xref: /linux/fs/nfs/write.c (revision c54ea4918c2b7722d7242ea53271356501988a9b)
1 /*
2  * linux/fs/nfs/write.c
3  *
4  * Write file data over NFS.
5  *
6  * Copyright (C) 1996, 1997, Olaf Kirch <okir@monad.swb.de>
7  */
8 
9 #include <linux/types.h>
10 #include <linux/slab.h>
11 #include <linux/mm.h>
12 #include <linux/pagemap.h>
13 #include <linux/file.h>
14 #include <linux/writeback.h>
15 #include <linux/swap.h>
16 #include <linux/migrate.h>
17 
18 #include <linux/sunrpc/clnt.h>
19 #include <linux/nfs_fs.h>
20 #include <linux/nfs_mount.h>
21 #include <linux/nfs_page.h>
22 #include <linux/backing-dev.h>
23 
24 #include <asm/uaccess.h>
25 
26 #include "delegation.h"
27 #include "internal.h"
28 #include "iostat.h"
29 #include "nfs4_fs.h"
30 #include "fscache.h"
31 #include "pnfs.h"
32 
33 #define NFSDBG_FACILITY		NFSDBG_PAGECACHE
34 
35 #define MIN_POOL_WRITE		(32)
36 #define MIN_POOL_COMMIT		(4)
37 
38 /*
39  * Local function declarations
40  */
41 static void nfs_pageio_init_write(struct nfs_pageio_descriptor *desc,
42 				  struct inode *inode, int ioflags);
43 static void nfs_redirty_request(struct nfs_page *req);
44 static const struct rpc_call_ops nfs_write_partial_ops;
45 static const struct rpc_call_ops nfs_write_full_ops;
46 static const struct rpc_call_ops nfs_commit_ops;
47 
48 static struct kmem_cache *nfs_wdata_cachep;
49 static mempool_t *nfs_wdata_mempool;
50 static mempool_t *nfs_commit_mempool;
51 
52 struct nfs_write_data *nfs_commitdata_alloc(void)
53 {
54 	struct nfs_write_data *p = mempool_alloc(nfs_commit_mempool, GFP_NOFS);
55 
56 	if (p) {
57 		memset(p, 0, sizeof(*p));
58 		INIT_LIST_HEAD(&p->pages);
59 	}
60 	return p;
61 }
62 
63 void nfs_commit_free(struct nfs_write_data *p)
64 {
65 	if (p && (p->pagevec != &p->page_array[0]))
66 		kfree(p->pagevec);
67 	mempool_free(p, nfs_commit_mempool);
68 }
69 
70 struct nfs_write_data *nfs_writedata_alloc(unsigned int pagecount)
71 {
72 	struct nfs_write_data *p = mempool_alloc(nfs_wdata_mempool, GFP_NOFS);
73 
74 	if (p) {
75 		memset(p, 0, sizeof(*p));
76 		INIT_LIST_HEAD(&p->pages);
77 		p->npages = pagecount;
78 		if (pagecount <= ARRAY_SIZE(p->page_array))
79 			p->pagevec = p->page_array;
80 		else {
81 			p->pagevec = kcalloc(pagecount, sizeof(struct page *), GFP_NOFS);
82 			if (!p->pagevec) {
83 				mempool_free(p, nfs_wdata_mempool);
84 				p = NULL;
85 			}
86 		}
87 	}
88 	return p;
89 }
90 
91 void nfs_writedata_free(struct nfs_write_data *p)
92 {
93 	if (p && (p->pagevec != &p->page_array[0]))
94 		kfree(p->pagevec);
95 	mempool_free(p, nfs_wdata_mempool);
96 }
97 
98 static void nfs_writedata_release(struct nfs_write_data *wdata)
99 {
100 	put_lseg(wdata->lseg);
101 	put_nfs_open_context(wdata->args.context);
102 	nfs_writedata_free(wdata);
103 }
104 
105 static void nfs_context_set_write_error(struct nfs_open_context *ctx, int error)
106 {
107 	ctx->error = error;
108 	smp_wmb();
109 	set_bit(NFS_CONTEXT_ERROR_WRITE, &ctx->flags);
110 }
111 
112 static struct nfs_page *nfs_page_find_request_locked(struct page *page)
113 {
114 	struct nfs_page *req = NULL;
115 
116 	if (PagePrivate(page)) {
117 		req = (struct nfs_page *)page_private(page);
118 		if (req != NULL)
119 			kref_get(&req->wb_kref);
120 	}
121 	return req;
122 }
123 
124 static struct nfs_page *nfs_page_find_request(struct page *page)
125 {
126 	struct inode *inode = page->mapping->host;
127 	struct nfs_page *req = NULL;
128 
129 	spin_lock(&inode->i_lock);
130 	req = nfs_page_find_request_locked(page);
131 	spin_unlock(&inode->i_lock);
132 	return req;
133 }
134 
135 /* Adjust the file length if we're writing beyond the end */
136 static void nfs_grow_file(struct page *page, unsigned int offset, unsigned int count)
137 {
138 	struct inode *inode = page->mapping->host;
139 	loff_t end, i_size;
140 	pgoff_t end_index;
141 
142 	spin_lock(&inode->i_lock);
143 	i_size = i_size_read(inode);
144 	end_index = (i_size - 1) >> PAGE_CACHE_SHIFT;
145 	if (i_size > 0 && page->index < end_index)
146 		goto out;
147 	end = ((loff_t)page->index << PAGE_CACHE_SHIFT) + ((loff_t)offset+count);
148 	if (i_size >= end)
149 		goto out;
150 	i_size_write(inode, end);
151 	nfs_inc_stats(inode, NFSIOS_EXTENDWRITE);
152 out:
153 	spin_unlock(&inode->i_lock);
154 }
155 
156 /* A writeback failed: mark the page as bad, and invalidate the page cache */
157 static void nfs_set_pageerror(struct page *page)
158 {
159 	SetPageError(page);
160 	nfs_zap_mapping(page->mapping->host, page->mapping);
161 }
162 
163 /* We can set the PG_uptodate flag if we see that a write request
164  * covers the full page.
