1 /* 2 * linux/fs/nfs/write.c 3 * 4 * Write file data over NFS. 5 * 6 * Copyright (C) 1996, 1997, Olaf Kirch <okir@monad.swb.de> 7 */ 8 9 #include <linux/types.h> 10 #include <linux/slab.h> 11 #include <linux/mm.h> 12 #include <linux/pagemap.h> 13 #include <linux/file.h> 14 #include <linux/writeback.h> 15 #include <linux/swap.h> 16 #include <linux/migrate.h> 17 18 #include <linux/sunrpc/clnt.h> 19 #include <linux/nfs_fs.h> 20 #include <linux/nfs_mount.h> 21 #include <linux/nfs_page.h> 22 #include <linux/backing-dev.h> 23 24 #include <asm/uaccess.h> 25 26 #include "delegation.h" 27 #include "internal.h" 28 #include "iostat.h" 29 #include "nfs4_fs.h" 30 #include "fscache.h" 31 32 #define NFSDBG_FACILITY NFSDBG_PAGECACHE 33 34 #define MIN_POOL_WRITE (32) 35 #define MIN_POOL_COMMIT (4) 36 37 /* 38 * Local function declarations 39 */ 40 static void nfs_pageio_init_write(struct nfs_pageio_descriptor *desc, 41 struct inode *inode, int ioflags); 42 static void nfs_redirty_request(struct nfs_page *req); 43 static const struct rpc_call_ops nfs_write_partial_ops; 44 static const struct rpc_call_ops nfs_write_full_ops; 45 static const struct rpc_call_ops nfs_commit_ops; 46 47 static struct kmem_cache *nfs_wdata_cachep; 48 static mempool_t *nfs_wdata_mempool; 49 static mempool_t *nfs_commit_mempool; 50 51 struct nfs_write_data *nfs_commitdata_alloc(void) 52 { 53 struct nfs_write_data *p = mempool_alloc(nfs_commit_mempool, GFP_NOFS); 54 55 if (p) { 56 memset(p, 0, sizeof(*p)); 57 INIT_LIST_HEAD(&p->pages); 58 p->res.seq_res.sr_slotid = NFS4_MAX_SLOT_TABLE; 59 } 60 return p; 61 } 62 63 void nfs_commit_free(struct nfs_write_data *p) 64 { 65 if (p && (p->pagevec != &p->page_array[0])) 66 kfree(p->pagevec); 67 mempool_free(p, nfs_commit_mempool); 68 } 69 70 struct nfs_write_data *nfs_writedata_alloc(unsigned int pagecount) 71 { 72 struct nfs_write_data *p = mempool_alloc(nfs_wdata_mempool, GFP_NOFS); 73 74 if (p) { 75 memset(p, 0, sizeof(*p)); 76 INIT_LIST_HEAD(&p->pages); 77 p->npages = pagecount; 78 p->res.seq_res.sr_slotid = NFS4_MAX_SLOT_TABLE; 79 if (pagecount <= ARRAY_SIZE(p->page_array)) 80 p->pagevec = p->page_array; 81 else { 82 p->pagevec = kcalloc(pagecount, sizeof(struct page *), GFP_NOFS); 83 if (!p->pagevec) { 84 mempool_free(p, nfs_wdata_mempool); 85 p = NULL; 86 } 87 } 88 } 89 return p; 90 } 91 92 void nfs_writedata_free(struct nfs_write_data *p) 93 { 94 if (p && (p->pagevec != &p->page_array[0])) 95 kfree(p->pagevec); 96 mempool_free(p, nfs_wdata_mempool); 97 } 98 99 static void nfs_writedata_release(struct nfs_write_data *wdata) 100 { 101 put_nfs_open_context(wdata->args.context); 102 nfs_writedata_free(wdata); 103 } 104 105 static void nfs_context_set_write_error(struct nfs_open_context *ctx, int error) 106 { 107 ctx->error = error; 108 smp_wmb(); 109 set_bit(NFS_CONTEXT_ERROR_WRITE, &ctx->flags); 110 } 111 112 static struct nfs_page *nfs_page_find_request_locked(struct page *page) 113 { 114 struct nfs_page *req = NULL; 115 116 if (PagePrivate(page)) { 117 req = (struct nfs_page *)page_private(page); 118 if (req != NULL) 119 kref_get(&req->wb_kref); 120 } 121 return req; 122 } 123 124 static struct nfs_page *nfs_page_find_request(struct page *page) 125 { 126 struct inode *inode = page->mapping->host; 127 struct nfs_page *req = NULL; 128 129 spin_lock(&inode->i_lock); 130 req = nfs_page_find_request_locked(page); 131 spin_unlock(&inode->i_lock); 132 return req; 133 } 134 135 /* Adjust the file length if we're writing beyond the end */ 136 static void nfs_grow_file(struct page *page, unsigned int offset, unsigned int count) 137 { 138 struct inode *inode = page->mapping->host; 139 loff_t end, i_size; 140 pgoff_t end_index; 141 142 spin_lock(&inode->i_lock); 143 i_size = i_size_read(inode); 144 end_index = (i_size - 1) >> PAGE_CACHE_SHIFT; 145 if (i_size > 0 && page->index < end_index) 146 goto out; 147 end = ((loff_t)page->index << PAGE_CACHE_SHIFT) + ((loff_t)offset+count); 148 if (i_size >= end) 149 goto out; 150 i_size_write(inode, end); 151 nfs_inc_stats(inode, NFSIOS_EXTENDWRITE); 152 out: 153 spin_unlock(&inode->i_lock); 154 } 155 156 /* A writeback failed: mark the page as bad, and invalidate the page cache */ 157 static void nfs_set_pageerror(struct page *page) 158 { 159 SetPageError(page); 160 nfs_zap_mapping(page->mapping->host, page->mapping); 161 } 162 163 /* We can set the PG_uptodate flag if we see that a write request 164 * covers the full page. 165 */ 166 static void nfs_mark_uptodate(struct page *page, unsigned int base, unsigned int count) 167 { 168 if (PageUptodate(page)) 169 return; 170 if (base != 0) 171 return; 172 if (count != nfs_page_length(page)) 173 return; 174 SetPageUptodate(page); 175 } 176 177 static int wb_priority(struct writeback_control *wbc) 178 { 179 if (wbc->for_reclaim) 180 return FLUSH_HIGHPRI | FLUSH_STABLE; 181 if (wbc->for_kupdate || wbc->for_background) 182 return FLUSH_LOWPRI; 183 return 0; 184 } 185 186 /* 187 * NFS congestion control 188 */ 189 190 int nfs_congestion_kb; 191 192 #define NFS_CONGESTION_ON_THRESH (nfs_congestion_kb >> (PAGE_SHIFT-10)) 193 #define NFS_CONGESTION_OFF_THRESH \ 194 (NFS_CONGESTION_ON_THRESH - (NFS_CONGESTION_ON_THRESH >> 2)) 195 196 static int nfs_set_page_writeback(struct page *page) 197 { 198 int ret = test_set_page_writeback(page); 199 200 if (!ret) { 201 struct inode *inode = page->mapping->host; 202 struct nfs_server *nfss = NFS_SERVER(inode); 203 204 page_cache_get(page); 205 if (atomic_long_inc_return(&nfss->writeback) > 206 NFS_CONGESTION_ON_THRESH) { 207 set_bdi_congested(&nfss->backing_dev_info, 208 BLK_RW_ASYNC); 209 } 210 } 211 return ret; 212 } 213 214 static void nfs_end_page_writeback(struct page *page) 215 { 216 struct inode *inode = page->mapping->host; 217 struct nfs_server *nfss = NFS_SERVER(inode); 218 219 end_page_writeback(page); 220 page_cache_release(page); 221 if (atomic_long_dec_return(&nfss->writeback) < NFS_CONGESTION_OFF_THRESH) 222 clear_bdi_congested(&nfss->backing_dev_info, BLK_RW_ASYNC); 223 } 224 225 static struct nfs_page *nfs_find_and_lock_request(struct page *page) 226 { 227 struct inode *inode = page->mapping->host; 228 struct nfs_page *req; 229 int ret; 230 231 spin_lock(&inode->i_lock); 232 for (;;) { 233 req = nfs_page_find_request_locked(page); 234 if (req == NULL) 235 break; 236 if (nfs_set_page_tag_locked(req)) 237 break; 238 /* Note: If we hold the page lock, as is the case in nfs_writepage, 239 * then the call to nfs_set_page_tag_locked() will always 240 * succeed provided that someone hasn't already marked the 241 * request as dirty (in which case we don't care). 