xref: /linux/fs/nfs/write.c (revision e190bfe56841551b1ad5abb42ebd0c4798cc8c01)
1 /*
2  * linux/fs/nfs/write.c
3  *
4  * Write file data over NFS.
5  *
6  * Copyright (C) 1996, 1997, Olaf Kirch <okir@monad.swb.de>
7  */
8 
9 #include <linux/types.h>
10 #include <linux/slab.h>
11 #include <linux/mm.h>
12 #include <linux/pagemap.h>
13 #include <linux/file.h>
14 #include <linux/writeback.h>
15 #include <linux/swap.h>
16 #include <linux/migrate.h>
17 
18 #include <linux/sunrpc/clnt.h>
19 #include <linux/nfs_fs.h>
20 #include <linux/nfs_mount.h>
21 #include <linux/nfs_page.h>
22 #include <linux/backing-dev.h>
23 
24 #include <asm/uaccess.h>
25 
26 #include "delegation.h"
27 #include "internal.h"
28 #include "iostat.h"
29 #include "nfs4_fs.h"
30 #include "fscache.h"
31 
32 #define NFSDBG_FACILITY		NFSDBG_PAGECACHE
33 
34 #define MIN_POOL_WRITE		(32)
35 #define MIN_POOL_COMMIT		(4)
36 
37 /*
38  * Local function declarations
39  */
40 static void nfs_pageio_init_write(struct nfs_pageio_descriptor *desc,
41 				  struct inode *inode, int ioflags);
42 static void nfs_redirty_request(struct nfs_page *req);
43 static const struct rpc_call_ops nfs_write_partial_ops;
44 static const struct rpc_call_ops nfs_write_full_ops;
45 static const struct rpc_call_ops nfs_commit_ops;
46 
47 static struct kmem_cache *nfs_wdata_cachep;
48 static mempool_t *nfs_wdata_mempool;
49 static mempool_t *nfs_commit_mempool;
50 
51 struct nfs_write_data *nfs_commitdata_alloc(void)
52 {
53 	struct nfs_write_data *p = mempool_alloc(nfs_commit_mempool, GFP_NOFS);
54 
55 	if (p) {
56 		memset(p, 0, sizeof(*p));
57 		INIT_LIST_HEAD(&p->pages);
58 		p->res.seq_res.sr_slotid = NFS4_MAX_SLOT_TABLE;
59 	}
60 	return p;
61 }
62 
63 void nfs_commit_free(struct nfs_write_data *p)
64 {
65 	if (p && (p->pagevec != &p->page_array[0]))
66 		kfree(p->pagevec);
67 	mempool_free(p, nfs_commit_mempool);
68 }
69 
70 struct nfs_write_data *nfs_writedata_alloc(unsigned int pagecount)
71 {
72 	struct nfs_write_data *p = mempool_alloc(nfs_wdata_mempool, GFP_NOFS);
73 
74 	if (p) {
75 		memset(p, 0, sizeof(*p));
76 		INIT_LIST_HEAD(&p->pages);
77 		p->npages = pagecount;
78 		p->res.seq_res.sr_slotid = NFS4_MAX_SLOT_TABLE;
79 		if (pagecount <= ARRAY_SIZE(p->page_array))
80 			p->pagevec = p->page_array;
81 		else {
82 			p->pagevec = kcalloc(pagecount, sizeof(struct page *), GFP_NOFS);
83 			if (!p->pagevec) {
84 				mempool_free(p, nfs_wdata_mempool);
85 				p = NULL;
86 			}
87 		}
88 	}
89 	return p;
90 }
91 
92 void nfs_writedata_free(struct nfs_write_data *p)
93 {
94 	if (p && (p->pagevec != &p->page_array[0]))
95 		kfree(p->pagevec);
96 	mempool_free(p, nfs_wdata_mempool);
97 }
98 
99 static void nfs_writedata_release(struct nfs_write_data *wdata)
100 {
101 	put_nfs_open_context(wdata->args.context);
102 	nfs_writedata_free(wdata);
103 }
104 
105 static void nfs_context_set_write_error(struct nfs_open_context *ctx, int error)
106 {
107 	ctx->error = error;
108 	smp_wmb();
109 	set_bit(NFS_CONTEXT_ERROR_WRITE, &ctx->flags);
110 }
111 
112 static struct nfs_page *nfs_page_find_request_locked(struct page *page)
113 {
114 	struct nfs_page *req = NULL;
115 
116 	if (PagePrivate(page)) {
117 		req = (struct nfs_page *)page_private(page);
118 		if (req != NULL)
119 			kref_get(&req->wb_kref);
120 	}
121 	return req;
122 }
123 
124 static struct nfs_page *nfs_page_find_request(struct page *page)
125 {
126 	struct inode *inode = page->mapping->host;
127 	struct nfs_page *req = NULL;
128 
129 	spin_lock(&inode->i_lock);
130 	req = nfs_page_find_request_locked(page);
131 	spin_unlock(&inode->i_lock);
132 	return req;
133 }
134 
135 /* Adjust the file length if we're writing beyond the end */
136 static void nfs_grow_file(struct page *page, unsigned int offset, unsigned int count)
137 {
138 	struct inode *inode = page->mapping->host;
139 	loff_t end, i_size;
140 	pgoff_t end_index;
141 
142 	spin_lock(&inode->i_lock);
143 	i_size = i_size_read(inode);
144 	end_index = (i_size - 1) >> PAGE_CACHE_SHIFT;
145 	if (i_size > 0 && page->index < end_index)
146 		goto out;
147 	end = ((loff_t)page->index << PAGE_CACHE_SHIFT) + ((loff_t)offset+count);
148 	if (i_size >= end)
149 		goto out;
150 	i_size_write(inode, end);
151 	nfs_inc_stats(inode, NFSIOS_EXTENDWRITE);
152 out:
153 	spin_unlock(&inode->i_lock);
154 }
155 
156 /* A writeback failed: mark the page as bad, and invalidate the page cache */
157 static void nfs_set_pageerror(struct page *page)
158 {
159 	SetPageError(page);
160 	nfs_zap_mapping(page->mapping->host, page->mapping);
161 }
162 
163 /* We can set the PG_uptodate flag if we see that a write request
164  * covers the full page.
165  */
166 static void nfs_mark_uptodate(struct page *page, unsigned int base, unsigned int count)
167 {
168 	if (PageUptodate(page))
169 		return;
170 	if (base != 0)
171 		return;
172 	if (count != nfs_page_length(page))
173 		return;
174 	SetPageUptodate(page);
175 }
176 
177 static int wb_priority(struct writeback_control *wbc)
178 {
179 	if (wbc->for_reclaim)
180 		return FLUSH_HIGHPRI | FLUSH_STABLE;
181 	if (wbc->for_kupdate || wbc->for_background)
182 		return FLUSH_LOWPRI;
183 	return 0;
184 }
185 
186 /*
187  * NFS congestion control
188  */
189 
190 int nfs_congestion_kb;
191 
192 #define NFS_CONGESTION_ON_THRESH 	(nfs_congestion_kb >> (PAGE_SHIFT-10))
193 #define NFS_CONGESTION_OFF_THRESH	\
194 	(NFS_CONGESTION_ON_THRESH - (NFS_CONGESTION_ON_THRESH >> 2))
195 
196 static int nfs_set_page_writeback(struct page *page)
197 {
198 	int ret = test_set_page_writeback(page);
199 
200 	if (!ret) {
201 		struct inode *inode = page->mapping->host;
202 		struct nfs_server *nfss = NFS_SERVER(inode);
203 
204 		page_cache_get(page);
205 		if (atomic_long_inc_return(&nfss->writeback) >
206 				NFS_CONGESTION_ON_THRESH) {
207 			set_bdi_congested(&nfss->backing_dev_info,
208 						BLK_RW_ASYNC);
209 		}
210 	}
211 	return ret;
212 }
213 
214 static void nfs_end_page_writeback(struct page *page)
215 {
216 	struct inode *inode = page->mapping->host;
217 	struct nfs_server *nfss = NFS_SERVER(inode);
218 
219 	end_page_writeback(page);
220 	page_cache_release(page);
221 	if (atomic_long_dec_return(&nfss->writeback) < NFS_CONGESTION_OFF_THRESH)
222 		clear_bdi_congested(&nfss->backing_dev_info, BLK_RW_ASYNC);
223 }
224 
225 static struct nfs_page *nfs_find_and_lock_request(struct page *page)
226 {
227 	struct inode *inode = page->mapping->host;
228 	struct nfs_page *req;
229 	int ret;
230 
231 	spin_lock(&inode->i_lock);
232 	for (;;) {
233 		req = nfs_page_find_request_locked(page);
234 		if (req == NULL)
235 			break;
236 		if (nfs_set_page_tag_locked(req))
237 			break;
238 		/* Note: If we hold the page lock, as is the case in nfs_writepage,
239 		 *	 then the call to nfs_set_page_tag_locked() will always
240 		 *	 succeed provided that someone hasn't already marked the
241 		 *	 request as dirty (in which case we don't care).
