xref: /linux/fs/nfs/write.c (revision cb299ba8b5ef2239429484072fea394cd7581bd7)
1 /*
2  * linux/fs/nfs/write.c
3  *
4  * Write file data over NFS.
5  *
6  * Copyright (C) 1996, 1997, Olaf Kirch <okir@monad.swb.de>
7  */
8 
9 #include <linux/types.h>
10 #include <linux/slab.h>
11 #include <linux/mm.h>
12 #include <linux/pagemap.h>
13 #include <linux/file.h>
14 #include <linux/writeback.h>
15 #include <linux/swap.h>
16 #include <linux/migrate.h>
17 
18 #include <linux/sunrpc/clnt.h>
19 #include <linux/nfs_fs.h>
20 #include <linux/nfs_mount.h>
21 #include <linux/nfs_page.h>
22 #include <linux/backing-dev.h>
23 
24 #include <asm/uaccess.h>
25 
26 #include "delegation.h"
27 #include "internal.h"
28 #include "iostat.h"
29 #include "nfs4_fs.h"
30 #include "fscache.h"
31 
32 #define NFSDBG_FACILITY		NFSDBG_PAGECACHE
33 
34 #define MIN_POOL_WRITE		(32)
35 #define MIN_POOL_COMMIT		(4)
36 
37 /*
38  * Local function declarations
39  */
40 static void nfs_pageio_init_write(struct nfs_pageio_descriptor *desc,
41 				  struct inode *inode, int ioflags);
42 static void nfs_redirty_request(struct nfs_page *req);
43 static const struct rpc_call_ops nfs_write_partial_ops;
44 static const struct rpc_call_ops nfs_write_full_ops;
45 static const struct rpc_call_ops nfs_commit_ops;
46 
47 static struct kmem_cache *nfs_wdata_cachep;
48 static mempool_t *nfs_wdata_mempool;
49 static mempool_t *nfs_commit_mempool;
50 
51 struct nfs_write_data *nfs_commitdata_alloc(void)
52 {
53 	struct nfs_write_data *p = mempool_alloc(nfs_commit_mempool, GFP_NOFS);
54 
55 	if (p) {
56 		memset(p, 0, sizeof(*p));
57 		INIT_LIST_HEAD(&p->pages);
58 	}
59 	return p;
60 }
61 
62 void nfs_commit_free(struct nfs_write_data *p)
63 {
64 	if (p && (p->pagevec != &p->page_array[0]))
65 		kfree(p->pagevec);
66 	mempool_free(p, nfs_commit_mempool);
67 }
68 
69 struct nfs_write_data *nfs_writedata_alloc(unsigned int pagecount)
70 {
71 	struct nfs_write_data *p = mempool_alloc(nfs_wdata_mempool, GFP_NOFS);
72 
73 	if (p) {
74 		memset(p, 0, sizeof(*p));
75 		INIT_LIST_HEAD(&p->pages);
76 		p->npages = pagecount;
77 		if (pagecount <= ARRAY_SIZE(p->page_array))
78 			p->pagevec = p->page_array;
79 		else {
80 			p->pagevec = kcalloc(pagecount, sizeof(struct page *), GFP_NOFS);
81 			if (!p->pagevec) {
82 				mempool_free(p, nfs_wdata_mempool);
83 				p = NULL;
84 			}
85 		}
86 	}
87 	return p;
88 }
89 
90 void nfs_writedata_free(struct nfs_write_data *p)
91 {
92 	if (p && (p->pagevec != &p->page_array[0]))
93 		kfree(p->pagevec);
94 	mempool_free(p, nfs_wdata_mempool);
95 }
96 
97 static void nfs_writedata_release(struct nfs_write_data *wdata)
98 {
99 	put_nfs_open_context(wdata->args.context);
100 	nfs_writedata_free(wdata);
101 }
102 
103 static void nfs_context_set_write_error(struct nfs_open_context *ctx, int error)
104 {
105 	ctx->error = error;
106 	smp_wmb();
107 	set_bit(NFS_CONTEXT_ERROR_WRITE, &ctx->flags);
108 }
109 
110 static struct nfs_page *nfs_page_find_request_locked(struct page *page)
111 {
112 	struct nfs_page *req = NULL;
113 
114 	if (PagePrivate(page)) {
115 		req = (struct nfs_page *)page_private(page);
116 		if (req != NULL)
117 			kref_get(&req->wb_kref);
118 	}
119 	return req;
120 }
121 
122 static struct nfs_page *nfs_page_find_request(struct page *page)
123 {
124 	struct inode *inode = page->mapping->host;
125 	struct nfs_page *req = NULL;
126 
127 	spin_lock(&inode->i_lock);
128 	req = nfs_page_find_request_locked(page);
129 	spin_unlock(&inode->i_lock);
130 	return req;
131 }
132 
133 /* Adjust the file length if we're writing beyond the end */
134 static void nfs_grow_file(struct page *page, unsigned int offset, unsigned int count)
135 {
136 	struct inode *inode = page->mapping->host;
137 	loff_t end, i_size;
138 	pgoff_t end_index;
139 
140 	spin_lock(&inode->i_lock);
141 	i_size = i_size_read(inode);
142 	end_index = (i_size - 1) >> PAGE_CACHE_SHIFT;
143 	if (i_size > 0 && page->index < end_index)
144 		goto out;
145 	end = ((loff_t)page->index << PAGE_CACHE_SHIFT) + ((loff_t)offset+count);
146 	if (i_size >= end)
147 		goto out;
148 	i_size_write(inode, end);
149 	nfs_inc_stats(inode, NFSIOS_EXTENDWRITE);
150 out:
151 	spin_unlock(&inode->i_lock);
152 }
153 
154 /* A writeback failed: mark the page as bad, and invalidate the page cache */
155 static void nfs_set_pageerror(struct page *page)
156 {
157 	SetPageError(page);
158 	nfs_zap_mapping(page->mapping->host, page->mapping);
159 }
160 
161 /* We can set the PG_uptodate flag if we see that a write request
162  * covers the full page.
163  */
164 static void nfs_mark_uptodate(struct page *page, unsigned int base, unsigned int count)
165 {
166 	if (PageUptodate(page))
167 		return;
168 	if (base != 0)
169 		return;
170 	if (count != nfs_page_length(page))
171 		return;
172 	SetPageUptodate(page);
173 }
174 
175 static int wb_priority(struct writeback_control *wbc)
176 {
177 	if (wbc->for_reclaim)
178 		return FLUSH_HIGHPRI | FLUSH_STABLE;
179 	if (wbc->for_kupdate || wbc->for_background)
180 		return FLUSH_LOWPRI;
181 	return 0;
182 }
183 
184 /*
185  * NFS congestion control
186  */
187 
188 int nfs_congestion_kb;
189 
190 #define NFS_CONGESTION_ON_THRESH 	(nfs_congestion_kb >> (PAGE_SHIFT-10))
191 #define NFS_CONGESTION_OFF_THRESH	\
192 	(NFS_CONGESTION_ON_THRESH - (NFS_CONGESTION_ON_THRESH >> 2))
193 
194 static int nfs_set_page_writeback(struct page *page)
195 {
196 	int ret = test_set_page_writeback(page);
197 
198 	if (!ret) {
199 		struct inode *inode = page->mapping->host;
200 		struct nfs_server *nfss = NFS_SERVER(inode);
201 
202 		page_cache_get(page);
203 		if (atomic_long_inc_return(&nfss->writeback) >
204 				NFS_CONGESTION_ON_THRESH) {
205 			set_bdi_congested(&nfss->backing_dev_info,
206 						BLK_RW_ASYNC);
207 		}
208 	}
209 	return ret;
210 }
211 
212 static void nfs_end_page_writeback(struct page *page)
213 {
214 	struct inode *inode = page->mapping->host;
215 	struct nfs_server *nfss = NFS_SERVER(inode);
216 
217 	end_page_writeback(page);
218 	page_cache_release(page);
219 	if (atomic_long_dec_return(&nfss->writeback) < NFS_CONGESTION_OFF_THRESH)
220 		clear_bdi_congested(&nfss->backing_dev_info, BLK_RW_ASYNC);
221 }
222 
223 static struct nfs_page *nfs_find_and_lock_request(struct page *page, bool nonblock)
224 {
225 	struct inode *inode = page->mapping->host;
226 	struct nfs_page *req;
227 	int ret;
228 
229 	spin_lock(&inode->i_lock);
230 	for (;;) {
231 		req = nfs_page_find_request_locked(page);
232 		if (req == NULL)
233 			break;
234 		if (nfs_set_page_tag_locked(req))
235 			break;
236 		/* Note: If we hold the page lock, as is the case in nfs_writepage,
237 		 *	 then the call to nfs_set_page_tag_locked() will always
238 		 *	 succeed provided that someone hasn't already marked the
239 		 *	 request as dirty (in which case we don't care).
