1 /* 2 * linux/fs/nfs/write.c 3 * 4 * Write file data over NFS. 5 * 6 * Copyright (C) 1996, 1997, Olaf Kirch <okir@monad.swb.de> 7 */ 8 9 #include <linux/types.h> 10 #include <linux/slab.h> 11 #include <linux/mm.h> 12 #include <linux/pagemap.h> 13 #include <linux/file.h> 14 #include <linux/writeback.h> 15 #include <linux/swap.h> 16 #include <linux/migrate.h> 17 18 #include <linux/sunrpc/clnt.h> 19 #include <linux/nfs_fs.h> 20 #include <linux/nfs_mount.h> 21 #include <linux/nfs_page.h> 22 #include <linux/backing-dev.h> 23 24 #include <asm/uaccess.h> 25 26 #include "delegation.h" 27 #include "internal.h" 28 #include "iostat.h" 29 #include "nfs4_fs.h" 30 #include "fscache.h" 31 #include "pnfs.h" 32 33 #define NFSDBG_FACILITY NFSDBG_PAGECACHE 34 35 #define MIN_POOL_WRITE (32) 36 #define MIN_POOL_COMMIT (4) 37 38 /* 39 * Local function declarations 40 */ 41 static void nfs_pageio_init_write(struct nfs_pageio_descriptor *desc, 42 struct inode *inode, int ioflags); 43 static void nfs_redirty_request(struct nfs_page *req); 44 static const struct rpc_call_ops nfs_write_partial_ops; 45 static const struct rpc_call_ops nfs_write_full_ops; 46 static const struct rpc_call_ops nfs_commit_ops; 47 48 static struct kmem_cache *nfs_wdata_cachep; 49 static mempool_t *nfs_wdata_mempool; 50 static mempool_t *nfs_commit_mempool; 51 52 struct nfs_write_data *nfs_commitdata_alloc(void) 53 { 54 struct nfs_write_data *p = mempool_alloc(nfs_commit_mempool, GFP_NOFS); 55 56 if (p) { 57 memset(p, 0, sizeof(*p)); 58 INIT_LIST_HEAD(&p->pages); 59 } 60 return p; 61 } 62 63 void nfs_commit_free(struct nfs_write_data *p) 64 { 65 if (p && (p->pagevec != &p->page_array[0])) 66 kfree(p->pagevec); 67 mempool_free(p, nfs_commit_mempool); 68 } 69 70 struct nfs_write_data *nfs_writedata_alloc(unsigned int pagecount) 71 { 72 struct nfs_write_data *p = mempool_alloc(nfs_wdata_mempool, GFP_NOFS); 73 74 if (p) { 75 memset(p, 0, sizeof(*p)); 76 INIT_LIST_HEAD(&p->pages); 77 p->npages = pagecount; 78 if (pagecount <= ARRAY_SIZE(p->page_array)) 79 p->pagevec = p->page_array; 80 else { 81 p->pagevec = kcalloc(pagecount, sizeof(struct page *), GFP_NOFS); 82 if (!p->pagevec) { 83 mempool_free(p, nfs_wdata_mempool); 84 p = NULL; 85 } 86 } 87 } 88 return p; 89 } 90 91 void nfs_writedata_free(struct nfs_write_data *p) 92 { 93 if (p && (p->pagevec != &p->page_array[0])) 94 kfree(p->pagevec); 95 mempool_free(p, nfs_wdata_mempool); 96 } 97 98 static void nfs_writedata_release(struct nfs_write_data *wdata) 99 { 100 put_lseg(wdata->lseg); 101 put_nfs_open_context(wdata->args.context); 102 nfs_writedata_free(wdata); 103 } 104 105 static void nfs_context_set_write_error(struct nfs_open_context *ctx, int error) 106 { 107 ctx->error = error; 108 smp_wmb(); 109 set_bit(NFS_CONTEXT_ERROR_WRITE, &ctx->flags); 110 } 111 112 static struct nfs_page *nfs_page_find_request_locked(struct page *page) 113 { 114 struct nfs_page *req = NULL; 115 116 if (PagePrivate(page)) { 117 req = (struct nfs_page *)page_private(page); 118 if (req != NULL) 119 kref_get(&req->wb_kref); 120 } 121 return req; 122 } 123 124 static struct nfs_page *nfs_page_find_request(struct page *page) 125 { 126 struct inode *inode = page->mapping->host; 127 struct nfs_page *req = NULL; 128 129 spin_lock(&inode->i_lock); 130 req = nfs_page_find_request_locked(page); 131 spin_unlock(&inode->i_lock); 132 return req; 133 } 134 135 /* Adjust the file length if we're writing beyond the end */ 136 static void nfs_grow_file(struct page *page, unsigned int offset, unsigned int count) 137 { 138 struct inode *inode = page->mapping->host; 139 loff_t end, i_size; 140 pgoff_t end_index; 141 142 spin_lock(&inode->i_lock); 143 i_size = i_size_read(inode); 144 end_index = (i_size - 1) >> PAGE_CACHE_SHIFT; 145 if (i_size > 0 && page->index < end_index) 146 goto out; 147 end = ((loff_t)page->index << PAGE_CACHE_SHIFT) + ((loff_t)offset+count); 148 if (i_size >= end) 149 goto out; 150 i_size_write(inode, end); 151 nfs_inc_stats(inode, NFSIOS_EXTENDWRITE); 152 out: 153 spin_unlock(&inode->i_lock); 154 } 155 156 /* A writeback failed: mark the page as bad, and invalidate the page cache */ 157 static void nfs_set_pageerror(struct page *page) 158 { 159 SetPageError(page); 160 nfs_zap_mapping(page->mapping->host, page->mapping); 161 } 162 163 /* We can set the PG_uptodate flag if we see that a write request 164 * covers the full page. 165 */ 166 static void nfs_mark_uptodate(struct page *page, unsigned int base, unsigned int count) 167 { 168 if (PageUptodate(page)) 169 return; 170 if (base != 0) 171 return; 172 if (count != nfs_page_length(page)) 173 return; 174 SetPageUptodate(page); 175 } 176 177 static int wb_priority(struct writeback_control *wbc) 178 { 179 if (wbc->for_reclaim) 180 return FLUSH_HIGHPRI | FLUSH_STABLE; 181 if (wbc->for_kupdate || wbc->for_background) 182 return FLUSH_LOWPRI; 183 return 0; 184 } 185 186 /* 187 * NFS congestion control 188 */ 189 190 int nfs_congestion_kb; 191 192 #define NFS_CONGESTION_ON_THRESH (nfs_congestion_kb >> (PAGE_SHIFT-10)) 193 #define NFS_CONGESTION_OFF_THRESH \ 194 (NFS_CONGESTION_ON_THRESH - (NFS_CONGESTION_ON_THRESH >> 2)) 195 196 static int nfs_set_page_writeback(struct page *page) 197 { 198 int ret = test_set_page_writeback(page); 199 200 if (!ret) { 201 struct inode *inode = page->mapping->host; 202 struct nfs_server *nfss = NFS_SERVER(inode); 203 204 page_cache_get(page); 205 if (atomic_long_inc_return(&nfss->writeback) > 206 NFS_CONGESTION_ON_THRESH) { 207 set_bdi_congested(&nfss->backing_dev_info, 208 BLK_RW_ASYNC); 209 } 210 } 211 return ret; 212 } 213 214 static void nfs_end_page_writeback(struct page *page) 215 { 216 struct inode *inode = page->mapping->host; 217 struct nfs_server *nfss = NFS_SERVER(inode); 218 219 end_page_writeback(page); 220 page_cache_release(page); 221 if (atomic_long_dec_return(&nfss->writeback) < NFS_CONGESTION_OFF_THRESH) 222 clear_bdi_congested(&nfss->backing_dev_info, BLK_RW_ASYNC); 223 } 224 225 static struct nfs_page *nfs_find_and_lock_request(struct page *page, bool nonblock) 226 { 227 struct inode *inode = page->mapping->host; 228 struct nfs_page *req; 229 int ret; 230 231 spin_lock(&inode->i_lock); 232 for (;;) { 233 req = nfs_page_find_request_locked(page); 234 if (req == NULL) 235 break; 236 if (nfs_set_page_tag_locked(req)) 237 break; 238 /* Note: If we hold the page lock, as is the case in nfs_writepage, 239 * then the call to nfs_set_page_tag_locked() will always 240 * succeed provided that someone hasn't already marked the 241 * request as dirty (in which case we don't care). 