242 		 */
243 		spin_unlock(&inode->i_lock);
244 		ret = nfs_wait_on_request(req);
245 		nfs_release_request(req);
246 		if (ret != 0)
247 			return ERR_PTR(ret);
248 		spin_lock(&inode->i_lock);
249 	}
250 	spin_unlock(&inode->i_lock);
251 	return req;
252 }
253 
254 /*
255  * Find an associated nfs write request, and prepare to flush it out
256  * May return an error if the user signalled nfs_wait_on_request().
257  */
258 static int nfs_page_async_flush(struct nfs_pageio_descriptor *pgio,
259 				struct page *page)
260 {
261 	struct nfs_page *req;
262 	int ret = 0;
263 
264 	req = nfs_find_and_lock_request(page);
265 	if (!req)
266 		goto out;
267 	ret = PTR_ERR(req);
268 	if (IS_ERR(req))
269 		goto out;
270 
271 	ret = nfs_set_page_writeback(page);
272 	BUG_ON(ret != 0);
273 	BUG_ON(test_bit(PG_CLEAN, &req->wb_flags));
274 
275 	if (!nfs_pageio_add_request(pgio, req)) {
276 		nfs_redirty_request(req);
277 		ret = pgio->pg_error;
278 	}
279 out:
280 	return ret;
281 }
282 
283 static int nfs_do_writepage(struct page *page, struct writeback_control *wbc, struct nfs_pageio_descriptor *pgio)
284 {
285 	struct inode *inode = page->mapping->host;
286 
287 	nfs_inc_stats(inode, NFSIOS_VFSWRITEPAGE);
288 	nfs_add_stats(inode, NFSIOS_WRITEPAGES, 1);
289 
290 	nfs_pageio_cond_complete(pgio, page->index);
291 	return nfs_page_async_flush(pgio, page);
292 }
293 
294 /*
295  * Write an mmapped page to the server.
296  */
297 static int nfs_writepage_locked(struct page *page, struct writeback_control *wbc)
298 {
299 	struct nfs_pageio_descriptor pgio;
300 	int err;
301 
302 	nfs_pageio_init_write(&pgio, page->mapping->host, wb_priority(wbc));
303 	err = nfs_do_writepage(page, wbc, &pgio);
304 	nfs_pageio_complete(&pgio);
305 	if (err < 0)
306 		return err;
307 	if (pgio.pg_error < 0)
308 		return pgio.pg_error;
309 	return 0;
310 }
311 
312 int nfs_writepage(struct page *page, struct writeback_control *wbc)
313 {
314 	int ret;
315 
316 	ret = nfs_writepage_locked(page, wbc);
317 	unlock_page(page);
318 	return ret;
319 }
320 
321 static int nfs_writepages_callback(struct page *page, struct writeback_control *wbc, void *data)
322 {
323 	int ret;
324 
325 	ret = nfs_do_writepage(page, wbc, data);
326 	unlock_page(page);
327 	return ret;
328 }
329 
330 int nfs_writepages(struct address_space *mapping, struct writeback_control *wbc)
331 {
332 	struct inode *inode = mapping->host;
333 	unsigned long *bitlock = &NFS_I(inode)->flags;
334 	struct nfs_pageio_descriptor pgio;
335 	int err;
336 
337 	/* Stop dirtying of new pages while we sync */
338 	err = wait_on_bit_lock(bitlock, NFS_INO_FLUSHING,
339 			nfs_wait_bit_killable, TASK_KILLABLE);
340 	if (err)
341 		goto out_err;
342 
343 	nfs_inc_stats(inode, NFSIOS_VFSWRITEPAGES);
344 
345 	nfs_pageio_init_write(&pgio, inode, wb_priority(wbc));
346 	err = write_cache_pages(mapping, wbc, nfs_writepages_callback, &pgio);
347 	nfs_pageio_complete(&pgio);
348 
349 	clear_bit_unlock(NFS_INO_FLUSHING, bitlock);
350 	smp_mb__after_clear_bit();
351 	wake_up_bit(bitlock, NFS_INO_FLUSHING);
352 
353 	if (err < 0)
354 		goto out_err;
355 	err = pgio.pg_error;
356 	if (err < 0)
357 		goto out_err;
358 	return 0;
359 out_err:
360 	return err;
361 }
362 
363 /*
364  * Insert a write request into an inode
365  */
366 static int nfs_inode_add_request(struct inode *inode, struct nfs_page *req)
367 {
368 	struct nfs_inode *nfsi = NFS_I(inode);
369 	int error;
370 
371 	error = radix_tree_preload(GFP_NOFS);
372 	if (error != 0)
373 		goto out;
374 
375 	/* Lock the request! */
376 	nfs_lock_request_dontget(req);
377 
378 	spin_lock(&inode->i_lock);
379 	error = radix_tree_insert(&nfsi->nfs_page_tree, req->wb_index, req);
380 	BUG_ON(error);
381 	if (!nfsi->npages) {
382 		igrab(inode);
383 		if (nfs_have_delegation(inode, FMODE_WRITE))
384 			nfsi->change_attr++;
385 	}
386 	SetPagePrivate(req->wb_page);
387 	set_page_private(req->wb_page, (unsigned long)req);
388 	nfsi->npages++;
389 	kref_get(&req->wb_kref);
390 	radix_tree_tag_set(&nfsi->nfs_page_tree, req->wb_index,
391 				NFS_PAGE_TAG_LOCKED);
392 	spin_unlock(&inode->i_lock);
393 	radix_tree_preload_end();
394 out:
395 	return error;
396 }
397 
398 /*
399  * Remove a write request from an inode
400  */
401 static void nfs_inode_remove_request(struct nfs_page *req)
402 {
403 	struct inode *inode = req->wb_context->path.dentry->d_inode;
404 	struct nfs_inode *nfsi = NFS_I(inode);
405 
406 	BUG_ON (!NFS_WBACK_BUSY(req));
407 
408 	spin_lock(&inode->i_lock);
409 	set_page_private(req->wb_page, 0);
410 	ClearPagePrivate(req->wb_page);
411 	radix_tree_delete(&nfsi->nfs_page_tree, req->wb_index);
412 	nfsi->npages--;
413 	if (!nfsi->npages) {
414 		spin_unlock(&inode->i_lock);
415 		iput(inode);
416 	} else
417 		spin_unlock(&inode->i_lock);
418 	nfs_clear_request(req);
419 	nfs_release_request(req);
420 }
421 
422 static void
423 nfs_mark_request_dirty(struct nfs_page *req)
424 {
425 	__set_page_dirty_nobuffers(req->wb_page);
426 	__mark_inode_dirty(req->wb_page->mapping->host, I_DIRTY_DATASYNC);
427 }
428 
429 #if defined(CONFIG_NFS_V3) || defined(CONFIG_NFS_V4)
430 /*
431  * Add a request to the inode's commit list.