240 		 */
241 		spin_unlock(&inode->i_lock);
242 		if (!nonblock)
243 			ret = nfs_wait_on_request(req);
244 		else
245 			ret = -EAGAIN;
246 		nfs_release_request(req);
247 		if (ret != 0)
248 			return ERR_PTR(ret);
249 		spin_lock(&inode->i_lock);
250 	}
251 	spin_unlock(&inode->i_lock);
252 	return req;
253 }
254 
255 /*
256  * Find an associated nfs write request, and prepare to flush it out
257  * May return an error if the user signalled nfs_wait_on_request().
258  */
259 static int nfs_page_async_flush(struct nfs_pageio_descriptor *pgio,
260 				struct page *page, bool nonblock)
261 {
262 	struct nfs_page *req;
263 	int ret = 0;
264 
265 	req = nfs_find_and_lock_request(page, nonblock);
266 	if (!req)
267 		goto out;
268 	ret = PTR_ERR(req);
269 	if (IS_ERR(req))
270 		goto out;
271 
272 	ret = nfs_set_page_writeback(page);
273 	BUG_ON(ret != 0);
274 	BUG_ON(test_bit(PG_CLEAN, &req->wb_flags));
275 
276 	if (!nfs_pageio_add_request(pgio, req)) {
277 		nfs_redirty_request(req);
278 		ret = pgio->pg_error;
279 	}
280 out:
281 	return ret;
282 }
283 
284 static int nfs_do_writepage(struct page *page, struct writeback_control *wbc, struct nfs_pageio_descriptor *pgio)
285 {
286 	struct inode *inode = page->mapping->host;
287 	int ret;
288 
289 	nfs_inc_stats(inode, NFSIOS_VFSWRITEPAGE);
290 	nfs_add_stats(inode, NFSIOS_WRITEPAGES, 1);
291 
292 	nfs_pageio_cond_complete(pgio, page->index);
293 	ret = nfs_page_async_flush(pgio, page, wbc->sync_mode == WB_SYNC_NONE);
294 	if (ret == -EAGAIN) {
295 		redirty_page_for_writepage(wbc, page);
296 		ret = 0;
297 	}
298 	return ret;
299 }
300 
301 /*
302  * Write an mmapped page to the server.
303  */
304 static int nfs_writepage_locked(struct page *page, struct writeback_control *wbc)
305 {
306 	struct nfs_pageio_descriptor pgio;
307 	int err;
308 
309 	nfs_pageio_init_write(&pgio, page->mapping->host, wb_priority(wbc));
310 	err = nfs_do_writepage(page, wbc, &pgio);
311 	nfs_pageio_complete(&pgio);
312 	if (err < 0)
313 		return err;
314 	if (pgio.pg_error < 0)
315 		return pgio.pg_error;
316 	return 0;
317 }
318 
319 int nfs_writepage(struct page *page, struct writeback_control *wbc)
320 {
321 	int ret;
322 
323 	ret = nfs_writepage_locked(page, wbc);
324 	unlock_page(page);
325 	return ret;
326 }
327 
328 static int nfs_writepages_callback(struct page *page, struct writeback_control *wbc, void *data)
329 {
330 	int ret;
331 
332 	ret = nfs_do_writepage(page, wbc, data);
333 	unlock_page(page);
334 	return ret;
335 }
336 
337 int nfs_writepages(struct address_space *mapping, struct writeback_control *wbc)
338 {
339 	struct inode *inode = mapping->host;
340 	unsigned long *bitlock = &NFS_I(inode)->flags;
341 	struct nfs_pageio_descriptor pgio;
342 	int err;
343 
344 	/* Stop dirtying of new pages while we sync */
345 	err = wait_on_bit_lock(bitlock, NFS_INO_FLUSHING,
346 			nfs_wait_bit_killable, TASK_KILLABLE);
347 	if (err)
348 		goto out_err;
349 
350 	nfs_inc_stats(inode, NFSIOS_VFSWRITEPAGES);
351 
352 	nfs_pageio_init_write(&pgio, inode, wb_priority(wbc));
353 	err = write_cache_pages(mapping, wbc, nfs_writepages_callback, &pgio);
354 	nfs_pageio_complete(&pgio);
355 
356 	clear_bit_unlock(NFS_INO_FLUSHING, bitlock);
357 	smp_mb__after_clear_bit();
358 	wake_up_bit(bitlock, NFS_INO_FLUSHING);
359 
360 	if (err < 0)
361 		goto out_err;
362 	err = pgio.pg_error;
363 	if (err < 0)
364 		goto out_err;
365 	return 0;
366 out_err:
367 	return err;
368 }
369 
370 /*
371  * Insert a write request into an inode
372  */
373 static int nfs_inode_add_request(struct inode *inode, struct nfs_page *req)
374 {
375 	struct nfs_inode *nfsi = NFS_I(inode);
376 	int error;
377 
378 	error = radix_tree_preload(GFP_NOFS);
379 	if (error != 0)
380 		goto out;
381 
382 	/* Lock the request! */
383 	nfs_lock_request_dontget(req);
384 
385 	spin_lock(&inode->i_lock);
386 	error = radix_tree_insert(&nfsi->nfs_page_tree, req->wb_index, req);
387 	BUG_ON(error);
388 	if (!nfsi->npages) {
389 		igrab(inode);
390 		if (nfs_have_delegation(inode, FMODE_WRITE))
391 			nfsi->change_attr++;
392 	}
393 	SetPagePrivate(req->wb_page);
394 	set_page_private(req->wb_page, (unsigned long)req);
395 	nfsi->npages++;
396 	kref_get(&req->wb_kref);
397 	radix_tree_tag_set(&nfsi->nfs_page_tree, req->wb_index,
398 				NFS_PAGE_TAG_LOCKED);
399 	spin_unlock(&inode->i_lock);
400 	radix_tree_preload_end();
401 out:
402 	return error;
403 }
404 
405 /*
406  * Remove a write request from an inode
407  */
408 static void nfs_inode_remove_request(struct nfs_page *req)
409 {
410 	struct inode *inode = req->wb_context->path.dentry->d_inode;
411 	struct nfs_inode *nfsi = NFS_I(inode);
412 
413 	BUG_ON (!NFS_WBACK_BUSY(req));
414 
415 	spin_lock(&inode->i_lock);
416 	set_page_private(req->wb_page, 0);
417 	ClearPagePrivate(req->wb_page);
418 	radix_tree_delete(&nfsi->nfs_page_tree, req->wb_index);
419 	nfsi->npages--;
420 	if (!nfsi->npages) {
421 		spin_unlock(&inode->i_lock);
422 		iput(inode);
423 	} else
424 		spin_unlock(&inode->i_lock);
425 	nfs_clear_request(req);
426 	nfs_release_request(req);
427 }
428 
429 static void
430 nfs_mark_request_dirty(struct nfs_page *req)
431 {
432 	__set_page_dirty_nobuffers(req->wb_page);
433 	__mark_inode_dirty(req->wb_page->mapping->host, I_DIRTY_DATASYNC);
434 }
435 
436 #if defined(CONFIG_NFS_V3) || defined(CONFIG_NFS_V4)
437 /*
438  * Add a request to the inode's commit list.