242 */ 243 spin_unlock(&inode->i_lock); 244 if (!nonblock) 245 ret = nfs_wait_on_request(req); 246 else 247 ret = -EAGAIN; 248 nfs_release_request(req); 249 if (ret != 0) 250 return ERR_PTR(ret); 251 spin_lock(&inode->i_lock); 252 } 253 spin_unlock(&inode->i_lock); 254 return req; 255 } 256 257 /* 258 * Find an associated nfs write request, and prepare to flush it out 259 * May return an error if the user signalled nfs_wait_on_request(). 260 */ 261 static int nfs_page_async_flush(struct nfs_pageio_descriptor *pgio, 262 struct page *page, bool nonblock) 263 { 264 struct nfs_page *req; 265 int ret = 0; 266 267 req = nfs_find_and_lock_request(page, nonblock); 268 if (!req) 269 goto out; 270 ret = PTR_ERR(req); 271 if (IS_ERR(req)) 272 goto out; 273 274 ret = nfs_set_page_writeback(page); 275 BUG_ON(ret != 0); 276 BUG_ON(test_bit(PG_CLEAN, &req->wb_flags)); 277 278 if (!nfs_pageio_add_request(pgio, req)) { 279 nfs_redirty_request(req); 280 ret = pgio->pg_error; 281 } 282 out: 283 return ret; 284 } 285 286 static int nfs_do_writepage(struct page *page, struct writeback_control *wbc, struct nfs_pageio_descriptor *pgio) 287 { 288 struct inode *inode = page->mapping->host; 289 int ret; 290 291 nfs_inc_stats(inode, NFSIOS_VFSWRITEPAGE); 292 nfs_add_stats(inode, NFSIOS_WRITEPAGES, 1); 293 294 nfs_pageio_cond_complete(pgio, page->index); 295 ret = nfs_page_async_flush(pgio, page, wbc->sync_mode == WB_SYNC_NONE); 296 if (ret == -EAGAIN) { 297 redirty_page_for_writepage(wbc, page); 298 ret = 0; 299 } 300 return ret; 301 } 302 303 /* 304 * Write an mmapped page to the server. 305 */ 306 static int nfs_writepage_locked(struct page *page, struct writeback_control *wbc) 307 { 308 struct nfs_pageio_descriptor pgio; 309 int err; 310 311 nfs_pageio_init_write(&pgio, page->mapping->host, wb_priority(wbc)); 312 err = nfs_do_writepage(page, wbc, &pgio); 313 nfs_pageio_complete(&pgio); 314 if (err < 0) 315 return err; 316 if (pgio.pg_error < 0) 317 return pgio.pg_error; 318 return 0; 319 } 320 321 int nfs_writepage(struct page *page, struct writeback_control *wbc) 322 { 323 int ret; 324 325 ret = nfs_writepage_locked(page, wbc); 326 unlock_page(page); 327 return ret; 328 } 329 330 static int nfs_writepages_callback(struct page *page, struct writeback_control *wbc, void *data) 331 { 332 int ret; 333 334 ret = nfs_do_writepage(page, wbc, data); 335 unlock_page(page); 336 return ret; 337 } 338 339 int nfs_writepages(struct address_space *mapping, struct writeback_control *wbc) 340 { 341 struct inode *inode = mapping->host; 342 unsigned long *bitlock = &NFS_I(inode)->flags; 343 struct nfs_pageio_descriptor pgio; 344 int err; 345 346 /* Stop dirtying of new pages while we sync */ 347 err = wait_on_bit_lock(bitlock, NFS_INO_FLUSHING, 348 nfs_wait_bit_killable, TASK_KILLABLE); 349 if (err) 350 goto out_err; 351 352 nfs_inc_stats(inode, NFSIOS_VFSWRITEPAGES); 353 354 nfs_pageio_init_write(&pgio, inode, wb_priority(wbc)); 355 err = write_cache_pages(mapping, wbc, nfs_writepages_callback, &pgio); 356 nfs_pageio_complete(&pgio); 357 358 clear_bit_unlock(NFS_INO_FLUSHING, bitlock); 359 smp_mb__after_clear_bit(); 360 wake_up_bit(bitlock, NFS_INO_FLUSHING); 361 362 if (err < 0) 363 goto out_err; 364 err = pgio.pg_error; 365 if (err < 0) 366 goto out_err; 367 return 0; 368 out_err: 369 return err; 370 } 371 372 /* 373 * Insert a write request into an inode 374 */ 375 static int nfs_inode_add_request(struct inode *inode, struct nfs_page *req) 376 { 377 struct nfs_inode *nfsi = NFS_I(inode); 378 int error; 379 380 error = radix_tree_preload(GFP_NOFS); 381 if (error != 0) 382 goto out; 383 384 /* Lock the request! */ 385 nfs_lock_request_dontget(req); 386 387 spin_lock(&inode->i_lock); 388 error = radix_tree_insert(&nfsi->nfs_page_tree, req->wb_index, req); 389 BUG_ON(error); 390 if (!nfsi->npages) { 391 igrab(inode); 392 if (nfs_have_delegation(inode, FMODE_WRITE)) 393 nfsi->change_attr++; 394 } 395 set_bit(PG_MAPPED, &req->wb_flags); 396 SetPagePrivate(req->wb_page); 397 set_page_private(req->wb_page, (unsigned long)req); 398 nfsi->npages++; 399 kref_get(&req->wb_kref); 400 radix_tree_tag_set(&nfsi->nfs_page_tree, req->wb_index, 401 NFS_PAGE_TAG_LOCKED); 402 spin_unlock(&inode->i_lock); 403 radix_tree_preload_end(); 404 out: 405 return error; 406 } 407 408 /* 409 * Remove a write request from an inode 410 */ 411 static void nfs_inode_remove_request(struct nfs_page *req) 412 { 413 struct inode *inode = req->wb_context->path.dentry->d_inode; 414 struct nfs_inode *nfsi = NFS_I(inode); 415 416 BUG_ON (!NFS_WBACK_BUSY(req)); 417 418 spin_lock(&inode->i_lock); 419 set_page_private(req->wb_page, 0); 420 ClearPagePrivate(req->wb_page); 421 clear_bit(PG_MAPPED, &req->wb_flags); 422 radix_tree_delete(&nfsi->nfs_page_tree, req->wb_index); 423 nfsi->npages--; 424 if (!nfsi->npages) { 425 spin_unlock(&inode->i_lock); 426 iput(inode); 427 } else 428 spin_unlock(&inode->i_lock); 429 nfs_release_request(req); 430 } 431 432 static void 433 nfs_mark_request_dirty(struct nfs_page *req) 434 { 435 __set_page_dirty_nobuffers(req->wb_page); 436 __mark_inode_dirty(req->wb_page->mapping->host, I_DIRTY_DATASYNC); 437 } 438 439 #if defined(CONFIG_NFS_V3) || defined(CONFIG_NFS_V4) 440 /* 441 * Add a request to the inode's commit list. 442 */ 443 static void 444 nfs_mark_request_commit(struct nfs_page *req) 445 { 446 struct inode *inode = req->wb_context->path.dentry->d_inode; 447 struct nfs_inode *nfsi = NFS_I(inode); 448 449 spin_lock(&inode->i_lock); 450 set_bit(PG_CLEAN, &(req)->wb_flags); 451 radix_tree_tag_set(&nfsi->nfs_page_tree, 452 req->wb_index, 453 NFS_PAGE_TAG_COMMIT); 454 nfsi->ncommit++; 455 spin_unlock(&inode->i_lock); 456 inc_zone_page_state(req->wb_page, NR_UNSTABLE_NFS); 457 inc_bdi_stat(req->wb_page->mapping->backing_dev_info, BDI_RECLAIMABLE); 458 __mark_inode_dirty(inode, I_DIRTY_DATASYNC); 459 } 460 461 static int 462 nfs_clear_request_commit(struct nfs_page *req) 463 { 464 struct page *page = req->wb_page; 465 466 if (test_and_clear_bit(PG_CLEAN, &(req)->wb_flags)) { 467 dec_zone_page_state(page, NR_UNSTABLE_NFS); 468 dec_bdi_stat(page->mapping->backing_dev_info, BDI_RECLAIMABLE); 469 return 1; 470 } 471 return 0; 472 } 473 474 static inline 475 int nfs_write_need_commit(struct nfs_write_data *data) 476 { 477 return data->verf.committed != NFS_FILE_SYNC; 478 } 479 480 static inline 481 int nfs_reschedule_unstable_write(struct nfs_page *req) 482 { 483 if (test_and_clear_bit(PG_NEED_COMMIT, &req->wb_flags)) { 484 nfs_mark_request_commit(req); 485 return 1; 486 } 487 if (test_and_clear_bit(PG_NEED_RESCHED, &req->wb_flags)) { 488 nfs_mark_request_dirty(req); 489 return 1; 490 } 491 return 0; 492 } 493 #else 494 static inline void 495 nfs_mark_request_commit(struct nfs_page *req) 496 { 497 } 498 499 static inline int 500 nfs_clear_request_commit(struct nfs_page *req) 501 { 502 return 0; 503 } 504 505 static inline 506 int nfs_write_need_commit(struct nfs_write_data *data) 507 { 508 return 0; 509 } 510 511 static inline 512 int nfs_reschedule_unstable_write(struct nfs_page *req) 513 { 514 return 0; 515 } 516 #endif 517 518 #if defined(CONFIG_NFS_V3) || defined(CONFIG_NFS_V4) 519 static int 520 nfs_need_commit(struct nfs_inode *nfsi) 521 { 522 return radix_tree_tagged(&nfsi->nfs_page_tree, NFS_PAGE_TAG_COMMIT); 523 } 524 525 /* 526 * nfs_scan_commit - Scan an inode for commit requests 527 * @inode: NFS inode to scan 528 * @dst: destination list 529 * @idx_start: lower bound of page->index to scan. 530 * @npages: idx_start + npages sets the upper bound to scan. 531 * 532 * Moves requests from the inode's 'commit' request list. 533 * The requests are *not* checked to ensure that they form a contiguous set. 534 */ 535 static int 536 nfs_scan_commit(struct inode *inode, struct list_head *dst, pgoff_t idx_start, unsigned int npages) 537 { 538 struct nfs_inode *nfsi = NFS_I(inode); 539 int ret; 540 541 if (!nfs_need_commit(nfsi)) 542 return 0; 543 544 ret = nfs_scan_list(nfsi, dst, idx_start, npages, NFS_PAGE_TAG_COMMIT); 545 if (ret > 0) 546 nfsi->ncommit -= ret; 547 if (nfs_need_commit(NFS_I(inode))) 548 __mark_inode_dirty(inode, I_DIRTY_DATASYNC); 549 return ret; 550 } 551 #else 552 static inline int nfs_need_commit(struct nfs_inode *nfsi) 553 { 554 return 0; 555 } 556 557 static inline int nfs_scan_commit(struct inode *inode, struct list_head *dst, pgoff_t idx_start, unsigned int npages) 558 { 559 return 0; 560 } 561 #endif 562 563 /* 564 * Search for an existing write request, and attempt to update 565 * it to reflect a new dirty region on a given page. 566 * 567 * If the attempt fails, then the existing request is flushed out 568 * to disk. 569 */ 570 static struct nfs_page *nfs_try_to_update_request(struct inode *inode, 571 struct page *page, 572 unsigned int offset, 573 unsigned int bytes) 574 { 575 struct nfs_page *req; 576 unsigned int rqend; 577 unsigned int end; 578 int error; 579 580 if (!PagePrivate(page)) 581 return NULL; 582 583 end = offset + bytes; 584 spin_lock(&inode->i_lock); 585 586 for (;;) { 587 req = nfs_page_find_request_locked(page); 588 if (req == NULL) 589 goto out_unlock; 590 591 rqend = req->wb_offset + req->wb_bytes; 592 /* 593 * Tell the caller to flush out the request if 594 * the offsets are non-contiguous. 595 * Note: nfs_flush_incompatible() will already 596 * have flushed out requests having wrong owners. 597 */ 598 if (offset > rqend 599 || end < req->wb_offset) 600 goto out_flushme; 601 602 if (nfs_set_page_tag_locked(req)) 603 break; 604 605 /* The request is locked, so wait and then retry */ 606 spin_unlock(&inode->i_lock); 607 error = nfs_wait_on_request(req); 608 nfs_release_request(req); 609 if (error != 0) 610 goto out_err; 611 spin_lock(&inode->i_lock); 612 } 613 614 if (nfs_clear_request_commit(req) && 615 radix_tree_tag_clear(&NFS_I(inode)->nfs_page_tree, 616 req->wb_index, NFS_PAGE_TAG_COMMIT) != NULL) 617 NFS_I(inode)->ncommit--; 618 619 /* Okay, the request matches. Update the region */ 620 if (offset < req->wb_offset) { 621 req->wb_offset = offset; 622 req->wb_pgbase = offset; 623 } 624 if (end > rqend) 625 req->wb_bytes = end - req->wb_offset; 626 else 627 req->wb_bytes = rqend - req->wb_offset; 628 out_unlock: 629 spin_unlock(&inode->i_lock); 630 return req; 631 out_flushme: 632 spin_unlock(&inode->i_lock); 633 nfs_release_request(req); 634 error = nfs_wb_page(inode, page); 635 out_err: 636 return ERR_PTR(error); 637 } 638 639 /* 640 * Try to update an existing write request, or create one if there is none. 641 * 642 * Note: Should always be called with the Page Lock held to prevent races 643 * if we have to add a new request. Also assumes that the caller has 644 * already called nfs_flush_incompatible() if necessary. 