165  */
166 static void nfs_mark_uptodate(struct page *page, unsigned int base, unsigned int count)
167 {
168 	if (PageUptodate(page))
169 		return;
170 	if (base != 0)
171 		return;
172 	if (count != nfs_page_length(page))
173 		return;
174 	SetPageUptodate(page);
175 }
176 
177 static int wb_priority(struct writeback_control *wbc)
178 {
179 	if (wbc->for_reclaim)
180 		return FLUSH_HIGHPRI | FLUSH_STABLE;
181 	if (wbc->for_kupdate || wbc->for_background)
182 		return FLUSH_LOWPRI;
183 	return 0;
184 }
185 
186 /*
187  * NFS congestion control
188  */
189 
190 int nfs_congestion_kb;
191 
192 #define NFS_CONGESTION_ON_THRESH 	(nfs_congestion_kb >> (PAGE_SHIFT-10))
193 #define NFS_CONGESTION_OFF_THRESH	\
194 	(NFS_CONGESTION_ON_THRESH - (NFS_CONGESTION_ON_THRESH >> 2))
195 
196 static int nfs_set_page_writeback(struct page *page)
197 {
198 	int ret = test_set_page_writeback(page);
199 
200 	if (!ret) {
201 		struct inode *inode = page->mapping->host;
202 		struct nfs_server *nfss = NFS_SERVER(inode);
203 
204 		page_cache_get(page);
205 		if (atomic_long_inc_return(&nfss->writeback) >
206 				NFS_CONGESTION_ON_THRESH) {
207 			set_bdi_congested(&nfss->backing_dev_info,
208 						BLK_RW_ASYNC);
209 		}
210 	}
211 	return ret;
212 }
213 
214 static void nfs_end_page_writeback(struct page *page)
215 {
216 	struct inode *inode = page->mapping->host;
217 	struct nfs_server *nfss = NFS_SERVER(inode);
218 
219 	end_page_writeback(page);
220 	page_cache_release(page);
221 	if (atomic_long_dec_return(&nfss->writeback) < NFS_CONGESTION_OFF_THRESH)
222 		clear_bdi_congested(&nfss->backing_dev_info, BLK_RW_ASYNC);
223 }
224 
225 static struct nfs_page *nfs_find_and_lock_request(struct page *page, bool nonblock)
226 {
227 	struct inode *inode = page->mapping->host;
228 	struct nfs_page *req;
229 	int ret;
230 
231 	spin_lock(&inode->i_lock);
232 	for (;;) {
233 		req = nfs_page_find_request_locked(page);
234 		if (req == NULL)
235 			break;
236 		if (nfs_set_page_tag_locked(req))
237 			break;
238 		/* Note: If we hold the page lock, as is the case in nfs_writepage,
239 		 *	 then the call to nfs_set_page_tag_locked() will always
240 		 *	 succeed provided that someone hasn't already marked the
241 		 *	 request as dirty (in which case we don't care).
242 		 */
243 		spin_unlock(&inode->i_lock);
244 		if (!nonblock)
245 			ret = nfs_wait_on_request(req);
246 		else
247 			ret = -EAGAIN;
248 		nfs_release_request(req);
249 		if (ret != 0)
250 			return ERR_PTR(ret);
251 		spin_lock(&inode->i_lock);
252 	}
253 	spin_unlock(&inode->i_lock);
254 	return req;
255 }
256 
257 /*
258  * Find an associated nfs write request, and prepare to flush it out
259  * May return an error if the user signalled nfs_wait_on_request().
260  */
261 static int nfs_page_async_flush(struct nfs_pageio_descriptor *pgio,
262 				struct page *page, bool nonblock)
263 {
264 	struct nfs_page *req;
265 	int ret = 0;
266 
267 	req = nfs_find_and_lock_request(page, nonblock);
268 	if (!req)
269 		goto out;
270 	ret = PTR_ERR(req);
271 	if (IS_ERR(req))
272 		goto out;
273 
274 	ret = nfs_set_page_writeback(page);
275 	BUG_ON(ret != 0);
276 	BUG_ON(test_bit(PG_CLEAN, &req->wb_flags));
277 
278 	if (!nfs_pageio_add_request(pgio, req)) {
279 		nfs_redirty_request(req);
280 		ret = pgio->pg_error;
281 	}
282 out:
283 	return ret;
284 }
285 
286 static int nfs_do_writepage(struct page *page, struct writeback_control *wbc, struct nfs_pageio_descriptor *pgio)
287 {
288 	struct inode *inode = page->mapping->host;
289 	int ret;
290 
291 	nfs_inc_stats(inode, NFSIOS_VFSWRITEPAGE);
292 	nfs_add_stats(inode, NFSIOS_WRITEPAGES, 1);
293 
294 	nfs_pageio_cond_complete(pgio, page->index);
295 	ret = nfs_page_async_flush(pgio, page, wbc->sync_mode == WB_SYNC_NONE);
296 	if (ret == -EAGAIN) {
297 		redirty_page_for_writepage(wbc, page);
298 		ret = 0;
299 	}
300 	return ret;
301 }
302 
303 /*
304  * Write an mmapped page to the server.
305  */
306 static int nfs_writepage_locked(struct page *page, struct writeback_control *wbc)
307 {
308 	struct nfs_pageio_descriptor pgio;
309 	int err;
310 
311 	nfs_pageio_init_write(&pgio, page->mapping->host, wb_priority(wbc));
312 	err = nfs_do_writepage(page, wbc, &pgio);
313 	nfs_pageio_complete(&pgio);
314 	if (err < 0)
315 		return err;
316 	if (pgio.pg_error < 0)
317 		return pgio.pg_error;
318 	return 0;
319 }
320 
321 int nfs_writepage(struct page *page, struct writeback_control *wbc)
322 {
323 	int ret;
324 
325 	ret = nfs_writepage_locked(page, wbc);
326 	unlock_page(page);
327 	return ret;
328 }
329 
330 static int nfs_writepages_callback(struct page *page, struct writeback_control *wbc, void *data)
331 {
332 	int ret;
333 
334 	ret = nfs_do_writepage(page, wbc, data);
335 	unlock_page(page);
336 	return ret;
337 }
338 
339 int nfs_writepages(struct address_space *mapping, struct writeback_control *wbc)
340 {
341 	struct inode *inode = mapping->host;
342 	unsigned long *bitlock = &NFS_I(inode)->flags;
343 	struct nfs_pageio_descriptor pgio;
344 	int err;
345 
346 	/* Stop dirtying of new pages while we sync */
347 	err = wait_on_bit_lock(bitlock, NFS_INO_FLUSHING,
348 			nfs_wait_bit_killable, TASK_KILLABLE);
349 	if (err)
350 		goto out_err;
351 
352 	nfs_inc_stats(inode, NFSIOS_VFSWRITEPAGES);
353 
354 	nfs_pageio_init_write(&pgio, inode, wb_priority(wbc));
355 	err = write_cache_pages(mapping, wbc, nfs_writepages_callback, &pgio);
356 	nfs_pageio_complete(&pgio);
357 
358 	clear_bit_unlock(NFS_INO_FLUSHING, bitlock);
359 	smp_mb__after_clear_bit();
360 	wake_up_bit(bitlock, NFS_INO_FLUSHING);