439  */
440 static void
441 nfs_mark_request_commit(struct nfs_page *req)
442 {
443 	struct inode *inode = req->wb_context->path.dentry->d_inode;
444 	struct nfs_inode *nfsi = NFS_I(inode);
445 
446 	spin_lock(&inode->i_lock);
447 	set_bit(PG_CLEAN, &(req)->wb_flags);
448 	radix_tree_tag_set(&nfsi->nfs_page_tree,
449 			req->wb_index,
450 			NFS_PAGE_TAG_COMMIT);
451 	nfsi->ncommit++;
452 	spin_unlock(&inode->i_lock);
453 	inc_zone_page_state(req->wb_page, NR_UNSTABLE_NFS);
454 	inc_bdi_stat(req->wb_page->mapping->backing_dev_info, BDI_RECLAIMABLE);
455 	__mark_inode_dirty(inode, I_DIRTY_DATASYNC);
456 }
457 
458 static int
459 nfs_clear_request_commit(struct nfs_page *req)
460 {
461 	struct page *page = req->wb_page;
462 
463 	if (test_and_clear_bit(PG_CLEAN, &(req)->wb_flags)) {
464 		dec_zone_page_state(page, NR_UNSTABLE_NFS);
465 		dec_bdi_stat(page->mapping->backing_dev_info, BDI_RECLAIMABLE);
466 		return 1;
467 	}
468 	return 0;
469 }
470 
471 static inline
472 int nfs_write_need_commit(struct nfs_write_data *data)
473 {
474 	return data->verf.committed != NFS_FILE_SYNC;
475 }
476 
477 static inline
478 int nfs_reschedule_unstable_write(struct nfs_page *req)
479 {
480 	if (test_and_clear_bit(PG_NEED_COMMIT, &req->wb_flags)) {
481 		nfs_mark_request_commit(req);
482 		return 1;
483 	}
484 	if (test_and_clear_bit(PG_NEED_RESCHED, &req->wb_flags)) {
485 		nfs_mark_request_dirty(req);
486 		return 1;
487 	}
488 	return 0;
489 }
490 #else
491 static inline void
492 nfs_mark_request_commit(struct nfs_page *req)
493 {
494 }
495 
496 static inline int
497 nfs_clear_request_commit(struct nfs_page *req)
498 {
499 	return 0;
500 }
501 
502 static inline
503 int nfs_write_need_commit(struct nfs_write_data *data)
504 {
505 	return 0;
506 }
507 
508 static inline
509 int nfs_reschedule_unstable_write(struct nfs_page *req)
510 {
511 	return 0;
512 }
513 #endif
514 
515 #if defined(CONFIG_NFS_V3) || defined(CONFIG_NFS_V4)
516 static int
517 nfs_need_commit(struct nfs_inode *nfsi)
518 {
519 	return radix_tree_tagged(&nfsi->nfs_page_tree, NFS_PAGE_TAG_COMMIT);
520 }
521 
522 /*
523  * nfs_scan_commit - Scan an inode for commit requests
524  * @inode: NFS inode to scan
525  * @dst: destination list
526  * @idx_start: lower bound of page->index to scan.
527  * @npages: idx_start + npages sets the upper bound to scan.
528  *
529  * Moves requests from the inode's 'commit' request list.
530  * The requests are *not* checked to ensure that they form a contiguous set.
531  */
532 static int
533 nfs_scan_commit(struct inode *inode, struct list_head *dst, pgoff_t idx_start, unsigned int npages)
534 {
535 	struct nfs_inode *nfsi = NFS_I(inode);
536 	int ret;
537 
538 	if (!nfs_need_commit(nfsi))
539 		return 0;
540 
541 	ret = nfs_scan_list(nfsi, dst, idx_start, npages, NFS_PAGE_TAG_COMMIT);
542 	if (ret > 0)
543 		nfsi->ncommit -= ret;
544 	if (nfs_need_commit(NFS_I(inode)))
545 		__mark_inode_dirty(inode, I_DIRTY_DATASYNC);
546 	return ret;
547 }
548 #else
549 static inline int nfs_need_commit(struct nfs_inode *nfsi)
550 {
551 	return 0;
552 }
553 
554 static inline int nfs_scan_commit(struct inode *inode, struct list_head *dst, pgoff_t idx_start, unsigned int npages)
555 {
556 	return 0;
557 }
558 #endif
559 
560 /*
561  * Search for an existing write request, and attempt to update
562  * it to reflect a new dirty region on a given page.
563  *
564  * If the attempt fails, then the existing request is flushed out
565  * to disk.
566  */
567 static struct nfs_page *nfs_try_to_update_request(struct inode *inode,
568 		struct page *page,
569 		unsigned int offset,
570 		unsigned int bytes)
571 {
572 	struct nfs_page *req;
573 	unsigned int rqend;
574 	unsigned int end;
575 	int error;
576 
577 	if (!PagePrivate(page))
578 		return NULL;
579 
580 	end = offset + bytes;
581 	spin_lock(&inode->i_lock);
582 
583 	for (;;) {
584 		req = nfs_page_find_request_locked(page);
585 		if (req == NULL)
586 			goto out_unlock;
587 
588 		rqend = req->wb_offset + req->wb_bytes;
589 		/*
590 		 * Tell the caller to flush out the request if
591 		 * the offsets are non-contiguous.
592 		 * Note: nfs_flush_incompatible() will already
593 		 * have flushed out requests having wrong owners.
594 		 */
595 		if (offset > rqend
596 		    || end < req->wb_offset)
597 			goto out_flushme;
598 
599 		if (nfs_set_page_tag_locked(req))
600 			break;
601 
602 		/* The request is locked, so wait and then retry */
603 		spin_unlock(&inode->i_lock);
604 		error = nfs_wait_on_request(req);
605 		nfs_release_request(req);
606 		if (error != 0)
607 			goto out_err;
608 		spin_lock(&inode->i_lock);
609 	}
610 
611 	if (nfs_clear_request_commit(req) &&
612 			radix_tree_tag_clear(&NFS_I(inode)->nfs_page_tree,
613 				req->wb_index, NFS_PAGE_TAG_COMMIT) != NULL)
614 		NFS_I(inode)->ncommit--;
615 
616 	/* Okay, the request matches. Update the region */
617 	if (offset < req->wb_offset) {
618 		req->wb_offset = offset;
619 		req->wb_pgbase = offset;
620 	}
621 	if (end > rqend)
622 		req->wb_bytes = end - req->wb_offset;
623 	else
624 		req->wb_bytes = rqend - req->wb_offset;
625 out_unlock:
626 	spin_unlock(&inode->i_lock);
627 	return req;
628 out_flushme:
629 	spin_unlock(&inode->i_lock);
630 	nfs_release_request(req);
631 	error = nfs_wb_page(inode, page);
632 out_err:
633 	return ERR_PTR(error);
634 }
635 
636 /*
637  * Try to update an existing write request, or create one if there is none.
638  *
639  * Note: Should always be called with the Page Lock held to prevent races
640  * if we have to add a new request. Also assumes that the caller has
641  * already called nfs_flush_incompatible() if necessary.