645 */ 646 static struct nfs_page * nfs_setup_write_request(struct nfs_open_context* ctx, 647 struct page *page, unsigned int offset, unsigned int bytes) 648 { 649 struct inode *inode = page->mapping->host; 650 struct nfs_page *req; 651 int error; 652 653 req = nfs_try_to_update_request(inode, page, offset, bytes); 654 if (req != NULL) 655 goto out; 656 req = nfs_create_request(ctx, inode, page, offset, bytes); 657 if (IS_ERR(req)) 658 goto out; 659 error = nfs_inode_add_request(inode, req); 660 if (error != 0) { 661 nfs_release_request(req); 662 req = ERR_PTR(error); 663 } 664 out: 665 return req; 666 } 667 668 static int nfs_writepage_setup(struct nfs_open_context *ctx, struct page *page, 669 unsigned int offset, unsigned int count) 670 { 671 struct nfs_page *req; 672 673 req = nfs_setup_write_request(ctx, page, offset, count); 674 if (IS_ERR(req)) 675 return PTR_ERR(req); 676 nfs_mark_request_dirty(req); 677 /* Update file length */ 678 nfs_grow_file(page, offset, count); 679 nfs_mark_uptodate(page, req->wb_pgbase, req->wb_bytes); 680 nfs_mark_request_dirty(req); 681 nfs_clear_page_tag_locked(req); 682 return 0; 683 } 684 685 int nfs_flush_incompatible(struct file *file, struct page *page) 686 { 687 struct nfs_open_context *ctx = nfs_file_open_context(file); 688 struct nfs_page *req; 689 int do_flush, status; 690 /* 691 * Look for a request corresponding to this page. If there 692 * is one, and it belongs to another file, we flush it out 693 * before we try to copy anything into the page. Do this 694 * due to the lack of an ACCESS-type call in NFSv2. 695 * Also do the same if we find a request from an existing 696 * dropped page. 697 */ 698 do { 699 req = nfs_page_find_request(page); 700 if (req == NULL) 701 return 0; 702 do_flush = req->wb_page != page || req->wb_context != ctx || 703 req->wb_lock_context->lockowner != current->files || 704 req->wb_lock_context->pid != current->tgid; 705 nfs_release_request(req); 706 if (!do_flush) 707 return 0; 708 status = nfs_wb_page(page->mapping->host, page); 709 } while (status == 0); 710 return status; 711 } 712 713 /* 714 * If the page cache is marked as unsafe or invalid, then we can't rely on 715 * the PageUptodate() flag. In this case, we will need to turn off 716 * write optimisations that depend on the page contents being correct. 717 */ 718 static int nfs_write_pageuptodate(struct page *page, struct inode *inode) 719 { 720 return PageUptodate(page) && 721 !(NFS_I(inode)->cache_validity & (NFS_INO_REVAL_PAGECACHE|NFS_INO_INVALID_DATA)); 722 } 723 724 /* 725 * Update and possibly write a cached page of an NFS file. 726 * 727 * XXX: Keep an eye on generic_file_read to make sure it doesn't do bad 728 * things with a page scheduled for an RPC call (e.g. invalidate it). 729 */ 730 int nfs_updatepage(struct file *file, struct page *page, 731 unsigned int offset, unsigned int count) 732 { 733 struct nfs_open_context *ctx = nfs_file_open_context(file); 734 struct inode *inode = page->mapping->host; 735 int status = 0; 736 737 nfs_inc_stats(inode, NFSIOS_VFSUPDATEPAGE); 738 739 dprintk("NFS: nfs_updatepage(%s/%s %d@%lld)\n", 740 file->f_path.dentry->d_parent->d_name.name, 741 file->f_path.dentry->d_name.name, count, 742 (long long)(page_offset(page) + offset)); 743 744 /* If we're not using byte range locks, and we know the page 745 * is up to date, it may be more efficient to extend the write 746 * to cover the entire page in order to avoid fragmentation 747 * inefficiencies. 748 */ 749 if (nfs_write_pageuptodate(page, inode) && 750 inode->i_flock == NULL && 751 !(file->f_flags & O_DSYNC)) { 752 count = max(count + offset, nfs_page_length(page)); 753 offset = 0; 754 } 755 756 status = nfs_writepage_setup(ctx, page, offset, count); 757 if (status < 0) 758 nfs_set_pageerror(page); 759 760 dprintk("NFS: nfs_updatepage returns %d (isize %lld)\n", 761 status, (long long)i_size_read(inode)); 762 return status; 763 } 764 765 static void nfs_writepage_release(struct nfs_page *req) 766 { 767 struct page *page = req->wb_page; 768 769 if (PageError(req->wb_page) || !nfs_reschedule_unstable_write(req)) 770 nfs_inode_remove_request(req); 771 nfs_clear_page_tag_locked(req); 772 nfs_end_page_writeback(page); 773 } 774 775 static int flush_task_priority(int how) 776 { 777 switch (how & (FLUSH_HIGHPRI|FLUSH_LOWPRI)) { 778 case FLUSH_HIGHPRI: 779 return RPC_PRIORITY_HIGH; 780 case FLUSH_LOWPRI: 781 return RPC_PRIORITY_LOW; 782 } 783 return RPC_PRIORITY_NORMAL; 784 } 785 786 int nfs_initiate_write(struct nfs_write_data *data, 787 struct rpc_clnt *clnt, 788 const struct rpc_call_ops *call_ops, 789 int how) 790 { 791 struct inode *inode = data->inode; 792 int priority = flush_task_priority(how); 793 struct rpc_task *task; 794 struct rpc_message msg = { 795 .rpc_argp = &data->args, 796 .rpc_resp = &data->res, 797 .rpc_cred = data->cred, 798 }; 799 struct rpc_task_setup task_setup_data = { 800 .rpc_client = clnt, 801 .task = &data->task, 802 .rpc_message = &msg, 803 .callback_ops = call_ops, 804 .callback_data = data, 805 .workqueue = nfsiod_workqueue, 806 .flags = RPC_TASK_ASYNC, 807 .priority = priority, 808 }; 809 int ret = 0; 810 811 /* Set up the initial task struct. */ 812 NFS_PROTO(inode)->write_setup(data, &msg); 813 814 dprintk("NFS: %5u initiated write call " 815 "(req %s/%lld, %u bytes @ offset %llu)\n", 816 data->task.tk_pid, 817 inode->i_sb->s_id, 818 (long long)NFS_FILEID(inode), 819 data->args.count, 820 (unsigned long long)data->args.offset); 821 822 task = rpc_run_task(&task_setup_data); 823 if (IS_ERR(task)) { 824 ret = PTR_ERR(task); 825 goto out; 826 } 827 if (how & FLUSH_SYNC) { 828 ret = rpc_wait_for_completion_task(task); 829 if (ret == 0) 830 ret = task->tk_status; 831 } 832 rpc_put_task(task); 833 out: 834 return ret; 835 } 836 EXPORT_SYMBOL_GPL(nfs_initiate_write); 837 838 /* 839 * Set up the argument/result storage required for the RPC call. 840 */ 841 static int nfs_write_rpcsetup(struct nfs_page *req, 842 struct nfs_write_data *data, 843 const struct rpc_call_ops *call_ops, 844 unsigned int count, unsigned int offset, 845 struct pnfs_layout_segment *lseg, 846 int how) 847 { 848 struct inode *inode = req->wb_context->path.dentry->d_inode; 849 850 /* Set up the RPC argument and reply structs 851 * NB: take care not to mess about with data->commit et al. */ 852 853 data->req = req; 854 data->inode = inode = req->wb_context->path.dentry->d_inode; 855 data->cred = req->wb_context->cred; 856 data->lseg = get_lseg(lseg); 857 858 data->args.fh = NFS_FH(inode); 859 data->args.offset = req_offset(req) + offset; 860 