xref: /linux/fs/nfs/write.c (revision d39d0ed196aa1685bb24771e92f78633c66ac9cb)
1 /*
2  * linux/fs/nfs/write.c
3  *
4  * Write file data over NFS.
5  *
6  * Copyright (C) 1996, 1997, Olaf Kirch <okir@monad.swb.de>
7  */
8 
9 #include <linux/types.h>
10 #include <linux/slab.h>
11 #include <linux/mm.h>
12 #include <linux/pagemap.h>
13 #include <linux/file.h>
14 #include <linux/writeback.h>
15 #include <linux/swap.h>
16 #include <linux/migrate.h>
17 
18 #include <linux/sunrpc/clnt.h>
19 #include <linux/nfs_fs.h>
20 #include <linux/nfs_mount.h>
21 #include <linux/nfs_page.h>
22 #include <linux/backing-dev.h>
23 
24 #include <asm/uaccess.h>
25 
26 #include "delegation.h"
27 #include "internal.h"
28 #include "iostat.h"
29 #include "nfs4_fs.h"
30 #include "fscache.h"
31 
32 #define NFSDBG_FACILITY		NFSDBG_PAGECACHE
33 
34 #define MIN_POOL_WRITE		(32)
35 #define MIN_POOL_COMMIT		(4)
36 
37 /*
38  * Local function declarations
39  */
40 static void nfs_pageio_init_write(struct nfs_pageio_descriptor *desc,
41 				  struct inode *inode, int ioflags);
42 static void nfs_redirty_request(struct nfs_page *req);
43 static const struct rpc_call_ops nfs_write_partial_ops;
44 static const struct rpc_call_ops nfs_write_full_ops;
45 static const struct rpc_call_ops nfs_commit_ops;
46 
47 static struct kmem_cache *nfs_wdata_cachep;
48 static mempool_t *nfs_wdata_mempool;
49 static mempool_t *nfs_commit_mempool;
50 
51 struct nfs_write_data *nfs_commitdata_alloc(void)
52 {
53 	struct nfs_write_data *p = mempool_alloc(nfs_commit_mempool, GFP_NOFS);
54 
55 	if (p) {
56 		memset(p, 0, sizeof(*p));
57 		INIT_LIST_HEAD(&p->pages);
58 		p->res.seq_res.sr_slotid = NFS4_MAX_SLOT_TABLE;
59 	}
60 	return p;
61 }
62 
63 void nfs_commit_free(struct nfs_write_data *p)
64 {
65 	if (p && (p->pagevec != &p->page_array[0]))
66 		kfree(p->pagevec);
67 	mempool_free(p, nfs_commit_mempool);
68 }
69 
70 struct nfs_write_data *nfs_writedata_alloc(unsigned int pagecount)
71 {
72 	struct nfs_write_data *p = mempool_alloc(nfs_wdata_mempool, GFP_NOFS);
73 
74 	if (p) {
75 		memset(p, 0, sizeof(*p));
76 		INIT_LIST_HEAD(&p->pages);
77 		p->npages = pagecount;
78 		p->res.seq_res.sr_slotid = NFS4_MAX_SLOT_TABLE;
79 		if (pagecount <= ARRAY_SIZE(p->page_array))
80 			p->pagevec = p->page_array;
81 		else {
82 			p->pagevec = kcalloc(pagecount, sizeof(struct page *), GFP_NOFS);
83 			if (!p->pagevec) {
84 				mempool_free(p, nfs_wdata_mempool);
85 				p = NULL;
86 			}
87 		}
88 	}
89 	return p;
90 }
91 
92 void nfs_writedata_free(struct nfs_write_data *p)
93 {
94 	if (p && (p->pagevec != &p->page_array[0]))
95 		kfree(p->pagevec);
96 	mempool_free(p, nfs_wdata_mempool);
97 }
98 
99 static void nfs_writedata_release(struct nfs_write_data *wdata)
100 {
101 	put_nfs_open_context(wdata->args.context);
102 	nfs_writedata_free(wdata);
103 }
104 
105 static void nfs_context_set_write_error(struct nfs_open_context *ctx, int error)
106 {
107 	ctx->error = error;
108 	smp_wmb();
109 	set_bit(NFS_CONTEXT_ERROR_WRITE, &ctx->flags);
110 }
111 
112 static struct nfs_page *nfs_page_find_request_locked(struct page *page)
113 {
114 	struct nfs_page *req = NULL;
115 
116 	if (PagePrivate(page)) {
117 		req = (struct nfs_page *)page_private(page);
118 		if (req != NULL)
119 			kref_get(&req->wb_kref);
120 	}
121 	return req;
122 }
123 
124 static struct nfs_page *nfs_page_find_request(struct page *page)
125 {
126 	struct inode *inode = page->mapping->host;
127 	struct nfs_page *req = NULL;
128 
129 	spin_lock(&inode->i_lock);
130 	req = nfs_page_find_request_locked(page);
131 	spin_unlock(&inode->i_lock);
132 	return req;
133 }
134 
135 /* Adjust the file length if we're writing beyond the end */
136 static void nfs_grow_file(struct page *page, unsigned int offset, unsigned int count)
137 {
138 	struct inode *inode = page->mapping->host;
139 	loff_t end, i_size;
140 	pgoff_t end_index;
141 
142 	spin_lock(&inode->i_lock);
143 	i_size = i_size_read(inode);
144 	end_index = (i_size - 1) >> PAGE_CACHE_SHIFT;
145 	if (i_size > 0 && page->index < end_index)
146 		goto out;
147 	end = ((loff_t)page->index << PAGE_CACHE_SHIFT) + ((loff_t)offset+count);
148 	if (i_size >= end)
149 		goto out;
150 	i_size_write(inode, end);
151 	nfs_inc_stats(inode, NFSIOS_EXTENDWRITE);
152 out:
153 	spin_unlock(&inode->i_lock);
154 }
155 
156 /* A writeback failed: mark the page as bad, and invalidate the page cache */
157 static void nfs_set_pageerror(struct page *page)
158 {
159 	SetPageError(page);
160 	nfs_zap_mapping(page->mapping->host, page->mapping);
161 }
162 
163 /* We can set the PG_uptodate flag if we see that a write request
164  * covers the full page.
165  */
166 static void nfs_mark_uptodate(struct page *page, unsigned int base, unsigned int count)
167 {
168 	if (PageUptodate(page))
169 		return;
170 	if (base != 0)
171 		return;
172 	if (count != nfs_page_length(page))
173 		return;
174 	SetPageUptodate(page);
175 }
176 
177 static int wb_priority(struct writeback_control *wbc)
178 {
179 	if (wbc->for_reclaim)
180 		return FLUSH_HIGHPRI | FLUSH_STABLE;
181 	if (wbc->for_kupdate || wbc->for_background)
182 		return FLUSH_LOWPRI;
183 	return 0;
184 }
185 
186 /*
187  * NFS congestion control
188  */
189 
190 int nfs_congestion_kb;
191 
192 #define NFS_CONGESTION_ON_THRESH 	(nfs_congestion_kb >> (PAGE_SHIFT-10))
193 #define NFS_CONGESTION_OFF_THRESH	\
194 	(NFS_CONGESTION_ON_THRESH - (NFS_CONGESTION_ON_THRESH >> 2))
195 
196 static int nfs_set_page_writeback(struct page *page)
197 {
198 	int ret = test_set_page_writeback(page);
199 
200 	if (!ret) {
201 		struct inode *inode = page->mapping->host;
202 		struct nfs_server *nfss = NFS_SERVER(inode);
203 
204 		page_cache_get(page);
205 		if (atomic_long_inc_return(&nfss->writeback) >
206 				NFS_CONGESTION_ON_THRESH) {
207 			set_bdi_congested(&nfss->backing_dev_info,
208 						BLK_RW_ASYNC);
209 		}
210 	}
211 	return ret;
212 }
213 
214 static void nfs_end_page_writeback(struct page *page)
215 {
216 	struct inode *inode = page->mapping->host;
217 	struct nfs_server *nfss = NFS_SERVER(inode);
218 
219 	end_page_writeback(page);
220 	page_cache_release(page);
221 	if (atomic_long_dec_return(&nfss->writeback) < NFS_CONGESTION_OFF_THRESH)
222 		clear_bdi_congested(&nfss->backing_dev_info, BLK_RW_ASYNC);
223 }
224 
225 static struct nfs_page *nfs_find_and_lock_request(struct page *page, bool nonblock)
226 {
227 	struct inode *inode = page->mapping->host;
228 	struct nfs_page *req;
229 	int ret;
230 
231 	spin_lock(&inode->i_lock);
232 	for (;;) {
233 		req = nfs_page_find_request_locked(page);
234 		if (req == NULL)
235 			break;
236 		if (nfs_set_page_tag_locked(req))
237 			break;
238 		/* Note: If we hold the page lock, as is the case in nfs_writepage,
239 		 *	 then the call to nfs_set_page_tag_locked() will always
240 		 *	 succeed provided that someone hasn't already marked the
241 		 *	 request as dirty (in which case we don't care).