361 
362 	if (err < 0)
363 		goto out_err;
364 	err = pgio.pg_error;
365 	if (err < 0)
366 		goto out_err;
367 	return 0;
368 out_err:
369 	return err;
370 }
371 
372 /*
373  * Insert a write request into an inode
374  */
375 static int nfs_inode_add_request(struct inode *inode, struct nfs_page *req)
376 {
377 	struct nfs_inode *nfsi = NFS_I(inode);
378 	int error;
379 
380 	error = radix_tree_preload(GFP_NOFS);
381 	if (error != 0)
382 		goto out;
383 
384 	/* Lock the request! */
385 	nfs_lock_request_dontget(req);
386 
387 	spin_lock(&inode->i_lock);
388 	error = radix_tree_insert(&nfsi->nfs_page_tree, req->wb_index, req);
389 	BUG_ON(error);
390 	if (!nfsi->npages) {
391 		igrab(inode);
392 		if (nfs_have_delegation(inode, FMODE_WRITE))
393 			nfsi->change_attr++;
394 	}
395 	set_bit(PG_MAPPED, &req->wb_flags);
396 	SetPagePrivate(req->wb_page);
397 	set_page_private(req->wb_page, (unsigned long)req);
398 	nfsi->npages++;
399 	kref_get(&req->wb_kref);
400 	radix_tree_tag_set(&nfsi->nfs_page_tree, req->wb_index,
401 				NFS_PAGE_TAG_LOCKED);
402 	spin_unlock(&inode->i_lock);
403 	radix_tree_preload_end();
404 out:
405 	return error;
406 }
407 
408 /*
409  * Remove a write request from an inode
410  */
411 static void nfs_inode_remove_request(struct nfs_page *req)
412 {
413 	struct inode *inode = req->wb_context->path.dentry->d_inode;
414 	struct nfs_inode *nfsi = NFS_I(inode);
415 
416 	BUG_ON (!NFS_WBACK_BUSY(req));
417 
418 	spin_lock(&inode->i_lock);
419 	set_page_private(req->wb_page, 0);
420 	ClearPagePrivate(req->wb_page);
421 	clear_bit(PG_MAPPED, &req->wb_flags);
422 	radix_tree_delete(&nfsi->nfs_page_tree, req->wb_index);
423 	nfsi->npages--;
424 	if (!nfsi->npages) {
425 		spin_unlock(&inode->i_lock);
426 		iput(inode);
427 	} else
428 		spin_unlock(&inode->i_lock);
429 	nfs_release_request(req);
430 }
431 
432 static void
433 nfs_mark_request_dirty(struct nfs_page *req)
434 {
435 	__set_page_dirty_nobuffers(req->wb_page);
436 	__mark_inode_dirty(req->wb_page->mapping->host, I_DIRTY_DATASYNC);
437 }
438 
439 #if defined(CONFIG_NFS_V3) || defined(CONFIG_NFS_V4)
440 /*
441  * Add a request to the inode's commit list.
442  */
443 static void
444 nfs_mark_request_commit(struct nfs_page *req)
445 {
446 	struct inode *inode = req->wb_context->path.dentry->d_inode;
447 	struct nfs_inode *nfsi = NFS_I(inode);
448 
449 	spin_lock(&inode->i_lock);
450 	set_bit(PG_CLEAN, &(req)->wb_flags);
451 	radix_tree_tag_set(&nfsi->nfs_page_tree,
452 			req->wb_index,
453 			NFS_PAGE_TAG_COMMIT);
454 	nfsi->ncommit++;
455 	spin_unlock(&inode->i_lock);
456 	inc_zone_page_state(req->wb_page, NR_UNSTABLE_NFS);
457 	inc_bdi_stat(req->wb_page->mapping->backing_dev_info, BDI_RECLAIMABLE);
458 	__mark_inode_dirty(inode, I_DIRTY_DATASYNC);
459 }
460 
461 static int
462 nfs_clear_request_commit(struct nfs_page *req)
463 {
464 	struct page *page = req->wb_page;
465 
466 	if (test_and_clear_bit(PG_CLEAN, &(req)->wb_flags)) {
467 		dec_zone_page_state(page, NR_UNSTABLE_NFS);
468 		dec_bdi_stat(page->mapping->backing_dev_info, BDI_RECLAIMABLE);
469 		return 1;
470 	}
471 	return 0;
472 }
473 
474 static inline
475 int nfs_write_need_commit(struct nfs_write_data *data)
476 {
477 	return data->verf.committed != NFS_FILE_SYNC;
478 }
479 
480 static inline
481 int nfs_reschedule_unstable_write(struct nfs_page *req)
482 {
483 	if (test_and_clear_bit(PG_NEED_COMMIT, &req->wb_flags)) {
484 		nfs_mark_request_commit(req);
485 		return 1;
486 	}
487 	if (test_and_clear_bit(PG_NEED_RESCHED, &req->wb_flags)) {
488 		nfs_mark_request_dirty(req);
489 		return 1;
490 	}
491 	return 0;
492 }
493 #else
494 static inline void
495 nfs_mark_request_commit(struct nfs_page *req)
496 {
497 }
498 
499 static inline int
500 nfs_clear_request_commit(struct nfs_page *req)
501 {
502 	return 0;
503 }
504 
505 static inline
506 int nfs_write_need_commit(struct nfs_write_data *data)
507 {
508 	return 0;
509 }
510 
511 static inline
512 int nfs_reschedule_unstable_write(struct nfs_page *req)
513 {
514 	return 0;
515 }
516 #endif
517 
518 #if defined(CONFIG_NFS_V3) || defined(CONFIG_NFS_V4)
519 static int
520 nfs_need_commit(struct nfs_inode *nfsi)
521 {
522 	return radix_tree_tagged(&nfsi->nfs_page_tree, NFS_PAGE_TAG_COMMIT);
523 }
524 
525 /*
526  * nfs_scan_commit - Scan an inode for commit requests
527  * @inode: NFS inode to scan
528  * @dst: destination list
529  * @idx_start: lower bound of page->index to scan.
530  * @npages: idx_start + npages sets the upper bound to scan.
531  *
532  * Moves requests from the inode's 'commit' request list.
533  * The requests are *not* checked to ensure that they form a contiguous set.
534  */
535 static int
536 nfs_scan_commit(struct inode *inode, struct list_head *dst, pgoff_t idx_start, unsigned int npages)
537 {
538 	struct nfs_inode *nfsi = NFS_I(inode);
539 	int ret;
540 
541 	if (!nfs_need_commit(nfsi))
542 		return 0;
543 
544 	ret = nfs_scan_list(nfsi, dst, idx_start, npages, NFS_PAGE_TAG_COMMIT);
545 	if (ret > 0)
546 		nfsi->ncommit -= ret;
547 	if (nfs_need_commit(NFS_I(inode)))
548 		__mark_inode_dirty(inode, I_DIRTY_DATASYNC);
549 	return ret;
550 }
551 #else
552 static inline int nfs_need_commit(struct nfs_inode *nfsi)
553 {
554 	return 0;
555 }
556 
557 static inline int nfs_scan_commit(struct inode *inode, struct list_head *dst, pgoff_t idx_start, unsigned int npages)
558 {
559 	return 0;
560 }
561 #endif
562 
563 /*
564  * Search for an existing write request, and attempt to update
565  * it to reflect a new dirty region on a given page.