data->args.pgbase = req->wb_pgbase + offset; 861 data->args.pages = data->pagevec; 862 data->args.count = count; 863 data->args.context = get_nfs_open_context(req->wb_context); 864 data->args.lock_context = req->wb_lock_context; 865 data->args.stable = NFS_UNSTABLE; 866 if (how & FLUSH_STABLE) { 867 data->args.stable = NFS_DATA_SYNC; 868 if (!nfs_need_commit(NFS_I(inode))) 869 data->args.stable = NFS_FILE_SYNC; 870 } 871 872 data->res.fattr = &data->fattr; 873 data->res.count = count; 874 data->res.verf = &data->verf; 875 nfs_fattr_init(&data->fattr); 876 877 if (data->lseg && 878 (pnfs_try_to_write_data(data, call_ops, how) == PNFS_ATTEMPTED)) 879 return 0; 880 881 return nfs_initiate_write(data, NFS_CLIENT(inode), call_ops, how); 882 } 883 884 /* If a nfs_flush_* function fails, it should remove reqs from @head and 885 * call this on each, which will prepare them to be retried on next 886 * writeback using standard nfs. 887 */ 888 static void nfs_redirty_request(struct nfs_page *req) 889 { 890 struct page *page = req->wb_page; 891 892 nfs_mark_request_dirty(req); 893 nfs_clear_page_tag_locked(req); 894 nfs_end_page_writeback(page); 895 } 896 897 /* 898 * Generate multiple small requests to write out a single 899 * contiguous dirty area on one page. 900 */ 901 static int nfs_flush_multi(struct nfs_pageio_descriptor *desc) 902 { 903 struct nfs_page *req = nfs_list_entry(desc->pg_list.next); 904 struct page *page = req->wb_page; 905 struct nfs_write_data *data; 906 size_t wsize = NFS_SERVER(desc->pg_inode)->wsize, nbytes; 907 unsigned int offset; 908 int requests = 0; 909 int ret = 0; 910 struct pnfs_layout_segment *lseg; 911 LIST_HEAD(list); 912 913 nfs_list_remove_request(req); 914 915 nbytes = desc->pg_count; 916 do { 917 size_t len = min(nbytes, wsize); 918 919 data = nfs_writedata_alloc(1); 920 if (!data) 921 goto out_bad; 922 list_add(&data->pages, &list); 923 requests++; 924 nbytes -= len; 925 } while (nbytes != 0); 926 atomic_set(&req->wb_complete, requests); 927 928 BUG_ON(desc->pg_lseg); 929 lseg = pnfs_update_layout(desc->pg_inode, req->wb_context, IOMODE_RW); 930 ClearPageError(page); 931 offset = 0; 932 nbytes = desc->pg_count; 933 do { 934 int ret2; 935 936 data = list_entry(list.next, struct nfs_write_data, pages); 937 list_del_init(&data->pages); 938 939 data->pagevec[0] = page; 940 941 if (nbytes < wsize) 942 wsize = nbytes; 943 ret2 = nfs_write_rpcsetup(req, data, &nfs_write_partial_ops, 944 wsize, offset, lseg, desc->pg_ioflags); 945 if (ret == 0) 946 ret = ret2; 947 offset += wsize; 948 nbytes -= wsize; 949 } while (nbytes != 0); 950 951 put_lseg(lseg); 952 desc->pg_lseg = NULL; 953 return ret; 954 955 out_bad: 956 while (!list_empty(&list)) { 957 data = list_entry(list.next, struct nfs_write_data, pages); 958 list_del(&data->pages); 959 nfs_writedata_free(data); 960 } 961 nfs_redirty_request(req); 962 return -ENOMEM; 963 } 964 965 /* 966 * Create an RPC task for the given write request and kick it. 967 * The page must have been locked by the caller. 968 * 969 * It may happen that the page we're passed is not marked dirty. 970 * This is the case if nfs_updatepage detects a conflicting request 971 * that has been written but not committed. 972 */ 973 static int nfs_flush_one(struct nfs_pageio_descriptor *desc) 974 { 975 struct nfs_page *req; 976 struct page **pages; 977 struct nfs_write_data *data; 978 struct list_head *head = &desc->pg_list; 979 struct pnfs_layout_segment *lseg = desc->pg_lseg; 980 int ret; 981 982 data = nfs_writedata_alloc(nfs_page_array_len(desc->pg_base, 983 desc->pg_count)); 984 if (!data) { 985 while (!list_empty(head)) { 986 req = nfs_list_entry(head->next); 987 nfs_list_remove_request(req); 988 nfs_redirty_request(req); 989 } 990 ret = -ENOMEM; 991 goto out; 992 } 993 pages = data->pagevec; 994 while (!list_empty(head)) { 995 req = nfs_list_entry(head->next); 996 nfs_list_remove_request(req); 997 nfs_list_add_request(req, &data->pages); 998 ClearPageError(req->wb_page); 999 *pages++ = req->wb_page; 1000 } 1001 req = nfs_list_entry(data->pages.next); 1002 if ((!lseg) && list_is_singular(&data->pages)) 1003 lseg = pnfs_update_layout(desc->pg_inode, req->wb_context, IOMODE_RW); 1004 1005 /* Set up the argument struct */ 1006 ret = nfs_write_rpcsetup(req, data, &nfs_write_full_ops, desc->pg_count, 0, lseg, desc->pg_ioflags); 1007 out: 1008 put_lseg(lseg); /* Cleans any gotten in ->pg_test */ 1009 desc->pg_lseg = NULL; 1010 return ret; 1011 } 1012 1013 static void nfs_pageio_init_write(struct nfs_pageio_descriptor *pgio, 1014 struct inode *inode, int ioflags) 1015 { 1016 size_t wsize = NFS_SERVER(inode)->wsize; 1017 1018 pnfs_pageio_init_write(pgio, inode); 1019 1020 if (wsize < PAGE_CACHE_SIZE) 1021 nfs_pageio_init(pgio, inode, nfs_flush_multi, wsize, ioflags); 1022 else 1023 nfs_pageio_init(pgio, inode, nfs_flush_one, wsize, ioflags); 1024 } 1025 1026 /* 1027 * Handle a write reply that flushed part of a page. 1028 */ 1029 static void nfs_writeback_done_partial(struct rpc_task *task, void *calldata) 1030 { 1031 struct nfs_write_data *data = calldata; 1032 1033 dprintk("NFS: %5u write(%s/%lld %d@%lld)", 1034 task->tk_pid, 1035 data->req->wb_context->path.dentry->d_inode->i_sb->s_id, 1036 (long long) 1037 NFS_FILEID(data->req->wb_context->path.dentry->d_inode), 1038 data->req->wb_bytes, (long long)req_offset(data->req)); 1039 1040 nfs_writeback_done(task, data); 1041 } 1042 1043 static void nfs_writeback_release_partial(void *calldata) 1044 { 1045 struct nfs_write_data *data = calldata; 1046 struct nfs_page *req = data->req; 1047 struct page *page = req->wb_page; 1048 int status = data->task.tk_status; 1049 1050 if (status < 0) { 1051 nfs_set_pageerror(page); 1052 nfs_context_set_write_error(req->wb_context, status); 1053 dprintk(", error = %d\n", status); 1054 goto out; 1055 } 1056 1057 if (nfs_write_need_commit(data)) { 1058 struct inode *inode = page->mapping->host; 1059 1060 spin_lock(&inode->i_lock); 1061 if (test_bit(PG_NEED_RESCHED, &req->wb_flags)) { 1062 /* Do nothing we need to resend the writes */ 1063 } else if (!test_and_set_bit(PG_NEED_COMMIT, &req->wb_flags)) { 1064 memcpy(&req->wb_verf, &data->verf, sizeof(req->wb_verf)); 1065 dprintk(" defer commit\n"); 1066 } else if (memcmp(&req->wb_verf, &data->verf, sizeof(req->wb_verf))) { 1067 set_bit(PG_NEED_RESCHED, &req->wb_flags); 1068 clear_bit(PG_NEED_COMMIT, &req->wb_flags); 1069 dprintk(" server reboot detected\n"); 1070 } 1071 spin_unlock(&inode->i_lock); 1072 } else 1073 dprintk(" OK\n"); 1074 1075 out: 1076 if (atomic_dec_and_test(&req->wb_complete)) 1077 nfs_writepage_release(req); 1078 nfs_writedata_release(calldata); 1079 } 1080 1081 #if defined(CONFIG_NFS_V4_1) 1082 void nfs_write_prepare(struct rpc_task *task, void *calldata) 1083 { 1084 struct nfs_write_data *data = calldata; 1085 1086 if (nfs4_setup_sequence(NFS_SERVER(data->inode), 1087 &data->args.seq_args, 1088 &data->res.seq_res, 1, task)) 1089 return; 1090 rpc_call_start(task); 1091 } 1092 #endif /* CONFIG_NFS_V4_1 */ 1093 1094 static const struct rpc_call_ops nfs_write_partial_ops = { 1095 #if defined(CONFIG_NFS_V4_1) 1096 .rpc_call_prepare = nfs_write_prepare, 1097 #endif /* CONFIG_NFS_V4_1 */ 1098 .rpc_call_done = nfs_writeback_done_partial, 1099 .rpc_release = nfs_writeback_release_partial, 1100 }; 1101 1102 /* 1103 * Handle a write reply that flushes a whole page. 1104 * 1105 * FIXME: There is an inherent race with invalidate_inode_pages and 1106 * writebacks since the page->count is kept > 1 for as long 1107 * as the page has a write request pending. 1108 */ 1109 static void nfs_writeback_done_full(struct rpc_task *task, void *calldata) 1110 { 1111 struct nfs_write_data *data = calldata; 1112 1113 nfs_writeback_done(task, data); 1114 } 1115 1116 static void nfs_writeback_release_full(void *calldata) 1117 { 1118 struct nfs_write_data *data = calldata; 1119 int status = data->task.tk_status; 1120 1121 /* Update attributes as result of writeback. */ 1122 while (!list_empty(&data->pages)) { 1123 struct nfs_page *req = nfs_list_entry(data->pages.next); 1124 struct page *page = req->wb_page; 1125 1126 nfs_list_remove_request(req); 1127 1128 dprintk("NFS: %5u write (%s/%lld %d@%lld)", 1129 data->task.tk_pid, 1130 req->wb_context->path.dentry->d_inode->i_sb->s_id, 1131 (long long)NFS_FILEID(req->wb_context->path.dentry->d_inode), 1132 req->wb_bytes, 1133 (long long)req_offset(req)); 1134 1135 if (status < 0) { 1136 nfs_set_pageerror(page); 1137 nfs_context_set_write_error(req->wb_context, status); 1138 dprintk(", error = %d\n", status); 1139 goto remove_request; 1140 } 1141 1142 if (nfs_write_need_commit(data)) { 1143 memcpy(&req->wb_verf, &data->verf, sizeof(req->wb_verf)); 1144 nfs_mark_request_commit(req); 1145 dprintk(" marked for commit\n"); 1146 goto next; 1147 } 1148 dprintk(" OK\n"); 1149 remove_request: 1150 nfs_inode_remove_request(req); 1151 next: 1152 nfs_clear_page_tag_locked(req); 1153 nfs_end_page_writeback(page); 1154 } 1155 nfs_writedata_release(calldata); 1156 } 1157 1158 static const struct rpc_call_ops nfs_write_full_ops = { 1159 #if defined(CONFIG_NFS_V4_1) 1160 .rpc_call_prepare = nfs_write_prepare, 1161 #endif /* CONFIG_NFS_V4_1 */ 1162 .rpc_call_done = nfs_writeback_done_full, 1163 .rpc_release = nfs_writeback_release_full, 1164 }; 1165 1166 1167 /* 1168 * This function is called when the WRITE call is complete. 1169 */ 1170 void nfs_writeback_done(struct rpc_task *task, struct nfs_write_data *data) 1171 { 1172 struct nfs_writeargs *argp = &data->args; 1173 struct nfs_writeres *resp = &data->res; 1174 struct nfs_server *server = NFS_SERVER(data->inode); 1175 int status; 1176 1177 dprintk("NFS: %5u nfs_writeback_done (status %d)\n", 1178 task->tk_pid, task->tk_status); 1179 1180 /* 1181 * ->write_done will attempt to use post-op attributes to detect 1182 * conflicting writes by other clients. A strict interpretation 1183 * of close-to-open would allow us to continue caching even if 1184 * another writer had changed the file, but some applications 1185 * depend on tighter cache coherency when writing. 1186 */ 1187 status = NFS_PROTO(data->inode)->write_done(task, data); 1188 if (status != 0) 1189 return; 1190 nfs_add_stats(data->inode, NFSIOS_SERVERWRITTENBYTES, resp->count); 1191 1192 #if defined(CONFIG_NFS_V3) || defined(CONFIG_NFS_V4) 1193 if (resp->verf->committed < argp->stable && task->tk_status >= 0) { 1194 /* We tried a write call, but the server did not 1195 * commit data to stable storage even though we 1196 * requested it. 1197 * Note: There is a known bug in Tru64 < 5.0 in which 1198 * the server reports NFS_DATA_SYNC, but performs 1199 * NFS_FILE_SYNC. We therefore implement this checking 1200 * as a dprintk() in order to avoid filling syslog. 1201 */ 1202 static unsigned long complain; 1203 1204 /* Note this will print the MDS for a DS write */ 1205 if (time_before(complain, jiffies)) { 1206 dprintk("NFS: faulty NFS server %s:" 1207 " (committed = %d) != (stable = %d)\n", 1208 server->nfs_client->cl_hostname, 1209 resp->verf->committed, argp->stable); 1210 complain = jiffies + 300 * HZ; 1211 } 1212 } 1213 #endif 1214 /* Is this a short write? */ 1215 if (task->tk_status >= 0 && resp->count < argp->count) { 1216 static unsigned long complain; 1217 1218 nfs_inc_stats(data->inode, NFSIOS_SHORTWRITE); 1219 1220 /* Has the server at least made some progress? */ 1221 if (resp->count != 0) { 1222 /* Was this an NFSv2 write or an NFSv3 stable write? */ 1223 if (resp->verf->committed != NFS_UNSTABLE) { 1224 /* Resend from where the server left off */ 1225 data->mds_offset += resp->count; 1226 argp->offset += resp->count; 1227 argp->pgbase += resp->count; 1228 argp->count -= resp->count; 1229 } else { 1230 /* Resend as a stable write in order to avoid 1231 * headaches in the case of a server crash. 1232 */ 1233 argp->stable = NFS_FILE_SYNC; 1234 } 1235 nfs_restart_rpc(task, server->nfs_client); 1236 return; 1237 } 1238 if (time_before(complain, jiffies)) { 1239 printk(KERN_WARNING 1240 "NFS: Server wrote zero bytes, expected %u.