242 		 */
243 		spin_unlock(&inode->i_lock);
244 		if (!nonblock)
245 			ret = nfs_wait_on_request(req);
246 		else
247 			ret = -EAGAIN;
248 		nfs_release_request(req);
249 		if (ret != 0)
250 			return ERR_PTR(ret);
251 		spin_lock(&inode->i_lock);
252 	}
253 	spin_unlock(&inode->i_lock);
254 	return req;
255 }
256 
257 /*
258  * Find an associated nfs write request, and prepare to flush it out
259  * May return an error if the user signalled nfs_wait_on_request().
260  */
261 static int nfs_page_async_flush(struct nfs_pageio_descriptor *pgio,
262 				struct page *page, bool nonblock)
263 {
264 	struct nfs_page *req;
265 	int ret = 0;
266 
267 	req = nfs_find_and_lock_request(page, nonblock);
268 	if (!req)
269 		goto out;
270 	ret = PTR_ERR(req);
271 	if (IS_ERR(req))
272 		goto out;
273 
274 	ret = nfs_set_page_writeback(page);
275 	BUG_ON(ret != 0);
276 	BUG_ON(test_bit(PG_CLEAN, &req->wb_flags));
277 
278 	if (!nfs_pageio_add_request(pgio, req)) {
279 		nfs_redirty_request(req);
280 		ret = pgio->pg_error;
281 	}
282 out:
283 	return ret;
284 }
285 
286 static int nfs_do_writepage(struct page *page, struct writeback_control *wbc, struct nfs_pageio_descriptor *pgio)
287 {
288 	struct inode *inode = page->mapping->host;
289 	int ret;
290 
291 	nfs_inc_stats(inode, NFSIOS_VFSWRITEPAGE);
292 	nfs_add_stats(inode, NFSIOS_WRITEPAGES, 1);
293 
294 	nfs_pageio_cond_complete(pgio, page->index);
295 	ret = nfs_page_async_flush(pgio, page,
296 			wbc->sync_mode == WB_SYNC_NONE ||
297 			wbc->nonblocking != 0);
298 	if (ret == -EAGAIN) {
299 		redirty_page_for_writepage(wbc, page);
300 		ret = 0;
301 	}
302 	return ret;
303 }
304 
305 /*
306  * Write an mmapped page to the server.
307  */
308 static int nfs_writepage_locked(struct page *page, struct writeback_control *wbc)
309 {
310 	struct nfs_pageio_descriptor pgio;
311 	int err;
312 
313 	nfs_pageio_init_write(&pgio, page->mapping->host, wb_priority(wbc));
314 	err = nfs_do_writepage(page, wbc, &pgio);
315 	nfs_pageio_complete(&pgio);
316 	if (err < 0)
317 		return err;
318 	if (pgio.pg_error < 0)
319 		return pgio.pg_error;
320 	return 0;
321 }
322 
323 int nfs_writepage(struct page *page, struct writeback_control *wbc)
324 {
325 	int ret;
326 
327 	ret = nfs_writepage_locked(page, wbc);
328 	unlock_page(page);
329 	return ret;
330 }
331 
332 static int nfs_writepages_callback(struct page *page, struct writeback_control *wbc, void *data)
333 {
334 	int ret;
335 
336 	ret = nfs_do_writepage(page, wbc, data);
337 	unlock_page(page);
338 	return ret;
339 }
340 
341 int nfs_writepages(struct address_space *mapping, struct writeback_control *wbc)
342 {
343 	struct inode *inode = mapping->host;
344 	unsigned long *bitlock = &NFS_I(inode)->flags;
345 	struct nfs_pageio_descriptor pgio;
346 	int err;
347 
348 	/* Stop dirtying of new pages while we sync */
349 	err = wait_on_bit_lock(bitlock, NFS_INO_FLUSHING,
350 			nfs_wait_bit_killable, TASK_KILLABLE);
351 	if (err)
352 		goto out_err;
353 
354 	nfs_inc_stats(inode, NFSIOS_VFSWRITEPAGES);
355 
356 	nfs_pageio_init_write(&pgio, inode, wb_priority(wbc));
357 	err = write_cache_pages(mapping, wbc, nfs_writepages_callback, &pgio);
358 	nfs_pageio_complete(&pgio);
359 
360 	clear_bit_unlock(NFS_INO_FLUSHING, bitlock);
361 	smp_mb__after_clear_bit();
362 	wake_up_bit(bitlock, NFS_INO_FLUSHING);
363 
364 	if (err < 0)
365 		goto out_err;
366 	err = pgio.pg_error;
367 	if (err < 0)
368 		goto out_err;
369 	return 0;
370 out_err:
371 	return err;
372 }
373 
374 /*
375  * Insert a write request into an inode
376  */
377 static int nfs_inode_add_request(struct inode *inode, struct nfs_page *req)
378 {
379 	struct nfs_inode *nfsi = NFS_I(inode);
380 	int error;
381 
382 	error = radix_tree_preload(GFP_NOFS);
383 	if (error != 0)
384 		goto out;
385 
386 	/* Lock the request! */
387 	nfs_lock_request_dontget(req);
388 
389 	spin_lock(&inode->i_lock);
390 	error = radix_tree_insert(&nfsi->nfs_page_tree, req->wb_index, req);
391 	BUG_ON(error);
392 	if (!nfsi->npages) {
393 		igrab(inode);
394 		if (nfs_have_delegation(inode, FMODE_WRITE))
395 			nfsi->change_attr++;
396 	}
397 	SetPagePrivate(req->wb_page);
398 	set_page_private(req->wb_page, (unsigned long)req);
399 	nfsi->npages++;
400 	kref_get(&req->wb_kref);
401 	radix_tree_tag_set(&nfsi->nfs_page_tree, req->wb_index,
402 				NFS_PAGE_TAG_LOCKED);
403 	spin_unlock(&inode->i_lock);
404 	radix_tree_preload_end();
405 out:
406 	return error;
407 }
408 
409 /*
410  * Remove a write request from an inode
411  */
412 static void nfs_inode_remove_request(struct nfs_page *req)
413 {
414 	struct inode *inode = req->wb_context->path.dentry->d_inode;
415 	struct nfs_inode *nfsi = NFS_I(inode);
416 
417 	BUG_ON (!NFS_WBACK_BUSY(req));
418 
419 	spin_lock(&inode->i_lock);
420 	set_page_private(req->wb_page, 0);
421 	ClearPagePrivate(req->wb_page);
422 	radix_tree_delete(&nfsi->nfs_page_tree, req->wb_index);
423 	nfsi->npages--;
424 	if (!nfsi->npages) {
425 		spin_unlock(&inode->i_lock);
426 		iput(inode);
427 	} else
428 		spin_unlock(&inode->i_lock);
429 	nfs_clear_request(req);
430 	nfs_release_request(req);
431 }
432 
433 static void
434 nfs_mark_request_dirty(struct nfs_page *req)
435 {
436 	__set_page_dirty_nobuffers(req->wb_page);
437 	__mark_inode_dirty(req->wb_page->mapping->host, I_DIRTY_DATASYNC);
438 }
439 
440 #if defined(CONFIG_NFS_V3) || defined(CONFIG_NFS_V4)
441 /*
442  * Add a request to the inode's commit list.
