes;
1003 	do {
1004 		size_t len = min(nbytes, wsize);
1005 
1006 		data = nfs_writedata_alloc(len);
1007 		if (!data)
1008 			goto out_bad;
1009 		list_add(&data->pages, &list);
1010 		requests++;
1011 		nbytes -= len;
1012 	} while (nbytes != 0);
1013 	atomic_set(&req->wb_complete, requests);
1014 
1015 	ClearPageError(page);
1016 	set_page_writeback(page);
1017 	offset = 0;
1018 	nbytes = req->wb_bytes;
1019 	do {
1020 		data = list_entry(list.next, struct nfs_write_data, pages);
1021 		list_del_init(&data->pages);
1022 
1023 		data->pagevec[0] = page;
1024 
1025 		if (nbytes > wsize) {
1026 			nfs_write_rpcsetup(req, data, &nfs_write_partial_ops,
1027 					wsize, offset, how);
1028 			offset += wsize;
1029 			nbytes -= wsize;
1030 		} else {
1031 			nfs_write_rpcsetup(req, data, &nfs_write_partial_ops,
1032 					nbytes, offset, how);
1033 			nbytes = 0;
1034 		}
1035 		nfs_execute_write(data);
1036 	} while (nbytes != 0);
1037 
1038 	return 0;
1039 
1040 out_bad:
1041 	while (!list_empty(&list)) {
1042 		data = list_entry(list.next, struct nfs_write_data, pages);
1043 		list_del(&data->pages);
1044 		nfs_writedata_free(data);
1045 	}
1046 	nfs_mark_request_dirty(req);
1047 	nfs_clear_page_writeback(req);
1048 	return -ENOMEM;
1049 }
1050 
1051 /*
1052  * Create an RPC task for the given write request and kick it.
1053  * The page must have been locked by the caller.
1054  *
1055  * It may happen that the page we're passed is not marked dirty.
1056  * This is the case if nfs_updatepage detects a conflicting request
1057  * that has been written but not committed.
1058  */
1059 static int nfs_flush_one(struct inode *inode, struct list_head *head, int how)
1060 {
1061 	struct nfs_page		*req;
1062 	struct page		**pages;
1063 	struct nfs_write_data	*data;
1064 	unsigned int		count;
1065 
1066 	data = nfs_writedata_alloc(NFS_SERVER(inode)->wsize);
1067 	if (!data)
1068 		goto out_bad;
1069 
1070 	pages = data->pagevec;
1071 	count = 0;
1072 	while (!list_empty(head)) {
1073 		req = nfs_list_entry(head->next);
1074 		nfs_list_remove_request(req);
1075 		nfs_list_add_request(req, &data->pages);
1076 		ClearPageError(req->wb_page);
1077 		set_page_writeback(req->wb_page);
1078 		*pages++ = req->wb_page;
1079 		count += req->wb_bytes;
1080 	}
1081 	req = nfs_list_entry(data->pages.next);
1082 
1083 	/* Set up the argument struct */
1084 	nfs_write_rpcsetup(req, data, &nfs_write_full_ops, count, 0, how);
1085 
1086 	nfs_execute_write(data);
1087 	return 0;
1088  out_bad:
1089 	while (!list_empty(head)) {
1090 		struct nfs_page *req = nfs_list_entry(head->next);
1091 		nfs_list_remove_request(req);
1092 		nfs_mark_request_dirty(req);
1093 		nfs_clear_page_writeback(req);
1094 	}
1095 	return -ENOMEM;
1096 }
1097 
1098 static int nfs_flush_list(struct inode *inode, struct list_head *head, int npages, int how)
1099 {
1100 	LIST_HEAD(one_request);
1101 	int (*flush_one)(struct inode *, struct list_head *, int);
1102 	struct nfs_page	*req;
1103 	int wpages = NFS_SERVER(inode)->wpages;
1104 	int wsize = NFS_SERVER(inode)->wsize;
1105 	int error;
1106 
1107 	flush_one = nfs_flush_one;
1108 	if (wsize < PAGE_CACHE_SIZE)
1109 		flush_one = nfs_flush_multi;
1110 	/* For single writes, FLUSH_STABLE is more efficient */
1111 	if (npages <= wpages && npages == NFS_I(inode)->npages
1112 			&& nfs_list_entry(head->next)->wb_bytes <= wsize)
1113 		how |= FLUSH_STABLE;
1114 
1115 	do {
1116 		nfs_coalesce_requests(head, &one_request, wpages);
1117 		req = nfs_list_entry(one_request.next);
1118 		error = flush_one(inode, &one_request, how);
1119 		if (error < 0)
1120 			goto out_err;
1121 	} while (!list_empty(head));
1122 	return 0;
1123 out_err:
1124 	while (!list_empty(head)) {
1125 		req = nfs_list_entry(head->next);
1126 		nfs_list_remove_request(req);
1127 		nfs_mark_request_dirty(req);
1128 		nfs_clear_page_writeback(req);
1129 	}
1130 	return error;
1131 }
1132 
1133 /*
1134  * Handle a write reply that flushed part of a page.