\n", 1241 argp->count); 1242 complain = jiffies + 300 * HZ; 1243 } 1244 /* Can't do anything about it except throw an error. */ 1245 task->tk_status = -EIO; 1246 } 1247 return; 1248 } 1249 1250 1251 #if defined(CONFIG_NFS_V3) || defined(CONFIG_NFS_V4) 1252 static int nfs_commit_set_lock(struct nfs_inode *nfsi, int may_wait) 1253 { 1254 if (!test_and_set_bit(NFS_INO_COMMIT, &nfsi->flags)) 1255 return 1; 1256 if (may_wait && !out_of_line_wait_on_bit_lock(&nfsi->flags, 1257 NFS_INO_COMMIT, nfs_wait_bit_killable, 1258 TASK_KILLABLE)) 1259 return 1; 1260 return 0; 1261 } 1262 1263 static void nfs_commit_clear_lock(struct nfs_inode *nfsi) 1264 { 1265 clear_bit(NFS_INO_COMMIT, &nfsi->flags); 1266 smp_mb__after_clear_bit(); 1267 wake_up_bit(&nfsi->flags, NFS_INO_COMMIT); 1268 } 1269 1270 1271 static void nfs_commitdata_release(void *data) 1272 { 1273 struct nfs_write_data *wdata = data; 1274 1275 put_nfs_open_context(wdata->args.context); 1276 nfs_commit_free(wdata); 1277 } 1278 1279 /* 1280 * Set up the argument/result storage required for the RPC call. 1281 */ 1282 static int nfs_commit_rpcsetup(struct list_head *head, 1283 struct nfs_write_data *data, 1284 int how) 1285 { 1286 struct nfs_page *first = nfs_list_entry(head->next); 1287 struct inode *inode = first->wb_context->path.dentry->d_inode; 1288 int priority = flush_task_priority(how); 1289 struct rpc_task *task; 1290 struct rpc_message msg = { 1291 .rpc_argp = &data->args, 1292 .rpc_resp = &data->res, 1293 .rpc_cred = first->wb_context->cred, 1294 }; 1295 struct rpc_task_setup task_setup_data = { 1296 .task = &data->task, 1297 .rpc_client = NFS_CLIENT(inode), 1298 .rpc_message = &msg, 1299 .callback_ops = &nfs_commit_ops, 1300 .callback_data = data, 1301 .workqueue = nfsiod_workqueue, 1302 .flags = RPC_TASK_ASYNC, 1303 .priority = priority, 1304 }; 1305 1306 /* Set up the RPC argument and reply structs 1307 * NB: take care not to mess about with data->commit et al. */ 1308 1309 list_splice_init(head, &data->pages); 1310 1311 data->inode = inode; 1312 data->cred = msg.rpc_cred; 1313 1314 data->args.fh = NFS_FH(data->inode); 1315 /* Note: we always request a commit of the entire inode */ 1316 data->args.offset = 0; 1317 data->args.count = 0; 1318 data->args.context = get_nfs_open_context(first->wb_context); 1319 data->res.count = 0; 1320 data->res.fattr = &data->fattr; 1321 data->res.verf = &data->verf; 1322 nfs_fattr_init(&data->fattr); 1323 1324 /* Set up the initial task struct. */ 1325 NFS_PROTO(inode)->commit_setup(data, &msg); 1326 1327 dprintk("NFS: %5u initiated commit call\n", data->task.tk_pid); 1328 1329 task = rpc_run_task(&task_setup_data); 1330 if (IS_ERR(task)) 1331 return PTR_ERR(task); 1332 if (how & FLUSH_SYNC) 1333 rpc_wait_for_completion_task(task); 1334 rpc_put_task(task); 1335 return 0; 1336 } 1337 1338 /* 1339 * Commit dirty pages 1340 */ 1341 static int 1342 nfs_commit_list(struct inode *inode, struct list_head *head, int how) 1343 { 1344 struct nfs_write_data *data; 1345 struct nfs_page *req; 1346 1347 data = nfs_commitdata_alloc(); 1348 1349 if (!data) 1350 goto out_bad; 1351 1352 /* Set up the argument struct */ 1353 return nfs_commit_rpcsetup(head, data, how); 1354 out_bad: 1355 while (!list_empty(head)) { 1356 req = nfs_list_entry(head->next); 1357 nfs_list_remove_request(req); 1358 nfs_mark_request_commit(req); 1359 dec_zone_page_state(req->wb_page, NR_UNSTABLE_NFS); 1360 dec_bdi_stat(req->wb_page->mapping->backing_dev_info, 1361 BDI_RECLAIMABLE); 1362 nfs_clear_page_tag_locked(req); 1363 } 1364 nfs_commit_clear_lock(NFS_I(inode)); 1365 return -ENOMEM; 1366 } 1367 1368 /* 1369 * COMMIT call returned 1370 */ 1371 static void nfs_commit_done(struct rpc_task *task, void *calldata) 1372 { 1373 struct nfs_write_data *data = calldata; 1374 1375 dprintk("NFS: %5u nfs_commit_done (status %d)\n", 1376 task->tk_pid, task->tk_status); 1377 1378 /* Call the NFS version-specific code */ 1379 if (NFS_PROTO(data->inode)->commit_done(task, data) != 0) 1380 return; 1381 } 1382 1383 static void nfs_commit_release(void *calldata) 1384 { 1385 struct nfs_write_data *data = calldata; 1386 struct nfs_page *req; 1387 int status = data->task.tk_status; 1388 1389 while (!list_empty(&data->pages)) { 1390 req = nfs_list_entry(data->pages.next); 1391 nfs_list_remove_request(req); 1392 nfs_clear_request_commit(req); 1393 1394 dprintk("NFS: commit (%s/%lld %d@%lld)", 1395 req->wb_context->path.dentry->d_inode->i_sb->s_id, 1396 (long long)NFS_FILEID(req->wb_context->path.dentry->d_inode), 1397 req->wb_bytes, 1398 (long long)req_offset(req)); 1399 if (status < 0) { 1400 nfs_context_set_write_error(req->wb_context, status); 1401 nfs_inode_remove_request(req); 1402 dprintk(", error = %d\n", status); 1403 goto next; 1404 } 1405 1406 /* Okay, COMMIT succeeded, apparently. Check the verifier 1407 * returned by the server against all stored verfs. */ 1408 if (!memcmp(req->wb_verf.verifier, data->verf.verifier, sizeof(data->verf.verifier))) { 1409 /* We have a match */ 1410 nfs_inode_remove_request(req); 1411 dprintk(" OK\n"); 1412 goto next; 1413 } 1414 /* We have a mismatch. Write the page again */ 1415 dprintk(" mismatch\n"); 1416 nfs_mark_request_dirty(req); 1417 next: 1418 nfs_clear_page_tag_locked(req); 1419 } 1420 nfs_commit_clear_lock(NFS_I(data->inode)); 1421 nfs_commitdata_release(calldata); 1422 } 1423 1424 static const struct rpc_call_ops nfs_commit_ops = { 1425 #if defined(CONFIG_NFS_V4_1) 1426 .rpc_call_prepare = nfs_write_prepare, 1427 #endif /* CONFIG_NFS_V4_1 */ 1428 .rpc_call_done = nfs_commit_done, 1429 .rpc_release = nfs_commit_release, 1430 }; 1431 1432 int nfs_commit_inode(struct inode *inode, int how) 1433 { 1434 LIST_HEAD(head); 1435 int may_wait = how & FLUSH_SYNC; 1436 int res = 0; 1437 1438 if (!nfs_commit_set_lock(NFS_I(inode), may_wait)) 1439 goto out_mark_dirty; 1440 spin_lock(&inode->i_lock); 