432  */
433 static void
434 nfs_mark_request_commit(struct nfs_page *req)
435 {
436 	struct inode *inode = req->wb_context->path.dentry->d_inode;
437 	struct nfs_inode *nfsi = NFS_I(inode);
438 
439 	spin_lock(&inode->i_lock);
440 	set_bit(PG_CLEAN, &(req)->wb_flags);
441 	radix_tree_tag_set(&nfsi->nfs_page_tree,
442 			req->wb_index,
443 			NFS_PAGE_TAG_COMMIT);
444 	nfsi->ncommit++;
445 	spin_unlock(&inode->i_lock);
446 	inc_zone_page_state(req->wb_page, NR_UNSTABLE_NFS);
447 	inc_bdi_stat(req->wb_page->mapping->backing_dev_info, BDI_RECLAIMABLE);
448 	__mark_inode_dirty(inode, I_DIRTY_DATASYNC);
449 }
450 
451 static int
452 nfs_clear_request_commit(struct nfs_page *req)
453 {
454 	struct page *page = req->wb_page;
455 
456 	if (test_and_clear_bit(PG_CLEAN, &(req)->wb_flags)) {
457 		dec_zone_page_state(page, NR_UNSTABLE_NFS);
458 		dec_bdi_stat(page->mapping->backing_dev_info, BDI_RECLAIMABLE);
459 		return 1;
460 	}
461 	return 0;
462 }
463 
464 static inline
465 int nfs_write_need_commit(struct nfs_write_data *data)
466 {
467 	return data->verf.committed != NFS_FILE_SYNC;
468 }
469 
470 static inline
471 int nfs_reschedule_unstable_write(struct nfs_page *req)
472 {
473 	if (test_and_clear_bit(PG_NEED_COMMIT, &req->wb_flags)) {
474 		nfs_mark_request_commit(req);
475 		return 1;
476 	}
477 	if (test_and_clear_bit(PG_NEED_RESCHED, &req->wb_flags)) {
478 		nfs_mark_request_dirty(req);
479 		return 1;
480 	}
481 	return 0;
482 }
483 #else
484 static inline void
485 nfs_mark_request_commit(struct nfs_page *req)
486 {
487 }
488 
489 static inline int
490 nfs_clear_request_commit(struct nfs_page *req)
491 {
492 	return 0;
493 }
494 
495 static inline
496 int nfs_write_need_commit(struct nfs_write_data *data)
497 {
498 	return 0;
499 }
500 
501 static inline
502 int nfs_reschedule_unstable_write(struct nfs_page *req)
503 {
504 	return 0;
505 }
506 #endif
507 
508 #if defined(CONFIG_NFS_V3) || defined(CONFIG_NFS_V4)
509 static int
510 nfs_need_commit(struct nfs_inode *nfsi)
511 {
512 	return radix_tree_tagged(&nfsi->nfs_page_tree, NFS_PAGE_TAG_COMMIT);
513 }
514 
515 /*
516  * nfs_scan_commit - Scan an inode for commit requests
517  * @inode: NFS inode to scan
518  * @dst: destination list
519  * @idx_start: lower bound of page->index to scan.
520  * @npages: idx_start + npages sets the upper bound to scan.
521  *
522  * Moves requests from the inode's 'commit' request list.
523  * The requests are *not* checked to ensure that they form a contiguous set.
524  */
525 static int
526 nfs_scan_commit(struct inode *inode, struct list_head *dst, pgoff_t idx_start, unsigned int npages)
527 {
528 	struct nfs_inode *nfsi = NFS_I(inode);
529 	int ret;
530 
531 	if (!nfs_need_commit(nfsi))
532 		return 0;
533 
534 	ret = nfs_scan_list(nfsi, dst, idx_start, npages, NFS_PAGE_TAG_COMMIT);
535 	if (ret > 0)
536 		nfsi->ncommit -= ret;
537 	if (nfs_need_commit(NFS_I(inode)))
538 		__mark_inode_dirty(inode, I_DIRTY_DATASYNC);
539 	return ret;
540 }
541 #else
542 static inline int nfs_need_commit(struct nfs_inode *nfsi)
543 {
544 	return 0;
545 }
546 
547 static inline int nfs_scan_commit(struct inode *inode, struct list_head *dst, pgoff_t idx_start, unsigned int npages)
548 {
549 	return 0;
550 }
551 #endif
552 
553 /*
554  * Search for an existing write request, and attempt to update
555  * it to reflect a new dirty region on a given page.
556  *
557  * If the attempt fails, then the existing request is flushed out
558  * to disk.
559  */
560 static struct nfs_page *nfs_try_to_update_request(struct inode *inode,
561 		struct page *page,
562 		unsigned int offset,
563 		unsigned int bytes)
564 {
565 	struct nfs_page *req;
566 	unsigned int rqend;
567 	unsigned int end;
568 	int error;
569 
570 	if (!PagePrivate(page))
571 		return NULL;
572 
573 	end = offset + bytes;
574 	spin_lock(&inode->i_lock);
575 
576 	for (;;) {
577 		req = nfs_page_find_request_locked(page);
578 		if (req == NULL)
579 			goto out_unlock;
580 
581 		rqend = req->wb_offset + req->wb_bytes;
582 		/*
583 		 * Tell the caller to flush out the request if
584 		 * the offsets are non-contiguous.
585 		 * Note: nfs_flush_incompatible() will already
586 		 * have flushed out requests having wrong owners.
587 		 */
588 		if (offset > rqend
589 		    || end < req->wb_offset)
590 			goto out_flushme;
591 
592 		if (nfs_set_page_tag_locked(req))
593 			break;
594 
595 		/* The request is locked, so wait and then retry */
596 		spin_unlock(&inode->i_lock);
597 		error = nfs_wait_on_request(req);
598 		nfs_release_request(req);
599 		if (error != 0)
600 			goto out_err;
601 		spin_lock(&inode->i_lock);
602 	}
603 
604 	if (nfs_clear_request_commit(req) &&
605 			radix_tree_tag_clear(&NFS_I(inode)->nfs_page_tree,
606 				req->wb_index, NFS_PAGE_TAG_COMMIT) != NULL)
607 		NFS_I(inode)->ncommit--;
608 
609 	/* Okay, the request matches. Update the region */
610 	if (offset < req->wb_offset) {
611 		req->wb_offset = offset;
612 		req->wb_pgbase = offset;
613 	}
614 	if (end > rqend)
615 		req->wb_bytes = end - req->wb_offset;
616 	else
617 		req->wb_bytes = rqend - req->wb_offset;
618 out_unlock:
619 	spin_unlock(&inode->i_lock);
620 	return req;
621 out_flushme:
622 	spin_unlock(&inode->i_lock);
623 	nfs_release_request(req);
624 	error = nfs_wb_page(inode, page);
625 out_err:
626 	return ERR_PTR(error);
627 }
628 
629 /*
630  * Try to update an existing write request, or create one if there is none.
631  *
632  * Note: Should always be called with the Page Lock held to prevent races
633  * if we have to add a new request. Also assumes that the caller has
634  * already called nfs_flush_incompatible() if necessary.