566  *
567  * If the attempt fails, then the existing request is flushed out
568  * to disk.
569  */
570 static struct nfs_page *nfs_try_to_update_request(struct inode *inode,
571 		struct page *page,
572 		unsigned int offset,
573 		unsigned int bytes)
574 {
575 	struct nfs_page *req;
576 	unsigned int rqend;
577 	unsigned int end;
578 	int error;
579 
580 	if (!PagePrivate(page))
581 		return NULL;
582 
583 	end = offset + bytes;
584 	spin_lock(&inode->i_lock);
585 
586 	for (;;) {
587 		req = nfs_page_find_request_locked(page);
588 		if (req == NULL)
589 			goto out_unlock;
590 
591 		rqend = req->wb_offset + req->wb_bytes;
592 		/*
593 		 * Tell the caller to flush out the request if
594 		 * the offsets are non-contiguous.
595 		 * Note: nfs_flush_incompatible() will already
596 		 * have flushed out requests having wrong owners.
597 		 */
598 		if (offset > rqend
599 		    || end < req->wb_offset)
600 			goto out_flushme;
601 
602 		if (nfs_set_page_tag_locked(req))
603 			break;
604 
605 		/* The request is locked, so wait and then retry */
606 		spin_unlock(&inode->i_lock);
607 		error = nfs_wait_on_request(req);
608 		nfs_release_request(req);
609 		if (error != 0)
610 			goto out_err;
611 		spin_lock(&inode->i_lock);
612 	}
613 
614 	if (nfs_clear_request_commit(req) &&
615 			radix_tree_tag_clear(&NFS_I(inode)->nfs_page_tree,
616 				req->wb_index, NFS_PAGE_TAG_COMMIT) != NULL)
617 		NFS_I(inode)->ncommit--;
618 
619 	/* Okay, the request matches. Update the region */
620 	if (offset < req->wb_offset) {
621 		req->wb_offset = offset;
622 		req->wb_pgbase = offset;
623 	}
624 	if (end > rqend)
625 		req->wb_bytes = end - req->wb_offset;
626 	else
627 		req->wb_bytes = rqend - req->wb_offset;
628 out_unlock:
629 	spin_unlock(&inode->i_lock);
630 	return req;
631 out_flushme:
632 	spin_unlock(&inode->i_lock);
633 	nfs_release_request(req);
634 	error = nfs_wb_page(inode, page);
635 out_err:
636 	return ERR_PTR(error);
637 }
638 
639 /*
640  * Try to update an existing write request, or create one if there is none.
641  *
642  * Note: Should always be called with the Page Lock held to prevent races
643  * if we have to add a new request. Also assumes that the caller has
644  * already called nfs_flush_incompatible() if necessary.
645  */
646 static struct nfs_page * nfs_setup_write_request(struct nfs_open_context* ctx,
647 		struct page *page, unsigned int offset, unsigned int bytes)
648 {
649 	struct inode *inode = page->mapping->host;
650 	struct nfs_page	*req;
651 	int error;
652 
653 	req = nfs_try_to_update_request(inode, page, offset, bytes);
654 	if (req != NULL)
655 		goto out;
656 	req = nfs_create_request(ctx, inode, page, offset, bytes);
657 	if (IS_ERR(req))
658 		goto out;
659 	error = nfs_inode_add_request(inode, req);
660 	if (error != 0) {
661 		nfs_release_request(req);
662 		req = ERR_PTR(error);
663 	}
664 out:
665 	return req;
666 }
667 
668 static int nfs_writepage_setup(struct nfs_open_context *ctx, struct page *page,
669 		unsigned int offset, unsigned int count)
670 {
671 	struct nfs_page	*req;
672 
673 	req = nfs_setup_write_request(ctx, page, offset, count);
674 	if (IS_ERR(req))
675 		return PTR_ERR(req);
676 	nfs_mark_request_dirty(req);
677 	/* Update file length */
678 	nfs_grow_file(page, offset, count);
679 	nfs_mark_uptodate(page, req->wb_pgbase, req->wb_bytes);
680 	nfs_mark_request_dirty(req);
681 	nfs_clear_page_tag_locked(req);
682 	return 0;
683 }
684 
685 int nfs_flush_incompatible(struct file *file, struct page *page)
686 {
687 	struct nfs_open_context *ctx = nfs_file_open_context(file);
688 	struct nfs_page	*req;
689 	int do_flush, status;
690 	/*
691 	 * Look for a request corresponding to this page. If there
692 	 * is one, and it belongs to another file, we flush it out
693 	 * before we try to copy anything into the page. Do this
694 	 * due to the lack of an ACCESS-type call in NFSv2.
695 	 * Also do the same if we find a request from an existing
696 	 * dropped page.
697 	 */
698 	do {
699 		req = nfs_page_find_request(page);
700 		if (req == NULL)
701 			return 0;
702 		do_flush = req->wb_page != page || req->wb_context != ctx ||
703 			req->wb_lock_context->lockowner != current->files ||
704 			req->wb_lock_context->pid != current->tgid;
705 		nfs_release_request(req);
706 		if (!do_flush)
707 			return 0;
708 		status = nfs_wb_page(page->mapping->host, page);
709 	} while (status == 0);
710 	return status;
711 }
712 
713 /*
714  * If the page cache is marked as unsafe or invalid, then we can't rely on
715  * the PageUptodate() flag. In this case, we will need to turn off
716  * write optimisations that depend on the page contents being correct.
717  */
718 static int nfs_write_pageuptodate(struct page *page, struct inode *inode)
719 {
720 	return PageUptodate(page) &&
721 		!(NFS_I(inode)->cache_validity & (NFS_INO_REVAL_PAGECACHE|NFS_INO_INVALID_DATA));
722 }
723 
724 /*
725  * Update and possibly write a cached page of an NFS file.
726  *
727  * XXX: Keep an eye on generic_file_read to make sure it doesn't do bad
728  * things with a page scheduled for an RPC call (e.g. invalidate it).
729  */
730 int nfs_updatepage(struct file *file, struct page *page,
731 		unsigned int offset, unsigned int count)
732 {
733 	struct nfs_open_context *ctx = nfs_file_open_context(file);
734 	struct inode	*inode = page->mapping->host;
735 	int		status = 0;
736 
737 	nfs_inc_stats(inode, NFSIOS_VFSUPDATEPAGE);
738 
739 	dprintk("NFS:       nfs_updatepage(%s/%s %d@%lld)\n",
740 		file->f_path.dentry->d_parent->d_name.name,
741 		file->f_path.dentry->d_name.name, count,
742 		(long long)(page_offset(page) + offset));
743 
744 	/* If we're not using byte range locks, and we know the page
745 	 * is up to date, it may be more efficient to extend the write
746 	 * to cover the entire page in order to avoid fragmentation
747 	 * inefficiencies.