242 */ 243 spin_unlock(&inode->i_lock); 244 ret = nfs_wait_on_request(req); 245 nfs_release_request(req); 246 if (ret != 0) 247 return ERR_PTR(ret); 248 spin_lock(&inode->i_lock); 249 } 250 spin_unlock(&inode->i_lock); 251 return req; 252 } 253 254 /* 255 * Find an associated nfs write request, and prepare to flush it out 256 * May return an error if the user signalled nfs_wait_on_request(). 257 */ 258 static int nfs_page_async_flush(struct nfs_pageio_descriptor *pgio, 259 struct page *page) 260 { 261 struct nfs_page *req; 262 int ret = 0; 263 264 req = nfs_find_and_lock_request(page); 265 if (!req) 266 goto out; 267 ret = PTR_ERR(req); 268 if (IS_ERR(req)) 269 goto out; 270 271 ret = nfs_set_page_writeback(page); 272 BUG_ON(ret != 0); 273 BUG_ON(test_bit(PG_CLEAN, &req->wb_flags)); 274 275 if (!nfs_pageio_add_request(pgio, req)) { 276 nfs_redirty_request(req); 277 ret = pgio->pg_error; 278 } 279 out: 280 return ret; 281 } 282 283 static int nfs_do_writepage(struct page *page, struct writeback_control *wbc, struct nfs_pageio_descriptor *pgio) 284 { 285 struct inode *inode = page->mapping->host; 286 287 nfs_inc_stats(inode, NFSIOS_VFSWRITEPAGE); 288 nfs_add_stats(inode, NFSIOS_WRITEPAGES, 1); 289 290 nfs_pageio_cond_complete(pgio, page->index); 291 return nfs_page_async_flush(pgio, page); 292 } 293 294 /* 295 * Write an mmapped page to the server. 296 */ 297 static int nfs_writepage_locked(struct page *page, struct writeback_control *wbc) 298 { 299 struct nfs_pageio_descriptor pgio; 300 int err; 301 302 nfs_pageio_init_write(&pgio, page->mapping->host, wb_priority(wbc)); 303 err = nfs_do_writepage(page, wbc, &pgio); 304 nfs_pageio_complete(&pgio); 305 if (err < 0) 306 return err; 307 if (pgio.pg_error < 0) 308 return pgio.pg_error; 309 return 0; 310 } 311 312 int nfs_writepage(struct page *page, struct writeback_control *wbc) 313 { 314 int ret; 315 316 ret = nfs_writepage_locked(page, wbc); 317 unlock_page(page); 318 return ret; 319 } 320 321 static int nfs_writepages_callback(struct page *page, struct writeback_control *wbc, void *data) 322 { 323 int ret; 324 325 ret = nfs_do_writepage(page, wbc, data); 326 unlock_page(page); 327 return ret; 328 } 329 330 int nfs_writepages(struct address_space *mapping, struct writeback_control *wbc) 331 { 332 struct inode *inode = mapping->host; 333 unsigned long *bitlock = &NFS_I(inode)->flags; 334 struct nfs_pageio_descriptor pgio; 335 int err; 336 337 /* Stop dirtying of new pages while we sync */ 338 err = wait_on_bit_lock(bitlock, NFS_INO_FLUSHING, 339 nfs_wait_bit_killable, TASK_KILLABLE); 340 if (err) 341 goto out_err; 342 343 nfs_inc_stats(inode, NFSIOS_VFSWRITEPAGES); 344 345 nfs_pageio_init_write(&pgio, inode, wb_priority(wbc)); 346 err = write_cache_pages(mapping, wbc, nfs_writepages_callback, &pgio); 347 nfs_pageio_complete(&pgio); 348 349 clear_bit_unlock(NFS_INO_FLUSHING, bitlock); 350 smp_mb__after_clear_bit(); 351 wake_up_bit(bitlock, NFS_INO_FLUSHING); 352 353 if (err < 0) 354 goto out_err; 355 err = pgio.pg_error; 356 if (err < 0) 357 goto out_err; 358 return 0; 359 out_err: 360 return err; 361 } 362 363 /* 364 * Insert a write request into an inode 365 */ 366 static int nfs_inode_add_request(struct inode *inode, struct nfs_page *req) 367 { 368 struct nfs_inode *nfsi = NFS_I(inode); 369 int error; 370 371 error = radix_tree_preload(GFP_NOFS); 372 if (error != 0) 373 goto out; 374 375 /* Lock the request! */ 376 nfs_lock_request_dontget(req); 377 378 spin_lock(&inode->i_lock); 379 error = radix_tree_insert(&nfsi->nfs_page_tree, req->wb_index, req); 380 BUG_ON(error); 381 if (!nfsi->npages) { 382 igrab(inode); 383 if (nfs_have_delegation(inode, FMODE_WRITE)) 384 nfsi->change_attr++; 385 } 386 SetPagePrivate(req->wb_page); 387 set_page_private(req->wb_page, (unsigned long)req); 388 nfsi->npages++; 389 kref_get(&req->wb_kref); 390 radix_tree_tag_set(&nfsi->nfs_page_tree, req->wb_index, 391 NFS_PAGE_TAG_LOCKED); 392 spin_unlock(&inode->i_lock); 393 radix_tree_preload_end(); 394 out: 395 return error; 396 } 397 398 /* 399 * Remove a write request from an inode 400 */ 401 static void nfs_inode_remove_request(struct nfs_page *req) 402 { 403 struct inode *inode = req->wb_context->path.dentry->d_inode; 404 struct nfs_inode *nfsi = NFS_I(inode); 405 406 BUG_ON (!NFS_WBACK_BUSY(req)); 407 408 spin_lock(&inode->i_lock); 409 set_page_private(req->wb_page, 0); 410 ClearPagePrivate(req->wb_page); 411 radix_tree_delete(&nfsi->nfs_page_tree, req->wb_index); 412 nfsi->npages--; 413 if (!nfsi->npages) { 414 spin_unlock(&inode->i_lock); 415 iput(inode); 416 } else 417 spin_unlock(&inode->i_lock); 418 nfs_clear_request(req); 419 nfs_release_request(req); 420 } 421 422 static void 423 nfs_mark_request_dirty(struct nfs_page *req) 424 { 425 __set_page_dirty_nobuffers(req->wb_page); 426 __mark_inode_dirty(req->wb_page->mapping->host, I_DIRTY_DATASYNC); 427 } 428 429 #if defined(CONFIG_NFS_V3) || defined(CONFIG_NFS_V4) 430 /* 431 * Add a request to the inode's commit list. 432 */ 433 static void 434 nfs_mark_request_commit(struct nfs_page *req) 435 { 436 struct inode *inode = req->wb_context->path.dentry->d_inode; 437 struct nfs_inode *nfsi = NFS_I(inode); 438 439 spin_lock(&inode->i_lock); 440 set_bit(PG_CLEAN, &(req)->wb_flags); 441 radix_tree_tag_set(&nfsi->nfs_page_tree, 442 req->wb_index, 443 NFS_PAGE_TAG_COMMIT); 444 nfsi->ncommit++; 445 spin_unlock(&inode->i_lock); 446 inc_zone_page_state(req->wb_page, NR_UNSTABLE_NFS); 447 inc_bdi_stat(req->wb_page->mapping->backing_dev_info, BDI_RECLAIMABLE); 448 __mark_inode_dirty(inode, I_DIRTY_DATASYNC); 449 } 450 451 static int 452 nfs_clear_request_commit(struct nfs_page *req) 453 { 454 struct page *page = req->wb_page; 455 456 if (test_and_clear_bit(PG_CLEAN, &(req)->wb_flags)) { 457 dec_zone_page_state(page, NR_UNSTABLE_NFS); 458 dec_bdi_stat(page->mapping->backing_dev_info, BDI_RECLAIMABLE); 459 return 1; 460 } 461 return 0; 462 } 463 464 static inline 465 int nfs_write_need_commit(struct nfs_write_data *data) 466 { 467 return data->verf.committed != NFS_FILE_SYNC; 468 } 469 470 static inline 471 int nfs_reschedule_unstable_write(struct nfs_page *req) 472 { 473 if (test_and_clear_bit(PG_NEED_COMMIT, &req->wb_flags)) { 474 nfs_mark_request_commit(req); 475 return 1; 476 } 477 if (test_and_clear_bit(PG_NEED_RESCHED, &req->wb_flags)) { 478 nfs_mark_request_dirty(req); 479 return 1; 480 } 481 return 0; 482 } 483 #else 484 static inline void 485 nfs_mark_request_commit(struct nfs_page *req) 486 { 487 } 488 489 static inline int 490 nfs_clear_request_commit(struct nfs_page *req) 491 { 492 return 0; 493 } 494 495 static inline 496 int nfs_write_need_commit(struct nfs_write_data *data) 497 { 498 return 0; 499 } 500 501 static inline 502 int nfs_reschedule_unstable_write(struct nfs_page *req) 503 { 504 return 0; 505 } 506 #endif 507 508 #if defined(CONFIG_NFS_V3) || defined(CONFIG_NFS_V4) 509 static int 510 nfs_need_commit(struct nfs_inode *nfsi) 511 { 512 return radix_tree_tagged(&nfsi->nfs_page_tree, NFS_PAGE_TAG_COMMIT); 513 } 514 515 /* 516 * nfs_scan_commit - Scan an inode for commit requests 517 * @inode: NFS inode to scan 518 * @dst: destination list 519 * @idx_start: lower bound of page->index to scan. 520 * @npages: idx_start + npages sets the upper bound to scan. 521 * 522 * Moves requests from the inode's 'commit' request list. 523 * The requests are *not* checked to ensure that they form a contiguous set. 524 */ 525 static int 526 nfs_scan_commit(struct inode *inode, struct list_head *dst, pgoff_t idx_start, unsigned int npages) 527 { 528 struct nfs_inode *nfsi = NFS_I(inode); 529 int ret; 530 531 if (!nfs_need_commit(nfsi)) 532 return 0; 533 534 ret = nfs_scan_list(nfsi, dst, idx_start, npages, NFS_PAGE_TAG_COMMIT); 535 if (ret > 0) 536 nfsi->ncommit -= ret; 537 if (nfs_need_commit(NFS_I(inode))) 538 __mark_inode_dirty(inode, I_DIRTY_DATASYNC); 539 return ret; 540 } 541 #else 542 static inline int nfs_need_commit(struct nfs_inode *nfsi) 543 { 544 return 0; 545 } 546 547 static inline int nfs_scan_commit(struct inode *inode, struct list_head *dst, pgoff_t idx_start, unsigned int npages) 548 { 549 return 0; 550 } 551 #endif 552 553 /* 554 * Search for an existing write request, and attempt to update 555 * it to reflect a new dirty region on a given page. 556 * 557 * If the attempt fails, then the existing request is flushed out 558 * to disk. 559 */ 560 static struct nfs_page *nfs_try_to_update_request(struct inode *inode, 561 struct page *page, 562 unsigned int offset, 563 unsigned int bytes) 564 { 565 struct nfs_page *req; 566 unsigned int rqend; 567 unsigned int end; 568 int error; 569 570 if (!PagePrivate(page)) 571 return NULL; 572 573 end = offset + bytes; 574 spin_lock(&inode->i_lock); 575 576 for (;;) { 577 req = nfs_page_find_request_locked(page); 578 if (req == NULL) 579 goto out_unlock; 580 581 rqend = req->wb_offset + req->wb_bytes; 582 /* 583 * Tell the caller to flush out the request if 584 * the offsets are non-contiguous. 585 * Note: nfs_flush_incompatible() will already 586 * have flushed out requests having wrong owners. 587 */ 588 if (offset > rqend 589 || end < req->wb_offset) 590 goto out_flushme; 591 592 if (nfs_set_page_tag_locked(req)) 593 break; 594 595 /* The request is locked, so wait and then retry */ 596 spin_unlock(&inode->i_lock); 597 error = nfs_wait_on_request(req); 598 nfs_release_request(req); 599 if (error != 0) 600 goto out_err; 601 spin_lock(&inode->i_lock); 602 } 603 604 if (nfs_clear_request_commit(req) && 605 radix_tree_tag_clear(&NFS_I(inode)->nfs_page_tree, 606 req->wb_index, NFS_PAGE_TAG_COMMIT) != NULL) 607 NFS_I(inode)->ncommit--; 608 609 /* Okay, the request matches. Update the region */ 610 if (offset < req->wb_offset) { 611 req->wb_offset = offset; 612 req->wb_pgbase = offset; 613 } 614 if (end > rqend) 615 req->wb_bytes = end - req->wb_offset; 616 else 617 req->wb_bytes = rqend - req->wb_offset; 618 out_unlock: 619 spin_unlock(&inode->i_lock); 620 return req; 621 out_flushme: 622 spin_unlock(&inode->i_lock); 623 nfs_release_request(req); 624 error = nfs_wb_page(inode, page); 625 out_err: 626 return ERR_PTR(error); 627 } 628 629 /* 630 * Try to update an existing write request, or create one if there is none. 631 * 632 * Note: Should always be called with the Page Lock held to prevent races 633 * if we have to add a new request. Also assumes that the caller has 634 * already called nfs_flush_incompatible() if necessary. 