1 /* 2 * linux/fs/nfs/write.c 3 * 4 * Write file data over NFS. 5 * 6 * Copyright (C) 1996, 1997, Olaf Kirch <okir@monad.swb.de> 7 */ 8 9 #include <linux/types.h> 10 #include <linux/slab.h> 11 #include <linux/mm.h> 12 #include <linux/pagemap.h> 13 #include <linux/file.h> 14 #include <linux/writeback.h> 15 #include <linux/swap.h> 16 17 #include <linux/sunrpc/clnt.h> 18 #include <linux/nfs_fs.h> 19 #include <linux/nfs_mount.h> 20 #include <linux/nfs_page.h> 21 #include <linux/backing-dev.h> 22 23 #include <asm/uaccess.h> 24 25 #include "delegation.h" 26 #include "internal.h" 27 #include "iostat.h" 28 29 #define NFSDBG_FACILITY NFSDBG_PAGECACHE 30 31 #define MIN_POOL_WRITE (32) 32 #define MIN_POOL_COMMIT (4) 33 34 /* 35 * Local function declarations 36 */ 37 static struct nfs_page * nfs_update_request(struct nfs_open_context*, 38 struct page *, 39 unsigned int, unsigned int); 40 static void nfs_pageio_init_write(struct nfs_pageio_descriptor *desc, 41 struct inode *inode, int ioflags); 42 static const struct rpc_call_ops nfs_write_partial_ops; 43 static const struct rpc_call_ops nfs_write_full_ops; 44 static const struct rpc_call_ops nfs_commit_ops; 45 46 static struct kmem_cache *nfs_wdata_cachep; 47 static mempool_t *nfs_wdata_mempool; 48 static mempool_t *nfs_commit_mempool; 49 50 struct nfs_write_data *nfs_commit_alloc(void) 51 { 52 struct nfs_write_data *p = mempool_alloc(nfs_commit_mempool, GFP_NOFS); 53 54 if (p) { 55 memset(p, 0, sizeof(*p)); 56 INIT_LIST_HEAD(&p->pages); 57 } 58 return p; 59 } 60 61 static void nfs_commit_rcu_free(struct rcu_head *head) 62 { 63 struct nfs_write_data *p = container_of(head, struct nfs_write_data, task.u.tk_rcu); 64 if (p && (p->pagevec != &p->page_array[0])) 65 kfree(p->pagevec); 66 mempool_free(p, nfs_commit_mempool); 67 } 68 69 void nfs_commit_free(struct nfs_write_data *wdata) 70 { 71 call_rcu_bh(&wdata->task.u.tk_rcu, nfs_commit_rcu_free); 72 } 73 74 struct nfs_write_data *nfs_writedata_alloc(unsigned int pagecount) 75 { 76 struct nfs_write_data *p = mempool_alloc(nfs_wdata_mempool, GFP_NOFS); 77 78 if (p) { 79 memset(p, 0, sizeof(*p)); 80 INIT_LIST_HEAD(&p->pages); 81 p->npages = pagecount; 82 if (pagecount <= ARRAY_SIZE(p->page_array)) 83 p->pagevec = p->page_array; 84 else { 85 p->pagevec = kcalloc(pagecount, sizeof(struct page *), GFP_NOFS); 86 if (!p->pagevec) { 87 mempool_free(p, nfs_wdata_mempool); 88 p = NULL; 89 } 90 } 91 } 92 return p; 93 } 94 95 static void nfs_writedata_rcu_free(struct rcu_head *head) 96 { 97 struct nfs_write_data *p = container_of(head, struct nfs_write_data, task.u.tk_rcu); 98 if (p && (p->pagevec != &p->page_array[0])) 99 kfree(p->pagevec); 100 mempool_free(p, nfs_wdata_mempool); 101 } 102 103 static void nfs_writedata_free(struct nfs_write_data *wdata) 104 { 105 call_rcu_bh(&wdata->task.u.tk_rcu, nfs_writedata_rcu_free); 106 } 107 108 void nfs_writedata_release(void *wdata) 109 { 110 nfs_writedata_free(wdata); 111 } 112 113 static void nfs_context_set_write_error(struct nfs_open_context *ctx, int error) 114 { 115 ctx->error = error; 116 smp_wmb(); 117 set_bit(NFS_CONTEXT_ERROR_WRITE, &ctx->flags); 118 } 119 120 static struct nfs_page *nfs_page_find_request_locked(struct page *page) 121 { 122 struct nfs_page *req = NULL; 123 124 if (PagePrivate(page)) { 125 req = (struct nfs_page *)page_private(page); 126 if (req != NULL) 127 kref_get(&req->wb_kref); 128 } 129 return req; 130 } 131 132 static struct nfs_page *nfs_page_find_request(struct page *page) 133 { 134 struct inode *inode = page->mapping->host; 135 struct nfs_page *req = NULL; 136 137 spin_lock(&inode->i_lock); 138 req = nfs_page_find_request_locked(page); 139 spin_unlock(&inode->i_lock); 140 return req; 141 } 142 143 /* Adjust the file length if we're writing beyond the end */ 144 static void nfs_grow_file(struct page *page, unsigned int offset, unsigned int count) 145 { 146 struct inode *inode = page->mapping->host; 147 loff_t end, i_size = i_size_read(inode); 148 pgoff_t end_index = (i_size - 1) >> PAGE_CACHE_SHIFT; 149 150 if (i_size > 0 && page->index < end_index) 151 return; 152 end = ((loff_t)page->index << PAGE_CACHE_SHIFT) + ((loff_t)offset+count); 153 if (i_size >= end) 154 return; 155 nfs_inc_stats(inode, NFSIOS_EXTENDWRITE); 156 i_size_write(inode, end); 157 } 158 159 /* A writeback failed: mark the page as bad, and invalidate the page cache */ 160 static void nfs_set_pageerror(struct page *page) 161 { 162 SetPageError(page); 163 nfs_zap_mapping(page->mapping->host, page->mapping); 164 } 165 166 /* We can set the PG_uptodate flag if we see that a write request 167 * covers the full page. 168 */ 169 static void nfs_mark_uptodate(struct page *page, unsigned int base, unsigned int count) 170 { 171 if (PageUptodate(page)) 172 return; 173 if (base != 0) 174 return; 175 if (count != nfs_page_length(page)) 176 return; 177 SetPageUptodate(page); 178 } 179 180 static int nfs_writepage_setup(struct nfs_open_context *ctx, struct page *page, 181 unsigned int offset, unsigned int count) 182 { 183 struct nfs_page *req; 184 int ret; 185 186 for (;;) { 187 req = nfs_update_request(ctx, page, offset, count); 188 if (!IS_ERR(req)) 189 break; 190 ret = PTR_ERR(req); 191 if (ret != -EBUSY) 192 return ret; 193 ret = nfs_wb_page(page->mapping->host, page); 194 if (ret != 0) 195 return ret; 196 } 197 /* Update file length */ 198 nfs_grow_file(page, offset, count); 199 nfs_clear_page_tag_locked(req); 200 return 0; 201 } 202 203 static int wb_priority(struct writeback_control *wbc) 204 { 205 if (wbc->for_reclaim) 206 return FLUSH_HIGHPRI | FLUSH_STABLE; 