748 	 */
749 	if (nfs_write_pageuptodate(page, inode) &&
750 			inode->i_flock == NULL &&
751 			!(file->f_flags & O_DSYNC)) {
752 		count = max(count + offset, nfs_page_length(page));
753 		offset = 0;
754 	}
755 
756 	status = nfs_writepage_setup(ctx, page, offset, count);
757 	if (status < 0)
758 		nfs_set_pageerror(page);
759 
760 	dprintk("NFS:       nfs_updatepage returns %d (isize %lld)\n",
761 			status, (long long)i_size_read(inode));
762 	return status;
763 }
764 
765 static void nfs_writepage_release(struct nfs_page *req)
766 {
767 	struct page *page = req->wb_page;
768 
769 	if (PageError(req->wb_page) || !nfs_reschedule_unstable_write(req))
770 		nfs_inode_remove_request(req);
771 	nfs_clear_page_tag_locked(req);
772 	nfs_end_page_writeback(page);
773 }
774 
775 static int flush_task_priority(int how)
776 {
777 	switch (how & (FLUSH_HIGHPRI|FLUSH_LOWPRI)) {
778 		case FLUSH_HIGHPRI:
779 			return RPC_PRIORITY_HIGH;
780 		case FLUSH_LOWPRI:
781 			return RPC_PRIORITY_LOW;
782 	}
783 	return RPC_PRIORITY_NORMAL;
784 }
785 
786 int nfs_initiate_write(struct nfs_write_data *data,
787 		       struct rpc_clnt *clnt,
788 		       const struct rpc_call_ops *call_ops,
789 		       int how)
790 {
791 	struct inode *inode = data->inode;
792 	int priority = flush_task_priority(how);
793 	struct rpc_task *task;
794 	struct rpc_message msg = {
795 		.rpc_argp = &data->args,
796 		.rpc_resp = &data->res,
797 		.rpc_cred = data->cred,
798 	};
799 	struct rpc_task_setup task_setup_data = {
800 		.rpc_client = clnt,
801 		.task = &data->task,
802 		.rpc_message = &msg,
803 		.callback_ops = call_ops,
804 		.callback_data = data,
805 		.workqueue = nfsiod_workqueue,
806 		.flags = RPC_TASK_ASYNC,
807 		.priority = priority,
808 	};
809 	int ret = 0;
810 
811 	/* Set up the initial task struct.  */
812 	NFS_PROTO(inode)->write_setup(data, &msg);
813 
814 	dprintk("NFS: %5u initiated write call "
815 		"(req %s/%lld, %u bytes @ offset %llu)\n",
816 		data->task.tk_pid,
817 		inode->i_sb->s_id,
818 		(long long)NFS_FILEID(inode),
819 		data->args.count,
820 		(unsigned long long)data->args.offset);
821 
822 	task = rpc_run_task(&task_setup_data);
823 	if (IS_ERR(task)) {
824 		ret = PTR_ERR(task);
825 		goto out;
826 	}
827 	if (how & FLUSH_SYNC) {
828 		ret = rpc_wait_for_completion_task(task);
829 		if (ret == 0)
830 			ret = task->tk_status;
831 	}
832 	rpc_put_task(task);
833 out:
834 	return ret;
835 }
836 EXPORT_SYMBOL_GPL(nfs_initiate_write);
837 
838 /*
839  * Set up the argument/result storage required for the RPC call.
840  */
841 static int nfs_write_rpcsetup(struct nfs_page *req,
842 		struct nfs_write_data *data,
843 		const struct rpc_call_ops *call_ops,
844 		unsigned int count, unsigned int offset,
845 		struct pnfs_layout_segment *lseg,
846 		int how)
847 {
848 	struct inode *inode = req->wb_context->path.dentry->d_inode;
849 
850 	/* Set up the RPC argument and reply structs
851 	 * NB: take care not to mess about with data->commit et al. */
852 
853 	data->req = req;
854 	data->inode = inode = req->wb_context->path.dentry->d_inode;
855 	data->cred = req->wb_context->cred;
856 	data->lseg = get_lseg(lseg);
857 
858 	data->args.fh     = NFS_FH(inode);
859 	data->args.offset = req_offset(req) + offset;
860 	data->args.pgbase = req->wb_pgbase + offset;
861 	data->args.pages  = data->pagevec;
862 	data->args.count  = count;
863 	data->args.context = get_nfs_open_context(req->wb_context);
864 	data->args.lock_context = req->wb_lock_context;
865 	data->args.stable  = NFS_UNSTABLE;
866 	if (how & FLUSH_STABLE) {
867 		data->args.stable = NFS_DATA_SYNC;
868 		if (!nfs_need_commit(NFS_I(inode)))
869 			data->args.stable = NFS_FILE_SYNC;
870 	}
871 
872 	data->res.fattr   = &data->fattr;
873 	data->res.count   = count;
874 	data->res.verf    = &data->verf;
875 	nfs_fattr_init(&data->fattr);
876 
877 	if (data->lseg &&
878 	    (pnfs_try_to_write_data(data, call_ops, how) == PNFS_ATTEMPTED))
879 		return 0;
880 
881 	return nfs_initiate_write(data, NFS_CLIENT(inode), call_ops, how);
882 }
883 
884 /* If a nfs_flush_* function fails, it should remove reqs from @head and
885  * call this on each, which will prepare them to be retried on next
886  * writeback using standard nfs.
887  */
888 static void nfs_redirty_request(struct nfs_page *req)
889 {
890 	struct page *page = req->wb_page;
891 
892 	nfs_mark_request_dirty(req);
893 	nfs_clear_page_tag_locked(req);
894 	nfs_end_page_writeback(page);
895 }
896 
897 /*
898  * Generate multiple small requests to write out a single
899  * contiguous dirty area on one page.
900  */
901 static int nfs_flush_multi(struct nfs_pageio_descriptor *desc)
902 {
903 	struct nfs_page *req = nfs_list_entry(desc->pg_list.next);
904 	struct page *page = req->wb_page;
905 	struct nfs_write_data *data;
906 	size_t wsize = NFS_SERVER(desc->pg_inode)->wsize, nbytes;
907 	unsigned int offset;
908 	int requests = 0;
909 	int ret = 0;
910 	struct pnfs_layout_segment *lseg;
911 	LIST_HEAD(list);
912 
913 	nfs_list_remove_request(req);
914 
915 	nbytes = desc->pg_count;
916 	do {
917 		size_t len = min(nbytes, wsize);
918 
919 		data = nfs_writedata_alloc(1);
920 		if (!data)
921 			goto out_bad;
922 		list_add(&data->pages, &list);
923 		requests++;
924 		nbytes -= len;
925 	} while (nbytes != 0);
926 	atomic_set(&req->wb_complete, requests);
927 
928 	BUG_ON(desc->pg_lseg);
929 	lseg = pnfs_update_layout(desc->pg_inode, req->wb_context, IOMODE_RW);
930 	ClearPageError(page);
931 	offset = 0;
932 	nbytes = desc->pg_count;
933 	do {
934 		int ret2;
935 
936 		data = list_entry(list.next, struct nfs_write_data, pages);
937 		list_del_init(&data->pages);
938 
939 		data->pagevec[0] = page;
940 
941 		if (nbytes < wsize)
942 			wsize = nbytes;
943 		ret2 = nfs_write_rpcsetup(req, data, &nfs_write_partial_ops,
944 					  wsize, offset, lseg, desc->pg_ioflags);
945 		if (ret == 0)
946 			ret = ret2;
947 		offset += wsize;
948 		nbytes -= wsize;
949 	} while (nbytes != 0);
950 
951 	put_lseg(lseg);
952 	desc->pg_lseg = NULL;
953 	return ret;
954 
955 out_bad:
956 	while (!list_empty(&list)) {
957 		data = list_entry(list.next, struct nfs_write_data, pages);
958 		list_del(&data->pages);
959 		nfs_writedata_free(data);
960 	}
961 	nfs_redirty_request(req);
962 	return -ENOMEM;
963 }
964 
965 /*
966  * Create an RPC task for the given write request and kick it.