443  */
444 static void
445 nfs_mark_request_commit(struct nfs_page *req)
446 {
447 	struct inode *inode = req->wb_context->path.dentry->d_inode;
448 	struct nfs_inode *nfsi = NFS_I(inode);
449 
450 	spin_lock(&inode->i_lock);
451 	set_bit(PG_CLEAN, &(req)->wb_flags);
452 	radix_tree_tag_set(&nfsi->nfs_page_tree,
453 			req->wb_index,
454 			NFS_PAGE_TAG_COMMIT);
455 	nfsi->ncommit++;
456 	spin_unlock(&inode->i_lock);
457 	inc_zone_page_state(req->wb_page, NR_UNSTABLE_NFS);
458 	inc_bdi_stat(req->wb_page->mapping->backing_dev_info, BDI_RECLAIMABLE);
459 	__mark_inode_dirty(inode, I_DIRTY_DATASYNC);
460 }
461 
462 static int
463 nfs_clear_request_commit(struct nfs_page *req)
464 {
465 	struct page *page = req->wb_page;
466 
467 	if (test_and_clear_bit(PG_CLEAN, &(req)->wb_flags)) {
468 		dec_zone_page_state(page, NR_UNSTABLE_NFS);
469 		dec_bdi_stat(page->mapping->backing_dev_info, BDI_RECLAIMABLE);
470 		return 1;
471 	}
472 	return 0;
473 }
474 
475 static inline
476 int nfs_write_need_commit(struct nfs_write_data *data)
477 {
478 	return data->verf.committed != NFS_FILE_SYNC;
479 }
480 
481 static inline
482 int nfs_reschedule_unstable_write(struct nfs_page *req)
483 {
484 	if (test_and_clear_bit(PG_NEED_COMMIT, &req->wb_flags)) {
485 		nfs_mark_request_commit(req);
486 		return 1;
487 	}
488 	if (test_and_clear_bit(PG_NEED_RESCHED, &req->wb_flags)) {
489 		nfs_mark_request_dirty(req);
490 		return 1;
491 	}
492 	return 0;
493 }
494 #else
495 static inline void
496 nfs_mark_request_commit(struct nfs_page *req)
497 {
498 }
499 
500 static inline int
501 nfs_clear_request_commit(struct nfs_page *req)
502 {
503 	return 0;
504 }
505 
506 static inline
507 int nfs_write_need_commit(struct nfs_write_data *data)
508 {
509 	return 0;
510 }
511 
512 static inline
513 int nfs_reschedule_unstable_write(struct nfs_page *req)
514 {
515 	return 0;
516 }
517 #endif
518 
519 #if defined(CONFIG_NFS_V3) || defined(CONFIG_NFS_V4)
520 static int
521 nfs_need_commit(struct nfs_inode *nfsi)
522 {
523 	return radix_tree_tagged(&nfsi->nfs_page_tree, NFS_PAGE_TAG_COMMIT);
524 }
525 
526 /*
527  * nfs_scan_commit - Scan an inode for commit requests
528  * @inode: NFS inode to scan
529  * @dst: destination list
530  * @idx_start: lower bound of page->index to scan.
531  * @npages: idx_start + npages sets the upper bound to scan.
532  *
533  * Moves requests from the inode's 'commit' request list.
534  * The requests are *not* checked to ensure that they form a contiguous set.
535  */
536 static int
537 nfs_scan_commit(struct inode *inode, struct list_head *dst, pgoff_t idx_start, unsigned int npages)
538 {
539 	struct nfs_inode *nfsi = NFS_I(inode);
540 	int ret;
541 
542 	if (!nfs_need_commit(nfsi))
543 		return 0;
544 
545 	ret = nfs_scan_list(nfsi, dst, idx_start, npages, NFS_PAGE_TAG_COMMIT);
546 	if (ret > 0)
547 		nfsi->ncommit -= ret;
548 	if (nfs_need_commit(NFS_I(inode)))
549 		__mark_inode_dirty(inode, I_DIRTY_DATASYNC);
550 	return ret;
551 }
552 #else
553 static inline int nfs_need_commit(struct nfs_inode *nfsi)
554 {
555 	return 0;
556 }
557 
558 static inline int nfs_scan_commit(struct inode *inode, struct list_head *dst, pgoff_t idx_start, unsigned int npages)
559 {
560 	return 0;
561 }
562 #endif
563 
564 /*
565  * Search for an existing write request, and attempt to update
566  * it to reflect a new dirty region on a given page.
567  *
568  * If the attempt fails, then the existing request is flushed out
569  * to disk.
570  */
571 static struct nfs_page *nfs_try_to_update_request(struct inode *inode,
572 		struct page *page,
573 		unsigned int offset,
574 		unsigned int bytes)
575 {
576 	struct nfs_page *req;
577 	unsigned int rqend;
578 	unsigned int end;
579 	int error;
580 
581 	if (!PagePrivate(page))
582 		return NULL;
583 
584 	end = offset + bytes;
585 	spin_lock(&inode->i_lock);
586 
587 	for (;;) {
588 		req = nfs_page_find_request_locked(page);
589 		if (req == NULL)
590 			goto out_unlock;
591 
592 		rqend = req->wb_offset + req->wb_bytes;
593 		/*
594 		 * Tell the caller to flush out the request if
595 		 * the offsets are non-contiguous.
596 		 * Note: nfs_flush_incompatible() will already
597 		 * have flushed out requests having wrong owners.
598 		 */
599 		if (offset > rqend
600 		    || end < req->wb_offset)
601 			goto out_flushme;
602 
603 		if (nfs_set_page_tag_locked(req))
604 			break;
605 
606 		/* The request is locked, so wait and then retry */
607 		spin_unlock(&inode->i_lock);
608 		error = nfs_wait_on_request(req);
609 		nfs_release_request(req);
610 		if (error != 0)
611 			goto out_err;
612 		spin_lock(&inode->i_lock);
613 	}
614 
615 	if (nfs_clear_request_commit(req) &&
616 			radix_tree_tag_clear(&NFS_I(inode)->nfs_page_tree,
617 				req->wb_index, NFS_PAGE_TAG_COMMIT) != NULL)
618 		NFS_I(inode)->ncommit--;
619 
620 	/* Okay, the request matches. Update the region */
621 	if (offset < req->wb_offset) {
622 		req->wb_offset = offset;
623 		req->wb_pgbase = offset;
624 	}
625 	if (end > rqend)
626 		req->wb_bytes = end - req->wb_offset;
627 	else
628 		req->wb_bytes = rqend - req->wb_offset;
629 out_unlock:
630 	spin_unlock(&inode->i_lock);
631 	return req;
632 out_flushme:
633 	spin_unlock(&inode->i_lock);
634 	nfs_release_request(req);
635 	error = nfs_wb_page(inode, page);
636 out_err:
637 	return ERR_PTR(error);
638 }
639 
640 /*
641  * Try to update an existing write request, or create one if there is none.
642  *
643  * Note: Should always be called with the Page Lock held to prevent races
644  * if we have to add a new request. Also assumes that the caller has
645  * already called nfs_flush_incompatible() if necessary.