207 if (wbc->for_kupdate) 208 return FLUSH_LOWPRI; 209 return 0; 210 } 211 212 /* 213 * NFS congestion control 214 */ 215 216 int nfs_congestion_kb; 217 218 #define NFS_CONGESTION_ON_THRESH (nfs_congestion_kb >> (PAGE_SHIFT-10)) 219 #define NFS_CONGESTION_OFF_THRESH \ 220 (NFS_CONGESTION_ON_THRESH - (NFS_CONGESTION_ON_THRESH >> 2)) 221 222 static int nfs_set_page_writeback(struct page *page) 223 { 224 int ret = test_set_page_writeback(page); 225 226 if (!ret) { 227 struct inode *inode = page->mapping->host; 228 struct nfs_server *nfss = NFS_SERVER(inode); 229 230 if (atomic_long_inc_return(&nfss->writeback) > 231 NFS_CONGESTION_ON_THRESH) 232 set_bdi_congested(&nfss->backing_dev_info, WRITE); 233 } 234 return ret; 235 } 236 237 static void nfs_end_page_writeback(struct page *page) 238 { 239 struct inode *inode = page->mapping->host; 240 struct nfs_server *nfss = NFS_SERVER(inode); 241 242 end_page_writeback(page); 243 if (atomic_long_dec_return(&nfss->writeback) < NFS_CONGESTION_OFF_THRESH) 244 clear_bdi_congested(&nfss->backing_dev_info, WRITE); 245 } 246 247 /* 248 * Find an associated nfs write request, and prepare to flush it out 249 * May return an error if the user signalled nfs_wait_on_request(). 250 */ 251 static int nfs_page_async_flush(struct nfs_pageio_descriptor *pgio, 252 struct page *page) 253 { 254 struct inode *inode = page->mapping->host; 255 struct nfs_page *req; 256 int ret; 257 258 spin_lock(&inode->i_lock); 259 for(;;) { 260 req = nfs_page_find_request_locked(page); 261 if (req == NULL) { 262 spin_unlock(&inode->i_lock); 263 return 0; 264 } 265 if (nfs_set_page_tag_locked(req)) 266 break; 267 /* Note: If we hold the page lock, as is the case in nfs_writepage, 268 * then the call to nfs_set_page_tag_locked() will always 269 * succeed provided that someone hasn't already marked the 270 * request as dirty (in which case we don't care). 271 */ 272 spin_unlock(&inode->i_lock); 273 ret = nfs_wait_on_request(req); 274 nfs_release_request(req); 275 if (ret != 0) 276 return ret; 277 spin_lock(&inode->i_lock); 278 } 279 if (test_bit(PG_NEED_COMMIT, &req->wb_flags)) { 280 /* This request is marked for commit */ 281 spin_unlock(&inode->i_lock); 282 nfs_clear_page_tag_locked(req); 283 nfs_pageio_complete(pgio); 284 return 0; 285 } 286 if (nfs_set_page_writeback(page) != 0) { 287 spin_unlock(&inode->i_lock); 288 BUG(); 289 } 290 spin_unlock(&inode->i_lock); 291 nfs_pageio_add_request(pgio, req); 292 return 0; 293 } 294 295 static int nfs_do_writepage(struct page *page, struct writeback_control *wbc, struct nfs_pageio_descriptor *pgio) 296 { 297 struct inode *inode = page->mapping->host; 298 299 nfs_inc_stats(inode, NFSIOS_VFSWRITEPAGE); 300 nfs_add_stats(inode, NFSIOS_WRITEPAGES, 1); 301 302 nfs_pageio_cond_complete(pgio, page->index); 303 return nfs_page_async_flush(pgio, page); 304 } 305 306 /* 307 * Write an mmapped page to the server. 308 */ 309 static int nfs_writepage_locked(struct page *page, struct writeback_control *wbc) 310 { 311 struct nfs_pageio_descriptor pgio; 312 int err; 313 314 nfs_pageio_init_write(&pgio, page->mapping->host, wb_priority(wbc)); 315 err = nfs_do_writepage(page, wbc, &pgio); 316 nfs_pageio_complete(&pgio); 317 if (err < 0) 318 return err; 319 if (pgio.pg_error < 0) 320 return pgio.pg_error; 321 return 0; 322 } 323 324 int nfs_writepage(struct page *page, struct writeback_control *wbc) 325 { 326 int ret; 327 328 ret = nfs_writepage_locked(page, wbc); 329 unlock_page(page); 330 return ret; 331 } 332 333 static int nfs_writepages_callback(struct page *page, struct writeback_control *wbc, void *data) 334 { 335 int ret; 336 337 ret = nfs_do_writepage(page, wbc, data); 338 unlock_page(page); 339 return ret; 340 } 341 342 int nfs_writepages(struct address_space *mapping, struct writeback_control *wbc) 343 { 344 struct inode *inode = mapping->host; 345 struct nfs_pageio_descriptor pgio; 346 int err; 347 348 nfs_inc_stats(inode, NFSIOS_VFSWRITEPAGES); 349 350 nfs_pageio_init_write(&pgio, inode, wb_priority(wbc)); 351 err = write_cache_pages(mapping, wbc, nfs_writepages_callback, &pgio); 352 nfs_pageio_complete(&pgio); 353 if (err < 0) 354 return err; 355 if (pgio.pg_error < 0) 356 return pgio.pg_error; 357 return 0; 358 } 359 360 /* 361 * Insert a write request into an inode 362 */ 363 static int nfs_inode_add_request(struct inode *inode, struct nfs_page *req) 364 { 365 struct nfs_inode *nfsi = NFS_I(inode); 366 int error; 367 368 error = radix_tree_insert(&nfsi->nfs_page_tree, req->wb_index, req); 369 BUG_ON(error == -EEXIST); 370 if (error) 371 return error; 372 if (!nfsi->npages) { 373 igrab(inode); 374 if (nfs_have_delegation(inode, FMODE_WRITE)) 375 nfsi->change_attr++; 376 } 377 SetPagePrivate(req->wb_page); 378 set_page_private(req->wb_page, (unsigned long)req); 379 nfsi->npages++; 380 kref_get(&req->wb_kref); 381 radix_tree_tag_set(&nfsi->nfs_page_tree, req->wb_index, NFS_PAGE_TAG_LOCKED); 382 return 0; 383 } 384 385 /* 386 * Remove a write request from an inode 387 */ 388 static void nfs_inode_remove_request(struct nfs_page *req) 389 { 390 struct inode *inode = req->wb_context->path.dentry->d_inode; 391 struct nfs_inode *nfsi = NFS_I(inode); 392 393 BUG_ON (!NFS_WBACK_BUSY(req)); 394 395 spin_lock(&inode->i_lock); 396 set_page_private(req->wb_page, 0); 397 ClearPagePrivate(req->wb_page); 398 radix_tree_delete(&nfsi->nfs_page_tree, req->wb_index); 399 nfsi->npages--; 400 if (!nfsi->npages) { 401 spin_unlock(&inode->i_lock); 402 iput(inode); 403 } else 404 spin_unlock(&inode->i_lock); 405 nfs_clear_request(req); 406 