642  */
643 static struct nfs_page * nfs_setup_write_request(struct nfs_open_context* ctx,
644 		struct page *page, unsigned int offset, unsigned int bytes)
645 {
646 	struct inode *inode = page->mapping->host;
647 	struct nfs_page	*req;
648 	int error;
649 
650 	req = nfs_try_to_update_request(inode, page, offset, bytes);
651 	if (req != NULL)
652 		goto out;
653 	req = nfs_create_request(ctx, inode, page, offset, bytes);
654 	if (IS_ERR(req))
655 		goto out;
656 	error = nfs_inode_add_request(inode, req);
657 	if (error != 0) {
658 		nfs_release_request(req);
659 		req = ERR_PTR(error);
660 	}
661 out:
662 	return req;
663 }
664 
665 static int nfs_writepage_setup(struct nfs_open_context *ctx, struct page *page,
666 		unsigned int offset, unsigned int count)
667 {
668 	struct nfs_page	*req;
669 
670 	req = nfs_setup_write_request(ctx, page, offset, count);
671 	if (IS_ERR(req))
672 		return PTR_ERR(req);
673 	nfs_mark_request_dirty(req);
674 	/* Update file length */
675 	nfs_grow_file(page, offset, count);
676 	nfs_mark_uptodate(page, req->wb_pgbase, req->wb_bytes);
677 	nfs_mark_request_dirty(req);
678 	nfs_clear_page_tag_locked(req);
679 	return 0;
680 }
681 
682 int nfs_flush_incompatible(struct file *file, struct page *page)
683 {
684 	struct nfs_open_context *ctx = nfs_file_open_context(file);
685 	struct nfs_page	*req;
686 	int do_flush, status;
687 	/*
688 	 * Look for a request corresponding to this page. If there
689 	 * is one, and it belongs to another file, we flush it out
690 	 * before we try to copy anything into the page. Do this
691 	 * due to the lack of an ACCESS-type call in NFSv2.
692 	 * Also do the same if we find a request from an existing
693 	 * dropped page.
694 	 */
695 	do {
696 		req = nfs_page_find_request(page);
697 		if (req == NULL)
698 			return 0;
699 		do_flush = req->wb_page != page || req->wb_context != ctx ||
700 			req->wb_lock_context->lockowner != current->files ||
701 			req->wb_lock_context->pid != current->tgid;
702 		nfs_release_request(req);
703 		if (!do_flush)
704 			return 0;
705 		status = nfs_wb_page(page->mapping->host, page);
706 	} while (status == 0);
707 	return status;
708 }
709 
710 /*
711  * If the page cache is marked as unsafe or invalid, then we can't rely on
712  * the PageUptodate() flag. In this case, we will need to turn off
713  * write optimisations that depend on the page contents being correct.
714  */
715 static int nfs_write_pageuptodate(struct page *page, struct inode *inode)
716 {
717 	return PageUptodate(page) &&
718 		!(NFS_I(inode)->cache_validity & (NFS_INO_REVAL_PAGECACHE|NFS_INO_INVALID_DATA));
719 }
720 
721 /*
722  * Update and possibly write a cached page of an NFS file.
723  *
724  * XXX: Keep an eye on generic_file_read to make sure it doesn't do bad
725  * things with a page scheduled for an RPC call (e.g. invalidate it).
726  */
727 int nfs_updatepage(struct file *file, struct page *page,
728 		unsigned int offset, unsigned int count)
729 {
730 	struct nfs_open_context *ctx = nfs_file_open_context(file);
731 	struct inode	*inode = page->mapping->host;
732 	int		status = 0;
733 
734 	nfs_inc_stats(inode, NFSIOS_VFSUPDATEPAGE);
735 
736 	dprintk("NFS:       nfs_updatepage(%s/%s %d@%lld)\n",
737 		file->f_path.dentry->d_parent->d_name.name,
738 		file->f_path.dentry->d_name.name, count,
739 		(long long)(page_offset(page) + offset));
740 
741 	/* If we're not using byte range locks, and we know the page
742 	 * is up to date, it may be more efficient to extend the write
743 	 * to cover the entire page in order to avoid fragmentation
744 	 * inefficiencies.
745 	 */
746 	if (nfs_write_pageuptodate(page, inode) &&
747 			inode->i_flock == NULL &&
748 			!(file->f_flags & O_DSYNC)) {
749 		count = max(count + offset, nfs_page_length(page));
750 		offset = 0;
751 	}
752 
753 	status = nfs_writepage_setup(ctx, page, offset, count);
754 	if (status < 0)
755 		nfs_set_pageerror(page);
756 
757 	dprintk("NFS:       nfs_updatepage returns %d (isize %lld)\n",
758 			status, (long long)i_size_read(inode));
759 	return status;
760 }
761 
762 static void nfs_writepage_release(struct nfs_page *req)
763 {
764 	struct page *page = req->wb_page;
765 
766 	if (PageError(req->wb_page) || !nfs_reschedule_unstable_write(req))
767 		nfs_inode_remove_request(req);
768 	nfs_clear_page_tag_locked(req);
769 	nfs_end_page_writeback(page);
770 }
771 
772 static int flush_task_priority(int how)
773 {
774 	switch (how & (FLUSH_HIGHPRI|FLUSH_LOWPRI)) {
775 		case FLUSH_HIGHPRI:
776 			return RPC_PRIORITY_HIGH;
777 		case FLUSH_LOWPRI:
778 			return RPC_PRIORITY_LOW;
779 	}
780 	return RPC_PRIORITY_NORMAL;
781 }
782 
783 /*
784  * Set up the argument/result storage required for the RPC call.
785  */
786 static int nfs_write_rpcsetup(struct nfs_page *req,
787 		struct nfs_write_data *data,
788 		const struct rpc_call_ops *call_ops,
789 		unsigned int count, unsigned int offset,
790 		int how)
791 {
792 	struct inode *inode = req->wb_context->path.dentry->d_inode;
793 	int priority = flush_task_priority(how);
794 	struct rpc_task *task;
795 	struct rpc_message msg = {
796 		.rpc_argp = &data->args,
797 		.rpc_resp = &data->res,
798 		.rpc_cred = req->wb_context->cred,
799 	};
800 	struct rpc_task_setup task_setup_data = {
801 		.rpc_client = NFS_CLIENT(inode),
802 		.task = &data->task,
803 		.rpc_message = &msg,
804 		.callback_ops = call_ops,
805 		.callback_data = data,
806 		.workqueue = nfsiod_workqueue,
807 		.flags = RPC_TASK_ASYNC,
808 		.priority = priority,
809 	};
810 	int ret = 0;
811 
812 	/* Set up the RPC argument and reply structs
813 	 * NB: take care not to mess about with data->commit et al. */
814 
815 	data->req = req;
816 	data->inode = inode = req->wb_context->path.dentry->d_inode;
817 	data->cred = msg.rpc_cred;
818 
819 	data->args.fh     = NFS_FH(inode);
820 	data->args.offset = req_offset(req) + offset;
821 	data->args.pgbase = req->wb_pgbase + offset;
822 	data->args.pages  = data->pagevec;
823 	data->args.count  = count;
824 	data->args.context = get_nfs_open_context(req->wb_context);
825 	data->args.lock_context = req->wb_lock_context;
826 	data->args.stable  = NFS_UNSTABLE;
827 	if (how & FLUSH_STABLE) {
828 		data->args.stable = NFS_DATA_SYNC;
829 		if (!nfs_need_commit(NFS_I(inode)))
830 			data->args.stable = NFS_FILE_SYNC;
831 	}
832 
833 	data->res.fattr   = &data->fattr;
834 	data->res.count   = count;
835 	data->res.verf    = &data->verf;
836 	nfs_fattr_init(&data->fattr);
837 
838 	/* Set up the initial task struct.  */
839 	NFS_PROTO(inode)->write_setup(data, &msg);
840 
841 	dprintk("NFS: %5u initiated write call "
842 		"(req %s/%lld, %u bytes @ offset %llu)\n",
843 		data->task.tk_pid,
844 		inode->i_sb->s_id,
845 		(long long)NFS_FILEID(inode),
846 		count,
847 		(unsigned long long)data->args.offset);
848 
849 	task = rpc_run_task(&task_setup_data);
850 	if (IS_ERR(task)) {
851 		ret = PTR_ERR(task);
852 		goto out;
853 	}
854 	if (how & FLUSH_SYNC) {
855 		ret = rpc_wait_for_completion_task(task);
856 		if (ret == 0)
857 			ret = task->tk_status;
858 	}
859 	rpc_put_task(task);
860 out:
861 	return ret;
862 }
863 
864 /* If a nfs_flush_* function fails, it should remove reqs from @head and
865  * call this on each, which will prepare them to be retried on next
866  * writeback using standard nfs.