967  * The page must have been locked by the caller.
968  *
969  * It may happen that the page we're passed is not marked dirty.
970  * This is the case if nfs_updatepage detects a conflicting request
971  * that has been written but not committed.
972  */
973 static int nfs_flush_one(struct nfs_pageio_descriptor *desc)
974 {
975 	struct nfs_page		*req;
976 	struct page		**pages;
977 	struct nfs_write_data	*data;
978 	struct list_head *head = &desc->pg_list;
979 	struct pnfs_layout_segment *lseg = desc->pg_lseg;
980 	int ret;
981 
982 	data = nfs_writedata_alloc(nfs_page_array_len(desc->pg_base,
983 						      desc->pg_count));
984 	if (!data) {
985 		while (!list_empty(head)) {
986 			req = nfs_list_entry(head->next);
987 			nfs_list_remove_request(req);
988 			nfs_redirty_request(req);
989 		}
990 		ret = -ENOMEM;
991 		goto out;
992 	}
993 	pages = data->pagevec;
994 	while (!list_empty(head)) {
995 		req = nfs_list_entry(head->next);
996 		nfs_list_remove_request(req);
997 		nfs_list_add_request(req, &data->pages);
998 		ClearPageError(req->wb_page);
999 		*pages++ = req->wb_page;
1000 	}
1001 	req = nfs_list_entry(data->pages.next);
1002 	if ((!lseg) && list_is_singular(&data->pages))
1003 		lseg = pnfs_update_layout(desc->pg_inode, req->wb_context, IOMODE_RW);
1004 
1005 	/* Set up the argument struct */
1006 	ret = nfs_write_rpcsetup(req, data, &nfs_write_full_ops, desc->pg_count, 0, lseg, desc->pg_ioflags);
1007 out:
1008 	put_lseg(lseg); /* Cleans any gotten in ->pg_test */
1009 	desc->pg_lseg = NULL;
1010 	return ret;
1011 }
1012 
1013 static void nfs_pageio_init_write(struct nfs_pageio_descriptor *pgio,
1014 				  struct inode *inode, int ioflags)
1015 {
1016 	size_t wsize = NFS_SERVER(inode)->wsize;
1017 
1018 	pnfs_pageio_init_write(pgio, inode);
1019 
1020 	if (wsize < PAGE_CACHE_SIZE)
1021 		nfs_pageio_init(pgio, inode, nfs_flush_multi, wsize, ioflags);
1022 	else
1023 		nfs_pageio_init(pgio, inode, nfs_flush_one, wsize, ioflags);
1024 }
1025 
1026 /*
1027  * Handle a write reply that flushed part of a page.
1028  */
1029 static void nfs_writeback_done_partial(struct rpc_task *task, void *calldata)
1030 {
1031 	struct nfs_write_data	*data = calldata;
1032 
1033 	dprintk("NFS: %5u write(%s/%lld %d@%lld)",
1034 		task->tk_pid,
1035 		data->req->wb_context->path.dentry->d_inode->i_sb->s_id,
1036 		(long long)
1037 		  NFS_FILEID(data->req->wb_context->path.dentry->d_inode),
1038 		data->req->wb_bytes, (long long)req_offset(data->req));
1039 
1040 	nfs_writeback_done(task, data);
1041 }
1042 
1043 static void nfs_writeback_release_partial(void *calldata)
1044 {
1045 	struct nfs_write_data	*data = calldata;
1046 	struct nfs_page		*req = data->req;
1047 	struct page		*page = req->wb_page;
1048 	int status = data->task.tk_status;
1049 
1050 	if (status < 0) {
1051 		nfs_set_pageerror(page);
1052 		nfs_context_set_write_error(req->wb_context, status);
1053 		dprintk(", error = %d\n", status);
1054 		goto out;
1055 	}
1056 
1057 	if (nfs_write_need_commit(data)) {
1058 		struct inode *inode = page->mapping->host;
1059 
1060 		spin_lock(&inode->i_lock);
1061 		if (test_bit(PG_NEED_RESCHED, &req->wb_flags)) {
1062 			/* Do nothing we need to resend the writes */
1063 		} else if (!test_and_set_bit(PG_NEED_COMMIT, &req->wb_flags)) {
1064 			memcpy(&req->wb_verf, &data->verf, sizeof(req->wb_verf));
1065 			dprintk(" defer commit\n");
1066 		} else if (memcmp(&req->wb_verf, &data->verf, sizeof(req->wb_verf))) {
1067 			set_bit(PG_NEED_RESCHED, &req->wb_flags);
1068 			clear_bit(PG_NEED_COMMIT, &req->wb_flags);
1069 			dprintk(" server reboot detected\n");
1070 		}
1071 		spin_unlock(&inode->i_lock);
1072 	} else
1073 		dprintk(" OK\n");
1074 
1075 out:
1076 	if (atomic_dec_and_test(&req->wb_complete))
1077 		nfs_writepage_release(req);
1078 	nfs_writedata_release(calldata);
1079 }
1080 
1081 #if defined(CONFIG_NFS_V4_1)
1082 void nfs_write_prepare(struct rpc_task *task, void *calldata)
1083 {
1084 	struct nfs_write_data *data = calldata;
1085 
1086 	if (nfs4_setup_sequence(NFS_SERVER(data->inode),
1087 				&data->args.seq_args,
1088 				&data->res.seq_res, 1, task))
1089 		return;
1090 	rpc_call_start(task);
1091 }
1092 #endif /* CONFIG_NFS_V4_1 */
1093 
1094 static const struct rpc_call_ops nfs_write_partial_ops = {
1095 #if defined(CONFIG_NFS_V4_1)
1096 	.rpc_call_prepare = nfs_write_prepare,
1097 #endif /* CONFIG_NFS_V4_1 */
1098 	.rpc_call_done = nfs_writeback_done_partial,
1099 	.rpc_release = nfs_writeback_release_partial,
1100 };
1101 
1102 /*
1103  * Handle a write reply that flushes a whole page.