nfs_release_request(req); 407 } 408 409 static void 410 nfs_redirty_request(struct nfs_page *req) 411 { 412 __set_page_dirty_nobuffers(req->wb_page); 413 } 414 415 /* 416 * Check if a request is dirty 417 */ 418 static inline int 419 nfs_dirty_request(struct nfs_page *req) 420 { 421 struct page *page = req->wb_page; 422 423 if (page == NULL || test_bit(PG_NEED_COMMIT, &req->wb_flags)) 424 return 0; 425 return !PageWriteback(req->wb_page); 426 } 427 428 #if defined(CONFIG_NFS_V3) || defined(CONFIG_NFS_V4) 429 /* 430 * Add a request to the inode's commit list. 431 */ 432 static void 433 nfs_mark_request_commit(struct nfs_page *req) 434 { 435 struct inode *inode = req->wb_context->path.dentry->d_inode; 436 struct nfs_inode *nfsi = NFS_I(inode); 437 438 spin_lock(&inode->i_lock); 439 nfsi->ncommit++; 440 set_bit(PG_NEED_COMMIT, &(req)->wb_flags); 441 radix_tree_tag_set(&nfsi->nfs_page_tree, 442 req->wb_index, 443 NFS_PAGE_TAG_COMMIT); 444 spin_unlock(&inode->i_lock); 445 inc_zone_page_state(req->wb_page, NR_UNSTABLE_NFS); 446 inc_bdi_stat(req->wb_page->mapping->backing_dev_info, BDI_RECLAIMABLE); 447 __mark_inode_dirty(inode, I_DIRTY_DATASYNC); 448 } 449 450 static inline 451 int nfs_write_need_commit(struct nfs_write_data *data) 452 { 453 return data->verf.committed != NFS_FILE_SYNC; 454 } 455 456 static inline 457 int nfs_reschedule_unstable_write(struct nfs_page *req) 458 { 459 if (test_bit(PG_NEED_COMMIT, &req->wb_flags)) { 460 nfs_mark_request_commit(req); 461 return 1; 462 } 463 if (test_and_clear_bit(PG_NEED_RESCHED, &req->wb_flags)) { 464 nfs_redirty_request(req); 465 return 1; 466 } 467 return 0; 468 } 469 #else 470 static inline void 471 nfs_mark_request_commit(struct nfs_page *req) 472 { 473 } 474 475 static inline 476 int nfs_write_need_commit(struct nfs_write_data *data) 477 { 478 return 0; 479 } 480 481 static inline 482 int nfs_reschedule_unstable_write(struct nfs_page *req) 483 { 484 return 0; 485 } 486 #endif 487 488 /* 489 * Wait for a request to complete. 490 * 491 * Interruptible by fatal signals only. 492 */ 493 static int nfs_wait_on_requests_locked(struct inode *inode, pgoff_t idx_start, unsigned int npages) 494 { 495 struct nfs_inode *nfsi = NFS_I(inode); 496 struct nfs_page *req; 497 pgoff_t idx_end, next; 498 unsigned int res = 0; 499 int error; 500 501 if (npages == 0) 502 idx_end = ~0; 503 else 504 idx_end = idx_start + npages - 1; 505 506 next = idx_start; 507 while (radix_tree_gang_lookup_tag(&nfsi->nfs_page_tree, (void **)&req, next, 1, NFS_PAGE_TAG_LOCKED)) { 508 if (req->wb_index > idx_end) 509 break; 510 511 next = req->wb_index + 1; 512 BUG_ON(!NFS_WBACK_BUSY(req)); 513 514 kref_get(&req->wb_kref); 515 spin_unlock(&inode->i_lock); 516 error = nfs_wait_on_request(req); 517 nfs_release_request(req); 518 spin_lock(&inode->i_lock); 519 if (error < 0) 520 return error; 521 res++; 522 } 523 return res; 524 } 525 526 static void nfs_cancel_commit_list(struct list_head *head) 527 { 528 struct nfs_page *req; 529 530 while(!list_empty(head)) { 531 req = nfs_list_entry(head->next); 532 dec_zone_page_state(req->wb_page, NR_UNSTABLE_NFS); 533 dec_bdi_stat(req->wb_page->mapping->backing_dev_info, 534 BDI_RECLAIMABLE); 535 nfs_list_remove_request(req); 536 clear_bit(PG_NEED_COMMIT, &(req)->wb_flags); 537 nfs_inode_remove_request(req); 538 nfs_unlock_request(req); 539 } 540 } 541 542 #if defined(CONFIG_NFS_V3) || defined(CONFIG_NFS_V4) 543 /* 544 * nfs_scan_commit - Scan an inode for commit requests 545 * @inode: NFS inode to scan 546 * @dst: destination list 547 * @idx_start: lower bound of page->index to scan. 548 * @npages: idx_start + npages sets the upper bound to scan. 549 * 550 * Moves requests from the inode's 'commit' request list. 551 * The requests are *not* checked to ensure that they form a contiguous set. 552 */ 553 static int 554 nfs_scan_commit(struct inode *inode, struct list_head *dst, pgoff_t idx_start, unsigned int npages) 555 { 556 struct nfs_inode *nfsi = NFS_I(inode); 557 int res = 0; 558 559 if (nfsi->ncommit != 0) { 560 res = nfs_scan_list(nfsi, dst, idx_start, npages, 561 NFS_PAGE_TAG_COMMIT); 562 nfsi->ncommit -= res; 563 } 564 return res; 565 } 566 #else 567 static inline int nfs_scan_commit(struct inode *inode, struct list_head *dst, pgoff_t idx_start, unsigned int npages) 568 { 569 return 0; 570 } 571 #endif 572 573 /* 574 * Try to update any existing write request, or create one if there is none. 575 * In order to match, the request's credentials must match those of 576 * the calling process. 577 * 578 * Note: Should always be called with the Page Lock held! 579 */ 580 static struct nfs_page * nfs_update_request(struct nfs_open_context* ctx, 581 struct page *page, unsigned int offset, unsigned int bytes) 582 { 583 struct address_space *mapping = page->mapping; 584 struct inode *inode = mapping->host; 585 struct nfs_page *req, *new = NULL; 586 pgoff_t rqend, end; 587 588 end = offset + bytes; 589 590 for (;;) { 591 /* Loop over all inode entries and see if we find 592 * A request for the page we wish to update 593 */ 594 spin_lock(&inode->i_lock); 595 req = nfs_page_find_request_locked(page); 596 if (req) { 597 if (!nfs_set_page_tag_locked(req)) { 598 int error; 599 600 spin_unlock(&inode->i_lock); 601 error = nfs_wait_on_request(req); 602 nfs_release_request(req); 603 if (error < 0) { 604 if (new) 605 nfs_release_request(new); 606 return ERR_PTR(error); 607 } 608 continue; 609 } 610 spin_unlock(&inode->i_lock); 611 if (new) 612 nfs_release_request(new); 613 break; 614 } 615 616 if (new) { 617 int error; 618 nfs_lock_request_dontget(new); 619 error = nfs_inode_add_request(inode, new); 620 if (error) { 621 spin_unlock(&inode->i_lock); 622 nfs_unlock_request(new); 623 return ERR_PTR(error); 624 } 625 spin_unlock(&inode->i_lock); 626 req = new; 627 goto zero_page; 628 } 629 spin_unlock(&inode->i_lock); 630 631 new = nfs_create_request(ctx, inode, page, offset, bytes); 632 if (IS_ERR(new)) 633 return new; 634 } 635 636 /* We have a request for our page. 637 * If the creds don't match, or the 638 * page addresses don't match, 639 * tell the caller to wait on the conflicting 640 * request. 