646  */
647 static struct nfs_page * nfs_setup_write_request(struct nfs_open_context* ctx,
648 		struct page *page, unsigned int offset, unsigned int bytes)
649 {
650 	struct inode *inode = page->mapping->host;
651 	struct nfs_page	*req;
652 	int error;
653 
654 	req = nfs_try_to_update_request(inode, page, offset, bytes);
655 	if (req != NULL)
656 		goto out;
657 	req = nfs_create_request(ctx, inode, page, offset, bytes);
658 	if (IS_ERR(req))
659 		goto out;
660 	error = nfs_inode_add_request(inode, req);
661 	if (error != 0) {
662 		nfs_release_request(req);
663 		req = ERR_PTR(error);
664 	}
665 out:
666 	return req;
667 }
668 
669 static int nfs_writepage_setup(struct nfs_open_context *ctx, struct page *page,
670 		unsigned int offset, unsigned int count)
671 {
672 	struct nfs_page	*req;
673 
674 	req = nfs_setup_write_request(ctx, page, offset, count);
675 	if (IS_ERR(req))
676 		return PTR_ERR(req);
677 	nfs_mark_request_dirty(req);
678 	/* Update file length */
679 	nfs_grow_file(page, offset, count);
680 	nfs_mark_uptodate(page, req->wb_pgbase, req->wb_bytes);
681 	nfs_mark_request_dirty(req);
682 	nfs_clear_page_tag_locked(req);
683 	return 0;
684 }
685 
686 int nfs_flush_incompatible(struct file *file, struct page *page)
687 {
688 	struct nfs_open_context *ctx = nfs_file_open_context(file);
689 	struct nfs_page	*req;
690 	int do_flush, status;
691 	/*
692 	 * Look for a request corresponding to this page. If there
693 	 * is one, and it belongs to another file, we flush it out
694 	 * before we try to copy anything into the page. Do this
695 	 * due to the lack of an ACCESS-type call in NFSv2.
696 	 * Also do the same if we find a request from an existing
697 	 * dropped page.
698 	 */
699 	do {
700 		req = nfs_page_find_request(page);
701 		if (req == NULL)
702 			return 0;
703 		do_flush = req->wb_page != page || req->wb_context != ctx ||
704 			req->wb_lock_context->lockowner != current->files ||
705 			req->wb_lock_context->pid != current->tgid;
706 		nfs_release_request(req);
707 		if (!do_flush)
708 			return 0;
709 		status = nfs_wb_page(page->mapping->host, page);
710 	} while (status == 0);
711 	return status;
712 }
713 
714 /*
715  * If the page cache is marked as unsafe or invalid, then we can't rely on
716  * the PageUptodate() flag. In this case, we will need to turn off
717  * write optimisations that depend on the page contents being correct.
718  */
719 static int nfs_write_pageuptodate(struct page *page, struct inode *inode)
720 {
721 	return PageUptodate(page) &&
722 		!(NFS_I(inode)->cache_validity & (NFS_INO_REVAL_PAGECACHE|NFS_INO_INVALID_DATA));
723 }
724 
725 /*
726  * Update and possibly write a cached page of an NFS file.
727  *
728  * XXX: Keep an eye on generic_file_read to make sure it doesn't do bad
729  * things with a page scheduled for an RPC call (e.g. invalidate it).
730  */
731 int nfs_updatepage(struct file *file, struct page *page,
732 		unsigned int offset, unsigned int count)
733 {
734 	struct nfs_open_context *ctx = nfs_file_open_context(file);
735 	struct inode	*inode = page->mapping->host;
736 	int		status = 0;
737 
738 	nfs_inc_stats(inode, NFSIOS_VFSUPDATEPAGE);
739 
740 	dprintk("NFS:       nfs_updatepage(%s/%s %d@%lld)\n",
741 		file->f_path.dentry->d_parent->d_name.name,
742 		file->f_path.dentry->d_name.name, count,
743 		(long long)(page_offset(page) + offset));
744 
745 	/* If we're not using byte range locks, and we know the page
746 	 * is up to date, it may be more efficient to extend the write
747 	 * to cover the entire page in order to avoid fragmentation
748 	 * inefficiencies.
749 	 */
750 	if (nfs_write_pageuptodate(page, inode) &&
751 			inode->i_flock == NULL &&
752 			!(file->f_flags & O_DSYNC)) {
753 		count = max(count + offset, nfs_page_length(page));
754 		offset = 0;
755 	}
756 
757 	status = nfs_writepage_setup(ctx, page, offset, count);
758 	if (status < 0)
759 		nfs_set_pageerror(page);
760 
761 	dprintk("NFS:       nfs_updatepage returns %d (isize %lld)\n",
762 			status, (long long)i_size_read(inode));
763 	return status;
764 }
765 
766 static void nfs_writepage_release(struct nfs_page *req)
767 {
768 	struct page *page = req->wb_page;
769 
770 	if (PageError(req->wb_page) || !nfs_reschedule_unstable_write(req))
771 		nfs_inode_remove_request(req);
772 	nfs_clear_page_tag_locked(req);
773 	nfs_end_page_writeback(page);
774 }
775 
776 static int flush_task_priority(int how)
777 {
778 	switch (how & (FLUSH_HIGHPRI|FLUSH_LOWPRI)) {
779 		case FLUSH_HIGHPRI:
780 			return RPC_PRIORITY_HIGH;
781 		case FLUSH_LOWPRI:
782 			return RPC_PRIORITY_LOW;
783 	}
784 	return RPC_PRIORITY_NORMAL;
785 }
786 
787 /*
788  * Set up the argument/result storage required for the RPC call.
789  */
790 static int nfs_write_rpcsetup(struct nfs_page *req,
791 		struct nfs_write_data *data,
792 		const struct rpc_call_ops *call_ops,
793 		unsigned int count, unsigned int offset,
794 		int how)
795 {
796 	struct inode *inode = req->wb_context->path.dentry->d_inode;
797 	int priority = flush_task_priority(how);
798 	struct rpc_task *task;
799 	struct rpc_message msg = {
800 		.rpc_argp = &data->args,
801 		.rpc_resp = &data->res,
802 		.rpc_cred = req->wb_context->cred,
803 	};
804 	struct rpc_task_setup task_setup_data = {
805 		.rpc_client = NFS_CLIENT(inode),
806 		.task = &data->task,
807 		.rpc_message = &msg,
808 		.callback_ops = call_ops,
809 		.callback_data = data,
810 		.workqueue = nfsiod_workqueue,
811 		.flags = RPC_TASK_ASYNC,
812 		.priority = priority,
813 	};
814 	int ret = 0;
815 
816 	/* Set up the RPC argument and reply structs
817 	 * NB: take care not to mess about with data->commit et al. */
818 
819 	data->req = req;
820 	data->inode = inode = req->wb_context->path.dentry->d_inode;
821 	data->cred = msg.rpc_cred;
822 
823 	data->args.fh     = NFS_FH(inode);
824 	data->args.offset = req_offset(req) + offset;
825 	data->args.pgbase = req->wb_pgbase + offset;
826 	data->args.pages  = data->pagevec;
827 	data->args.count  = count;
828 	data->args.context = get_nfs_open_context(req->wb_context);
829 	data->args.lock_context = req->wb_lock_context;
830 	data->args.stable  = NFS_UNSTABLE;
831 	if (how & FLUSH_STABLE) {
832 		data->args.stable = NFS_DATA_SYNC;
833 		if (!nfs_need_commit(NFS_I(inode)))
834 			data->args.stable = NFS_FILE_SYNC;
835 	}
836 
837 	data->res.fattr   = &data->fattr;
838 	data->res.count   = count;
839 	data->res.verf    = &data->verf;
840 	nfs_fattr_init(&data->fattr);
841 
842 	/* Set up the initial task struct.  */
843 	NFS_PROTO(inode)->write_setup(data, &msg);
844 
845 	dprintk("NFS: %5u initiated write call "
846 		"(req %s/%lld, %u bytes @ offset %llu)\n",
847 		data->task.tk_pid,
848 		inode->i_sb->s_id,
849 		(long long)NFS_FILEID(inode),
850 		count,
851 		(unsigned long long)data->args.offset);
852 
853 	task = rpc_run_task(&task_setup_data);
854 	if (IS_ERR(task)) {
855 		ret = PTR_ERR(task);
856 		goto out;
857 	}
858 	if (how & FLUSH_SYNC) {
859 		ret = rpc_wait_for_completion_task(task);
860 		if (ret == 0)
861 			ret = task->tk_status;
862 	}
863 	rpc_put_task(task);
864 out:
865 	return ret;
866 }
867 
868 /* If a nfs_flush_* function fails, it should remove reqs from @head and
869  * call this on each, which will prepare them to be retried on next
870  * writeback using standard nfs.