1441 res = nfs_scan_commit(inode, &head, 0, 0); 1442 spin_unlock(&inode->i_lock); 1443 if (res) { 1444 int error = nfs_commit_list(inode, &head, how); 1445 if (error < 0) 1446 return error; 1447 if (may_wait) 1448 wait_on_bit(&NFS_I(inode)->flags, NFS_INO_COMMIT, 1449 nfs_wait_bit_killable, 1450 TASK_KILLABLE); 1451 else 1452 goto out_mark_dirty; 1453 } else 1454 nfs_commit_clear_lock(NFS_I(inode)); 1455 return res; 1456 /* Note: If we exit without ensuring that the commit is complete, 1457 * we must mark the inode as dirty. Otherwise, future calls to 1458 * sync_inode() with the WB_SYNC_ALL flag set will fail to ensure 1459 * that the data is on the disk. 1460 */ 1461 out_mark_dirty: 1462 __mark_inode_dirty(inode, I_DIRTY_DATASYNC); 1463 return res; 1464 } 1465 1466 static int nfs_commit_unstable_pages(struct inode *inode, struct writeback_control *wbc) 1467 { 1468 struct nfs_inode *nfsi = NFS_I(inode); 1469 int flags = FLUSH_SYNC; 1470 int ret = 0; 1471 1472 if (wbc->sync_mode == WB_SYNC_NONE) { 1473 /* Don't commit yet if this is a non-blocking flush and there 1474 * are a lot of outstanding writes for this mapping. 1475 */ 1476 if (nfsi->ncommit <= (nfsi->npages >> 1)) 1477 goto out_mark_dirty; 1478 1479 /* don't wait for the COMMIT response */ 1480 flags = 0; 1481 } 1482 1483 ret = nfs_commit_inode(inode, flags); 1484 if (ret >= 0) { 1485 if (wbc->sync_mode == WB_SYNC_NONE) { 1486 if (ret < wbc->nr_to_write) 1487 wbc->nr_to_write -= ret; 1488 else 1489 wbc->nr_to_write = 0; 1490 } 1491 return 0; 1492 } 1493 out_mark_dirty: 1494 __mark_inode_dirty(inode, I_DIRTY_DATASYNC); 1495 return ret; 1496 } 1497 #else 1498 static int nfs_commit_unstable_pages(struct inode *inode, struct writeback_control *wbc) 1499 { 1500 return 0; 1501 } 1502 #endif 1503 1504 int nfs_write_inode(struct inode *inode, struct writeback_control *wbc) 1505 { 1506 return nfs_commit_unstable_pages(inode, wbc); 1507 } 1508 1509 /* 1510 * flush the inode to disk. 1511 */ 1512 int nfs_wb_all(struct inode *inode) 1513 { 1514 struct writeback_control wbc = { 1515 .sync_mode = WB_SYNC_ALL, 1516 .nr_to_write = LONG_MAX, 1517 .range_start = 0, 1518 .range_end = LLONG_MAX, 1519 }; 1520 1521 return sync_inode(inode, &wbc); 1522 } 1523 1524 int nfs_wb_page_cancel(struct inode *inode, struct page *page) 1525 { 1526 struct nfs_page *req; 1527 int ret = 0; 1528 1529 BUG_ON(!PageLocked(page)); 1530 for (;;) { 1531 wait_on_page_writeback(page); 1532 req = nfs_page_find_request(page); 1533 if (req == NULL) 1534 break; 1535 if (nfs_lock_request_dontget(req)) { 1536 nfs_inode_remove_request(req); 1537 /* 1538 * In case nfs_inode_remove_request has marked the 1539 * page as being dirty 1540 */ 1541 cancel_dirty_page(page, PAGE_CACHE_SIZE); 1542 nfs_unlock_request(req); 1543 break; 1544 } 1545 ret = nfs_wait_on_request(req); 1546 nfs_release_request(req); 1547 if (ret < 0) 1548 break; 1549 } 1550 return ret; 1551 } 1552 1553 /* 1554 * Write back all requests on one page - we do this before reading it. 1555 */ 1556 int nfs_wb_page(struct inode *inode, struct page *page) 1557 { 1558 loff_t range_start = page_offset(page); 1559 loff_t range_end = range_start + (loff_t)(PAGE_CACHE_SIZE - 1); 1560 struct writeback_control wbc = { 1561 .sync_mode = WB_SYNC_ALL, 1562 .nr_to_write = 0, 1563 .range_start = range_start, 1564 .range_end = range_end, 1565 }; 1566 int ret; 1567 1568 for (;;) { 1569 wait_on_page_writeback(page); 1570 if (clear_page_dirty_for_io(page)) { 1571 ret = nfs_writepage_locked(page, &wbc); 1572 if (ret < 0) 1573 goto out_error; 1574 continue; 1575 } 1576 if (!PagePrivate(page)) 1577 break; 1578 ret = nfs_commit_inode(inode, FLUSH_SYNC); 1579 if (ret < 0) 1580 goto out_error; 1581 } 1582 return 0; 1583 out_error: 1584 return ret; 1585 } 1586 1587 #ifdef CONFIG_MIGRATION 1588 int nfs_migrate_page(struct address_space *mapping, struct page *newpage, 1589 struct page *page) 1590 { 1591 struct nfs_page *req; 1592 int ret; 1593 1594 nfs_fscache_release_page(page, GFP_KERNEL); 1595 1596 req = nfs_find_and_lock_request(page, false); 1597 ret = PTR_ERR(req); 1598 if (IS_ERR(req)) 1599 goto out; 1600 1601 ret = migrate_page(mapping, newpage, page); 1602 if (!req) 1603 goto out; 1604 if (ret) 1605 goto out_unlock; 1606 page_cache_get(newpage); 1607 spin_lock(&mapping->host->i_lock); 1608 req->wb_page = newpage; 1609 SetPagePrivate(newpage); 1610 set_page_private(newpage, (unsigned long)req); 1611 ClearPagePrivate(page); 1612 set_page_private(page, 0); 1613 spin_unlock(&mapping->host->i_lock); 1614 page_cache_release(page); 1615 out_unlock: 1616 nfs_clear_page_tag_locked(req); 1617 out: 1618 return ret; 1619 } 1620 #endif 1621 1622 int __init nfs_init_writepagecache(void) 1623 { 1624 nfs_wdata_cachep = kmem_cache_create("nfs_write_data", 1625 sizeof(struct nfs_write_data), 1626 0, SLAB_HWCACHE_ALIGN, 1627 NULL); 1628 if (nfs_wdata_cachep == NULL) 1629 return -ENOMEM; 1630 1631 nfs_wdata_mempool = mempool_create_slab_pool(MIN_POOL_WRITE, 1632 nfs_wdata_cachep); 1633 if (nfs_wdata_mempool == NULL) 1634 return -ENOMEM; 1635 1636 nfs_commit_mempool = mempool_create_slab_pool(MIN_POOL_COMMIT, 1637 nfs_wdata_cachep); 1638 if (nfs_commit_mempool == NULL) 1639 return -ENOMEM; 1640 1641 /* 1642 * NFS congestion size, scale with available memory. 1643 * 1644 * 64MB: 8192k 1645 * 128MB: 11585k 1646 * 256MB: 16384k 1647 * 512MB: 23170k 1648 * 1GB: 32768k 1649 * 2GB: 46340k 1650 * 4GB: 65536k 1651 * 8GB: 92681k 1652 * 16GB: 131072k 1653 * 1654 * This allows larger machines to have larger/more transfers. 1655 * Limit the default to 256M 1656 */ 1657 nfs_congestion_kb = (16*int_sqrt(totalram_pages)) << (PAGE_SHIFT-10); 1658 if (nfs_congestion_kb > 256*1024) 1659 nfs_congestion_kb = 256*1024; 1660 1661 return 0; 1662 } 1663 1664 void nfs_destroy_writepagecache(void) 1665 { 1666 mempool_destroy(nfs_commit_mempool); 1667 mempool_destroy(nfs_wdata_mempool); 1668 kmem_cache_destroy(nfs_wdata_cachep); 1669 } 1670 1671