635  */
636 static struct nfs_page * nfs_setup_write_request(struct nfs_open_context* ctx,
637 		struct page *page, unsigned int offset, unsigned int bytes)
638 {
639 	struct inode *inode = page->mapping->host;
640 	struct nfs_page	*req;
641 	int error;
642 
643 	req = nfs_try_to_update_request(inode, page, offset, bytes);
644 	if (req != NULL)
645 		goto out;
646 	req = nfs_create_request(ctx, inode, page, offset, bytes);
647 	if (IS_ERR(req))
648 		goto out;
649 	error = nfs_inode_add_request(inode, req);
650 	if (error != 0) {
651 		nfs_release_request(req);
652 		req = ERR_PTR(error);
653 	}
654 out:
655 	return req;
656 }
657 
658 static int nfs_writepage_setup(struct nfs_open_context *ctx, struct page *page,
659 		unsigned int offset, unsigned int count)
660 {
661 	struct nfs_page	*req;
662 
663 	req = nfs_setup_write_request(ctx, page, offset, count);
664 	if (IS_ERR(req))
665 		return PTR_ERR(req);
666 	nfs_mark_request_dirty(req);
667 	/* Update file length */
668 	nfs_grow_file(page, offset, count);
669 	nfs_mark_uptodate(page, req->wb_pgbase, req->wb_bytes);
670 	nfs_mark_request_dirty(req);
671 	nfs_clear_page_tag_locked(req);
672 	return 0;
673 }
674 
675 int nfs_flush_incompatible(struct file *file, struct page *page)
676 {
677 	struct nfs_open_context *ctx = nfs_file_open_context(file);
678 	struct nfs_page	*req;
679 	int do_flush, status;
680 	/*
681 	 * Look for a request corresponding to this page. If there
682 	 * is one, and it belongs to another file, we flush it out
683 	 * before we try to copy anything into the page. Do this
684 	 * due to the lack of an ACCESS-type call in NFSv2.
685 	 * Also do the same if we find a request from an existing
686 	 * dropped page.
687 	 */
688 	do {
689 		req = nfs_page_find_request(page);
690 		if (req == NULL)
691 			return 0;
692 		do_flush = req->wb_page != page || req->wb_context != ctx;
693 		nfs_release_request(req);
694 		if (!do_flush)
695 			return 0;
696 		status = nfs_wb_page(page->mapping->host, page);
697 	} while (status == 0);
698 	return status;
699 }
700 
701 /*
702  * If the page cache is marked as unsafe or invalid, then we can't rely on
703  * the PageUptodate() flag. In this case, we will need to turn off
704  * write optimisations that depend on the page contents being correct.
705  */
706 static int nfs_write_pageuptodate(struct page *page, struct inode *inode)
707 {
708 	return PageUptodate(page) &&
709 		!(NFS_I(inode)->cache_validity & (NFS_INO_REVAL_PAGECACHE|NFS_INO_INVALID_DATA));
710 }
711 
712 /*
713  * Update and possibly write a cached page of an NFS file.
714  *
715  * XXX: Keep an eye on generic_file_read to make sure it doesn't do bad
716  * things with a page scheduled for an RPC call (e.g. invalidate it).
717  */
718 int nfs_updatepage(struct file *file, struct page *page,
719 		unsigned int offset, unsigned int count)
720 {
721 	struct nfs_open_context *ctx = nfs_file_open_context(file);
722 	struct inode	*inode = page->mapping->host;
723 	int		status = 0;
724 
725 	nfs_inc_stats(inode, NFSIOS_VFSUPDATEPAGE);
726 
727 	dprintk("NFS:       nfs_updatepage(%s/%s %d@%lld)\n",
728 		file->f_path.dentry->d_parent->d_name.name,
729 		file->f_path.dentry->d_name.name, count,
730 		(long long)(page_offset(page) + offset));
731 
732 	/* If we're not using byte range locks, and we know the page
733 	 * is up to date, it may be more efficient to extend the write
734 	 * to cover the entire page in order to avoid fragmentation
735 	 * inefficiencies.
736 	 */
737 	if (nfs_write_pageuptodate(page, inode) &&
738 			inode->i_flock == NULL &&
739 			!(file->f_flags & O_DSYNC)) {
740 		count = max(count + offset, nfs_page_length(page));
741 		offset = 0;
742 	}
743 
744 	status = nfs_writepage_setup(ctx, page, offset, count);
745 	if (status < 0)
746 		nfs_set_pageerror(page);
747 
748 	dprintk("NFS:       nfs_updatepage returns %d (isize %lld)\n",
749 			status, (long long)i_size_read(inode));
750 	return status;
751 }
752 
753 static void nfs_writepage_release(struct nfs_page *req)
754 {
755 	struct page *page = req->wb_page;
756 
757 	if (PageError(req->wb_page) || !nfs_reschedule_unstable_write(req))
758 		nfs_inode_remove_request(req);
759 	nfs_clear_page_tag_locked(req);
760 	nfs_end_page_writeback(page);
761 }
762 
763 static int flush_task_priority(int how)
764 {
765 	switch (how & (FLUSH_HIGHPRI|FLUSH_LOWPRI)) {
766 		case FLUSH_HIGHPRI:
767 			return RPC_PRIORITY_HIGH;
768 		case FLUSH_LOWPRI:
769 			return RPC_PRIORITY_LOW;
770 	}
771 	return RPC_PRIORITY_NORMAL;
772 }
773 
774 /*
775  * Set up the argument/result storage required for the RPC call.
776  */
777 static int nfs_write_rpcsetup(struct nfs_page *req,
778 		struct nfs_write_data *data,
779 		const struct rpc_call_ops *call_ops,
780 		unsigned int count, unsigned int offset,
781 		int how)
782 {
783 	struct inode *inode = req->wb_context->path.dentry->d_inode;
784 	int priority = flush_task_priority(how);
785 	struct rpc_task *task;
786 	struct rpc_message msg = {
787 		.rpc_argp = &data->args,
788 		.rpc_resp = &data->res,
789 		.rpc_cred = req->wb_context->cred,
790 	};
791 	struct rpc_task_setup task_setup_data = {
792 		.rpc_client = NFS_CLIENT(inode),
793 		.task = &data->task,
794 		.rpc_message = &msg,
795 		.callback_ops = call_ops,
796 		.callback_data = data,
797 		.workqueue = nfsiod_workqueue,
798 		.flags = RPC_TASK_ASYNC,
799 		.priority = priority,
800 	};
801 	int ret = 0;
802 
803 	/* Set up the RPC argument and reply structs
804 	 * NB: take care not to mess about with data->commit et al. */
805 
806 	data->req = req;
807 	data->inode = inode = req->wb_context->path.dentry->d_inode;
808 	data->cred = msg.rpc_cred;
809 
810 	data->args.fh     = NFS_FH(inode);
811 	data->args.offset = req_offset(req) + offset;
812 	data->args.pgbase = req->wb_pgbase + offset;
813 	data->args.pages  = data->pagevec;
814 	data->args.count  = count;
815 	data->args.context = get_nfs_open_context(req->wb_context);
816 	data->args.stable  = NFS_UNSTABLE;
817 	if (how & FLUSH_STABLE) {
818 		data->args.stable = NFS_DATA_SYNC;
819 		if (!nfs_need_commit(NFS_I(inode)))
820 			data->args.stable = NFS_FILE_SYNC;
821 	}
822 
823 	data->res.fattr   = &data->fattr;
824 	data->res.count   = count;
825 	data->res.verf    = &data->verf;
826 	nfs_fattr_init(&data->fattr);
827 
828 	/* Set up the initial task struct.  */
829 	NFS_PROTO(inode)->write_setup(data, &msg);
830 
831 	dprintk("NFS: %5u initiated write call "
832 		"(req %s/%lld, %u bytes @ offset %llu)\n",
833 		data->task.tk_pid,
834 		inode->i_sb->s_id,
835 		(long long)NFS_FILEID(inode),
836 		count,
837 		(unsigned long long)data->args.offset);
838 
839 	task = rpc_run_task(&task_setup_data);
840 	if (IS_ERR(task)) {
841 		ret = PTR_ERR(task);
842 		goto out;
843 	}
844 	if (how & FLUSH_SYNC) {
845 		ret = rpc_wait_for_completion_task(task);
846 		if (ret == 0)
847 			ret = task->tk_status;
848 	}
849 	rpc_put_task(task);
850 out:
851 	return ret;
852 }
853 
854 /* If a nfs_flush_* function fails, it should remove reqs from @head and
855  * call this on each, which will prepare them to be retried on next
856  * writeback using standard nfs.