1135  */
1136 static void nfs_writeback_done_partial(struct rpc_task *task, void *calldata)
1137 {
1138 	struct nfs_write_data	*data = calldata;
1139 	struct nfs_page		*req = data->req;
1140 	struct page		*page = req->wb_page;
1141 
1142 	dprintk("NFS: write (%s/%Ld %d@%Ld)",
1143 		req->wb_context->dentry->d_inode->i_sb->s_id,
1144 		(long long)NFS_FILEID(req->wb_context->dentry->d_inode),
1145 		req->wb_bytes,
1146 		(long long)req_offset(req));
1147 
1148 	if (nfs_writeback_done(task, data) != 0)
1149 		return;
1150 
1151 	if (task->tk_status < 0) {
1152 		ClearPageUptodate(page);
1153 		SetPageError(page);
1154 		req->wb_context->error = task->tk_status;
1155 		dprintk(", error = %d\n", task->tk_status);
1156 	} else {
1157 #if defined(CONFIG_NFS_V3) || defined(CONFIG_NFS_V4)
1158 		if (data->verf.committed < NFS_FILE_SYNC) {
1159 			if (!NFS_NEED_COMMIT(req)) {
1160 				nfs_defer_commit(req);
1161 				memcpy(&req->wb_verf, &data->verf, sizeof(req->wb_verf));
1162 				dprintk(" defer commit\n");
1163 			} else if (memcmp(&req->wb_verf, &data->verf, sizeof(req->wb_verf))) {
1164 				nfs_defer_reschedule(req);
1165 				dprintk(" server reboot detected\n");
1166 			}
1167 		} else
1168 #endif
1169 			dprintk(" OK\n");
1170 	}
1171 
1172 	if (atomic_dec_and_test(&req->wb_complete))
1173 		nfs_writepage_release(req);
1174 }
1175 
1176 static const struct rpc_call_ops nfs_write_partial_ops = {
1177 	.rpc_call_done = nfs_writeback_done_partial,
1178 	.rpc_release = nfs_writedata_release,
1179 };
1180 
1181 /*
1182  * Handle a write reply that flushes a whole page.
1183  *
1184  * FIXME: There is an inherent race with invalidate_inode_pages and
1185  *	  writebacks since the page->count is kept > 1 for as long
1186  *	  as the page has a write request pending.
1187  */
1188 static void nfs_writeback_done_full(struct rpc_task *task, void *calldata)
1189 {
1190 	struct nfs_write_data	*data = calldata;
1191 	struct nfs_page		*req;
1192 	struct page		*page;
1193 
1194 	if (nfs_writeback_done(task, data) != 0)
1195 		return;
1196 
1197 	/* Update attributes as result of writeback. */
1198 	while (!list_empty(&data->pages)) {
1199 		req = nfs_list_entry(data->pages.next);
1200 		nfs_list_remove_request(req);
1201 		page = req->wb_page;
1202 
1203 		dprintk("NFS: write (%s/%Ld %d@%Ld)",
1204 			req->wb_context->dentry->d_inode->i_sb->s_id,
1205 			(long long)NFS_FILEID(req->wb_context->dentry->d_inode),
1206 			req->wb_bytes,
1207 			(long long)req_offset(req));
1208 
1209 		if (task->tk_status < 0) {
1210 			ClearPageUptodate(page);
1211 			SetPageError(page);
1212 			req->wb_context->error = task->tk_status;
1213 			end_page_writeback(page);
1214 			nfs_inode_remove_request(req);
1215 			dprintk(", error = %d\n", task->tk_status);
1216 			goto next;
1217 		}
1218 		end_page_writeback(page);
1219 
1220 #if defined(CONFIG_NFS_V3) || defined(CONFIG_NFS_V4)
1221 		if (data->args.stable != NFS_UNSTABLE || data->verf.committed == NFS_FILE_SYNC) {
1222 			nfs_inode_remove_request(req);
1223 			dprintk(" OK\n");
1224 			goto next;
1225 		}
1226 		memcpy(&req->wb_verf, &data->verf, sizeof(req->wb_verf));
1227 		nfs_mark_request_commit(req);
1228 		dprintk(" marked for commit\n");
1229 #else
1230 		nfs_inode_remove_request(req);
1231 #endif
1232 	next:
1233 		nfs_clear_page_writeback(req);
1234 	}
1235 }
1236 
1237 static const struct rpc_call_ops nfs_write_full_ops = {
1238 	.rpc_call_done = nfs_writeback_done_full,
1239 	.rpc_release = nfs_writedata_release,
1240 };
1241 
1242 
1243 /*
1244  * This function is called when the WRITE call is complete.