641 */ 642 rqend = req->wb_offset + req->wb_bytes; 643 if (req->wb_context != ctx 644 || req->wb_page != page 645 || !nfs_dirty_request(req) 646 || offset > rqend || end < req->wb_offset) { 647 nfs_clear_page_tag_locked(req); 648 return ERR_PTR(-EBUSY); 649 } 650 651 /* Okay, the request matches. Update the region */ 652 if (offset < req->wb_offset) { 653 req->wb_offset = offset; 654 req->wb_pgbase = offset; 655 req->wb_bytes = max(end, rqend) - req->wb_offset; 656 goto zero_page; 657 } 658 659 if (end > rqend) 660 req->wb_bytes = end - req->wb_offset; 661 662 return req; 663 zero_page: 664 /* If this page might potentially be marked as up to date, 665 * then we need to zero any uninitalised data. */ 666 if (req->wb_pgbase == 0 && req->wb_bytes != PAGE_CACHE_SIZE 667 && !PageUptodate(req->wb_page)) 668 zero_user_segment(req->wb_page, req->wb_bytes, PAGE_CACHE_SIZE); 669 return req; 670 } 671 672 int nfs_flush_incompatible(struct file *file, struct page *page) 673 { 674 struct nfs_open_context *ctx = nfs_file_open_context(file); 675 struct nfs_page *req; 676 int do_flush, status; 677 /* 678 * Look for a request corresponding to this page. If there 679 * is one, and it belongs to another file, we flush it out 680 * before we try to copy anything into the page. Do this 681 * due to the lack of an ACCESS-type call in NFSv2. 682 * Also do the same if we find a request from an existing 683 * dropped page. 684 */ 685 do { 686 req = nfs_page_find_request(page); 687 if (req == NULL) 688 return 0; 689 do_flush = req->wb_page != page || req->wb_context != ctx 690 || !nfs_dirty_request(req); 691 nfs_release_request(req); 692 if (!do_flush) 693 return 0; 694 status = nfs_wb_page(page->mapping->host, page); 695 } while (status == 0); 696 return status; 697 } 698 699 /* 700 * If the page cache is marked as unsafe or invalid, then we can't rely on 701 * the PageUptodate() flag. In this case, we will need to turn off 702 * write optimisations that depend on the page contents being correct. 703 */ 704 static int nfs_write_pageuptodate(struct page *page, struct inode *inode) 705 { 706 return PageUptodate(page) && 707 !(NFS_I(inode)->cache_validity & (NFS_INO_REVAL_PAGECACHE|NFS_INO_INVALID_DATA)); 708 } 709 710 /* 711 * Update and possibly write a cached page of an NFS file. 712 * 713 * XXX: Keep an eye on generic_file_read to make sure it doesn't do bad 714 * things with a page scheduled for an RPC call (e.g. invalidate it). 715 */ 716 int nfs_updatepage(struct file *file, struct page *page, 717 unsigned int offset, unsigned int count) 718 { 719 struct nfs_open_context *ctx = nfs_file_open_context(file); 720 struct inode *inode = page->mapping->host; 721 int status = 0; 722 723 nfs_inc_stats(inode, NFSIOS_VFSUPDATEPAGE); 724 725 dprintk("NFS: nfs_updatepage(%s/%s %d@%Ld)\n", 726 file->f_path.dentry->d_parent->d_name.name, 727 file->f_path.dentry->d_name.name, count, 728 (long long)(page_offset(page) +offset)); 729 730 /* If we're not using byte range locks, and we know the page 731 * is up to date, it may be more efficient to extend the write 732 * to cover the entire page in order to avoid fragmentation 733 * inefficiencies. 734 */ 735 if (nfs_write_pageuptodate(page, inode) && 736 inode->i_flock == NULL && 737 !(file->f_mode & O_SYNC)) { 738 count = max(count + offset, nfs_page_length(page)); 739 offset = 0; 740 } 741 742 status = nfs_writepage_setup(ctx, page, offset, count); 743 __set_page_dirty_nobuffers(page); 744 745 dprintk("NFS: nfs_updatepage returns %d (isize %Ld)\n", 746 status, (long long)i_size_read(inode)); 747 if (status < 0) 748 nfs_set_pageerror(page); 749 return status; 750 } 751 752 static void nfs_writepage_release(struct nfs_page *req) 753 { 754 755 if (PageError(req->wb_page)) { 756 nfs_end_page_writeback(req->wb_page); 757 nfs_inode_remove_request(req); 758 } else if (!nfs_reschedule_unstable_write(req)) { 759 /* Set the PG_uptodate flag */ 760 nfs_mark_uptodate(req->wb_page, req->wb_pgbase, req->wb_bytes); 761 nfs_end_page_writeback(req->wb_page); 762 nfs_inode_remove_request(req); 763 } else 764 nfs_end_page_writeback(req->wb_page); 765 nfs_clear_page_tag_locked(req); 766 } 767 768 static int flush_task_priority(int how) 769 { 770 switch (how & (FLUSH_HIGHPRI|FLUSH_LOWPRI)) { 771 case FLUSH_HIGHPRI: 772 return RPC_PRIORITY_HIGH; 773 case FLUSH_LOWPRI: 774 return RPC_PRIORITY_LOW; 775 } 776 return RPC_PRIORITY_NORMAL; 777 } 778 779 /* 780 * Set up the argument/result storage required for the RPC call. 781 */ 782 static void nfs_write_rpcsetup(struct nfs_page *req, 783 struct nfs_write_data *data, 784 const struct rpc_call_ops *call_ops, 785 unsigned int count, unsigned int offset, 786 int how) 787 { 788 struct inode *inode = req->wb_context->path.dentry->d_inode; 789 int flags = (how & FLUSH_SYNC) ? 