857  */
858 static void nfs_redirty_request(struct nfs_page *req)
859 {
860 	struct page *page = req->wb_page;
861 
862 	nfs_mark_request_dirty(req);
863 	nfs_clear_page_tag_locked(req);
864 	nfs_end_page_writeback(page);
865 }
866 
867 /*
868  * Generate multiple small requests to write out a single
869  * contiguous dirty area on one page.
870  */
871 static int nfs_flush_multi(struct inode *inode, struct list_head *head, unsigned int npages, size_t count, int how)
872 {
873 	struct nfs_page *req = nfs_list_entry(head->next);
874 	struct page *page = req->wb_page;
875 	struct nfs_write_data *data;
876 	size_t wsize = NFS_SERVER(inode)->wsize, nbytes;
877 	unsigned int offset;
878 	int requests = 0;
879 	int ret = 0;
880 	LIST_HEAD(list);
881 
882 	nfs_list_remove_request(req);
883 
884 	nbytes = count;
885 	do {
886 		size_t len = min(nbytes, wsize);
887 
888 		data = nfs_writedata_alloc(1);
889 		if (!data)
890 			goto out_bad;
891 		list_add(&data->pages, &list);
892 		requests++;
893 		nbytes -= len;
894 	} while (nbytes != 0);
895 	atomic_set(&req->wb_complete, requests);
896 
897 	ClearPageError(page);
898 	offset = 0;
899 	nbytes = count;
900 	do {
901 		int ret2;
902 
903 		data = list_entry(list.next, struct nfs_write_data, pages);
904 		list_del_init(&data->pages);
905 
906 		data->pagevec[0] = page;
907 
908 		if (nbytes < wsize)
909 			wsize = nbytes;
910 		ret2 = nfs_write_rpcsetup(req, data, &nfs_write_partial_ops,
911 				   wsize, offset, how);
912 		if (ret == 0)
913 			ret = ret2;
914 		offset += wsize;
915 		nbytes -= wsize;
916 	} while (nbytes != 0);
917 
918 	return ret;
919 
920 out_bad:
921 	while (!list_empty(&list)) {
922 		data = list_entry(list.next, struct nfs_write_data, pages);
923 		list_del(&data->pages);
924 		nfs_writedata_release(data);
925 	}
926 	nfs_redirty_request(req);
927 	return -ENOMEM;
928 }
929 
930 /*
931  * Create an RPC task for the given write request and kick it.
932  * The page must have been locked by the caller.
933  *
934  * It may happen that the page we're passed is not marked dirty.
935  * This is the case if nfs_updatepage detects a conflicting request
936  * that has been written but not committed.
937  */
938 static int nfs_flush_one(struct inode *inode, struct list_head *head, unsigned int npages, size_t count, int how)
939 {
940 	struct nfs_page		*req;
941 	struct page		**pages;
942 	struct nfs_write_data	*data;
943 
944 	data = nfs_writedata_alloc(npages);
945 	if (!data)
946 		goto out_bad;
947 
948 	pages = data->pagevec;
949 	while (!list_empty(head)) {
950 		req = nfs_list_entry(head->next);
951 		nfs_list_remove_request(req);
952 		nfs_list_add_request(req, &data->pages);
953 		ClearPageError(req->wb_page);
954 		*pages++ = req->wb_page;
955 	}
956 	req = nfs_list_entry(data->pages.next);
957 
958 	/* Set up the argument struct */
959 	return nfs_write_rpcsetup(req, data, &nfs_write_full_ops, count, 0, how);
960  out_bad:
961 	while (!list_empty(head)) {
962 		req = nfs_list_entry(head->next);
963 		nfs_list_remove_request(req);
964 		nfs_redirty_request(req);
965 	}
966 	return -ENOMEM;
967 }
968 
969 static void nfs_pageio_init_write(struct nfs_pageio_descriptor *pgio,
970 				  struct inode *inode, int ioflags)
971 {
972 	size_t wsize = NFS_SERVER(inode)->wsize;
973 
974 	if (wsize < PAGE_CACHE_SIZE)
975 		nfs_pageio_init(pgio, inode, nfs_flush_multi, wsize, ioflags);
976 	else
977 		nfs_pageio_init(pgio, inode, nfs_flush_one, wsize, ioflags);
978 }
979 
980 /*
981  * Handle a write reply that flushed part of a page.
982  */
983 static void nfs_writeback_done_partial(struct rpc_task *task, void *calldata)
984 {
985 	struct nfs_write_data	*data = calldata;
986 
987 	dprintk("NFS: %5u write(%s/%lld %d@%lld)",
988 		task->tk_pid,
989 		data->req->wb_context->path.dentry->d_inode->i_sb->s_id,
990 		(long long)
991 		  NFS_FILEID(data->req->wb_context->path.dentry->d_inode),
992 		data->req->wb_bytes, (long long)req_offset(data->req));
993 
994 	nfs_writeback_done(task, data);
995 }
996 
997 static void nfs_writeback_release_partial(void *calldata)
998 {
999 	struct nfs_write_data	*data = calldata;
1000 	struct nfs_page		*req = data->req;
1001 	struct page		*page = req->wb_page;
1002 	int status = data->task.tk_status;
1003 
1004 	if (status < 0) {
1005 		nfs_set_pageerror(page);
1006 		nfs_context_set_write_error(req->wb_context, status);
1007 		dprintk(", error = %d\n", status);
1008 		goto out;
1009 	}
1010 
1011 	if (nfs_write_need_commit(data)) {
1012 		struct inode *inode = page->mapping->host;
1013 
1014 		spin_lock(&inode->i_lock);
1015 		if (test_bit(PG_NEED_RESCHED, &req->wb_flags)) {
1016 			/* Do nothing we need to resend the writes */
1017 		} else if (!test_and_set_bit(PG_NEED_COMMIT, &req->wb_flags)) {
1018 			memcpy(&req->wb_verf, &data->verf, sizeof(req->wb_verf));
1019 			dprintk(" defer commit\n");
1020 		} else if (memcmp(&req->wb_verf, &data->verf, sizeof(req->wb_verf))) {
1021 			set_bit(PG_NEED_RESCHED, &req->wb_flags);
1022 			clear_bit(PG_NEED_COMMIT, &req->wb_flags);
1023 			dprintk(" server reboot detected\n");
1024 		}
1025 		spin_unlock(&inode->i_lock);
1026 	} else
1027 		dprintk(" OK\n");
1028 
1029 out:
1030 	if (atomic_dec_and_test(&req->wb_complete))
1031 		nfs_writepage_release(req);
1032 	nfs_writedata_release(calldata);
1033 }
1034 
1035 #if defined(CONFIG_NFS_V4_1)
1036 void nfs_write_prepare(struct rpc_task *task, void *calldata)
1037 {
1038 	struct nfs_write_data *data = calldata;
1039 	struct nfs_client *clp = (NFS_SERVER(data->inode))->nfs_client;
1040 
1041 	if (nfs4_setup_sequence(clp, &data->args.seq_args,
1042 				&data->res.seq_res, 1, task))
1043 		return;
1044 	rpc_call_start(task);
1045 }
1046 #endif /* CONFIG_NFS_V4_1 */
1047 
1048 static const struct rpc_call_ops nfs_write_partial_ops = {
1049 #if defined(CONFIG_NFS_V4_1)
1050 	.rpc_call_prepare = nfs_write_prepare,
1051 #endif /* CONFIG_NFS_V4_1 */
1052 	.rpc_call_done = nfs_writeback_done_partial,
1053 	.rpc_release = nfs_writeback_release_partial,
1054 };
1055 
1056 /*
1057  * Handle a write reply that flushes a whole page.