635 */ 636 static struct nfs_page * nfs_setup_write_request(struct nfs_open_context* ctx, 637 struct page *page, unsigned int offset, unsigned int bytes) 638 { 639 struct inode *inode = page->mapping->host; 640 struct nfs_page *req; 641 int error; 642 643 req = nfs_try_to_update_request(inode, page, offset, bytes); 644 if (req != NULL) 645 goto out; 646 req = nfs_create_request(ctx, inode, page, offset, bytes); 647 if (IS_ERR(req)) 648 goto out; 649 error = nfs_inode_add_request(inode, req); 650 if (error != 0) { 651 nfs_release_request(req); 652 req = ERR_PTR(error); 653 } 654 out: 655 return req; 656 } 657 658 static int nfs_writepage_setup(struct nfs_open_context *ctx, struct page *page, 659 unsigned int offset, unsigned int count) 660 { 661 struct nfs_page *req; 662 663 req = nfs_setup_write_request(ctx, page, offset, count); 664 if (IS_ERR(req)) 665 return PTR_ERR(req); 666 nfs_mark_request_dirty(req); 667 /* Update file length */ 668 nfs_grow_file(page, offset, count); 669 nfs_mark_uptodate(page, req->wb_pgbase, req->wb_bytes); 670 nfs_mark_request_dirty(req); 671 nfs_clear_page_tag_locked(req); 672 return 0; 673 } 674 675 int nfs_flush_incompatible(struct file *file, struct page *page) 676 { 677 struct nfs_open_context *ctx = nfs_file_open_context(file); 678 struct nfs_page *req; 679 int do_flush, status; 680 /* 681 * Look for a request corresponding to this page. If there 682 * is one, and it belongs to another file, we flush it out 683 * before we try to copy anything into the page. Do this 684 * due to the lack of an ACCESS-type call in NFSv2. 685 * Also do the same if we find a request from an existing 686 * dropped page. 687 */ 688 do { 689 req = nfs_page_find_request(page); 690 if (req == NULL) 691 return 0; 692 do_flush = req->wb_page != page || req->wb_context != ctx; 693 nfs_release_request(req); 694 if (!do_flush) 695 return 0; 696 status = nfs_wb_page(page->mapping->host, page); 697 } while (status == 0); 698 return status; 699 } 700 701 /* 702 * If the page cache is marked as unsafe or invalid, then we can't rely on 703 * the PageUptodate() flag. In this case, we will need to turn off 704 * write optimisations that depend on the page contents being correct. 705 */ 706 static int nfs_write_pageuptodate(struct page *page, struct inode *inode) 707 { 708 return PageUptodate(page) && 709 !(NFS_I(inode)->cache_validity & (NFS_INO_REVAL_PAGECACHE|NFS_INO_INVALID_DATA)); 710 } 711 712 /* 713 * Update and possibly write a cached page of an NFS file. 714 * 715 * XXX: Keep an eye on generic_file_read to make sure it doesn't do bad 716 * things with a page scheduled for an RPC call (e.g. invalidate it). 717 */ 718 int nfs_updatepage(struct file *file, struct page *page, 719 unsigned int offset, unsigned int count) 720 { 721 struct nfs_open_context *ctx = nfs_file_open_context(file); 722 struct inode *inode = page->mapping->host; 723 int status = 0; 724 725 nfs_inc_stats(inode, NFSIOS_VFSUPDATEPAGE); 726 727 dprintk("NFS: nfs_updatepage(%s/%s %d@%lld)\n", 728 file->f_path.dentry->d_parent->d_name.name, 729 file->f_path.dentry->d_name.name, count, 730 (long long)(page_offset(page) + offset)); 731 732 /* If we're not using byte range locks, and we know the page 733 * is up to date, it may be more efficient to extend the write 734 * to cover the entire page in order to avoid fragmentation 735 * inefficiencies. 736 */ 737 if (nfs_write_pageuptodate(page, inode) && 738 inode->i_flock == NULL && 739 !(file->f_flags & O_DSYNC)) { 740 count = max(count + offset, nfs_page_length(page)); 741 offset = 0; 742 } 743 744 status = nfs_writepage_setup(ctx, page, offset, count); 745 if (status < 0) 746 nfs_set_pageerror(page); 747 748 dprintk("NFS: nfs_updatepage returns %d (isize %lld)\n", 749 status, (long long)i_size_read(inode)); 750 return status; 751 } 752 753 static void nfs_writepage_release(struct nfs_page *req) 754 { 755 struct page *page = req->wb_page; 756 757 if (PageError(req->wb_page) || !nfs_reschedule_unstable_write(req)) 758 nfs_inode_remove_request(req); 759 nfs_clear_page_tag_locked(req); 760 nfs_end_page_writeback(page); 761 } 762 763 static int flush_task_priority(int how) 764 { 765 switch (how & (FLUSH_HIGHPRI|FLUSH_LOWPRI)) { 766 case FLUSH_HIGHPRI: 767 return RPC_PRIORITY_HIGH; 768 case FLUSH_LOWPRI: 769 return RPC_PRIORITY_LOW; 770 } 771 return RPC_PRIORITY_NORMAL; 772 } 773 774 /* 775 * Set up the argument/result storage required for the RPC call. 776 */ 777 static int nfs_write_rpcsetup(struct nfs_page *req, 778 struct nfs_write_data *data, 779 const struct rpc_call_ops *call_ops, 780 unsigned int count, unsigned int offset, 781 int how) 782 { 783 struct inode *inode = req->wb_context->path.dentry->d_inode; 784 int priority = flush_task_priority(how); 785 struct rpc_task *task; 786 struct rpc_message msg = { 787 .rpc_argp = &data->args, 788 .rpc_resp = &data->res, 789 .rpc_cred = req->wb_context->cred, 790 }; 791 struct rpc_task_setup task_setup_data = { 792 .rpc_client = NFS_CLIENT(inode), 793 .task = &data->task, 794 .rpc_message = &msg, 795 .callback_ops = call_ops, 796 .callback_data = data, 797 .workqueue = nfsiod_workqueue, 798 .flags = RPC_TASK_ASYNC, 799 .priority = priority, 800 }; 801 int ret = 0; 802 803 /* Set up the RPC argument and reply structs 804 * NB: take care not to mess about with data->commit et al. */ 805 806 data->req = req; 807 data->inode = inode = req->wb_context->path.dentry->d_inode; 808 data->cred = msg.rpc_cred; 809 810 data->args.fh = NFS_FH(inode); 811 data->args.offset = req_offset(req) + offset; 812 data->args.pgbase = req->wb_pgbase + offset; 813 data->args.pages = data->pagevec; 814 data->args.count = count; 815 data->args.context = get_nfs_open_context(req->wb_context); 816 data->args.stable = NFS_UNSTABLE; 817 if (how & FLUSH_STABLE) { 818 data->args.stable = NFS_DATA_SYNC; 819 if (!nfs_need_commit(NFS_I(inode))) 820 data->args.stable = NFS_FILE_SYNC; 821 } 822 823 data->res.fattr = &data->fattr; 824 data->res.count = count; 825 data->res.verf = &data->verf; 826 nfs_fattr_init(&data->fattr); 