867  */
868 static void nfs_redirty_request(struct nfs_page *req)
869 {
870 	struct page *page = req->wb_page;
871 
872 	nfs_mark_request_dirty(req);
873 	nfs_clear_page_tag_locked(req);
874 	nfs_end_page_writeback(page);
875 }
876 
877 /*
878  * Generate multiple small requests to write out a single
879  * contiguous dirty area on one page.
880  */
881 static int nfs_flush_multi(struct inode *inode, struct list_head *head, unsigned int npages, size_t count, int how)
882 {
883 	struct nfs_page *req = nfs_list_entry(head->next);
884 	struct page *page = req->wb_page;
885 	struct nfs_write_data *data;
886 	size_t wsize = NFS_SERVER(inode)->wsize, nbytes;
887 	unsigned int offset;
888 	int requests = 0;
889 	int ret = 0;
890 	LIST_HEAD(list);
891 
892 	nfs_list_remove_request(req);
893 
894 	nbytes = count;
895 	do {
896 		size_t len = min(nbytes, wsize);
897 
898 		data = nfs_writedata_alloc(1);
899 		if (!data)
900 			goto out_bad;
901 		list_add(&data->pages, &list);
902 		requests++;
903 		nbytes -= len;
904 	} while (nbytes != 0);
905 	atomic_set(&req->wb_complete, requests);
906 
907 	ClearPageError(page);
908 	offset = 0;
909 	nbytes = count;
910 	do {
911 		int ret2;
912 
913 		data = list_entry(list.next, struct nfs_write_data, pages);
914 		list_del_init(&data->pages);
915 
916 		data->pagevec[0] = page;
917 
918 		if (nbytes < wsize)
919 			wsize = nbytes;
920 		ret2 = nfs_write_rpcsetup(req, data, &nfs_write_partial_ops,
921 				   wsize, offset, how);
922 		if (ret == 0)
923 			ret = ret2;
924 		offset += wsize;
925 		nbytes -= wsize;
926 	} while (nbytes != 0);
927 
928 	return ret;
929 
930 out_bad:
931 	while (!list_empty(&list)) {
932 		data = list_entry(list.next, struct nfs_write_data, pages);
933 		list_del(&data->pages);
934 		nfs_writedata_release(data);
935 	}
936 	nfs_redirty_request(req);
937 	return -ENOMEM;
938 }
939 
940 /*
941  * Create an RPC task for the given write request and kick it.
942  * The page must have been locked by the caller.
943  *
944  * It may happen that the page we're passed is not marked dirty.
945  * This is the case if nfs_updatepage detects a conflicting request
946  * that has been written but not committed.
947  */
948 static int nfs_flush_one(struct inode *inode, struct list_head *head, unsigned int npages, size_t count, int how)
949 {
950 	struct nfs_page		*req;
951 	struct page		**pages;
952 	struct nfs_write_data	*data;
953 
954 	data = nfs_writedata_alloc(npages);
955 	if (!data)
956 		goto out_bad;
957 
958 	pages = data->pagevec;
959 	while (!list_empty(head)) {
960 		req = nfs_list_entry(head->next);
961 		nfs_list_remove_request(req);
962 		nfs_list_add_request(req, &data->pages);
963 		ClearPageError(req->wb_page);
964 		*pages++ = req->wb_page;
965 	}
966 	req = nfs_list_entry(data->pages.next);
967 
968 	/* Set up the argument struct */
969 	return nfs_write_rpcsetup(req, data, &nfs_write_full_ops, count, 0, how);
970  out_bad:
971 	while (!list_empty(head)) {
972 		req = nfs_list_entry(head->next);
973 		nfs_list_remove_request(req);
974 		nfs_redirty_request(req);
975 	}
976 	return -ENOMEM;
977 }
978 
979 static void nfs_pageio_init_write(struct nfs_pageio_descriptor *pgio,
980 				  struct inode *inode, int ioflags)
981 {
982 	size_t wsize = NFS_SERVER(inode)->wsize;
983 
984 	if (wsize < PAGE_CACHE_SIZE)
985 		nfs_pageio_init(pgio, inode, nfs_flush_multi, wsize, ioflags);
986 	else
987 		nfs_pageio_init(pgio, inode, nfs_flush_one, wsize, ioflags);
988 }
989 
990 /*
991  * Handle a write reply that flushed part of a page.
992  */
993 static void nfs_writeback_done_partial(struct rpc_task *task, void *calldata)
994 {
995 	struct nfs_write_data	*data = calldata;
996 
997 	dprintk("NFS: %5u write(%s/%lld %d@%lld)",
998 		task->tk_pid,
999 		data->req->wb_context->path.dentry->d_inode->i_sb->s_id,
1000 		(long long)
1001 		  NFS_FILEID(data->req->wb_context->path.dentry->d_inode),
1002 		data->req->wb_bytes, (long long)req_offset(data->req));
1003 
1004 	nfs_writeback_done(task, data);
1005 }
1006 
1007 static void nfs_writeback_release_partial(void *calldata)
1008 {
1009 	struct nfs_write_data	*data = calldata;
1010 	struct nfs_page		*req = data->req;
1011 	struct page		*page = req->wb_page;
1012 	int status = data->task.tk_status;
1013 
1014 	if (status < 0) {
1015 		nfs_set_pageerror(page);
1016 		nfs_context_set_write_error(req->wb_context, status);
1017 		dprintk(", error = %d\n", status);
1018 		goto out;
1019 	}
1020 
1021 	if (nfs_write_need_commit(data)) {
1022 		struct inode *inode = page->mapping->host;
1023 
1024 		spin_lock(&inode->i_lock);
1025 		if (test_bit(PG_NEED_RESCHED, &req->wb_flags)) {
1026 			/* Do nothing we need to resend the writes */
1027 		} else if (!test_and_set_bit(PG_NEED_COMMIT, &req->wb_flags)) {
1028 			memcpy(&req->wb_verf, &data->verf, sizeof(req->wb_verf));
1029 			dprintk(" defer commit\n");
1030 		} else if (memcmp(&req->wb_verf, &data->verf, sizeof(req->wb_verf))) {
1031 			set_bit(PG_NEED_RESCHED, &req->wb_flags);
1032 			clear_bit(PG_NEED_COMMIT, &req->wb_flags);
1033 			dprintk(" server reboot detected\n");
1034 		}
1035 		spin_unlock(&inode->i_lock);
1036 	} else
1037 		dprintk(" OK\n");
1038 
1039 out:
1040 	if (atomic_dec_and_test(&req->wb_complete))
1041 		nfs_writepage_release(req);
1042 	nfs_writedata_release(calldata);
1043 }
1044 
1045 #if defined(CONFIG_NFS_V4_1)
1046 void nfs_write_prepare(struct rpc_task *task, void *calldata)
1047 {
1048 	struct nfs_write_data *data = calldata;
1049 
1050 	if (nfs4_setup_sequence(NFS_SERVER(data->inode),
1051 				&data->args.seq_args,
1052 				&data->res.seq_res, 1, task))
1053 		return;
1054 	rpc_call_start(task);
1055 }
1056 #endif /* CONFIG_NFS_V4_1 */
1057 
1058 static const struct rpc_call_ops nfs_write_partial_ops = {
1059 #if defined(CONFIG_NFS_V4_1)
1060 	.rpc_call_prepare = nfs_write_prepare,
1061 #endif /* CONFIG_NFS_V4_1 */
1062 	.rpc_call_done = nfs_writeback_done_partial,
1063 	.rpc_release = nfs_writeback_release_partial,
1064 };
1065 
1066 /*
1067  * Handle a write reply that flushes a whole page.