1058  *
1059  * FIXME: There is an inherent race with invalidate_inode_pages and
1060  *	  writebacks since the page->count is kept > 1 for as long
1061  *	  as the page has a write request pending.
1062  */
1063 static void nfs_writeback_done_full(struct rpc_task *task, void *calldata)
1064 {
1065 	struct nfs_write_data	*data = calldata;
1066 
1067 	nfs_writeback_done(task, data);
1068 }
1069 
1070 static void nfs_writeback_release_full(void *calldata)
1071 {
1072 	struct nfs_write_data	*data = calldata;
1073 	int status = data->task.tk_status;
1074 
1075 	/* Update attributes as result of writeback. */
1076 	while (!list_empty(&data->pages)) {
1077 		struct nfs_page *req = nfs_list_entry(data->pages.next);
1078 		struct page *page = req->wb_page;
1079 
1080 		nfs_list_remove_request(req);
1081 
1082 		dprintk("NFS: %5u write (%s/%lld %d@%lld)",
1083 			data->task.tk_pid,
1084 			req->wb_context->path.dentry->d_inode->i_sb->s_id,
1085 			(long long)NFS_FILEID(req->wb_context->path.dentry->d_inode),
1086 			req->wb_bytes,
1087 			(long long)req_offset(req));
1088 
1089 		if (status < 0) {
1090 			nfs_set_pageerror(page);
1091 			nfs_context_set_write_error(req->wb_context, status);
1092 			dprintk(", error = %d\n", status);
1093 			goto remove_request;
1094 		}
1095 
1096 		if (nfs_write_need_commit(data)) {
1097 			memcpy(&req->wb_verf, &data->verf, sizeof(req->wb_verf));
1098 			nfs_mark_request_commit(req);
1099 			dprintk(" marked for commit\n");
1100 			goto next;
1101 		}
1102 		dprintk(" OK\n");
1103 remove_request:
1104 		nfs_inode_remove_request(req);
1105 	next:
1106 		nfs_clear_page_tag_locked(req);
1107 		nfs_end_page_writeback(page);
1108 	}
1109 	nfs_writedata_release(calldata);
1110 }
1111 
1112 static const struct rpc_call_ops nfs_write_full_ops = {
1113 #if defined(CONFIG_NFS_V4_1)
1114 	.rpc_call_prepare = nfs_write_prepare,
1115 #endif /* CONFIG_NFS_V4_1 */
1116 	.rpc_call_done = nfs_writeback_done_full,
1117 	.rpc_release = nfs_writeback_release_full,
1118 };
1119 
1120 
1121 /*
1122  * This function is called when the WRITE call is complete.
1123  */
1124 int nfs_writeback_done(struct rpc_task *task, struct nfs_write_data *data)
1125 {
1126 	struct nfs_writeargs	*argp = &data->args;
1127 	struct nfs_writeres	*resp = &data->res;
1128 	struct nfs_server	*server = NFS_SERVER(data->inode);
1129 	int status;
1130 
1131 	dprintk("NFS: %5u nfs_writeback_done (status %d)\n",
1132 		task->tk_pid, task->tk_status);
1133 
1134 	/*
1135 	 * ->write_done will attempt to use post-op attributes to detect
1136 	 * conflicting writes by other clients.  A strict interpretation
1137 	 * of close-to-open would allow us to continue caching even if
1138 	 * another writer had changed the file, but some applications
1139 	 * depend on tighter cache coherency when writing.
1140 	 */
1141 	status = NFS_PROTO(data->inode)->write_done(task, data);
1142 	if (status != 0)
1143 		return status;
1144 	nfs_add_stats(data->inode, NFSIOS_SERVERWRITTENBYTES, resp->count);
1145 
1146 #if defined(CONFIG_NFS_V3) || defined(CONFIG_NFS_V4)
1147 	if (resp->verf->committed < argp->stable && task->tk_status >= 0) {
1148 		/* We tried a write call, but the server did not
1149 		 * commit data to stable storage even though we
1150 		 * requested it.
1151 		 * Note: There is a known bug in Tru64 < 5.0 in which
1152 		 *	 the server reports NFS_DATA_SYNC, but performs
1153 		 *	 NFS_FILE_SYNC. We therefore implement this checking
1154 		 *	 as a dprintk() in order to avoid filling syslog.
1155 		 */
1156 		static unsigned long    complain;
1157 
1158 		if (time_before(complain, jiffies)) {
1159 			dprintk("NFS:       faulty NFS server %s:"
1160 				" (committed = %d) != (stable = %d)\n",
1161 				server->nfs_client->cl_hostname,
1162 				resp->verf->committed, argp->stable);
1163 			complain = jiffies + 300 * HZ;
1164 		}
1165 	}
1166 #endif
1167 	/* Is this a short write? */
1168 	if (task->tk_status >= 0 && resp->count < argp->count) {
1169 		static unsigned long    complain;
1170 
1171 		nfs_inc_stats(data->inode, NFSIOS_SHORTWRITE);
1172 
1173 		/* Has the server at least made some progress? */
1174 		if (resp->count != 0) {
1175 			/* Was this an NFSv2 write or an NFSv3 stable write? */
1176 			if (resp->verf->committed != NFS_UNSTABLE) {
1177 				/* Resend from where the server left off */
1178 				argp->offset += resp->count;
1179 				argp->pgbase += resp->count;
1180 				argp->count -= resp->count;
1181 			} else {
1182 				/* Resend as a stable write in order to avoid
1183 				 * headaches in the case of a server crash.
1184 				 */
1185 				argp->stable = NFS_FILE_SYNC;
1186 			}
1187 			nfs_restart_rpc(task, server->nfs_client);
1188 			return -EAGAIN;
1189 		}
1190 		if (time_before(complain, jiffies)) {
1191 			printk(KERN_WARNING
1192 			       "NFS: Server wrote zero bytes, expected %u.\n",
1193 					argp->count);
1194 			complain = jiffies + 300 * HZ;
1195 		}
1196 		/* Can't do anything about it except throw an error. */
1197 		task->tk_status = -EIO;
1198 	}
1199 	return 0;
1200 }
1201 
1202 
1203 #if defined(CONFIG_NFS_V3) || defined(CONFIG_NFS_V4)
1204 static int nfs_commit_set_lock(struct nfs_inode *nfsi, int may_wait)
1205 {
1206 	if (!test_and_set_bit(NFS_INO_COMMIT, &nfsi->flags))
1207 		return 1;
1208 	if (may_wait && !out_of_line_wait_on_bit_lock(&nfsi->flags,
1209 				NFS_INO_COMMIT, nfs_wait_bit_killable,
1210 				TASK_KILLABLE))
1211 		return 1;
1212 	return 0;
1213 }
1214 
1215 static void nfs_commit_clear_lock(struct nfs_inode *nfsi)
1216 {
1217 	clear_bit(NFS_INO_COMMIT, &nfsi->flags);
1218 	smp_mb__after_clear_bit();
1219 	wake_up_bit(&nfsi->flags, NFS_INO_COMMIT);
1220 }
1221 
1222 
1223 static void nfs_commitdata_release(void *data)
1224 {
1225 	struct nfs_write_data *wdata = data;
1226 
1227 	put_nfs_open_context(wdata->args.context);
1228 	nfs_commit_free(wdata);
1229 }
1230 
1231 /*
1232  * Set up the argument/result storage required for the RPC call.