871  */
872 static void nfs_redirty_request(struct nfs_page *req)
873 {
874 	struct page *page = req->wb_page;
875 
876 	nfs_mark_request_dirty(req);
877 	nfs_clear_page_tag_locked(req);
878 	nfs_end_page_writeback(page);
879 }
880 
881 /*
882  * Generate multiple small requests to write out a single
883  * contiguous dirty area on one page.
884  */
885 static int nfs_flush_multi(struct inode *inode, struct list_head *head, unsigned int npages, size_t count, int how)
886 {
887 	struct nfs_page *req = nfs_list_entry(head->next);
888 	struct page *page = req->wb_page;
889 	struct nfs_write_data *data;
890 	size_t wsize = NFS_SERVER(inode)->wsize, nbytes;
891 	unsigned int offset;
892 	int requests = 0;
893 	int ret = 0;
894 	LIST_HEAD(list);
895 
896 	nfs_list_remove_request(req);
897 
898 	nbytes = count;
899 	do {
900 		size_t len = min(nbytes, wsize);
901 
902 		data = nfs_writedata_alloc(1);
903 		if (!data)
904 			goto out_bad;
905 		list_add(&data->pages, &list);
906 		requests++;
907 		nbytes -= len;
908 	} while (nbytes != 0);
909 	atomic_set(&req->wb_complete, requests);
910 
911 	ClearPageError(page);
912 	offset = 0;
913 	nbytes = count;
914 	do {
915 		int ret2;
916 
917 		data = list_entry(list.next, struct nfs_write_data, pages);
918 		list_del_init(&data->pages);
919 
920 		data->pagevec[0] = page;
921 
922 		if (nbytes < wsize)
923 			wsize = nbytes;
924 		ret2 = nfs_write_rpcsetup(req, data, &nfs_write_partial_ops,
925 				   wsize, offset, how);
926 		if (ret == 0)
927 			ret = ret2;
928 		offset += wsize;
929 		nbytes -= wsize;
930 	} while (nbytes != 0);
931 
932 	return ret;
933 
934 out_bad:
935 	while (!list_empty(&list)) {
936 		data = list_entry(list.next, struct nfs_write_data, pages);
937 		list_del(&data->pages);
938 		nfs_writedata_release(data);
939 	}
940 	nfs_redirty_request(req);
941 	return -ENOMEM;
942 }
943 
944 /*
945  * Create an RPC task for the given write request and kick it.
946  * The page must have been locked by the caller.
947  *
948  * It may happen that the page we're passed is not marked dirty.
949  * This is the case if nfs_updatepage detects a conflicting request
950  * that has been written but not committed.
951  */
952 static int nfs_flush_one(struct inode *inode, struct list_head *head, unsigned int npages, size_t count, int how)
953 {
954 	struct nfs_page		*req;
955 	struct page		**pages;
956 	struct nfs_write_data	*data;
957 
958 	data = nfs_writedata_alloc(npages);
959 	if (!data)
960 		goto out_bad;
961 
962 	pages = data->pagevec;
963 	while (!list_empty(head)) {
964 		req = nfs_list_entry(head->next);
965 		nfs_list_remove_request(req);
966 		nfs_list_add_request(req, &data->pages);
967 		ClearPageError(req->wb_page);
968 		*pages++ = req->wb_page;
969 	}
970 	req = nfs_list_entry(data->pages.next);
971 
972 	/* Set up the argument struct */
973 	return nfs_write_rpcsetup(req, data, &nfs_write_full_ops, count, 0, how);
974  out_bad:
975 	while (!list_empty(head)) {
976 		req = nfs_list_entry(head->next);
977 		nfs_list_remove_request(req);
978 		nfs_redirty_request(req);
979 	}
980 	return -ENOMEM;
981 }
982 
983 static void nfs_pageio_init_write(struct nfs_pageio_descriptor *pgio,
984 				  struct inode *inode, int ioflags)
985 {
986 	size_t wsize = NFS_SERVER(inode)->wsize;
987 
988 	if (wsize < PAGE_CACHE_SIZE)
989 		nfs_pageio_init(pgio, inode, nfs_flush_multi, wsize, ioflags);
990 	else
991 		nfs_pageio_init(pgio, inode, nfs_flush_one, wsize, ioflags);
992 }
993 
994 /*
995  * Handle a write reply that flushed part of a page.
996  */
997 static void nfs_writeback_done_partial(struct rpc_task *task, void *calldata)
998 {
999 	struct nfs_write_data	*data = calldata;
1000 
1001 	dprintk("NFS: %5u write(%s/%lld %d@%lld)",
1002 		task->tk_pid,
1003 		data->req->wb_context->path.dentry->d_inode->i_sb->s_id,
1004 		(long long)
1005 		  NFS_FILEID(data->req->wb_context->path.dentry->d_inode),
1006 		data->req->wb_bytes, (long long)req_offset(data->req));
1007 
1008 	nfs_writeback_done(task, data);
1009 }
1010 
1011 static void nfs_writeback_release_partial(void *calldata)
1012 {
1013 	struct nfs_write_data	*data = calldata;
1014 	struct nfs_page		*req = data->req;
1015 	struct page		*page = req->wb_page;
1016 	int status = data->task.tk_status;
1017 
1018 	if (status < 0) {
1019 		nfs_set_pageerror(page);
1020 		nfs_context_set_write_error(req->wb_context, status);
1021 		dprintk(", error = %d\n", status);
1022 		goto out;
1023 	}
1024 
1025 	if (nfs_write_need_commit(data)) {
1026 		struct inode *inode = page->mapping->host;
1027 
1028 		spin_lock(&inode->i_lock);
1029 		if (test_bit(PG_NEED_RESCHED, &req->wb_flags)) {
1030 			/* Do nothing we need to resend the writes */
1031 		} else if (!test_and_set_bit(PG_NEED_COMMIT, &req->wb_flags)) {
1032 			memcpy(&req->wb_verf, &data->verf, sizeof(req->wb_verf));
1033 			dprintk(" defer commit\n");
1034 		} else if (memcmp(&req->wb_verf, &data->verf, sizeof(req->wb_verf))) {
1035 			set_bit(PG_NEED_RESCHED, &req->wb_flags);
1036 			clear_bit(PG_NEED_COMMIT, &req->wb_flags);
1037 			dprintk(" server reboot detected\n");
1038 		}
1039 		spin_unlock(&inode->i_lock);
1040 	} else
1041 		dprintk(" OK\n");
1042 
1043 out:
1044 	if (atomic_dec_and_test(&req->wb_complete))
1045 		nfs_writepage_release(req);
1046 	nfs_writedata_release(calldata);
1047 }
1048 
1049 #if defined(CONFIG_NFS_V4_1)
1050 void nfs_write_prepare(struct rpc_task *task, void *calldata)
1051 {
1052 	struct nfs_write_data *data = calldata;
1053 
1054 	if (nfs4_setup_sequence(NFS_SERVER(data->inode),
1055 				&data->args.seq_args,
1056 				&data->res.seq_res, 1, task))
1057 		return;
1058 	rpc_call_start(task);
1059 }
1060 #endif /* CONFIG_NFS_V4_1 */
1061 
1062 static const struct rpc_call_ops nfs_write_partial_ops = {
1063 #if defined(CONFIG_NFS_V4_1)
1064 	.rpc_call_prepare = nfs_write_prepare,
1065 #endif /* CONFIG_NFS_V4_1 */
1066 	.rpc_call_done = nfs_writeback_done_partial,
1067 	.rpc_release = nfs_writeback_release_partial,
1068 };
1069 
1070 /*
1071  * Handle a write reply that flushes a whole page.