1068  *
1069  * FIXME: There is an inherent race with invalidate_inode_pages and
1070  *	  writebacks since the page->count is kept > 1 for as long
1071  *	  as the page has a write request pending.
1072  */
1073 static void nfs_writeback_done_full(struct rpc_task *task, void *calldata)
1074 {
1075 	struct nfs_write_data	*data = calldata;
1076 
1077 	nfs_writeback_done(task, data);
1078 }
1079 
1080 static void nfs_writeback_release_full(void *calldata)
1081 {
1082 	struct nfs_write_data	*data = calldata;
1083 	int status = data->task.tk_status;
1084 
1085 	/* Update attributes as result of writeback. */
1086 	while (!list_empty(&data->pages)) {
1087 		struct nfs_page *req = nfs_list_entry(data->pages.next);
1088 		struct page *page = req->wb_page;
1089 
1090 		nfs_list_remove_request(req);
1091 
1092 		dprintk("NFS: %5u write (%s/%lld %d@%lld)",
1093 			data->task.tk_pid,
1094 			req->wb_context->path.dentry->d_inode->i_sb->s_id,
1095 			(long long)NFS_FILEID(req->wb_context->path.dentry->d_inode),
1096 			req->wb_bytes,
1097 			(long long)req_offset(req));
1098 
1099 		if (status < 0) {
1100 			nfs_set_pageerror(page);
1101 			nfs_context_set_write_error(req->wb_context, status);
1102 			dprintk(", error = %d\n", status);
1103 			goto remove_request;
1104 		}
1105 
1106 		if (nfs_write_need_commit(data)) {
1107 			memcpy(&req->wb_verf, &data->verf, sizeof(req->wb_verf));
1108 			nfs_mark_request_commit(req);
1109 			dprintk(" marked for commit\n");
1110 			goto next;
1111 		}
1112 		dprintk(" OK\n");
1113 remove_request:
1114 		nfs_inode_remove_request(req);
1115 	next:
1116 		nfs_clear_page_tag_locked(req);
1117 		nfs_end_page_writeback(page);
1118 	}
1119 	nfs_writedata_release(calldata);
1120 }
1121 
1122 static const struct rpc_call_ops nfs_write_full_ops = {
1123 #if defined(CONFIG_NFS_V4_1)
1124 	.rpc_call_prepare = nfs_write_prepare,
1125 #endif /* CONFIG_NFS_V4_1 */
1126 	.rpc_call_done = nfs_writeback_done_full,
1127 	.rpc_release = nfs_writeback_release_full,
1128 };
1129 
1130 
1131 /*
1132  * This function is called when the WRITE call is complete.
1133  */
1134 int nfs_writeback_done(struct rpc_task *task, struct nfs_write_data *data)
1135 {
1136 	struct nfs_writeargs	*argp = &data->args;
1137 	struct nfs_writeres	*resp = &data->res;
1138 	struct nfs_server	*server = NFS_SERVER(data->inode);
1139 	int status;
1140 
1141 	dprintk("NFS: %5u nfs_writeback_done (status %d)\n",
1142 		task->tk_pid, task->tk_status);
1143 
1144 	/*
1145 	 * ->write_done will attempt to use post-op attributes to detect
1146 	 * conflicting writes by other clients.  A strict interpretation
1147 	 * of close-to-open would allow us to continue caching even if
1148 	 * another writer had changed the file, but some applications
1149 	 * depend on tighter cache coherency when writing.
1150 	 */
1151 	status = NFS_PROTO(data->inode)->write_done(task, data);
1152 	if (status != 0)
1153 		return status;
1154 	nfs_add_stats(data->inode, NFSIOS_SERVERWRITTENBYTES, resp->count);
1155 
1156 #if defined(CONFIG_NFS_V3) || defined(CONFIG_NFS_V4)
1157 	if (resp->verf->committed < argp->stable && task->tk_status >= 0) {
1158 		/* We tried a write call, but the server did not
1159 		 * commit data to stable storage even though we
1160 		 * requested it.
1161 		 * Note: There is a known bug in Tru64 < 5.0 in which
1162 		 *	 the server reports NFS_DATA_SYNC, but performs
1163 		 *	 NFS_FILE_SYNC. We therefore implement this checking
1164 		 *	 as a dprintk() in order to avoid filling syslog.
1165 		 */
1166 		static unsigned long    complain;
1167 
1168 		if (time_before(complain, jiffies)) {
1169 			dprintk("NFS:       faulty NFS server %s:"
1170 				" (committed = %d) != (stable = %d)\n",
1171 				server->nfs_client->cl_hostname,
1172 				resp->verf->committed, argp->stable);
1173 			complain = jiffies + 300 * HZ;
1174 		}
1175 	}
1176 #endif
1177 	/* Is this a short write? */
1178 	if (task->tk_status >= 0 && resp->count < argp->count) {
1179 		static unsigned long    complain;
1180 
1181 		nfs_inc_stats(data->inode, NFSIOS_SHORTWRITE);
1182 
1183 		/* Has the server at least made some progress? */
1184 		if (resp->count != 0) {
1185 			/* Was this an NFSv2 write or an NFSv3 stable write? */
1186 			if (resp->verf->committed != NFS_UNSTABLE) {
1187 				/* Resend from where the server left off */
1188 				argp->offset += resp->count;
1189 				argp->pgbase += resp->count;
1190 				argp->count -= resp->count;
1191 			} else {
1192 				/* Resend as a stable write in order to avoid
1193 				 * headaches in the case of a server crash.
1194 				 */
1195 				argp->stable = NFS_FILE_SYNC;
1196 			}
1197 			nfs_restart_rpc(task, server->nfs_client);
1198 			return -EAGAIN;
1199 		}
1200 		if (time_before(complain, jiffies)) {
1201 			printk(KERN_WARNING
1202 			       "NFS: Server wrote zero bytes, expected %u.\n",
1203 					argp->count);
1204 			complain = jiffies + 300 * HZ;
1205 		}
1206 		/* Can't do anything about it except throw an error. */
1207 		task->tk_status = -EIO;
1208 	}
1209 	return 0;
1210 }
1211 
1212 
1213 #if defined(CONFIG_NFS_V3) || defined(CONFIG_NFS_V4)
1214 static int nfs_commit_set_lock(struct nfs_inode *nfsi, int may_wait)
1215 {
1216 	if (!test_and_set_bit(NFS_INO_COMMIT, &nfsi->flags))
1217 		return 1;
1218 	if (may_wait && !out_of_line_wait_on_bit_lock(&nfsi->flags,
1219 				NFS_INO_COMMIT, nfs_wait_bit_killable,
1220 				TASK_KILLABLE))
1221 		return 1;
1222 	return 0;
1223 }
1224 
1225 static void nfs_commit_clear_lock(struct nfs_inode *nfsi)
1226 {
1227 	clear_bit(NFS_INO_COMMIT, &nfsi->flags);
1228 	smp_mb__after_clear_bit();
1229 	wake_up_bit(&nfsi->flags, NFS_INO_COMMIT);
1230 }
1231 
1232 
1233 static void nfs_commitdata_release(void *data)
1234 {
1235 	struct nfs_write_data *wdata = data;
1236 
1237 	put_nfs_open_context(wdata->args.context);
1238 	nfs_commit_free(wdata);
1239 }
1240 
1241 /*
1242  * Set up the argument/result storage required for the RPC call.