1233  */
1234 static int nfs_commit_rpcsetup(struct list_head *head,
1235 		struct nfs_write_data *data,
1236 		int how)
1237 {
1238 	struct nfs_page *first = nfs_list_entry(head->next);
1239 	struct inode *inode = first->wb_context->path.dentry->d_inode;
1240 	int priority = flush_task_priority(how);
1241 	struct rpc_task *task;
1242 	struct rpc_message msg = {
1243 		.rpc_argp = &data->args,
1244 		.rpc_resp = &data->res,
1245 		.rpc_cred = first->wb_context->cred,
1246 	};
1247 	struct rpc_task_setup task_setup_data = {
1248 		.task = &data->task,
1249 		.rpc_client = NFS_CLIENT(inode),
1250 		.rpc_message = &msg,
1251 		.callback_ops = &nfs_commit_ops,
1252 		.callback_data = data,
1253 		.workqueue = nfsiod_workqueue,
1254 		.flags = RPC_TASK_ASYNC,
1255 		.priority = priority,
1256 	};
1257 
1258 	/* Set up the RPC argument and reply structs
1259 	 * NB: take care not to mess about with data->commit et al. */
1260 
1261 	list_splice_init(head, &data->pages);
1262 
1263 	data->inode	  = inode;
1264 	data->cred	  = msg.rpc_cred;
1265 
1266 	data->args.fh     = NFS_FH(data->inode);
1267 	/* Note: we always request a commit of the entire inode */
1268 	data->args.offset = 0;
1269 	data->args.count  = 0;
1270 	data->args.context = get_nfs_open_context(first->wb_context);
1271 	data->res.count   = 0;
1272 	data->res.fattr   = &data->fattr;
1273 	data->res.verf    = &data->verf;
1274 	nfs_fattr_init(&data->fattr);
1275 
1276 	/* Set up the initial task struct.  */
1277 	NFS_PROTO(inode)->commit_setup(data, &msg);
1278 
1279 	dprintk("NFS: %5u initiated commit call\n", data->task.tk_pid);
1280 
1281 	task = rpc_run_task(&task_setup_data);
1282 	if (IS_ERR(task))
1283 		return PTR_ERR(task);
1284 	rpc_put_task(task);
1285 	return 0;
1286 }
1287 
1288 /*
1289  * Commit dirty pages
1290  */
1291 static int
1292 nfs_commit_list(struct inode *inode, struct list_head *head, int how)
1293 {
1294 	struct nfs_write_data	*data;
1295 	struct nfs_page         *req;
1296 
1297 	data = nfs_commitdata_alloc();
1298 
1299 	if (!data)
1300 		goto out_bad;
1301 
1302 	/* Set up the argument struct */
1303 	return nfs_commit_rpcsetup(head, data, how);
1304  out_bad:
1305 	while (!list_empty(head)) {
1306 		req = nfs_list_entry(head->next);
1307 		nfs_list_remove_request(req);
1308 		nfs_mark_request_commit(req);
1309 		dec_zone_page_state(req->wb_page, NR_UNSTABLE_NFS);
1310 		dec_bdi_stat(req->wb_page->mapping->backing_dev_info,
1311 				BDI_RECLAIMABLE);
1312 		nfs_clear_page_tag_locked(req);
1313 	}
1314 	nfs_commit_clear_lock(NFS_I(inode));
1315 	return -ENOMEM;
1316 }
1317 
1318 /*
1319  * COMMIT call returned
1320  */
1321 static void nfs_commit_done(struct rpc_task *task, void *calldata)
1322 {
1323 	struct nfs_write_data	*data = calldata;
1324 
1325         dprintk("NFS: %5u nfs_commit_done (status %d)\n",
1326                                 task->tk_pid, task->tk_status);
1327 
1328 	/* Call the NFS version-specific code */
1329 	if (NFS_PROTO(data->inode)->commit_done(task, data) != 0)
1330 		return;
1331 }
1332 
1333 static void nfs_commit_release(void *calldata)
1334 {
1335 	struct nfs_write_data	*data = calldata;
1336 	struct nfs_page		*req;
1337 	int status = data->task.tk_status;
1338 
1339 	while (!list_empty(&data->pages)) {
1340 		req = nfs_list_entry(data->pages.next);
1341 		nfs_list_remove_request(req);
1342 		nfs_clear_request_commit(req);
1343 
1344 		dprintk("NFS:       commit (%s/%lld %d@%lld)",
1345 			req->wb_context->path.dentry->d_inode->i_sb->s_id,
1346 			(long long)NFS_FILEID(req->wb_context->path.dentry->d_inode),
1347 			req->wb_bytes,
1348 			(long long)req_offset(req));
1349 		if (status < 0) {
1350 			nfs_context_set_write_error(req->wb_context, status);
1351 			nfs_inode_remove_request(req);
1352 			dprintk(", error = %d\n", status);
1353 			goto next;
1354 		}
1355 
1356 		/* Okay, COMMIT succeeded, apparently. Check the verifier
1357 		 * returned by the server against all stored verfs. */
1358 		if (!memcmp(req->wb_verf.verifier, data->verf.verifier, sizeof(data->verf.verifier))) {
1359 			/* We have a match */
1360 			nfs_inode_remove_request(req);
1361 			dprintk(" OK\n");
1362 			goto next;
1363 		}
1364 		/* We have a mismatch. Write the page again */
1365 		dprintk(" mismatch\n");
1366 		nfs_mark_request_dirty(req);
1367 	next:
1368 		nfs_clear_page_tag_locked(req);
1369 	}
1370 	nfs_commit_clear_lock(NFS_I(data->inode));
1371 	nfs_commitdata_release(calldata);
1372 }
1373 
1374 static const struct rpc_call_ops nfs_commit_ops = {
1375 #if defined(CONFIG_NFS_V4_1)
1376 	.rpc_call_prepare = nfs_write_prepare,
1377 #endif /* CONFIG_NFS_V4_1 */
1378 	.rpc_call_done = nfs_commit_done,
1379 	.rpc_release = nfs_commit_release,
1380 };
1381 
1382 static int nfs_commit_inode(struct inode *inode, int how)
1383 {
1384 	LIST_HEAD(head);
1385 	int may_wait = how & FLUSH_SYNC;
1386 	int res = 0;
1387 
1388 	if (!nfs_commit_set_lock(NFS_I(inode), may_wait))
1389 		goto out_mark_dirty;
1390 	spin_lock(&inode->i_lock);
1391 	res = nfs_scan_commit(inode, &head, 0, 0);
1392 	spin_unlock(&inode->i_lock);
1393 	if (res) {
1394 		int error = nfs_commit_list(inode, &head, how);
1395 		if (error < 0)
1396 			return error;
1397 		if (may_wait)
1398 			wait_on_bit(&NFS_I(inode)->flags, NFS_INO_COMMIT,
1399 					nfs_wait_bit_killable,
1400 					TASK_KILLABLE);
1401 		else
1402 			goto out_mark_dirty;
1403 	} else
1404 		nfs_commit_clear_lock(NFS_I(inode));
1405 	return res;
1406 	/* Note: If we exit without ensuring that the commit is complete,
1407 	 * we must mark the inode as dirty. Otherwise, future calls to
1408 	 * sync_inode() with the WB_SYNC_ALL flag set will fail to ensure
1409 	 * that the data is on the disk.