827 828 /* Set up the initial task struct. */ 829 NFS_PROTO(inode)->write_setup(data, &msg); 830 831 dprintk("NFS: %5u initiated write call " 832 "(req %s/%lld, %u bytes @ offset %llu)\n", 833 data->task.tk_pid, 834 inode->i_sb->s_id, 835 (long long)NFS_FILEID(inode), 836 count, 837 (unsigned long long)data->args.offset); 838 839 task = rpc_run_task(&task_setup_data); 840 if (IS_ERR(task)) { 841 ret = PTR_ERR(task); 842 goto out; 843 } 844 if (how & FLUSH_SYNC) { 845 ret = rpc_wait_for_completion_task(task); 846 if (ret == 0) 847 ret = task->tk_status; 848 } 849 rpc_put_task(task); 850 out: 851 return ret; 852 } 853 854 /* If a nfs_flush_* function fails, it should remove reqs from @head and 855 * call this on each, which will prepare them to be retried on next 856 * writeback using standard nfs. 857 */ 858 static void nfs_redirty_request(struct nfs_page *req) 859 { 860 struct page *page = req->wb_page; 861 862 nfs_mark_request_dirty(req); 863 nfs_clear_page_tag_locked(req); 864 nfs_end_page_writeback(page); 865 } 866 867 /* 868 * Generate multiple small requests to write out a single 869 * contiguous dirty area on one page. 870 */ 871 static int nfs_flush_multi(struct inode *inode, struct list_head *head, unsigned int npages, size_t count, int how) 872 { 873 struct nfs_page *req = nfs_list_entry(head->next); 874 struct page *page = req->wb_page; 875 struct nfs_write_data *data; 876 size_t wsize = NFS_SERVER(inode)->wsize, nbytes; 877 unsigned int offset; 878 int requests = 0; 879 int ret = 0; 880 LIST_HEAD(list); 881 882 nfs_list_remove_request(req); 883 884 nbytes = count; 885 do { 886 size_t len = min(nbytes, wsize); 887 888 data = nfs_writedata_alloc(1); 889 if (!data) 890 goto out_bad; 891 list_add(&data->pages, &list); 892 requests++; 893 nbytes -= len; 894 } while (nbytes != 0); 895 atomic_set(&req->wb_complete, requests); 896 897 ClearPageError(page); 898 offset = 0; 899 nbytes = count; 900 do { 901 int ret2; 902 903 data = list_entry(list.next, struct nfs_write_data, pages); 904 list_del_init(&data->pages); 905 906 data->pagevec[0] = page; 907 908 if (nbytes < wsize) 909 wsize = nbytes; 910 ret2 = nfs_write_rpcsetup(req, data, &nfs_write_partial_ops, 911 wsize, offset, how); 912 if (ret == 0) 913 ret = ret2; 914 offset += wsize; 915 nbytes -= wsize; 916 } while (nbytes != 0); 917 918 return ret; 919 920 out_bad: 921 while (!list_empty(&list)) { 922 data = list_entry(list.next, struct nfs_write_data, pages); 923 list_del(&data->pages); 924 nfs_writedata_release(data); 925 } 926 nfs_redirty_request(req); 927 return -ENOMEM; 928 } 929 930 /* 931 * Create an RPC task for the given write request and kick it. 932 * The page must have been locked by the caller. 933 * 934 * It may happen that the page we're passed is not marked dirty. 935 * This is the case if nfs_updatepage detects a conflicting request 936 * that has been written but not committed. 937 */ 938 static int nfs_flush_one(struct inode *inode, struct list_head *head, unsigned int npages, size_t count, int how) 939 { 940 struct nfs_page *req; 941 struct page **pages; 942 struct nfs_write_data *data; 943 944 data = nfs_writedata_alloc(npages); 945 if (!data) 946 goto out_bad; 947 948 pages = data->pagevec; 949 while (!list_empty(head)) { 950 req = nfs_list_entry(head->next); 951 nfs_list_remove_request(req); 952 nfs_list_add_request(req, &data->pages); 953 ClearPageError(req->wb_page); 954 *pages++ = req->wb_page; 955 } 956 req = nfs_list_entry(data->pages.next); 957 958 /* Set up the argument struct */ 959 return nfs_write_rpcsetup(req, data, &nfs_write_full_ops, count, 0, how); 960 out_bad: 961 while (!list_empty(head)) { 962 req = nfs_list_entry(head->next); 963 nfs_list_remove_request(req); 964 nfs_redirty_request(req); 965 } 966 return -ENOMEM; 967 } 968 969 static void nfs_pageio_init_write(struct nfs_pageio_descriptor *pgio, 970 struct inode *inode, int ioflags) 971 { 972 size_t wsize = NFS_SERVER(inode)->wsize; 973 974 if (wsize < PAGE_CACHE_SIZE) 975 nfs_pageio_init(pgio, inode, nfs_flush_multi, wsize, ioflags); 976 else 977 nfs_pageio_init(pgio, inode, nfs_flush_one, wsize, ioflags); 978 } 979 980 /* 981 * Handle a write reply that flushed part of a page. 982 */ 983 static void nfs_writeback_done_partial(struct rpc_task *task, void *calldata) 984 { 985 struct nfs_write_data *data = calldata; 986 987 dprintk("NFS: %5u write(%s/%lld %d@%lld)", 988 task->tk_pid, 989 data->req->wb_context->path.dentry->d_inode->i_sb->s_id, 990 (long long) 991 NFS_FILEID(data->req->wb_context->path.dentry->d_inode), 992 data->req->wb_bytes, (long long)req_offset(data->req)); 993 994 nfs_writeback_done(task, data); 995 } 996 997 static void nfs_writeback_release_partial(void *calldata) 998 { 999 struct nfs_write_data *data = calldata; 1000 struct nfs_page *req = data->req; 1001 struct page *page = req->wb_page; 1002 int status = data->task.tk_status; 1003 1004 if (status < 0) { 1005 nfs_set_pageerror(page); 1006 nfs_context_set_write_error(req->wb_context, status); 1007 dprintk(", error = %d\n", status); 1008 goto out; 1009 } 1010 1011 if (nfs_write_need_commit(data)) { 1012 struct inode *inode = page->mapping->host; 1013 1014 spin_lock(&inode->i_lock); 1015 if (test_bit(PG_NEED_RESCHED, &req->wb_flags)) { 1016 /* Do nothing we need to resend the writes */ 1017 } else if (!test_and_set_bit(PG_NEED_COMMIT, &req->wb_flags)) { 1018 memcpy(&req->wb_verf, &data->verf, sizeof(req->wb_verf)); 1019 dprintk(" defer commit\n"); 1020 } else if (memcmp(&req->wb_verf, &data->verf, sizeof(req->wb_verf))) { 1021 set_bit(PG_NEED_RESCHED, &req->wb_flags); 1022 clear_bit(PG_NEED_COMMIT, &req->wb_flags); 1023 dprintk(" server reboot detected\n"); 1024 } 1025 spin_unlock(&inode->i_lock); 1026 } else 1027 dprintk(" OK\n"); 1028 1029 out: 