1072  *
1073  * FIXME: There is an inherent race with invalidate_inode_pages and
1074  *	  writebacks since the page->count is kept > 1 for as long
1075  *	  as the page has a write request pending.
1076  */
1077 static void nfs_writeback_done_full(struct rpc_task *task, void *calldata)
1078 {
1079 	struct nfs_write_data	*data = calldata;
1080 
1081 	nfs_writeback_done(task, data);
1082 }
1083 
1084 static void nfs_writeback_release_full(void *calldata)
1085 {
1086 	struct nfs_write_data	*data = calldata;
1087 	int status = data->task.tk_status;
1088 
1089 	/* Update attributes as result of writeback. */
1090 	while (!list_empty(&data->pages)) {
1091 		struct nfs_page *req = nfs_list_entry(data->pages.next);
1092 		struct page *page = req->wb_page;
1093 
1094 		nfs_list_remove_request(req);
1095 
1096 		dprintk("NFS: %5u write (%s/%lld %d@%lld)",
1097 			data->task.tk_pid,
1098 			req->wb_context->path.dentry->d_inode->i_sb->s_id,
1099 			(long long)NFS_FILEID(req->wb_context->path.dentry->d_inode),
1100 			req->wb_bytes,
1101 			(long long)req_offset(req));
1102 
1103 		if (status < 0) {
1104 			nfs_set_pageerror(page);
1105 			nfs_context_set_write_error(req->wb_context, status);
1106 			dprintk(", error = %d\n", status);
1107 			goto remove_request;
1108 		}
1109 
1110 		if (nfs_write_need_commit(data)) {
1111 			memcpy(&req->wb_verf, &data->verf, sizeof(req->wb_verf));
1112 			nfs_mark_request_commit(req);
1113 			dprintk(" marked for commit\n");
1114 			goto next;
1115 		}
1116 		dprintk(" OK\n");
1117 remove_request:
1118 		nfs_inode_remove_request(req);
1119 	next:
1120 		nfs_clear_page_tag_locked(req);
1121 		nfs_end_page_writeback(page);
1122 	}
1123 	nfs_writedata_release(calldata);
1124 }
1125 
1126 static const struct rpc_call_ops nfs_write_full_ops = {
1127 #if defined(CONFIG_NFS_V4_1)
1128 	.rpc_call_prepare = nfs_write_prepare,
1129 #endif /* CONFIG_NFS_V4_1 */
1130 	.rpc_call_done = nfs_writeback_done_full,
1131 	.rpc_release = nfs_writeback_release_full,
1132 };
1133 
1134 
1135 /*
1136  * This function is called when the WRITE call is complete.
1137  */
1138 int nfs_writeback_done(struct rpc_task *task, struct nfs_write_data *data)
1139 {
1140 	struct nfs_writeargs	*argp = &data->args;
1141 	struct nfs_writeres	*resp = &data->res;
1142 	struct nfs_server	*server = NFS_SERVER(data->inode);
1143 	int status;
1144 
1145 	dprintk("NFS: %5u nfs_writeback_done (status %d)\n",
1146 		task->tk_pid, task->tk_status);
1147 
1148 	/*
1149 	 * ->write_done will attempt to use post-op attributes to detect
1150 	 * conflicting writes by other clients.  A strict interpretation
1151 	 * of close-to-open would allow us to continue caching even if
1152 	 * another writer had changed the file, but some applications
1153 	 * depend on tighter cache coherency when writing.
1154 	 */
1155 	status = NFS_PROTO(data->inode)->write_done(task, data);
1156 	if (status != 0)
1157 		return status;
1158 	nfs_add_stats(data->inode, NFSIOS_SERVERWRITTENBYTES, resp->count);
1159 
1160 #if defined(CONFIG_NFS_V3) || defined(CONFIG_NFS_V4)
1161 	if (resp->verf->committed < argp->stable && task->tk_status >= 0) {
1162 		/* We tried a write call, but the server did not
1163 		 * commit data to stable storage even though we
1164 		 * requested it.
1165 		 * Note: There is a known bug in Tru64 < 5.0 in which
1166 		 *	 the server reports NFS_DATA_SYNC, but performs
1167 		 *	 NFS_FILE_SYNC. We therefore implement this checking
1168 		 *	 as a dprintk() in order to avoid filling syslog.
1169 		 */
1170 		static unsigned long    complain;
1171 
1172 		if (time_before(complain, jiffies)) {
1173 			dprintk("NFS:       faulty NFS server %s:"
1174 				" (committed = %d) != (stable = %d)\n",
1175 				server->nfs_client->cl_hostname,
1176 				resp->verf->committed, argp->stable);
1177 			complain = jiffies + 300 * HZ;
1178 		}
1179 	}
1180 #endif
1181 	/* Is this a short write? */
1182 	if (task->tk_status >= 0 && resp->count < argp->count) {
1183 		static unsigned long    complain;
1184 
1185 		nfs_inc_stats(data->inode, NFSIOS_SHORTWRITE);
1186 
1187 		/* Has the server at least made some progress? */
1188 		if (resp->count != 0) {
1189 			/* Was this an NFSv2 write or an NFSv3 stable write? */
1190 			if (resp->verf->committed != NFS_UNSTABLE) {
1191 				/* Resend from where the server left off */
1192 				argp->offset += resp->count;
1193 				argp->pgbase += resp->count;
1194 				argp->count -= resp->count;
1195 			} else {
1196 				/* Resend as a stable write in order to avoid
1197 				 * headaches in the case of a server crash.
1198 				 */
1199 				argp->stable = NFS_FILE_SYNC;
1200 			}
1201 			nfs_restart_rpc(task, server->nfs_client);
1202 			return -EAGAIN;
1203 		}
1204 		if (time_before(complain, jiffies)) {
1205 			printk(KERN_WARNING
1206 			       "NFS: Server wrote zero bytes, expected %u.\n",
1207 					argp->count);
1208 			complain = jiffies + 300 * HZ;
1209 		}
1210 		/* Can't do anything about it except throw an error. */
1211 		task->tk_status = -EIO;
1212 	}
1213 	return 0;
1214 }
1215 
1216 
1217 #if defined(CONFIG_NFS_V3) || defined(CONFIG_NFS_V4)
1218 static int nfs_commit_set_lock(struct nfs_inode *nfsi, int may_wait)
1219 {
1220 	if (!test_and_set_bit(NFS_INO_COMMIT, &nfsi->flags))
1221 		return 1;
1222 	if (may_wait && !out_of_line_wait_on_bit_lock(&nfsi->flags,
1223 				NFS_INO_COMMIT, nfs_wait_bit_killable,
1224 				TASK_KILLABLE))
1225 		return 1;
1226 	return 0;
1227 }
1228 
1229 static void nfs_commit_clear_lock(struct nfs_inode *nfsi)
1230 {
1231 	clear_bit(NFS_INO_COMMIT, &nfsi->flags);
1232 	smp_mb__after_clear_bit();
1233 	wake_up_bit(&nfsi->flags, NFS_INO_COMMIT);
1234 }
1235 
1236 
1237 static void nfs_commitdata_release(void *data)
1238 {
1239 	struct nfs_write_data *wdata = data;
1240 
1241 	put_nfs_open_context(wdata->args.context);
1242 	nfs_commit_free(wdata);
1243 }
1244 
1245 /*
1246  * Set up the argument/result storage required for the RPC call.