1245  */
1246 int nfs_writeback_done(struct rpc_task *task, struct nfs_write_data *data)
1247 {
1248 	struct nfs_writeargs	*argp = &data->args;
1249 	struct nfs_writeres	*resp = &data->res;
1250 	int status;
1251 
1252 	dprintk("NFS: %4d nfs_writeback_done (status %d)\n",
1253 		task->tk_pid, task->tk_status);
1254 
1255 	/* Call the NFS version-specific code */
1256 	status = NFS_PROTO(data->inode)->write_done(task, data);
1257 	if (status != 0)
1258 		return status;
1259 	nfs_add_stats(data->inode, NFSIOS_SERVERWRITTENBYTES, resp->count);
1260 
1261 #if defined(CONFIG_NFS_V3) || defined(CONFIG_NFS_V4)
1262 	if (resp->verf->committed < argp->stable && task->tk_status >= 0) {
1263 		/* We tried a write call, but the server did not
1264 		 * commit data to stable storage even though we
1265 		 * requested it.
1266 		 * Note: There is a known bug in Tru64 < 5.0 in which
1267 		 *	 the server reports NFS_DATA_SYNC, but performs
1268 		 *	 NFS_FILE_SYNC. We therefore implement this checking
1269 		 *	 as a dprintk() in order to avoid filling syslog.
1270 		 */
1271 		static unsigned long    complain;
1272 
1273 		if (time_before(complain, jiffies)) {
1274 			dprintk("NFS: faulty NFS server %s:"
1275 				" (committed = %d) != (stable = %d)\n",
1276 				NFS_SERVER(data->inode)->hostname,
1277 				resp->verf->committed, argp->stable);
1278 			complain = jiffies + 300 * HZ;
1279 		}
1280 	}
1281 #endif
1282 	/* Is this a short write? */
1283 	if (task->tk_status >= 0 && resp->count < argp->count) {
1284 		static unsigned long    complain;
1285 
1286 		nfs_inc_stats(data->inode, NFSIOS_SHORTWRITE);
1287 
1288 		/* Has the server at least made some progress? */
1289 		if (resp->count != 0) {
1290 			/* Was this an NFSv2 write or an NFSv3 stable write? */
1291 			if (resp->verf->committed != NFS_UNSTABLE) {
1292 				/* Resend from where the server left off */
1293 				argp->offset += resp->count;
1294 				argp->pgbase += resp->count;
1295 				argp->count -= resp->count;
1296 			} else {
1297 				/* Resend as a stable write in order to avoid
1298 				 * headaches in the case of a server crash.
1299 				 */
1300 				argp->stable = NFS_FILE_SYNC;
1301 			}
1302 			rpc_restart_call(task);
1303 			return -EAGAIN;
1304 		}
1305 		if (time_before(complain, jiffies)) {
1306 			printk(KERN_WARNING
1307 			       "NFS: Server wrote zero bytes, expected %u.\n",
1308 					argp->count);
1309 			complain = jiffies + 300 * HZ;
1310 		}
1311 		/* Can't do anything about it except throw an error. */
1312 		task->tk_status = -EIO;
1313 	}
1314 	return 0;
1315 }
1316 
1317 
1318 #if defined(CONFIG_NFS_V3) || defined(CONFIG_NFS_V4)
1319 void nfs_commit_release(void *wdata)
1320 {
1321 	nfs_commit_free(wdata);
1322 }
1323 
1324 /*
1325  * Set up the argument/result storage required for the RPC call.