0 : RPC_TASK_ASYNC; 790 int priority = flush_task_priority(how); 791 struct rpc_task *task; 792 struct rpc_message msg = { 793 .rpc_argp = &data->args, 794 .rpc_resp = &data->res, 795 .rpc_cred = req->wb_context->cred, 796 }; 797 struct rpc_task_setup task_setup_data = { 798 .rpc_client = NFS_CLIENT(inode), 799 .task = &data->task, 800 .rpc_message = &msg, 801 .callback_ops = call_ops, 802 .callback_data = data, 803 .flags = flags, 804 .priority = priority, 805 }; 806 807 /* Set up the RPC argument and reply structs 808 * NB: take care not to mess about with data->commit et al. */ 809 810 data->req = req; 811 data->inode = inode = req->wb_context->path.dentry->d_inode; 812 data->cred = msg.rpc_cred; 813 814 data->args.fh = NFS_FH(inode); 815 data->args.offset = req_offset(req) + offset; 816 data->args.pgbase = req->wb_pgbase + offset; 817 data->args.pages = data->pagevec; 818 data->args.count = count; 819 data->args.context = req->wb_context; 820 data->args.stable = NFS_UNSTABLE; 821 if (how & FLUSH_STABLE) { 822 data->args.stable = NFS_DATA_SYNC; 823 if (!NFS_I(inode)->ncommit) 824 data->args.stable = NFS_FILE_SYNC; 825 } 826 827 data->res.fattr = &data->fattr; 828 data->res.count = count; 829 data->res.verf = &data->verf; 830 nfs_fattr_init(&data->fattr); 831 832 /* Set up the initial task struct. */ 833 NFS_PROTO(inode)->write_setup(data, &msg); 834 835 dprintk("NFS: %5u initiated write call " 836 "(req %s/%Ld, %u bytes @ offset %Lu)\n", 837 data->task.tk_pid, 838 inode->i_sb->s_id, 839 (long long)NFS_FILEID(inode), 840 count, 841 (unsigned long long)data->args.offset); 842 843 task = rpc_run_task(&task_setup_data); 844 if (!IS_ERR(task)) 845 rpc_put_task(task); 846 } 847 848 /* 849 * Generate multiple small requests to write out a single 850 * contiguous dirty area on one page. 851 */ 852 static int nfs_flush_multi(struct inode *inode, struct list_head *head, unsigned int npages, size_t count, int how) 853 { 854 struct nfs_page *req = nfs_list_entry(head->next); 855 struct page *page = req->wb_page; 856 struct nfs_write_data *data; 857 size_t wsize = NFS_SERVER(inode)->wsize, nbytes; 858 unsigned int offset; 859 int requests = 0; 860 LIST_HEAD(list); 861 862 nfs_list_remove_request(req); 863 864 nbytes = count; 865 do { 866 size_t len = min(nbytes, wsize); 867 868 data = nfs_writedata_alloc(1); 869 if (!data) 870 goto out_bad; 871 list_add(&data->pages, &list); 872 requests++; 873 nbytes -= len; 874 } while (nbytes != 0); 875 atomic_set(&req->wb_complete, requests); 876 877 ClearPageError(page); 878 offset = 0; 879 nbytes = count; 880 do { 881 data = list_entry(list.next, struct nfs_write_data, pages); 882 list_del_init(&data->pages); 883 884 data->pagevec[0] = page; 885 886 if (nbytes < wsize) 887 wsize = nbytes; 888 nfs_write_rpcsetup(req, data, &nfs_write_partial_ops, 889 wsize, offset, how); 890 offset += wsize; 891 nbytes -= wsize; 892 } while (nbytes != 0); 893 894 return 0; 895 896 out_bad: 897 while (!list_empty(&list)) { 898 data = list_entry(list.next, struct nfs_write_data, pages); 899 list_del(&data->pages); 900 nfs_writedata_release(data); 901 } 902 nfs_redirty_request(req); 903 nfs_end_page_writeback(req->wb_page); 904 nfs_clear_page_tag_locked(req); 905 return -ENOMEM; 906 } 907 908 /* 909 * Create an RPC task for the given write request and kick it. 910 * The page must have been locked by the caller. 911 * 912 * It may happen that the page we're passed is not marked dirty. 913 * This is the case if nfs_updatepage detects a conflicting request 914 * that has been written but not committed. 915 */ 916 static int nfs_flush_one(struct inode *inode, struct list_head *head, unsigned int npages, size_t count, int how) 917 { 918 struct nfs_page *req; 919 struct page **pages; 920 struct nfs_write_data *data; 921 922 data = nfs_writedata_alloc(npages); 923 if (!data) 924 goto out_bad; 925 926 pages = data->pagevec; 927 while (!list_empty(head)) { 928 req = nfs_list_entry(head->next); 929 nfs_list_remove_request(req); 930 nfs_list_add_request(req, &data->pages); 931 ClearPageError(req->wb_page); 932 *pages++ = req->wb_page; 933 } 934 req = nfs_list_entry(data->pages.next); 935 936 /* Set up the argument struct */ 937 nfs_write_rpcsetup(req, data, &nfs_write_full_ops, count, 0, how); 938 939 return 0; 940 out_bad: 941 while (!list_empty(head)) { 942 req = nfs_list_entry(head->next); 943 nfs_list_remove_request(req); 944 nfs_redirty_request(req); 945 nfs_end_page_writeback(req->wb_page); 946 nfs_clear_page_tag_locked(req); 947 } 948 return -ENOMEM; 949 } 950 951 static void nfs_pageio_init_write(struct nfs_pageio_descriptor *pgio, 952 struct inode *inode, int ioflags) 953 { 954 size_t wsize = NFS_SERVER(inode)->wsize; 955 956 if (wsize < PAGE_CACHE_SIZE) 957 nfs_pageio_init(pgio, inode, nfs_flush_multi, wsize, ioflags); 958 else 959 nfs_pageio_init(pgio, inode, nfs_flush_one, wsize, ioflags); 960 } 961 962 /* 963 * Handle a write reply that flushed part of a page. 964 */ 965 static void nfs_writeback_done_partial(struct rpc_task *task, void *calldata) 966 { 967 struct nfs_write_data *data = calldata; 968 struct nfs_page *req = data->req; 969 struct page *page = req->wb_page; 970 971 dprintk("NFS: write (%s/%Ld %d@%Ld)", 972 req->wb_context->path.dentry->d_inode->i_sb->s_id, 973 (long long)NFS_FILEID(req->wb_context->path.dentry->d_inode), 974 req->wb_bytes, 975 (long long)req_offset(req)); 976 977 if (nfs_writeback_done(task, data) != 0) 978 return; 979 980 if (task->tk_status < 0) { 981 nfs_set_pageerror(page); 982 nfs_context_set_write_error(req->wb_context, task->tk_status); 983 dprintk(", error = %d\n", task->tk_status); 984 goto out; 985 } 986 987 if (nfs_write_need_commit(data)) { 988 struct inode *inode = page->mapping->host; 989 990 spin_lock(&inode->i_lock); 