1247  */
1248 static int nfs_commit_rpcsetup(struct list_head *head,
1249 		struct nfs_write_data *data,
1250 		int how)
1251 {
1252 	struct nfs_page *first = nfs_list_entry(head->next);
1253 	struct inode *inode = first->wb_context->path.dentry->d_inode;
1254 	int priority = flush_task_priority(how);
1255 	struct rpc_task *task;
1256 	struct rpc_message msg = {
1257 		.rpc_argp = &data->args,
1258 		.rpc_resp = &data->res,
1259 		.rpc_cred = first->wb_context->cred,
1260 	};
1261 	struct rpc_task_setup task_setup_data = {
1262 		.task = &data->task,
1263 		.rpc_client = NFS_CLIENT(inode),
1264 		.rpc_message = &msg,
1265 		.callback_ops = &nfs_commit_ops,
1266 		.callback_data = data,
1267 		.workqueue = nfsiod_workqueue,
1268 		.flags = RPC_TASK_ASYNC,
1269 		.priority = priority,
1270 	};
1271 
1272 	/* Set up the RPC argument and reply structs
1273 	 * NB: take care not to mess about with data->commit et al. */
1274 
1275 	list_splice_init(head, &data->pages);
1276 
1277 	data->inode	  = inode;
1278 	data->cred	  = msg.rpc_cred;
1279 
1280 	data->args.fh     = NFS_FH(data->inode);
1281 	/* Note: we always request a commit of the entire inode */
1282 	data->args.offset = 0;
1283 	data->args.count  = 0;
1284 	data->args.context = get_nfs_open_context(first->wb_context);
1285 	data->res.count   = 0;
1286 	data->res.fattr   = &data->fattr;
1287 	data->res.verf    = &data->verf;
1288 	nfs_fattr_init(&data->fattr);
1289 
1290 	/* Set up the initial task struct.  */
1291 	NFS_PROTO(inode)->commit_setup(data, &msg);
1292 
1293 	dprintk("NFS: %5u initiated commit call\n", data->task.tk_pid);
1294 
1295 	task = rpc_run_task(&task_setup_data);
1296 	if (IS_ERR(task))
1297 		return PTR_ERR(task);
1298 	rpc_put_task(task);
1299 	return 0;
1300 }
1301 
1302 /*
1303  * Commit dirty pages
1304  */
1305 static int
1306 nfs_commit_list(struct inode *inode, struct list_head *head, int how)
1307 {
1308 	struct nfs_write_data	*data;
1309 	struct nfs_page         *req;
1310 
1311 	data = nfs_commitdata_alloc();
1312 
1313 	if (!data)
1314 		goto out_bad;
1315 
1316 	/* Set up the argument struct */
1317 	return nfs_commit_rpcsetup(head, data, how);
1318  out_bad:
1319 	while (!list_empty(head)) {
1320 		req = nfs_list_entry(head->next);
1321 		nfs_list_remove_request(req);
1322 		nfs_mark_request_commit(req);
1323 		dec_zone_page_state(req->wb_page, NR_UNSTABLE_NFS);
1324 		dec_bdi_stat(req->wb_page->mapping->backing_dev_info,
1325 				BDI_RECLAIMABLE);
1326 		nfs_clear_page_tag_locked(req);
1327 	}
1328 	nfs_commit_clear_lock(NFS_I(inode));
1329 	return -ENOMEM;
1330 }
1331 
1332 /*
1333  * COMMIT call returned
1334  */
1335 static void nfs_commit_done(struct rpc_task *task, void *calldata)
1336 {
1337 	struct nfs_write_data	*data = calldata;
1338 
1339         dprintk("NFS: %5u nfs_commit_done (status %d)\n",
1340                                 task->tk_pid, task->tk_status);
1341 
1342 	/* Call the NFS version-specific code */
1343 	if (NFS_PROTO(data->inode)->commit_done(task, data) != 0)
1344 		return;
1345 }
1346 
1347 static void nfs_commit_release(void *calldata)
1348 {
1349 	struct nfs_write_data	*data = calldata;
1350 	struct nfs_page		*req;
1351 	int status = data->task.tk_status;
1352 
1353 	while (!list_empty(&data->pages)) {
1354 		req = nfs_list_entry(data->pages.next);
1355 		nfs_list_remove_request(req);
1356 		nfs_clear_request_commit(req);
1357 
1358 		dprintk("NFS:       commit (%s/%lld %d@%lld)",
1359 			req->wb_context->path.dentry->d_inode->i_sb->s_id,
1360 			(long long)NFS_FILEID(req->wb_context->path.dentry->d_inode),
1361 			req->wb_bytes,
1362 			(long long)req_offset(req));
1363 		if (status < 0) {
1364 			nfs_context_set_write_error(req->wb_context, status);
1365 			nfs_inode_remove_request(req);
1366 			dprintk(", error = %d\n", status);
1367 			goto next;
1368 		}
1369 
1370 		/* Okay, COMMIT succeeded, apparently. Check the verifier
1371 		 * returned by the server against all stored verfs. */
1372 		if (!memcmp(req->wb_verf.verifier, data->verf.verifier, sizeof(data->verf.verifier))) {
1373 			/* We have a match */
1374 			nfs_inode_remove_request(req);
1375 			dprintk(" OK\n");
1376 			goto next;
1377 		}
1378 		/* We have a mismatch. Write the page again */
1379 		dprintk(" mismatch\n");
1380 		nfs_mark_request_dirty(req);
1381 	next:
1382 		nfs_clear_page_tag_locked(req);
1383 	}
1384 	nfs_commit_clear_lock(NFS_I(data->inode));
1385 	nfs_commitdata_release(calldata);
1386 }
1387 
1388 static const struct rpc_call_ops nfs_commit_ops = {
1389 #if defined(CONFIG_NFS_V4_1)
1390 	.rpc_call_prepare = nfs_write_prepare,
1391 #endif /* CONFIG_NFS_V4_1 */
1392 	.rpc_call_done = nfs_commit_done,
1393 	.rpc_release = nfs_commit_release,
1394 };
1395 
1396 int nfs_commit_inode(struct inode *inode, int how)
1397 {
1398 	LIST_HEAD(head);
1399 	int may_wait = how & FLUSH_SYNC;
1400 	int res = 0;
1401 
1402 	if (!nfs_commit_set_lock(NFS_I(inode), may_wait))
1403 		goto out_mark_dirty;
1404 	spin_lock(&inode->i_lock);
1405 	res = nfs_scan_commit(inode, &head, 0, 0);
1406 	spin_unlock(&inode->i_lock);
1407 	if (res) {
1408 		int error = nfs_commit_list(inode, &head, how);
1409 		if (error < 0)
1410 			return error;
1411 		if (may_wait)
1412 			wait_on_bit(&NFS_I(inode)->flags, NFS_INO_COMMIT,
1413 					nfs_wait_bit_killable,
1414 					TASK_KILLABLE);
1415 		else
1416 			goto out_mark_dirty;
1417 	} else
1418 		nfs_commit_clear_lock(NFS_I(inode));
1419 	return res;
1420 	/* Note: If we exit without ensuring that the commit is complete,
1421 	 * we must mark the inode as dirty. Otherwise, future calls to
1422 	 * sync_inode() with the WB_SYNC_ALL flag set will fail to ensure
1423 	 * that the data is on the disk.