1104  *
1105  * FIXME: There is an inherent race with invalidate_inode_pages and
1106  *	  writebacks since the page->count is kept > 1 for as long
1107  *	  as the page has a write request pending.
1108  */
1109 static void nfs_writeback_done_full(struct rpc_task *task, void *calldata)
1110 {
1111 	struct nfs_write_data	*data = calldata;
1112 
1113 	nfs_writeback_done(task, data);
1114 }
1115 
1116 static void nfs_writeback_release_full(void *calldata)
1117 {
1118 	struct nfs_write_data	*data = calldata;
1119 	int status = data->task.tk_status;
1120 
1121 	/* Update attributes as result of writeback. */
1122 	while (!list_empty(&data->pages)) {
1123 		struct nfs_page *req = nfs_list_entry(data->pages.next);
1124 		struct page *page = req->wb_page;
1125 
1126 		nfs_list_remove_request(req);
1127 
1128 		dprintk("NFS: %5u write (%s/%lld %d@%lld)",
1129 			data->task.tk_pid,
1130 			req->wb_context->path.dentry->d_inode->i_sb->s_id,
1131 			(long long)NFS_FILEID(req->wb_context->path.dentry->d_inode),
1132 			req->wb_bytes,
1133 			(long long)req_offset(req));
1134 
1135 		if (status < 0) {
1136 			nfs_set_pageerror(page);
1137 			nfs_context_set_write_error(req->wb_context, status);
1138 			dprintk(", error = %d\n", status);
1139 			goto remove_request;
1140 		}
1141 
1142 		if (nfs_write_need_commit(data)) {
1143 			memcpy(&req->wb_verf, &data->verf, sizeof(req->wb_verf));
1144 			nfs_mark_request_commit(req);
1145 			dprintk(" marked for commit\n");
1146 			goto next;
1147 		}
1148 		dprintk(" OK\n");
1149 remove_request:
1150 		nfs_inode_remove_request(req);
1151 	next:
1152 		nfs_clear_page_tag_locked(req);
1153 		nfs_end_page_writeback(page);
1154 	}
1155 	nfs_writedata_release(calldata);
1156 }
1157 
1158 static const struct rpc_call_ops nfs_write_full_ops = {
1159 #if defined(CONFIG_NFS_V4_1)
1160 	.rpc_call_prepare = nfs_write_prepare,
1161 #endif /* CONFIG_NFS_V4_1 */
1162 	.rpc_call_done = nfs_writeback_done_full,
1163 	.rpc_release = nfs_writeback_release_full,
1164 };
1165 
1166 
1167 /*
1168  * This function is called when the WRITE call is complete.
1169  */
1170 void nfs_writeback_done(struct rpc_task *task, struct nfs_write_data *data)
1171 {
1172 	struct nfs_writeargs	*argp = &data->args;
1173 	struct nfs_writeres	*resp = &data->res;
1174 	struct nfs_server	*server = NFS_SERVER(data->inode);
1175 	int status;
1176 
1177 	dprintk("NFS: %5u nfs_writeback_done (status %d)\n",
1178 		task->tk_pid, task->tk_status);
1179 
1180 	/*
1181 	 * ->write_done will attempt to use post-op attributes to detect
1182 	 * conflicting writes by other clients.  A strict interpretation
1183 	 * of close-to-open would allow us to continue caching even if
1184 	 * another writer had changed the file, but some applications
1185 	 * depend on tighter cache coherency when writing.
1186 	 */
1187 	status = NFS_PROTO(data->inode)->write_done(task, data);
1188 	if (status != 0)
1189 		return;
1190 	nfs_add_stats(data->inode, NFSIOS_SERVERWRITTENBYTES, resp->count);
1191 
1192 #if defined(CONFIG_NFS_V3) || defined(CONFIG_NFS_V4)
1193 	if (resp->verf->committed < argp->stable && task->tk_status >= 0) {
1194 		/* We tried a write call, but the server did not
1195 		 * commit data to stable storage even though we
1196 		 * requested it.
1197 		 * Note: There is a known bug in Tru64 < 5.0 in which
1198 		 *	 the server reports NFS_DATA_SYNC, but performs
1199 		 *	 NFS_FILE_SYNC. We therefore implement this checking
1200 		 *	 as a dprintk() in order to avoid filling syslog.
1201 		 */
1202 		static unsigned long    complain;
1203 
1204 		/* Note this will print the MDS for a DS write */
1205 		if (time_before(complain, jiffies)) {
1206 			dprintk("NFS:       faulty NFS server %s:"
1207 				" (committed = %d) != (stable = %d)\n",
1208 				server->nfs_client->cl_hostname,
1209 				resp->verf->committed, argp->stable);
1210 			complain = jiffies + 300 * HZ;
1211 		}
1212 	}
1213 #endif
1214 	/* Is this a short write? */
1215 	if (task->tk_status >= 0 && resp->count < argp->count) {
1216 		static unsigned long    complain;
1217 
1218 		nfs_inc_stats(data->inode, NFSIOS_SHORTWRITE);
1219 
1220 		/* Has the server at least made some progress? */
1221 		if (resp->count != 0) {
1222 			/* Was this an NFSv2 write or an NFSv3 stable write? */
1223 			if (resp->verf->committed != NFS_UNSTABLE) {
1224 				/* Resend from where the server left off */
1225 				data->mds_offset += resp->count;
1226 				argp->offset += resp->count;
1227 				argp->pgbase += resp->count;
1228 				argp->count -= resp->count;
1229 			} else {
1230 				/* Resend as a stable write in order to avoid
1231 				 * headaches in the case of a server crash.
1232 				 */
1233 				argp->stable = NFS_FILE_SYNC;
1234 			}
1235 			nfs_restart_rpc(task, server->nfs_client);
1236 			return;
1237 		}
1238 		if (time_before(complain, jiffies)) {
1239 			printk(KERN_WARNING
1240 			       "NFS: Server wrote zero bytes, expected %u.\n",
1241 					argp->count);
1242 			complain = jiffies + 300 * HZ;
1243 		}
1244 		/* Can't do anything about it except throw an error. */
1245 		task->tk_status = -EIO;
1246 	}
1247 	return;
1248 }
1249 
1250 
1251 #if defined(CONFIG_NFS_V3) || defined(CONFIG_NFS_V4)
1252 static int nfs_commit_set_lock(struct nfs_inode *nfsi, int may_wait)
1253 {
1254 	if (!test_and_set_bit(NFS_INO_COMMIT, &nfsi->flags))
1255 		return 1;
1256 	if (may_wait && !out_of_line_wait_on_bit_lock(&nfsi->flags,
1257 				NFS_INO_COMMIT, nfs_wait_bit_killable,
1258 				TASK_KILLABLE))
1259 		return 1;
1260 	return 0;
1261 }
1262 
1263 static void nfs_commit_clear_lock(struct nfs_inode *nfsi)
1264 {
1265 	clear_bit(NFS_INO_COMMIT, &nfsi->flags);
1266 	smp_mb__after_clear_bit();
1267 	wake_up_bit(&nfsi->flags, NFS_INO_COMMIT);
1268 }
1269 
1270 
1271 static void nfs_commitdata_release(void *data)
1272 {
1273 	struct nfs_write_data *wdata = data;
1274 
1275 	put_nfs_open_context(wdata->args.context);
1276 	nfs_commit_free(wdata);
1277 }
1278 
1279 /*
1280  * Set up the argument/result storage required for the RPC call.