1243  */
1244 static int nfs_commit_rpcsetup(struct list_head *head,
1245 		struct nfs_write_data *data,
1246 		int how)
1247 {
1248 	struct nfs_page *first = nfs_list_entry(head->next);
1249 	struct inode *inode = first->wb_context->path.dentry->d_inode;
1250 	int priority = flush_task_priority(how);
1251 	struct rpc_task *task;
1252 	struct rpc_message msg = {
1253 		.rpc_argp = &data->args,
1254 		.rpc_resp = &data->res,
1255 		.rpc_cred = first->wb_context->cred,
1256 	};
1257 	struct rpc_task_setup task_setup_data = {
1258 		.task = &data->task,
1259 		.rpc_client = NFS_CLIENT(inode),
1260 		.rpc_message = &msg,
1261 		.callback_ops = &nfs_commit_ops,
1262 		.callback_data = data,
1263 		.workqueue = nfsiod_workqueue,
1264 		.flags = RPC_TASK_ASYNC,
1265 		.priority = priority,
1266 	};
1267 
1268 	/* Set up the RPC argument and reply structs
1269 	 * NB: take care not to mess about with data->commit et al. */
1270 
1271 	list_splice_init(head, &data->pages);
1272 
1273 	data->inode	  = inode;
1274 	data->cred	  = msg.rpc_cred;
1275 
1276 	data->args.fh     = NFS_FH(data->inode);
1277 	/* Note: we always request a commit of the entire inode */
1278 	data->args.offset = 0;
1279 	data->args.count  = 0;
1280 	data->args.context = get_nfs_open_context(first->wb_context);
1281 	data->res.count   = 0;
1282 	data->res.fattr   = &data->fattr;
1283 	data->res.verf    = &data->verf;
1284 	nfs_fattr_init(&data->fattr);
1285 
1286 	/* Set up the initial task struct.  */
1287 	NFS_PROTO(inode)->commit_setup(data, &msg);
1288 
1289 	dprintk("NFS: %5u initiated commit call\n", data->task.tk_pid);
1290 
1291 	task = rpc_run_task(&task_setup_data);
1292 	if (IS_ERR(task))
1293 		return PTR_ERR(task);
1294 	rpc_put_task(task);
1295 	return 0;
1296 }
1297 
1298 /*
1299  * Commit dirty pages
1300  */
1301 static int
1302 nfs_commit_list(struct inode *inode, struct list_head *head, int how)
1303 {
1304 	struct nfs_write_data	*data;
1305 	struct nfs_page         *req;
1306 
1307 	data = nfs_commitdata_alloc();
1308 
1309 	if (!data)
1310 		goto out_bad;
1311 
1312 	/* Set up the argument struct */
1313 	return nfs_commit_rpcsetup(head, data, how);
1314  out_bad:
1315 	while (!list_empty(head)) {
1316 		req = nfs_list_entry(head->next);
1317 		nfs_list_remove_request(req);
1318 		nfs_mark_request_commit(req);
1319 		dec_zone_page_state(req->wb_page, NR_UNSTABLE_NFS);
1320 		dec_bdi_stat(req->wb_page->mapping->backing_dev_info,
1321 				BDI_RECLAIMABLE);
1322 		nfs_clear_page_tag_locked(req);
1323 	}
1324 	nfs_commit_clear_lock(NFS_I(inode));
1325 	return -ENOMEM;
1326 }
1327 
1328 /*
1329  * COMMIT call returned
1330  */
1331 static void nfs_commit_done(struct rpc_task *task, void *calldata)
1332 {
1333 	struct nfs_write_data	*data = calldata;
1334 
1335         dprintk("NFS: %5u nfs_commit_done (status %d)\n",
1336                                 task->tk_pid, task->tk_status);
1337 
1338 	/* Call the NFS version-specific code */
1339 	if (NFS_PROTO(data->inode)->commit_done(task, data) != 0)
1340 		return;
1341 }
1342 
1343 static void nfs_commit_release(void *calldata)
1344 {
1345 	struct nfs_write_data	*data = calldata;
1346 	struct nfs_page		*req;
1347 	int status = data->task.tk_status;
1348 
1349 	while (!list_empty(&data->pages)) {
1350 		req = nfs_list_entry(data->pages.next);
1351 		nfs_list_remove_request(req);
1352 		nfs_clear_request_commit(req);
1353 
1354 		dprintk("NFS:       commit (%s/%lld %d@%lld)",
1355 			req->wb_context->path.dentry->d_inode->i_sb->s_id,
1356 			(long long)NFS_FILEID(req->wb_context->path.dentry->d_inode),
1357 			req->wb_bytes,
1358 			(long long)req_offset(req));
1359 		if (status < 0) {
1360 			nfs_context_set_write_error(req->wb_context, status);
1361 			nfs_inode_remove_request(req);
1362 			dprintk(", error = %d\n", status);
1363 			goto next;
1364 		}
1365 
1366 		/* Okay, COMMIT succeeded, apparently. Check the verifier
1367 		 * returned by the server against all stored verfs. */
1368 		if (!memcmp(req->wb_verf.verifier, data->verf.verifier, sizeof(data->verf.verifier))) {
1369 			/* We have a match */
1370 			nfs_inode_remove_request(req);
1371 			dprintk(" OK\n");
1372 			goto next;
1373 		}
1374 		/* We have a mismatch. Write the page again */
1375 		dprintk(" mismatch\n");
1376 		nfs_mark_request_dirty(req);
1377 	next:
1378 		nfs_clear_page_tag_locked(req);
1379 	}
1380 	nfs_commit_clear_lock(NFS_I(data->inode));
1381 	nfs_commitdata_release(calldata);
1382 }
1383 
1384 static const struct rpc_call_ops nfs_commit_ops = {
1385 #if defined(CONFIG_NFS_V4_1)
1386 	.rpc_call_prepare = nfs_write_prepare,
1387 #endif /* CONFIG_NFS_V4_1 */
1388 	.rpc_call_done = nfs_commit_done,
1389 	.rpc_release = nfs_commit_release,
1390 };
1391 
1392 int nfs_commit_inode(struct inode *inode, int how)
1393 {
1394 	LIST_HEAD(head);
1395 	int may_wait = how & FLUSH_SYNC;
1396 	int res = 0;
1397 
1398 	if (!nfs_commit_set_lock(NFS_I(inode), may_wait))
1399 		goto out_mark_dirty;
1400 	spin_lock(&inode->i_lock);
1401 	res = nfs_scan_commit(inode, &head, 0, 0);
1402 	spin_unlock(&inode->i_lock);
1403 	if (res) {
1404 		int error = nfs_commit_list(inode, &head, how);
1405 		if (error < 0)
1406 			return error;
1407 		if (may_wait)
1408 			wait_on_bit(&NFS_I(inode)->flags, NFS_INO_COMMIT,
1409 					nfs_wait_bit_killable,
1410 					TASK_KILLABLE);
1411 		else
1412 			goto out_mark_dirty;
1413 	} else
1414 		nfs_commit_clear_lock(NFS_I(inode));
1415 	return res;
1416 	/* Note: If we exit without ensuring that the commit is complete,
1417 	 * we must mark the inode as dirty. Otherwise, future calls to
1418 	 * sync_inode() with the WB_SYNC_ALL flag set will fail to ensure
1419 	 * that the data is on the disk.