1424 	 */
1425 out_mark_dirty:
1426 	__mark_inode_dirty(inode, I_DIRTY_DATASYNC);
1427 	return res;
1428 }
1429 
1430 static int nfs_commit_unstable_pages(struct inode *inode, struct writeback_control *wbc)
1431 {
1432 	struct nfs_inode *nfsi = NFS_I(inode);
1433 	int flags = FLUSH_SYNC;
1434 	int ret = 0;
1435 
1436 	/* Don't commit yet if this is a non-blocking flush and there are
1437 	 * lots of outstanding writes for this mapping.
1438 	 */
1439 	if (wbc->sync_mode == WB_SYNC_NONE &&
1440 	    nfsi->ncommit <= (nfsi->npages >> 1))
1441 		goto out_mark_dirty;
1442 
1443 	if (wbc->nonblocking || wbc->for_background)
1444 		flags = 0;
1445 	ret = nfs_commit_inode(inode, flags);
1446 	if (ret >= 0) {
1447 		if (wbc->sync_mode == WB_SYNC_NONE) {
1448 			if (ret < wbc->nr_to_write)
1449 				wbc->nr_to_write -= ret;
1450 			else
1451 				wbc->nr_to_write = 0;
1452 		}
1453 		return 0;
1454 	}
1455 out_mark_dirty:
1456 	__mark_inode_dirty(inode, I_DIRTY_DATASYNC);
1457 	return ret;
1458 }
1459 #else
1460 static int nfs_commit_unstable_pages(struct inode *inode, struct writeback_control *wbc)
1461 {
1462 	return 0;
1463 }
1464 #endif
1465 
1466 int nfs_write_inode(struct inode *inode, struct writeback_control *wbc)
1467 {
1468 	return nfs_commit_unstable_pages(inode, wbc);
1469 }
1470 
1471 /*
1472  * flush the inode to disk.
1473  */
1474 int nfs_wb_all(struct inode *inode)
1475 {
1476 	struct writeback_control wbc = {
1477 		.sync_mode = WB_SYNC_ALL,
1478 		.nr_to_write = LONG_MAX,
1479 		.range_start = 0,
1480 		.range_end = LLONG_MAX,
1481 	};
1482 
1483 	return sync_inode(inode, &wbc);
1484 }
1485 
1486 int nfs_wb_page_cancel(struct inode *inode, struct page *page)
1487 {
1488 	struct nfs_page *req;
1489 	int ret = 0;
1490 
1491 	BUG_ON(!PageLocked(page));
1492 	for (;;) {
1493 		wait_on_page_writeback(page);
1494 		req = nfs_page_find_request(page);
1495 		if (req == NULL)
1496 			break;
1497 		if (nfs_lock_request_dontget(req)) {
1498 			nfs_inode_remove_request(req);
1499 			/*
1500 			 * In case nfs_inode_remove_request has marked the
1501 			 * page as being dirty
1502 			 */
1503 			cancel_dirty_page(page, PAGE_CACHE_SIZE);
1504 			nfs_unlock_request(req);
1505 			break;
1506 		}
1507 		ret = nfs_wait_on_request(req);
1508 		nfs_release_request(req);
1509 		if (ret < 0)
1510 			break;
1511 	}
1512 	return ret;
1513 }
1514 
1515 /*
1516  * Write back all requests on one page - we do this before reading it.
1517  */
1518 int nfs_wb_page(struct inode *inode, struct page *page)
1519 {
1520 	loff_t range_start = page_offset(page);
1521 	loff_t range_end = range_start + (loff_t)(PAGE_CACHE_SIZE - 1);
1522 	struct writeback_control wbc = {
1523 		.sync_mode = WB_SYNC_ALL,
1524 		.nr_to_write = 0,
1525 		.range_start = range_start,
1526 		.range_end = range_end,
1527 	};
1528 	int ret;
1529 
1530 	for (;;) {
1531 		wait_on_page_writeback(page);
1532 		if (clear_page_dirty_for_io(page)) {
1533 			ret = nfs_writepage_locked(page, &wbc);
1534 			if (ret < 0)
1535 				goto out_error;
1536 			continue;
1537 		}
1538 		if (!PagePrivate(page))
1539 			break;
1540 		ret = nfs_commit_inode(inode, FLUSH_SYNC);
1541 		if (ret < 0)
1542 			goto out_error;
1543 	}
1544 	return 0;
1545 out_error:
1546 	return ret;
1547 }
1548 
1549 #ifdef CONFIG_MIGRATION
1550 int nfs_migrate_page(struct address_space *mapping, struct page *newpage,
1551 		struct page *page)
1552 {
1553 	struct nfs_page *req;
1554 	int ret;
1555 
1556 	nfs_fscache_release_page(page, GFP_KERNEL);
1557 
1558 	req = nfs_find_and_lock_request(page, false);
1559 	ret = PTR_ERR(req);
1560 	if (IS_ERR(req))
1561 		goto out;
1562 
1563 	ret = migrate_page(mapping, newpage, page);
1564 	if (!req)
1565 		goto out;
1566 	if (ret)
1567 		goto out_unlock;
1568 	page_cache_get(newpage);
1569 	spin_lock(&mapping->host->i_lock);
1570 	req->wb_page = newpage;
1571 	SetPagePrivate(newpage);
1572 	set_page_private(newpage, (unsigned long)req);
1573 	ClearPagePrivate(page);
1574 	set_page_private(page, 0);
1575 	spin_unlock(&mapping->host->i_lock);
1576 	page_cache_release(page);
1577 out_unlock:
1578 	nfs_clear_page_tag_locked(req);
1579 out:
1580 	return ret;
1581 }
1582 #endif
1583 
1584 int __init nfs_init_writepagecache(void)
1585 {
1586 	nfs_wdata_cachep = kmem_cache_create("nfs_write_data",
1587 					     sizeof(struct nfs_write_data),
1588 					     0, SLAB_HWCACHE_ALIGN,
1589 					     NULL);
1590 	if (nfs_wdata_cachep == NULL)
1591 		return -ENOMEM;
1592 
1593 	nfs_wdata_mempool = mempool_create_slab_pool(MIN_POOL_WRITE,
1594 						     nfs_wdata_cachep);
1595 	if (nfs_wdata_mempool == NULL)
1596 		return -ENOMEM;
1597 
1598 	nfs_commit_mempool = mempool_create_slab_pool(MIN_POOL_COMMIT,
1599 						      nfs_wdata_cachep);
1600 	if (nfs_commit_mempool == NULL)
1601 		return -ENOMEM;
1602 
1603 	/*
1604 	 * NFS congestion size, scale with available memory.
1605 	 *
1606 	 *  64MB:    8192k
1607 	 * 128MB:   11585k
1608 	 * 256MB:   16384k
1609 	 * 512MB:   23170k
1610 	 *   1GB:   32768k
1611 	 *   2GB:   46340k
1612 	 *   4GB:   65536k
1613 	 *   8GB:   92681k
1614 	 *  16GB:  131072k
1615 	 *
1616 	 * This allows larger machines to have larger/more transfers.
1617 	 * Limit the default to 256M
1618 	 */
1619 	nfs_congestion_kb = (16*int_sqrt(totalram_pages)) << (PAGE_SHIFT-10);
1620 	if (nfs_congestion_kb > 256*1024)
1621 		nfs_congestion_kb = 256*1024;
1622 
1623 	return 0;
1624 }
1625 
1626 void nfs_destroy_writepagecache(void)
1627 {
1628 	mempool_destroy(nfs_commit_mempool);
1629 	mempool_destroy(nfs_wdata_mempool);
1630 	kmem_cache_destroy(nfs_wdata_cachep);
1631 }
1632 
1633