1030 if (atomic_dec_and_test(&req->wb_complete)) 1031 nfs_writepage_release(req); 1032 nfs_writedata_release(calldata); 1033 } 1034 1035 #if defined(CONFIG_NFS_V4_1) 1036 void nfs_write_prepare(struct rpc_task *task, void *calldata) 1037 { 1038 struct nfs_write_data *data = calldata; 1039 struct nfs_client *clp = (NFS_SERVER(data->inode))->nfs_client; 1040 1041 if (nfs4_setup_sequence(clp, &data->args.seq_args, 1042 &data->res.seq_res, 1, task)) 1043 return; 1044 rpc_call_start(task); 1045 } 1046 #endif /* CONFIG_NFS_V4_1 */ 1047 1048 static const struct rpc_call_ops nfs_write_partial_ops = { 1049 #if defined(CONFIG_NFS_V4_1) 1050 .rpc_call_prepare = nfs_write_prepare, 1051 #endif /* CONFIG_NFS_V4_1 */ 1052 .rpc_call_done = nfs_writeback_done_partial, 1053 .rpc_release = nfs_writeback_release_partial, 1054 }; 1055 1056 /* 1057 * Handle a write reply that flushes a whole page. 1058 * 1059 * FIXME: There is an inherent race with invalidate_inode_pages and 1060 * writebacks since the page->count is kept > 1 for as long 1061 * as the page has a write request pending. 1062 */ 1063 static void nfs_writeback_done_full(struct rpc_task *task, void *calldata) 1064 { 1065 struct nfs_write_data *data = calldata; 1066 1067 nfs_writeback_done(task, data); 1068 } 1069 1070 static void nfs_writeback_release_full(void *calldata) 1071 { 1072 struct nfs_write_data *data = calldata; 1073 int status = data->task.tk_status; 1074 1075 /* Update attributes as result of writeback. */ 1076 while (!list_empty(&data->pages)) { 1077 struct nfs_page *req = nfs_list_entry(data->pages.next); 1078 struct page *page = req->wb_page; 1079 1080 nfs_list_remove_request(req); 1081 1082 dprintk("NFS: %5u write (%s/%lld %d@%lld)", 1083 data->task.tk_pid, 1084 req->wb_context->path.dentry->d_inode->i_sb->s_id, 1085 (long long)NFS_FILEID(req->wb_context->path.dentry->d_inode), 1086 req->wb_bytes, 1087 (long long)req_offset(req)); 1088 1089 if (status < 0) { 1090 nfs_set_pageerror(page); 1091 nfs_context_set_write_error(req->wb_context, status); 1092 dprintk(", error = %d\n", status); 1093 goto remove_request; 1094 } 1095 1096 if (nfs_write_need_commit(data)) { 1097 memcpy(&req->wb_verf, &data->verf, sizeof(req->wb_verf)); 1098 nfs_mark_request_commit(req); 1099 dprintk(" marked for commit\n"); 1100 goto next; 1101 } 1102 dprintk(" OK\n"); 1103 remove_request: 1104 nfs_inode_remove_request(req); 1105 next: 1106 nfs_clear_page_tag_locked(req); 1107 nfs_end_page_writeback(page); 1108 } 1109 nfs_writedata_release(calldata); 1110 } 1111 1112 static const struct rpc_call_ops nfs_write_full_ops = { 1113 #if defined(CONFIG_NFS_V4_1) 1114 .rpc_call_prepare = nfs_write_prepare, 1115 #endif /* CONFIG_NFS_V4_1 */ 1116 .rpc_call_done = nfs_writeback_done_full, 1117 .rpc_release = nfs_writeback_release_full, 1118 }; 1119 1120 1121 /* 1122 * This function is called when the WRITE call is complete. 1123 */ 1124 int nfs_writeback_done(struct rpc_task *task, struct nfs_write_data *data) 1125 { 1126 struct nfs_writeargs *argp = &data->args; 1127 struct nfs_writeres *resp = &data->res; 1128 struct nfs_server *server = NFS_SERVER(data->inode); 1129 int status; 1130 1131 dprintk("NFS: %5u nfs_writeback_done (status %d)\n", 1132 task->tk_pid, task->tk_status); 1133 1134 /* 1135 * ->write_done will attempt to use post-op attributes to detect 1136 * conflicting writes by other clients. A strict interpretation 1137 * of close-to-open would allow us to continue caching even if 1138 * another writer had changed the file, but some applications 1139 * depend on tighter cache coherency when writing. 1140 */ 1141 status = NFS_PROTO(data->inode)->write_done(task, data); 1142 if (status != 0) 1143 return status; 1144 nfs_add_stats(data->inode, NFSIOS_SERVERWRITTENBYTES, resp->count); 1145 1146 #if defined(CONFIG_NFS_V3) || defined(CONFIG_NFS_V4) 1147 if (resp->verf->committed < argp->stable && task->tk_status >= 0) { 1148 /* We tried a write call, but the server did not 1149 * commit data to stable storage even though we 1150 * requested it. 1151 * Note: There is a known bug in Tru64 < 5.0 in which 1152 * the server reports NFS_DATA_SYNC, but performs 1153 * NFS_FILE_SYNC. We therefore implement this checking 1154 * as a dprintk() in order to avoid filling syslog. 1155 */ 1156 static unsigned long complain; 1157 1158 if (time_before(complain, jiffies)) { 1159 dprintk("NFS: faulty NFS server %s:" 1160 " (committed = %d) != (stable = %d)\n", 1161 server->nfs_client->cl_hostname, 1162 resp->verf->committed, argp->stable); 1163 complain = jiffies + 300 * HZ; 1164 } 1165 } 1166 #endif 1167 /* Is this a short write? */ 1168 if (task->tk_status >= 0 && resp->count < argp->count) { 1169 static unsigned long complain; 1170 1171 nfs_inc_stats(data->inode, NFSIOS_SHORTWRITE); 1172 1173 /* Has the server at least made some progress? */ 1174 if (resp->count != 0) { 1175 /* Was this an NFSv2 write or an NFSv3 stable write? */ 1176 if (resp->verf->committed != NFS_UNSTABLE) { 1177 /* Resend from where the server left off */ 1178 argp->offset += resp->count; 1179 argp->pgbase += resp->count; 1180 argp->count -= resp->count; 1181 } else { 1182 /* Resend as a stable write in order to avoid 1183 * headaches in the case of a server crash. 1184 */ 1185 argp->stable = NFS_FILE_SYNC; 1186 } 1187 nfs_restart_rpc(task, server->nfs_client); 1188 return -EAGAIN; 1189 } 1190 if (time_before(complain, jiffies)) { 1191 printk(KERN_WARNING 1192 "NFS: Server wrote zero bytes, expected %u.