1326  */
1327 static void nfs_commit_rpcsetup(struct list_head *head,
1328 		struct nfs_write_data *data,
1329 		int how)
1330 {
1331 	struct nfs_page		*first;
1332 	struct inode		*inode;
1333 	int flags;
1334 
1335 	/* Set up the RPC argument and reply structs
1336 	 * NB: take care not to mess about with data->commit et al. */
1337 
1338 	list_splice_init(head, &data->pages);
1339 	first = nfs_list_entry(data->pages.next);
1340 	inode = first->wb_context->dentry->d_inode;
1341 
1342 	data->inode	  = inode;
1343 	data->cred	  = first->wb_context->cred;
1344 
1345 	data->args.fh     = NFS_FH(data->inode);
1346 	/* Note: we always request a commit of the entire inode */
1347 	data->args.offset = 0;
1348 	data->args.count  = 0;
1349 	data->res.count   = 0;
1350 	data->res.fattr   = &data->fattr;
1351 	data->res.verf    = &data->verf;
1352 	nfs_fattr_init(&data->fattr);
1353 
1354 	/* Set up the initial task struct.  */
1355 	flags = (how & FLUSH_SYNC) ? 0 : RPC_TASK_ASYNC;
1356 	rpc_init_task(&data->task, NFS_CLIENT(inode), flags, &nfs_commit_ops, data);
1357 	NFS_PROTO(inode)->commit_setup(data, how);
1358 
1359 	data->task.tk_priority = flush_task_priority(how);
1360 	data->task.tk_cookie = (unsigned long)inode;
1361 
1362 	dprintk("NFS: %4d initiated commit call\n", data->task.tk_pid);
1363 }
1364 
1365 /*
1366  * Commit dirty pages
1367  */
1368 static int
1369 nfs_commit_list(struct inode *inode, struct list_head *head, int how)
1370 {
1371 	struct nfs_write_data	*data;
1372 	struct nfs_page         *req;
1373 
1374 	data = nfs_commit_alloc();
1375 
1376 	if (!data)
1377 		goto out_bad;
1378 
1379 	/* Set up the argument struct */
1380 	nfs_commit_rpcsetup(head, data, how);
1381 
1382 	nfs_execute_write(data);
1383 	return 0;
1384  out_bad:
1385 	while (!list_empty(head)) {
1386 		req = nfs_list_entry(head->next);
1387 		nfs_list_remove_request(req);
1388 		nfs_mark_request_commit(req);
1389 		dec_zone_page_state(req->wb_page, NR_UNSTABLE_NFS);
1390 		nfs_clear_page_writeback(req);
1391 	}
1392 	return -ENOMEM;
1393 }
1394 
1395 /*
1396  * COMMIT call returned
1397  */
1398 static void nfs_commit_done(struct rpc_task *task, void *calldata)
1399 {
1400 	struct nfs_write_data	*data = calldata;
1401 	struct nfs_page		*req;
1402 
1403         dprintk("NFS: %4d nfs_commit_done (status %d)\n",
1404                                 task->tk_pid, task->tk_status);
1405 
1406 	/* Call the NFS version-specific code */
1407 	if (NFS_PROTO(data->inode)->commit_done(task, data) != 0)
1408 		return;
1409 
1410 	while (!list_empty(&data->pages)) {
1411 		req = nfs_list_entry(data->pages.next);
1412 		nfs_list_remove_request(req);
1413 		dec_zone_page_state(req->wb_page, NR_UNSTABLE_NFS);
1414 
1415 		dprintk("NFS: commit (%s/%Ld %d@%Ld)",
1416 			req->wb_context->dentry->d_inode->i_sb->s_id,
1417 			(long long)NFS_FILEID(req->wb_context->dentry->d_inode),
1418 			req->wb_bytes,
1419 			(long long)req_offset(req));
1420 		if (task->tk_status < 0) {
1421 			req->wb_context->error = task->tk_status;
1422 			nfs_inode_remove_request(req);
1423 			dprintk(", error = %d\n", task->tk_status);
1424 			goto next;
1425 		}
1426 
1427 		/* Okay, COMMIT succeeded, apparently. Check the verifier
1428 		 * returned by the server against all stored verfs. */
1429 		if (!memcmp(req->wb_verf.verifier, data->verf.verifier, sizeof(data->verf.verifier))) {
1430 			/* We have a match */
1431 			nfs_inode_remove_request(req);
1432 			dprintk(" OK\n");
1433 			goto next;
1434 		}
1435 		/* We have a mismatch. Write the page again */
1436 		dprintk(" mismatch\n");
1437 		nfs_mark_request_dirty(req);
1438 	next:
1439 		nfs_clear_page_writeback(req);
1440 	}
1441 }
1442 
1443 static const struct rpc_call_ops nfs_commit_ops = {
1444 	.rpc_call_done = nfs_commit_done,
1445 	.rpc_release = nfs_commit_release,
1446 };
1447 #else
1448 static inline int nfs_commit_list(struct inode *inode, struct list_head *head, int how)
1449 {
1450 	return 0;
1451 }
1452 #endif
1453 
1454 static int nfs_flush_inode(struct inode *inode, unsigned long idx_start,
1455 			   unsigned int npages, int how)
1456 {
1457 	struct nfs_inode *nfsi = NFS_I(inode);
1458 	LIST_HEAD(head);
1459 	int res;
1460 
1461 	spin_lock(&nfsi->req_lock);
1462 	res = nfs_scan_dirty(inode, &head, idx_start, npages);
1463 	spin_unlock(&nfsi->req_lock);
1464 	if (res) {
1465 		int error = nfs_flush_list(inode, &head, res, how);
1466 		if (error < 0)
1467 			return error;
1468 	}
1469 	return res;
1470 }
1471 
1472 #if defined(CONFIG_NFS_V3) || defined(CONFIG_NFS_V4)
1473 int nfs_commit_inode(struct inode *inode, int how)
1474 {
1475 	struct nfs_inode *nfsi = NFS_I(inode);
1476 	LIST_HEAD(head);
1477 	int res;
1478 
1479 	spin_lock(&nfsi->req_lock);
1480 	res = nfs_scan_commit(inode, &head, 0, 0);
1481 	spin_unlock(&nfsi->req_lock);
1482 	if (res) {
1483 		int error = nfs_commit_list(inode, &head, how);
1484 		if (error < 0)
1485 			return error;
1486 	}
1487 	return res;
1488 }
1489 #endif
1490 
1491 int nfs_sync_inode_wait(struct inode *inode, unsigned long idx_start,
1492 		unsigned int npages, int how)
1493 {
1494 	struct nfs_inode *nfsi = NFS_I(inode);
1495 	LIST_HEAD(head);
1496 	int nocommit = how & FLUSH_NOCOMMIT;
1497 	int pages, ret;
1498 
1499 	how &= ~FLUSH_NOCOMMIT;
1500 	spin_lock(&nfsi->req_lock);
1501 	do {
1502 		ret = nfs_wait_on_requests_locked(inode, idx_start, npages);
1503 		if (ret != 0)
1504 			continue;
1505 		pages = nfs_scan_dirty(inode, &head, idx_start, npages);
1506 		if (pages != 0) {
1507 			spin_unlock(&nfsi->req_lock);
1508 			if (how & FLUSH_INVALIDATE)
1509 				nfs_cancel_dirty_list(&head);
1510 			else
1511 				ret = nfs_flush_list(inode, &head, pages, how);
1512 			spin_lock(&nfsi->req_lock);
1513 			continue;
1514 		}
1515 		if (nocommit)
1516 			break;
1517 		pages = nfs_scan_commit(inode, &head, idx_start, npages);
1518 		if (pages == 0)
1519 			break;
1520 		if (how & FLUSH_INVALIDATE) {
1521 			spin_unlock(&nfsi->req_lock);
1522 			nfs_cancel_commit_list(&head);
1523 			spin_lock(&nfsi->req_lock);
1524 			continue;
1525 		}
1526 		pages += nfs_scan_commit(inode, &head, 0, 0);
1527 		spin_unlock(&nfsi->req_lock);
1528 		ret = nfs_commit_list(inode, &head, how);
1529 		spin_lock(&nfsi->req_lock);
1530 	} while (ret >= 0);
1531 	spin_unlock(&nfsi->req_lock);
1532 	return ret;
1533 }
1534 
1535 int __init nfs_init_writepagecache(void)
1536 {
1537 	nfs_wdata_cachep = kmem_cache_create("nfs_write_data",
1538 					     sizeof(struct nfs_write_data),
1539 					     0, SLAB_HWCACHE_ALIGN,
1540 					     NULL, NULL);
1541 	if (nfs_wdata_cachep == NULL)
1542 		return -ENOMEM;
1543 
1544 	nfs_wdata_mempool = mempool_create_slab_pool(MIN_POOL_WRITE,
1545 						     nfs_wdata_cachep);
1546 	if (nfs_wdata_mempool == NULL)
1547 		return -ENOMEM;
1548 
1549 	nfs_commit_mempool = mempool_create_slab_pool(MIN_POOL_COMMIT,
1550 						      nfs_wdata_cachep);
1551 	if (nfs_commit_mempool == NULL)
1552 		return -ENOMEM;
1553 
1554 	return 0;
1555 }
1556 
1557 void nfs_destroy_writepagecache(void)
1558 {
1559 	mempool_destroy(nfs_commit_mempool);
1560 	mempool_destroy(nfs_wdata_mempool);
1561 	if (kmem_cache_destroy(nfs_wdata_cachep))
1562 		printk(KERN_INFO "nfs_write_data: not all structures were freed\n");
1563 }
1564 
1565