1420 	 */
1421 out_mark_dirty:
1422 	__mark_inode_dirty(inode, I_DIRTY_DATASYNC);
1423 	return res;
1424 }
1425 
1426 static int nfs_commit_unstable_pages(struct inode *inode, struct writeback_control *wbc)
1427 {
1428 	struct nfs_inode *nfsi = NFS_I(inode);
1429 	int flags = FLUSH_SYNC;
1430 	int ret = 0;
1431 
1432 	if (wbc->sync_mode == WB_SYNC_NONE) {
1433 		/* Don't commit yet if this is a non-blocking flush and there
1434 		 * are a lot of outstanding writes for this mapping.
1435 		 */
1436 		if (nfsi->ncommit <= (nfsi->npages >> 1))
1437 			goto out_mark_dirty;
1438 
1439 		/* don't wait for the COMMIT response */
1440 		flags = 0;
1441 	}
1442 
1443 	ret = nfs_commit_inode(inode, flags);
1444 	if (ret >= 0) {
1445 		if (wbc->sync_mode == WB_SYNC_NONE) {
1446 			if (ret < wbc->nr_to_write)
1447 				wbc->nr_to_write -= ret;
1448 			else
1449 				wbc->nr_to_write = 0;
1450 		}
1451 		return 0;
1452 	}
1453 out_mark_dirty:
1454 	__mark_inode_dirty(inode, I_DIRTY_DATASYNC);
1455 	return ret;
1456 }
1457 #else
1458 static int nfs_commit_unstable_pages(struct inode *inode, struct writeback_control *wbc)
1459 {
1460 	return 0;
1461 }
1462 #endif
1463 
1464 int nfs_write_inode(struct inode *inode, struct writeback_control *wbc)
1465 {
1466 	return nfs_commit_unstable_pages(inode, wbc);
1467 }
1468 
1469 /*
1470  * flush the inode to disk.
1471  */
1472 int nfs_wb_all(struct inode *inode)
1473 {
1474 	struct writeback_control wbc = {
1475 		.sync_mode = WB_SYNC_ALL,
1476 		.nr_to_write = LONG_MAX,
1477 		.range_start = 0,
1478 		.range_end = LLONG_MAX,
1479 	};
1480 
1481 	return sync_inode(inode, &wbc);
1482 }
1483 
1484 int nfs_wb_page_cancel(struct inode *inode, struct page *page)
1485 {
1486 	struct nfs_page *req;
1487 	int ret = 0;
1488 
1489 	BUG_ON(!PageLocked(page));
1490 	for (;;) {
1491 		wait_on_page_writeback(page);
1492 		req = nfs_page_find_request(page);
1493 		if (req == NULL)
1494 			break;
1495 		if (nfs_lock_request_dontget(req)) {
1496 			nfs_inode_remove_request(req);
1497 			/*
1498 			 * In case nfs_inode_remove_request has marked the
1499 			 * page as being dirty
1500 			 */
1501 			cancel_dirty_page(page, PAGE_CACHE_SIZE);
1502 			nfs_unlock_request(req);
1503 			break;
1504 		}
1505 		ret = nfs_wait_on_request(req);
1506 		nfs_release_request(req);
1507 		if (ret < 0)
1508 			break;
1509 	}
1510 	return ret;
1511 }
1512 
1513 /*
1514  * Write back all requests on one page - we do this before reading it.
1515  */
1516 int nfs_wb_page(struct inode *inode, struct page *page)
1517 {
1518 	loff_t range_start = page_offset(page);
1519 	loff_t range_end = range_start + (loff_t)(PAGE_CACHE_SIZE - 1);
1520 	struct writeback_control wbc = {
1521 		.sync_mode = WB_SYNC_ALL,
1522 		.nr_to_write = 0,
1523 		.range_start = range_start,
1524 		.range_end = range_end,
1525 	};
1526 	int ret;
1527 
1528 	for (;;) {
1529 		wait_on_page_writeback(page);
1530 		if (clear_page_dirty_for_io(page)) {
1531 			ret = nfs_writepage_locked(page, &wbc);
1532 			if (ret < 0)
1533 				goto out_error;
1534 			continue;
1535 		}
1536 		if (!PagePrivate(page))
1537 			break;
1538 		ret = nfs_commit_inode(inode, FLUSH_SYNC);
1539 		if (ret < 0)
1540 			goto out_error;
1541 	}
1542 	return 0;
1543 out_error:
1544 	return ret;
1545 }
1546 
1547 #ifdef CONFIG_MIGRATION
1548 int nfs_migrate_page(struct address_space *mapping, struct page *newpage,
1549 		struct page *page)
1550 {
1551 	struct nfs_page *req;
1552 	int ret;
1553 
1554 	nfs_fscache_release_page(page, GFP_KERNEL);
1555 
1556 	req = nfs_find_and_lock_request(page, false);
1557 	ret = PTR_ERR(req);
1558 	if (IS_ERR(req))
1559 		goto out;
1560 
1561 	ret = migrate_page(mapping, newpage, page);
1562 	if (!req)
1563 		goto out;
1564 	if (ret)
1565 		goto out_unlock;
1566 	page_cache_get(newpage);
1567 	spin_lock(&mapping->host->i_lock);
1568 	req->wb_page = newpage;
1569 	SetPagePrivate(newpage);
1570 	set_page_private(newpage, (unsigned long)req);
1571 	ClearPagePrivate(page);
1572 	set_page_private(page, 0);
1573 	spin_unlock(&mapping->host->i_lock);
1574 	page_cache_release(page);
1575 out_unlock:
1576 	nfs_clear_page_tag_locked(req);
1577 out:
1578 	return ret;
1579 }
1580 #endif
1581 
1582 int __init nfs_init_writepagecache(void)
1583 {
1584 	nfs_wdata_cachep = kmem_cache_create("nfs_write_data",
1585 					     sizeof(struct nfs_write_data),
1586 					     0, SLAB_HWCACHE_ALIGN,
1587 					     NULL);
1588 	if (nfs_wdata_cachep == NULL)
1589 		return -ENOMEM;
1590 
1591 	nfs_wdata_mempool = mempool_create_slab_pool(MIN_POOL_WRITE,
1592 						     nfs_wdata_cachep);
1593 	if (nfs_wdata_mempool == NULL)
1594 		return -ENOMEM;
1595 
1596 	nfs_commit_mempool = mempool_create_slab_pool(MIN_POOL_COMMIT,
1597 						      nfs_wdata_cachep);
1598 	if (nfs_commit_mempool == NULL)
1599 		return -ENOMEM;
1600 
1601 	/*
1602 	 * NFS congestion size, scale with available memory.
1603 	 *
1604 	 *  64MB:    8192k
1605 	 * 128MB:   11585k
1606 	 * 256MB:   16384k
1607 	 * 512MB:   23170k
1608 	 *   1GB:   32768k
1609 	 *   2GB:   46340k
1610 	 *   4GB:   65536k
1611 	 *   8GB:   92681k
1612 	 *  16GB:  131072k
1613 	 *
1614 	 * This allows larger machines to have larger/more transfers.
1615 	 * Limit the default to 256M
1616 	 */
1617 	nfs_congestion_kb = (16*int_sqrt(totalram_pages)) << (PAGE_SHIFT-10);
1618 	if (nfs_congestion_kb > 256*1024)
1619 		nfs_congestion_kb = 256*1024;
1620 
1621 	return 0;
1622 }
1623 
1624 void nfs_destroy_writepagecache(void)
1625 {
1626 	mempool_destroy(nfs_commit_mempool);
1627 	mempool_destroy(nfs_wdata_mempool);
1628 	kmem_cache_destroy(nfs_wdata_cachep);
1629 }
1630 
1631