\n", 1193 argp->count); 1194 complain = jiffies + 300 * HZ; 1195 } 1196 /* Can't do anything about it except throw an error. */ 1197 task->tk_status = -EIO; 1198 } 1199 return 0; 1200 } 1201 1202 1203 #if defined(CONFIG_NFS_V3) || defined(CONFIG_NFS_V4) 1204 static int nfs_commit_set_lock(struct nfs_inode *nfsi, int may_wait) 1205 { 1206 if (!test_and_set_bit(NFS_INO_COMMIT, &nfsi->flags)) 1207 return 1; 1208 if (may_wait && !out_of_line_wait_on_bit_lock(&nfsi->flags, 1209 NFS_INO_COMMIT, nfs_wait_bit_killable, 1210 TASK_KILLABLE)) 1211 return 1; 1212 return 0; 1213 } 1214 1215 static void nfs_commit_clear_lock(struct nfs_inode *nfsi) 1216 { 1217 clear_bit(NFS_INO_COMMIT, &nfsi->flags); 1218 smp_mb__after_clear_bit(); 1219 wake_up_bit(&nfsi->flags, NFS_INO_COMMIT); 1220 } 1221 1222 1223 static void nfs_commitdata_release(void *data) 1224 { 1225 struct nfs_write_data *wdata = data; 1226 1227 put_nfs_open_context(wdata->args.context); 1228 nfs_commit_free(wdata); 1229 } 1230 1231 /* 1232 * Set up the argument/result storage required for the RPC call. 1233 */ 1234 static int nfs_commit_rpcsetup(struct list_head *head, 1235 struct nfs_write_data *data, 1236 int how) 1237 { 1238 struct nfs_page *first = nfs_list_entry(head->next); 1239 struct inode *inode = first->wb_context->path.dentry->d_inode; 1240 int priority = flush_task_priority(how); 1241 struct rpc_task *task; 1242 struct rpc_message msg = { 1243 .rpc_argp = &data->args, 1244 .rpc_resp = &data->res, 1245 .rpc_cred = first->wb_context->cred, 1246 }; 1247 struct rpc_task_setup task_setup_data = { 1248 .task = &data->task, 1249 .rpc_client = NFS_CLIENT(inode), 1250 .rpc_message = &msg, 1251 .callback_ops = &nfs_commit_ops, 1252 .callback_data = data, 1253 .workqueue = nfsiod_workqueue, 1254 .flags = RPC_TASK_ASYNC, 1255 .priority = priority, 1256 }; 1257 1258 /* Set up the RPC argument and reply structs 1259 * NB: take care not to mess about with data->commit et al. */ 1260 1261 list_splice_init(head, &data->pages); 1262 1263 data->inode = inode; 1264 data->cred = msg.rpc_cred; 1265 1266 data->args.fh = NFS_FH(data->inode); 1267 /* Note: we always request a commit of the entire inode */ 1268 data->args.offset = 0; 1269 data->args.count = 0; 1270 data->args.context = get_nfs_open_context(first->wb_context); 1271 data->res.count = 0; 1272 data->res.fattr = &data->fattr; 1273 data->res.verf = &data->verf; 1274 nfs_fattr_init(&data->fattr); 1275 1276 /* Set up the initial task struct. */ 1277 NFS_PROTO(inode)->commit_setup(data, &msg); 1278 1279 dprintk("NFS: %5u initiated commit call\n", data->task.tk_pid); 1280 1281 task = rpc_run_task(&task_setup_data); 1282 if (IS_ERR(task)) 1283 return PTR_ERR(task); 1284 rpc_put_task(task); 1285 return 0; 1286 } 1287 1288 /* 1289 * Commit dirty pages 1290 */ 1291 static int 1292 nfs_commit_list(struct inode *inode, struct list_head *head, int how) 1293 { 1294 struct nfs_write_data *data; 1295 struct nfs_page *req; 1296 1297 data = nfs_commitdata_alloc(); 1298 1299 if (!data) 1300 goto out_bad; 1301 1302 /* Set up the argument struct */ 1303 return nfs_commit_rpcsetup(head, data, how); 1304 out_bad: 1305 while (!list_empty(head)) { 1306 req = nfs_list_entry(head->next); 1307 nfs_list_remove_request(req); 1308 nfs_mark_request_commit(req); 1309 dec_zone_page_state(req->wb_page, NR_UNSTABLE_NFS); 1310 dec_bdi_stat(req->wb_page->mapping->backing_dev_info, 1311 BDI_RECLAIMABLE); 1312 nfs_clear_page_tag_locked(req); 1313 } 1314 nfs_commit_clear_lock(NFS_I(inode)); 1315 return -ENOMEM; 1316 } 1317 1318 /* 1319 * COMMIT call returned 1320 */ 1321 static void nfs_commit_done(struct rpc_task *task, void *calldata) 1322 { 1323 struct nfs_write_data *data = calldata; 1324 1325 dprintk("NFS: %5u nfs_commit_done (status %d)\n", 1326 task->tk_pid, task->tk_status); 1327 1328 /* Call the NFS version-specific code */ 1329 if (NFS_PROTO(data->inode)->commit_done(task, data) != 0) 1330 return; 1331 } 1332 1333 static void nfs_commit_release(void *calldata) 1334 { 1335 struct nfs_write_data *data = calldata; 1336 struct nfs_page *req; 1337 int status = data->task.tk_status; 1338 1339 while (!list_empty(&data->pages)) { 1340 req = nfs_list_entry(data->pages.next); 1341 nfs_list_remove_request(req); 1342 nfs_clear_request_commit(req); 1343 1344 dprintk("NFS: commit (%s/%lld %d@%lld)", 1345 req->wb_context->path.dentry->d_inode->i_sb->s_id, 1346 (long long)NFS_FILEID(req->wb_context->path.dentry->d_inode), 1347 req->wb_bytes, 1348 (long long)req_offset(req)); 1349 if (status < 0) { 1350 nfs_context_set_write_error(req->wb_context, status); 1351 nfs_inode_remove_request(req); 1352 dprintk(", error = %d\n", status); 1353 goto next; 1354 } 1355 1356 /* Okay, COMMIT succeeded, apparently. Check the verifier 1357 * returned by the server against all stored verfs. */ 1358 if (!memcmp(req->wb_verf.verifier, data->verf.verifier, sizeof(data->verf.verifier))) { 1359 /* We have a match */ 1360 nfs_inode_remove_request(req); 1361 dprintk(" OK\n"); 1362 goto next; 1363 } 1364 /* We have a mismatch. Write the page again */ 1365 dprintk(" mismatch\n"); 1366 nfs_mark_request_dirty(req); 1367 next: 1368 nfs_clear_page_tag_locked(req); 1369 } 1370 nfs_commit_clear_lock(NFS_I(data->inode)); 1371 nfs_commitdata_release(calldata); 1372 } 1373 1374 static const struct rpc_call_ops nfs_commit_ops = { 1375 #if defined(CONFIG_NFS_V4_1) 1376 .rpc_call_prepare = nfs_write_prepare, 1377 #endif /* CONFIG_NFS_V4_1 */ 1378 .rpc_call_done = nfs_commit_done, 1379 .rpc_release = nfs_commit_release, 1380 }; 1381 1382 static int nfs_commit_inode(struct inode *inode, int how) 1383 { 1384 LIST_HEAD(head); 1385 int may_wait = how & FLUSH_SYNC; 1386 int res = 0; 1387 1388 if (!nfs_commit_set_lock(NFS_I(inode), may_wait)) 1389 goto out_mark_dirty; 1390 spin_lock(&inode->i_lock); 1391 res = nfs_scan_commit(inode, &head, 0, 0); 1392 spin_unlock(&inode->i_lock); 1393 if (res) { 1394 int error = nfs_commit_list(inode, &head, how); 1395 if (error < 0) 1396 return error; 1397 if (may_wait) 1398 wait_on_bit(&NFS_I(inode)->flags, NFS_INO_COMMIT, 1399 nfs_wait_bit_killable, 1400 TASK_KILLABLE); 1401 else 1402 goto out_mark_dirty; 1403 } else 1404 nfs_commit_clear_lock(NFS_I(inode)); 1405 return res; 1406 /* Note: If we exit without ensuring that the commit is complete, 1407 * we must mark the inode as dirty. Otherwise, future calls to 1408 * sync_inode() with the WB_SYNC_ALL flag set will fail to ensure 1409 * that the data is on the disk. 1410 */ 1411 out_mark_dirty: 1412 __mark_inode_dirty(inode, I_DIRTY_DATASYNC); 1413 return res; 1414 } 1415 1416 static int nfs_commit_unstable_pages(struct inode *inode, struct writeback_control *wbc) 1417 { 1418 struct nfs_inode *nfsi = NFS_I(inode); 1419 int flags = FLUSH_SYNC; 1420 int ret = 0; 1421 1422 /* Don't commit yet if this is a non-blocking flush and there are 1423 * lots of outstanding writes for this mapping. 