991 if (test_bit(PG_NEED_RESCHED, &req->wb_flags)) { 992 /* Do nothing we need to resend the writes */ 993 } else if (!test_and_set_bit(PG_NEED_COMMIT, &req->wb_flags)) { 994 memcpy(&req->wb_verf, &data->verf, sizeof(req->wb_verf)); 995 dprintk(" defer commit\n"); 996 } else if (memcmp(&req->wb_verf, &data->verf, sizeof(req->wb_verf))) { 997 set_bit(PG_NEED_RESCHED, &req->wb_flags); 998 clear_bit(PG_NEED_COMMIT, &req->wb_flags); 999 dprintk(" server reboot detected\n"); 1000 } 1001 spin_unlock(&inode->i_lock); 1002 } else 1003 dprintk(" OK\n"); 1004 1005 out: 1006 if (atomic_dec_and_test(&req->wb_complete)) 1007 nfs_writepage_release(req); 1008 } 1009 1010 static const struct rpc_call_ops nfs_write_partial_ops = { 1011 .rpc_call_done = nfs_writeback_done_partial, 1012 .rpc_release = nfs_writedata_release, 1013 }; 1014 1015 /* 1016 * Handle a write reply that flushes a whole page. 1017 * 1018 * FIXME: There is an inherent race with invalidate_inode_pages and 1019 * writebacks since the page->count is kept > 1 for as long 1020 * as the page has a write request pending. 1021 */ 1022 static void nfs_writeback_done_full(struct rpc_task *task, void *calldata) 1023 { 1024 struct nfs_write_data *data = calldata; 1025 struct nfs_page *req; 1026 struct page *page; 1027 1028 if (nfs_writeback_done(task, data) != 0) 1029 return; 1030 1031 /* Update attributes as result of writeback. */ 1032 while (!list_empty(&data->pages)) { 1033 req = nfs_list_entry(data->pages.next); 1034 nfs_list_remove_request(req); 1035 page = req->wb_page; 1036 1037 dprintk("NFS: write (%s/%Ld %d@%Ld)", 1038 req->wb_context->path.dentry->d_inode->i_sb->s_id, 1039 (long long)NFS_FILEID(req->wb_context->path.dentry->d_inode), 1040 req->wb_bytes, 1041 (long long)req_offset(req)); 1042 1043 if (task->tk_status < 0) { 1044 nfs_set_pageerror(page); 1045 nfs_context_set_write_error(req->wb_context, task->tk_status); 1046 dprintk(", error = %d\n", task->tk_status); 1047 goto remove_request; 1048 } 1049 1050 if (nfs_write_need_commit(data)) { 1051 memcpy(&req->wb_verf, &data->verf, sizeof(req->wb_verf)); 1052 nfs_mark_request_commit(req); 1053 nfs_end_page_writeback(page); 1054 dprintk(" marked for commit\n"); 1055 goto next; 1056 } 1057 /* Set the PG_uptodate flag? */ 1058 nfs_mark_uptodate(page, req->wb_pgbase, req->wb_bytes); 1059 dprintk(" OK\n"); 1060 remove_request: 1061 nfs_end_page_writeback(page); 1062 nfs_inode_remove_request(req); 1063 next: 1064 nfs_clear_page_tag_locked(req); 1065 } 1066 } 1067 1068 static const struct rpc_call_ops nfs_write_full_ops = { 1069 .rpc_call_done = nfs_writeback_done_full, 1070 .rpc_release = nfs_writedata_release, 1071 }; 1072 1073 1074 /* 1075 * This function is called when the WRITE call is complete. 1076 */ 1077 int nfs_writeback_done(struct rpc_task *task, struct nfs_write_data *data) 1078 { 1079 struct nfs_writeargs *argp = &data->args; 1080 struct nfs_writeres *resp = &data->res; 1081 int status; 1082 1083 dprintk("NFS: %5u nfs_writeback_done (status %d)\n", 1084 task->tk_pid, task->tk_status); 1085 1086 /* 1087 * ->write_done will attempt to use post-op attributes to detect 1088 * conflicting writes by other clients. A strict interpretation 1089 * of close-to-open would allow us to continue caching even if 1090 * another writer had changed the file, but some applications 1091 * depend on tighter cache coherency when writing. 1092 */ 1093 status = NFS_PROTO(data->inode)->write_done(task, data); 1094 if (status != 0) 1095 return status; 1096 nfs_add_stats(data->inode, NFSIOS_SERVERWRITTENBYTES, resp->count); 1097 1098 #if defined(CONFIG_NFS_V3) || defined(CONFIG_NFS_V4) 1099 if (resp->verf->committed < argp->stable && task->tk_status >= 0) { 1100 /* We tried a write call, but the server did not 1101 * commit data to stable storage even though we 1102 * requested it. 1103 * Note: There is a known bug in Tru64 < 5.0 in which 1104 * the server reports NFS_DATA_SYNC, but performs 1105 * NFS_FILE_SYNC. We therefore implement this checking 1106 * as a dprintk() in order to avoid filling syslog. 1107 */ 1108 static unsigned long complain; 1109 1110 if (time_before(complain, jiffies)) { 1111 dprintk("NFS: faulty NFS server %s:" 1112 " (committed = %d) != (stable = %d)\n", 1113 NFS_SERVER(data->inode)->nfs_client->cl_hostname, 1114 resp->verf->committed, argp->stable); 1115 complain = jiffies + 300 * HZ; 1116 } 1117 } 1118 #endif 1119 /* Is this a short write? */ 1120 if (task->tk_status >= 0 && resp->count < argp->count) { 1121 static unsigned long complain; 1122 1123 nfs_inc_stats(data->inode, NFSIOS_SHORTWRITE); 1124 1125 /* Has the server at least made some progress? */ 1126 if (resp->count != 0) { 1127 /* Was this an NFSv2 write or an NFSv3 stable write? */ 1128 if (resp->verf->committed != NFS_UNSTABLE) { 1129 /* Resend from where the server left off */ 1130 argp->offset += resp->count; 1131 argp->pgbase += resp->count; 1132 argp->count -= resp->count; 1133 } else { 1134 /* Resend as a stable write in order to avoid 1135 * headaches in the case of a server crash. 1136 */ 1137 argp->stable = NFS_FILE_SYNC; 1138 } 1139 rpc_restart_call(task); 1140 return -EAGAIN; 1141 } 1142 if (time_before(complain, jiffies)) { 1143 printk(KERN_WARNING 1144 "NFS: Server wrote zero bytes, expected %u.