1410 	 */
1411 out_mark_dirty:
1412 	__mark_inode_dirty(inode, I_DIRTY_DATASYNC);
1413 	return res;
1414 }
1415 
1416 static int nfs_commit_unstable_pages(struct inode *inode, struct writeback_control *wbc)
1417 {
1418 	struct nfs_inode *nfsi = NFS_I(inode);
1419 	int flags = FLUSH_SYNC;
1420 	int ret = 0;
1421 
1422 	/* Don't commit yet if this is a non-blocking flush and there are
1423 	 * lots of outstanding writes for this mapping.
1424 	 */
1425 	if (wbc->sync_mode == WB_SYNC_NONE &&
1426 	    nfsi->ncommit <= (nfsi->npages >> 1))
1427 		goto out_mark_dirty;
1428 
1429 	if (wbc->nonblocking || wbc->for_background)
1430 		flags = 0;
1431 	ret = nfs_commit_inode(inode, flags);
1432 	if (ret >= 0) {
1433 		if (wbc->sync_mode == WB_SYNC_NONE) {
1434 			if (ret < wbc->nr_to_write)
1435 				wbc->nr_to_write -= ret;
1436 			else
1437 				wbc->nr_to_write = 0;
1438 		}
1439 		return 0;
1440 	}
1441 out_mark_dirty:
1442 	__mark_inode_dirty(inode, I_DIRTY_DATASYNC);
1443 	return ret;
1444 }
1445 #else
1446 static int nfs_commit_inode(struct inode *inode, int how)
1447 {
1448 	return 0;
1449 }
1450 
1451 static int nfs_commit_unstable_pages(struct inode *inode, struct writeback_control *wbc)
1452 {
1453 	return 0;
1454 }
1455 #endif
1456 
1457 int nfs_write_inode(struct inode *inode, struct writeback_control *wbc)
1458 {
1459 	return nfs_commit_unstable_pages(inode, wbc);
1460 }
1461 
1462 /*
1463  * flush the inode to disk.
1464  */
1465 int nfs_wb_all(struct inode *inode)
1466 {
1467 	struct writeback_control wbc = {
1468 		.sync_mode = WB_SYNC_ALL,
1469 		.nr_to_write = LONG_MAX,
1470 		.range_start = 0,
1471 		.range_end = LLONG_MAX,
1472 	};
1473 
1474 	return sync_inode(inode, &wbc);
1475 }
1476 
1477 int nfs_wb_page_cancel(struct inode *inode, struct page *page)
1478 {
1479 	struct nfs_page *req;
1480 	int ret = 0;
1481 
1482 	BUG_ON(!PageLocked(page));
1483 	for (;;) {
1484 		wait_on_page_writeback(page);
1485 		req = nfs_page_find_request(page);
1486 		if (req == NULL)
1487 			break;
1488 		if (nfs_lock_request_dontget(req)) {
1489 			nfs_inode_remove_request(req);
1490 			/*
1491 			 * In case nfs_inode_remove_request has marked the
1492 			 * page as being dirty
1493 			 */
1494 			cancel_dirty_page(page, PAGE_CACHE_SIZE);
1495 			nfs_unlock_request(req);
1496 			break;
1497 		}
1498 		ret = nfs_wait_on_request(req);
1499 		nfs_release_request(req);
1500 		if (ret < 0)
1501 			break;
1502 	}
1503 	return ret;
1504 }
1505 
1506 /*
1507  * Write back all requests on one page - we do this before reading it.
1508  */
1509 int nfs_wb_page(struct inode *inode, struct page *page)
1510 {
1511 	loff_t range_start = page_offset(page);
1512 	loff_t range_end = range_start + (loff_t)(PAGE_CACHE_SIZE - 1);
1513 	struct writeback_control wbc = {
1514 		.sync_mode = WB_SYNC_ALL,
1515 		.nr_to_write = 0,
1516 		.range_start = range_start,
1517 		.range_end = range_end,
1518 	};
1519 	int ret;
1520 
1521 	for (;;) {
1522 		wait_on_page_writeback(page);
1523 		if (clear_page_dirty_for_io(page)) {
1524 			ret = nfs_writepage_locked(page, &wbc);
1525 			if (ret < 0)
1526 				goto out_error;
1527 			continue;
1528 		}
1529 		if (!PagePrivate(page))
1530 			break;
1531 		ret = nfs_commit_inode(inode, FLUSH_SYNC);
1532 		if (ret < 0)
1533 			goto out_error;
1534 	}
1535 	return 0;
1536 out_error:
1537 	return ret;
1538 }
1539 
1540 #ifdef CONFIG_MIGRATION
1541 int nfs_migrate_page(struct address_space *mapping, struct page *newpage,
1542 		struct page *page)
1543 {
1544 	struct nfs_page *req;
1545 	int ret;
1546 
1547 	nfs_fscache_release_page(page, GFP_KERNEL);
1548 
1549 	req = nfs_find_and_lock_request(page);
1550 	ret = PTR_ERR(req);
1551 	if (IS_ERR(req))
1552 		goto out;
1553 
1554 	ret = migrate_page(mapping, newpage, page);
1555 	if (!req)
1556 		goto out;
1557 	if (ret)
1558 		goto out_unlock;
1559 	page_cache_get(newpage);
1560 	spin_lock(&mapping->host->i_lock);
1561 	req->wb_page = newpage;
1562 	SetPagePrivate(newpage);
1563 	set_page_private(newpage, (unsigned long)req);
1564 	ClearPagePrivate(page);
1565 	set_page_private(page, 0);
1566 	spin_unlock(&mapping->host->i_lock);
1567 	page_cache_release(page);
1568 out_unlock:
1569 	nfs_clear_page_tag_locked(req);
1570 out:
1571 	return ret;
1572 }
1573 #endif
1574 
1575 int __init nfs_init_writepagecache(void)
1576 {
1577 	nfs_wdata_cachep = kmem_cache_create("nfs_write_data",
1578 					     sizeof(struct nfs_write_data),
1579 					     0, SLAB_HWCACHE_ALIGN,
1580 					     NULL);
1581 	if (nfs_wdata_cachep == NULL)
1582 		return -ENOMEM;
1583 
1584 	nfs_wdata_mempool = mempool_create_slab_pool(MIN_POOL_WRITE,
1585 						     nfs_wdata_cachep);
1586 	if (nfs_wdata_mempool == NULL)
1587 		return -ENOMEM;
1588 
1589 	nfs_commit_mempool = mempool_create_slab_pool(MIN_POOL_COMMIT,
1590 						      nfs_wdata_cachep);
1591 	if (nfs_commit_mempool == NULL)
1592 		return -ENOMEM;
1593 
1594 	/*
1595 	 * NFS congestion size, scale with available memory.
1596 	 *
1597 	 *  64MB:    8192k
1598 	 * 128MB:   11585k
1599 	 * 256MB:   16384k
1600 	 * 512MB:   23170k
1601 	 *   1GB:   32768k
1602 	 *   2GB:   46340k
1603 	 *   4GB:   65536k
1604 	 *   8GB:   92681k
1605 	 *  16GB:  131072k
1606 	 *
1607 	 * This allows larger machines to have larger/more transfers.
1608 	 * Limit the default to 256M
1609 	 */
1610 	nfs_congestion_kb = (16*int_sqrt(totalram_pages)) << (PAGE_SHIFT-10);
1611 	if (nfs_congestion_kb > 256*1024)
1612 		nfs_congestion_kb = 256*1024;
1613 
1614 	return 0;
1615 }
1616 
1617 void nfs_destroy_writepagecache(void)
1618 {
1619 	mempool_destroy(nfs_commit_mempool);
1620 	mempool_destroy(nfs_wdata_mempool);
1621 	kmem_cache_destroy(nfs_wdata_cachep);
1622 }
1623 
1624