1424 */ 1425 if (wbc->sync_mode == WB_SYNC_NONE && 1426 nfsi->ncommit <= (nfsi->npages >> 1)) 1427 goto out_mark_dirty; 1428 1429 if (wbc->nonblocking || wbc->for_background) 1430 flags = 0; 1431 ret = nfs_commit_inode(inode, flags); 1432 if (ret >= 0) { 1433 if (wbc->sync_mode == WB_SYNC_NONE) { 1434 if (ret < wbc->nr_to_write) 1435 wbc->nr_to_write -= ret; 1436 else 1437 wbc->nr_to_write = 0; 1438 } 1439 return 0; 1440 } 1441 out_mark_dirty: 1442 __mark_inode_dirty(inode, I_DIRTY_DATASYNC); 1443 return ret; 1444 } 1445 #else 1446 static int nfs_commit_inode(struct inode *inode, int how) 1447 { 1448 return 0; 1449 } 1450 1451 static int nfs_commit_unstable_pages(struct inode *inode, struct writeback_control *wbc) 1452 { 1453 return 0; 1454 } 1455 #endif 1456 1457 int nfs_write_inode(struct inode *inode, struct writeback_control *wbc) 1458 { 1459 return nfs_commit_unstable_pages(inode, wbc); 1460 } 1461 1462 /* 1463 * flush the inode to disk. 1464 */ 1465 int nfs_wb_all(struct inode *inode) 1466 { 1467 struct writeback_control wbc = { 1468 .sync_mode = WB_SYNC_ALL, 1469 .nr_to_write = LONG_MAX, 1470 .range_start = 0, 1471 .range_end = LLONG_MAX, 1472 }; 1473 1474 return sync_inode(inode, &wbc); 1475 } 1476 1477 int nfs_wb_page_cancel(struct inode *inode, struct page *page) 1478 { 1479 struct nfs_page *req; 1480 int ret = 0; 1481 1482 BUG_ON(!PageLocked(page)); 1483 for (;;) { 1484 wait_on_page_writeback(page); 1485 req = nfs_page_find_request(page); 1486 if (req == NULL) 1487 break; 1488 if (nfs_lock_request_dontget(req)) { 1489 nfs_inode_remove_request(req); 1490 /* 1491 * In case nfs_inode_remove_request has marked the 1492 * page as being dirty 1493 */ 1494 cancel_dirty_page(page, PAGE_CACHE_SIZE); 1495 nfs_unlock_request(req); 1496 break; 1497 } 1498 ret = nfs_wait_on_request(req); 1499 nfs_release_request(req); 1500 if (ret < 0) 1501 break; 1502 } 1503 return ret; 1504 } 1505 1506 /* 1507 * Write back all requests on one page - we do this before reading it. 1508 */ 1509 int nfs_wb_page(struct inode *inode, struct page *page) 1510 { 1511 loff_t range_start = page_offset(page); 1512 loff_t range_end = range_start + (loff_t)(PAGE_CACHE_SIZE - 1); 1513 struct writeback_control wbc = { 1514 .sync_mode = WB_SYNC_ALL, 1515 .nr_to_write = 0, 1516 .range_start = range_start, 1517 .range_end = range_end, 1518 }; 1519 int ret; 1520 1521 for (;;) { 1522 wait_on_page_writeback(page); 1523 if (clear_page_dirty_for_io(page)) { 1524 ret = nfs_writepage_locked(page, &wbc); 1525 if (ret < 0) 1526 goto out_error; 1527 continue; 1528 } 1529 if (!PagePrivate(page)) 1530 break; 1531 ret = nfs_commit_inode(inode, FLUSH_SYNC); 1532 if (ret < 0) 1533 goto out_error; 1534 } 1535 return 0; 1536 out_error: 1537 return ret; 1538 } 1539 1540 #ifdef CONFIG_MIGRATION 1541 int nfs_migrate_page(struct address_space *mapping, struct page *newpage, 1542 struct page *page) 1543 { 1544 struct nfs_page *req; 1545 int ret; 1546 1547 nfs_fscache_release_page(page, GFP_KERNEL); 1548 1549 req = nfs_find_and_lock_request(page); 1550 ret = PTR_ERR(req); 1551 if (IS_ERR(req)) 1552 goto out; 1553 1554 ret = migrate_page(mapping, newpage, page); 1555 if (!req) 1556 goto out; 1557 if (ret) 1558 goto out_unlock; 1559 page_cache_get(newpage); 1560 spin_lock(&mapping->host->i_lock); 1561 req->wb_page = newpage; 1562 SetPagePrivate(newpage); 1563 set_page_private(newpage, (unsigned long)req); 1564 ClearPagePrivate(page); 1565 set_page_private(page, 0); 1566 spin_unlock(&mapping->host->i_lock); 1567 page_cache_release(page); 1568 out_unlock: 1569 nfs_clear_page_tag_locked(req); 1570 out: 1571 return ret; 1572 } 1573 #endif 1574 1575 int __init nfs_init_writepagecache(void) 1576 { 1577 nfs_wdata_cachep = kmem_cache_create("nfs_write_data", 1578 sizeof(struct nfs_write_data), 1579 0, SLAB_HWCACHE_ALIGN, 1580 NULL); 1581 if (nfs_wdata_cachep == NULL) 1582 return -ENOMEM; 1583 1584 nfs_wdata_mempool = mempool_create_slab_pool(MIN_POOL_WRITE, 1585 nfs_wdata_cachep); 1586 if (nfs_wdata_mempool == NULL) 1587 return -ENOMEM; 1588 1589 nfs_commit_mempool = mempool_create_slab_pool(MIN_POOL_COMMIT, 1590 nfs_wdata_cachep); 1591 if (nfs_commit_mempool == NULL) 1592 return -ENOMEM; 1593 1594 /* 1595 * NFS congestion size, scale with available memory. 1596 * 1597 * 64MB: 8192k 1598 * 128MB: 11585k 1599 * 256MB: 16384k 1600 * 512MB: 23170k 1601 * 1GB: 32768k 1602 * 2GB: 46340k 1603 * 4GB: 65536k 1604 * 8GB: 92681k 1605 * 16GB: 131072k 1606 * 1607 * This allows larger machines to have larger/more transfers. 1608 * Limit the default to 256M 1609 */ 1610 nfs_congestion_kb = (16*int_sqrt(totalram_pages)) << (PAGE_SHIFT-10); 1611 if (nfs_congestion_kb > 256*1024) 1612 nfs_congestion_kb = 256*1024; 1613 1614 return 0; 1615 } 1616 1617 void nfs_destroy_writepagecache(void) 1618 { 1619 mempool_destroy(nfs_commit_mempool); 1620 mempool_destroy(nfs_wdata_mempool); 1621 kmem_cache_destroy(nfs_wdata_cachep); 1622 } 1623 1624