\n", 1145 argp->count); 1146 complain = jiffies + 300 * HZ; 1147 } 1148 /* Can't do anything about it except throw an error. */ 1149 task->tk_status = -EIO; 1150 } 1151 return 0; 1152 } 1153 1154 1155 #if defined(CONFIG_NFS_V3) || defined(CONFIG_NFS_V4) 1156 void nfs_commit_release(void *wdata) 1157 { 1158 nfs_commit_free(wdata); 1159 } 1160 1161 /* 1162 * Set up the argument/result storage required for the RPC call. 1163 */ 1164 static void nfs_commit_rpcsetup(struct list_head *head, 1165 struct nfs_write_data *data, 1166 int how) 1167 { 1168 struct nfs_page *first = nfs_list_entry(head->next); 1169 struct inode *inode = first->wb_context->path.dentry->d_inode; 1170 int flags = (how & FLUSH_SYNC) ? 0 : RPC_TASK_ASYNC; 1171 int priority = flush_task_priority(how); 1172 struct rpc_task *task; 1173 struct rpc_message msg = { 1174 .rpc_argp = &data->args, 1175 .rpc_resp = &data->res, 1176 .rpc_cred = first->wb_context->cred, 1177 }; 1178 struct rpc_task_setup task_setup_data = { 1179 .task = &data->task, 1180 .rpc_client = NFS_CLIENT(inode), 1181 .rpc_message = &msg, 1182 .callback_ops = &nfs_commit_ops, 1183 .callback_data = data, 1184 .flags = flags, 1185 .priority = priority, 1186 }; 1187 1188 /* Set up the RPC argument and reply structs 1189 * NB: take care not to mess about with data->commit et al. */ 1190 1191 list_splice_init(head, &data->pages); 1192 1193 data->inode = inode; 1194 data->cred = msg.rpc_cred; 1195 1196 data->args.fh = NFS_FH(data->inode); 1197 /* Note: we always request a commit of the entire inode */ 1198 data->args.offset = 0; 1199 data->args.count = 0; 1200 data->res.count = 0; 1201 data->res.fattr = &data->fattr; 1202 data->res.verf = &data->verf; 1203 nfs_fattr_init(&data->fattr); 1204 1205 /* Set up the initial task struct. */ 1206 NFS_PROTO(inode)->commit_setup(data, &msg); 1207 1208 dprintk("NFS: %5u initiated commit call\n", data->task.tk_pid); 1209 1210 task = rpc_run_task(&task_setup_data); 1211 if (!IS_ERR(task)) 1212 rpc_put_task(task); 1213 } 1214 1215 /* 1216 * Commit dirty pages 1217 */ 1218 static int 1219 nfs_commit_list(struct inode *inode, struct list_head *head, int how) 1220 { 1221 struct nfs_write_data *data; 1222 struct nfs_page *req; 1223 1224 data = nfs_commit_alloc(); 1225 1226 if (!data) 1227 goto out_bad; 1228 1229 /* Set up the argument struct */ 1230 nfs_commit_rpcsetup(head, data, how); 1231 1232 return 0; 1233 out_bad: 1234 while (!list_empty(head)) { 1235 req = nfs_list_entry(head->next); 1236 nfs_list_remove_request(req); 1237 nfs_mark_request_commit(req); 1238 dec_zone_page_state(req->wb_page, NR_UNSTABLE_NFS); 1239 dec_bdi_stat(req->wb_page->mapping->backing_dev_info, 1240 BDI_RECLAIMABLE); 1241 nfs_clear_page_tag_locked(req); 1242 } 1243 return -ENOMEM; 1244 } 1245 1246 /* 1247 * COMMIT call returned 1248 */ 1249 static void nfs_commit_done(struct rpc_task *task, void *calldata) 1250 { 1251 struct nfs_write_data *data = calldata; 1252 struct nfs_page *req; 1253 1254 dprintk("NFS: %5u nfs_commit_done (status %d)\n", 1255 task->tk_pid, task->tk_status); 1256 1257 /* Call the NFS version-specific code */ 1258 if (NFS_PROTO(data->inode)->commit_done(task, data) != 0) 1259 return; 1260 1261 while (!list_empty(&data->pages)) { 1262 req = nfs_list_entry(data->pages.next); 1263 nfs_list_remove_request(req); 1264 clear_bit(PG_NEED_COMMIT, &(req)->wb_flags); 1265 dec_zone_page_state(req->wb_page, NR_UNSTABLE_NFS); 1266 dec_bdi_stat(req->wb_page->mapping->backing_dev_info, 1267 BDI_RECLAIMABLE); 1268 1269 dprintk("NFS: commit (%s/%Ld %d@%Ld)", 1270 req->wb_context->path.dentry->d_inode->i_sb->s_id, 1271 (long long)NFS_FILEID(req->wb_context->path.dentry->d_inode), 1272 req->wb_bytes, 1273 (long long)req_offset(req)); 1274 if (task->tk_status < 0) { 1275 nfs_context_set_write_error(req->wb_context, task->tk_status); 1276 nfs_inode_remove_request(req); 1277 dprintk(", error = %d\n", task->tk_status); 1278 goto next; 1279 } 1280 1281 /* Okay, COMMIT succeeded, apparently. Check the verifier 1282 * returned by the server against all stored verfs. */ 1283 if (!memcmp(req->wb_verf.verifier, data->verf.verifier, sizeof(data->verf.verifier))) { 1284 /* We have a match */ 1285 /* Set the PG_uptodate flag */ 1286 nfs_mark_uptodate(req->wb_page, req->wb_pgbase, 1287 req->wb_bytes); 1288 nfs_inode_remove_request(req); 1289 dprintk(" OK\n"); 1290 goto next; 1291 } 1292 /* We have a mismatch. Write the page again */ 1293 dprintk(" mismatch\n"); 1294 nfs_redirty_request(req); 1295 next: 1296 nfs_clear_page_tag_locked(req); 1297 } 1298 } 1299 1300 static const struct rpc_call_ops nfs_commit_ops = { 1301 .rpc_call_done = nfs_commit_done, 1302 .rpc_release = nfs_commit_release, 1303 }; 1304 1305 int nfs_commit_inode(struct inode *inode, int how) 1306 { 1307 LIST_HEAD(head); 1308 int res; 1309 1310 spin_lock(&inode->i_lock); 1311 res = nfs_scan_commit(inode, &head, 0, 0); 1312 spin_unlock(&inode->i_lock); 1313 if (res) { 1314 int error = nfs_commit_list(inode, &head, how); 1315 if (error < 0) 1316 return error; 1317 } 1318 return res; 1319 } 1320 #else 1321 static inline int nfs_commit_list(struct inode *inode, struct list_head *head, int how) 1322 { 1323 return 0; 1324 } 1325 #endif 1326 1327 long nfs_sync_mapping_wait(struct address_space *mapping, struct writeback_control *wbc, int how) 1328 { 1329 struct inode *inode = mapping->host; 1330 pgoff_t idx_start, idx_end; 1331 unsigned int npages = 0; 1332 LIST_HEAD(head); 1333 int nocommit = how & FLUSH_NOCOMMIT; 1334 long pages, ret; 1335 1336 /* FIXME */ 1337 if (wbc->range_cyclic) 1338 idx_start = 0; 1339 else { 1340 idx_start = wbc->range_start >> PAGE_CACHE_SHIFT; 1341 idx_end = wbc->range_end >> PAGE_CACHE_SHIFT; 1342 if (idx_end > idx_start) { 1343 pgoff_t l_npages = 1 + idx_end - idx_start; 1344 npages = l_npages; 1345 if (sizeof(npages) != sizeof(l_npages) && 1346 (pgoff_t)npages != l_npages) 1347 npages = 0; 1348 } 1349 } 1350 how &= ~FLUSH_NOCOMMIT; 1351 spin_lock(&inode->i_lock); 1352 do { 1353 ret = nfs_wait_on_requests_locked(inode, idx_start, npages); 1354 if (ret != 0) 1355 continue; 1356 if (nocommit) 1357 break; 1358 pages = nfs_scan_commit(inode, &head, idx_start, npages); 1359 if (pages == 0) 1360 break; 1361 if (how & FLUSH_INVALIDATE) { 1362 spin_unlock(&inode->i_lock); 1363 nfs_cancel_commit_list(&head); 1364 ret = pages; 1365 spin_lock(&inode->i_lock); 1366 continue; 1367 } 1368 pages += nfs_scan_commit(inode, &head, 0, 0); 1369 spin_unlock(&inode->i_lock); 1370 ret = nfs_commit_list(inode, &head, how); 1371 spin_lock(&inode->i_lock); 1372 1373 } while (ret >= 0); 1374 spin_unlock(&inode->i_lock); 1375 return ret; 1376 } 1377 1378 static int __nfs_write_mapping(struct address_space *mapping, struct writeback_control *wbc, int how) 1379 { 1380 int ret; 1381 1382 ret = nfs_writepages(mapping, wbc); 1383 if (ret < 0) 1384 goto out; 1385 ret = nfs_sync_mapping_wait(mapping, wbc, how); 1386 if (ret < 0) 1387 goto out; 1388 return 0; 1389 out: 1390 __mark_inode_dirty(mapping->host, I_DIRTY_PAGES); 1391 return ret; 1392 } 1393 1394 /* Two pass sync: first using WB_SYNC_NONE, then WB_SYNC_ALL */ 1395 static int nfs_write_mapping(struct address_space *mapping, int how) 1396 { 1397 struct writeback_control wbc = { 1398 .bdi = mapping->backing_dev_info, 1399 .sync_mode = WB_SYNC_NONE, 1400 .nr_to_write = LONG_MAX, 1401 .for_writepages = 1, 1402 .range_cyclic = 1, 1403 }; 1404 int ret; 1405 1406 ret = __nfs_write_mapping(mapping, &wbc, how); 1407 if (ret < 0) 1408 return ret; 1409 wbc.sync_mode = WB_SYNC_ALL; 1410 return __nfs_write_mapping(mapping, &wbc, how); 1411 } 1412 1413 /* 1414 * flush the inode to disk. 1415 */ 1416 int nfs_wb_all(struct inode *inode) 1417 { 1418 return nfs_write_mapping(inode->i_mapping, 0); 1419 } 1420 1421 int nfs_wb_nocommit(struct inode *inode) 1422 { 1423 return nfs_write_mapping(inode->i_mapping, FLUSH_NOCOMMIT); 1424 } 1425 1426 int nfs_wb_page_cancel(struct inode *inode, struct page *page) 1427 { 1428 struct nfs_page *req; 1429 loff_t range_start = page_offset(page); 1430 loff_t range_end = range_start + (loff_t)(PAGE_CACHE_SIZE - 1); 1431 struct writeback_control wbc = { 1432 .bdi = page->mapping->backing_dev_info, 1433 .sync_mode = WB_SYNC_ALL, 1434 .nr_to_write = LONG_MAX, 1435 .range_start = range_start, 1436 .range_end = range_end, 1437 }; 1438 int ret = 0; 1439 1440 BUG_ON(!PageLocked(page)); 1441 for (;;) { 1442 req = nfs_page_find_request(page); 1443 if (req == NULL) 1444 goto out; 1445 if (test_bit(PG_NEED_COMMIT, &req->wb_flags)) { 1446 nfs_release_request(req); 1447 break; 1448 } 1449 if (nfs_lock_request_dontget(req)) { 1450 nfs_inode_remove_request(req); 1451 /* 1452 * In case nfs_inode_remove_request has marked the 1453 * page as being dirty 1454 */ 1455 cancel_dirty_page(page, PAGE_CACHE_SIZE); 1456 nfs_unlock_request(req); 1457 break; 1458 } 1459 ret = nfs_wait_on_request(req); 1460 if (ret < 0) 1461 goto out; 1462 } 1463 if (!PagePrivate(page)) 1464 return 0; 1465 ret = nfs_sync_mapping_wait(page->mapping, &wbc, FLUSH_INVALIDATE); 1466 out: 1467 return ret; 1468 } 1469 1470 static int nfs_wb_page_priority(struct inode *inode, struct page *page, 1471 int how) 1472 { 1473 loff_t range_start = page_offset(page); 1474 loff_t range_end = range_start + (loff_t)(PAGE_CACHE_SIZE - 1); 1475 struct writeback_control wbc = { 1476 .bdi = page->mapping->backing_dev_info, 1477 .sync_mode = WB_SYNC_ALL, 1478 .nr_to_write = LONG_MAX, 1479 .range_start = range_start, 1480 .range_end = range_end, 1481 }; 1482 int ret; 1483 1484 BUG_ON(!PageLocked(page)); 1485 if (clear_page_dirty_for_io(page)) { 1486 ret = nfs_writepage_locked(page, &wbc); 1487 if (ret < 0) 1488 goto out; 1489 } 1490 if (!PagePrivate(page)) 1491 return 0; 1492 ret = nfs_sync_mapping_wait(page->mapping, &wbc, how); 1493 if (ret >= 0) 1494 return 0; 1495 out: 1496 __mark_inode_dirty(inode, I_DIRTY_PAGES); 1497 return ret; 1498 } 1499 1500 /* 1501 * Write back all requests on one page - we do this before reading it. 1502 */ 1503 int nfs_wb_page(struct inode *inode, struct page* page) 1504 { 1505 return nfs_wb_page_priority(inode, page, FLUSH_STABLE); 1506 } 1507 1508 int __init nfs_init_writepagecache(void) 1509 { 1510 nfs_wdata_cachep = kmem_cache_create("nfs_write_data", 1511 sizeof(struct nfs_write_data), 1512 0, SLAB_HWCACHE_ALIGN, 1513 NULL); 1514 if (nfs_wdata_cachep == NULL) 1515 return -ENOMEM; 1516 1517 nfs_wdata_mempool = mempool_create_slab_pool(MIN_POOL_WRITE, 1518 nfs_wdata_cachep); 1519 if (nfs_wdata_mempool == NULL) 1520 return -ENOMEM; 1521 1522 nfs_commit_mempool = mempool_create_slab_pool(MIN_POOL_COMMIT, 1523 nfs_wdata_cachep); 1524 if (nfs_commit_mempool == NULL) 1525 return -ENOMEM; 1526 1527 /* 1528 * NFS congestion size, scale with available memory. 1529 * 1530 * 64MB: 8192k 1531 * 128MB: 11585k 1532 * 256MB: 16384k 1533 * 512MB: 23170k 1534 * 1GB: 32768k 1535 * 2GB: 46340k 1536 * 4GB: 65536k 1537 * 8GB: 92681k 1538 * 16GB: 131072k 1539 * 1540 * This allows larger machines to have larger/more transfers. 1541 * Limit the default to 256M 1542 */ 1543 nfs_congestion_kb = (16*int_sqrt(totalram_pages)) << (PAGE_SHIFT-10); 1544 if (nfs_congestion_kb > 256*1024) 1545 nfs_congestion_kb = 256*1024; 1546 1547 return 0; 1548 } 1549 1550 void nfs_destroy_writepagecache(void) 1551 { 1552 mempool_destroy(nfs_commit_mempool); 1553 mempool_destroy(nfs_wdata_mempool); 1554 kmem_cache_destroy(nfs_wdata_cachep); 1555 } 1556 1557