1281  */
1282 static int nfs_commit_rpcsetup(struct list_head *head,
1283 		struct nfs_write_data *data,
1284 		int how)
1285 {
1286 	struct nfs_page *first = nfs_list_entry(head->next);
1287 	struct inode *inode = first->wb_context->path.dentry->d_inode;
1288 	int priority = flush_task_priority(how);
1289 	struct rpc_task *task;
1290 	struct rpc_message msg = {
1291 		.rpc_argp = &data->args,
1292 		.rpc_resp = &data->res,
1293 		.rpc_cred = first->wb_context->cred,
1294 	};
1295 	struct rpc_task_setup task_setup_data = {
1296 		.task = &data->task,
1297 		.rpc_client = NFS_CLIENT(inode),
1298 		.rpc_message = &msg,
1299 		.callback_ops = &nfs_commit_ops,
1300 		.callback_data = data,
1301 		.workqueue = nfsiod_workqueue,
1302 		.flags = RPC_TASK_ASYNC,
1303 		.priority = priority,
1304 	};
1305 
1306 	/* Set up the RPC argument and reply structs
1307 	 * NB: take care not to mess about with data->commit et al. */
1308 
1309 	list_splice_init(head, &data->pages);
1310 
1311 	data->inode	  = inode;
1312 	data->cred	  = msg.rpc_cred;
1313 
1314 	data->args.fh     = NFS_FH(data->inode);
1315 	/* Note: we always request a commit of the entire inode */
1316 	data->args.offset = 0;
1317 	data->args.count  = 0;
1318 	data->args.context = get_nfs_open_context(first->wb_context);
1319 	data->res.count   = 0;
1320 	data->res.fattr   = &data->fattr;
1321 	data->res.verf    = &data->verf;
1322 	nfs_fattr_init(&data->fattr);
1323 
1324 	/* Set up the initial task struct.  */
1325 	NFS_PROTO(inode)->commit_setup(data, &msg);
1326 
1327 	dprintk("NFS: %5u initiated commit call\n", data->task.tk_pid);
1328 
1329 	task = rpc_run_task(&task_setup_data);
1330 	if (IS_ERR(task))
1331 		return PTR_ERR(task);
1332 	if (how & FLUSH_SYNC)
1333 		rpc_wait_for_completion_task(task);
1334 	rpc_put_task(task);
1335 	return 0;
1336 }
1337 
1338 /*
1339  * Commit dirty pages
1340  */
1341 static int
1342 nfs_commit_list(struct inode *inode, struct list_head *head, int how)
1343 {
1344 	struct nfs_write_data	*data;
1345 	struct nfs_page         *req;
1346 
1347 	data = nfs_commitdata_alloc();
1348 
1349 	if (!data)
1350 		goto out_bad;
1351 
1352 	/* Set up the argument struct */
1353 	return nfs_commit_rpcsetup(head, data, how);
1354  out_bad:
1355 	while (!list_empty(head)) {
1356 		req = nfs_list_entry(head->next);
1357 		nfs_list_remove_request(req);
1358 		nfs_mark_request_commit(req);
1359 		dec_zone_page_state(req->wb_page, NR_UNSTABLE_NFS);
1360 		dec_bdi_stat(req->wb_page->mapping->backing_dev_info,
1361 				BDI_RECLAIMABLE);
1362 		nfs_clear_page_tag_locked(req);
1363 	}
1364 	nfs_commit_clear_lock(NFS_I(inode));
1365 	return -ENOMEM;
1366 }
1367 
1368 /*
1369  * COMMIT call returned
1370  */
1371 static void nfs_commit_done(struct rpc_task *task, void *calldata)
1372 {
1373 	struct nfs_write_data	*data = calldata;
1374 
1375         dprintk("NFS: %5u nfs_commit_done (status %d)\n",
1376                                 task->tk_pid, task->tk_status);
1377 
1378 	/* Call the NFS version-specific code */
1379 	if (NFS_PROTO(data->inode)->commit_done(task, data) != 0)
1380 		return;
1381 }
1382 
1383 static void nfs_commit_release(void *calldata)
1384 {
1385 	struct nfs_write_data	*data = calldata;
1386 	struct nfs_page		*req;
1387 	int status = data->task.tk_status;
1388 
1389 	while (!list_empty(&data->pages)) {
1390 		req = nfs_list_entry(data->pages.next);
1391 		nfs_list_remove_request(req);
1392 		nfs_clear_request_commit(req);
1393 
1394 		dprintk("NFS:       commit (%s/%lld %d@%lld)",
1395 			req->wb_context->path.dentry->d_inode->i_sb->s_id,
1396 			(long long)NFS_FILEID(req->wb_context->path.dentry->d_inode),
1397 			req->wb_bytes,
1398 			(long long)req_offset(req));
1399 		if (status < 0) {
1400 			nfs_context_set_write_error(req->wb_context, status);
1401 			nfs_inode_remove_request(req);
1402 			dprintk(", error = %d\n", status);
1403 			goto next;
1404 		}
1405 
1406 		/* Okay, COMMIT succeeded, apparently. Check the verifier
1407 		 * returned by the server against all stored verfs. */
1408 		if (!memcmp(req->wb_verf.verifier, data->verf.verifier, sizeof(data->verf.verifier))) {
1409 			/* We have a match */
1410 			nfs_inode_remove_request(req);
1411 			dprintk(" OK\n");
1412 			goto next;
1413 		}
1414 		/* We have a mismatch. Write the page again */
1415 		dprintk(" mismatch\n");
1416 		nfs_mark_request_dirty(req);
1417 	next:
1418 		nfs_clear_page_tag_locked(req);
1419 	}
1420 	nfs_commit_clear_lock(NFS_I(data->inode));
1421 	nfs_commitdata_release(calldata);
1422 }
1423 
1424 static const struct rpc_call_ops nfs_commit_ops = {
1425 #if defined(CONFIG_NFS_V4_1)
1426 	.rpc_call_prepare = nfs_write_prepare,
1427 #endif /* CONFIG_NFS_V4_1 */
1428 	.rpc_call_done = nfs_commit_done,
1429 	.rpc_release = nfs_commit_release,
1430 };
1431 
1432 int nfs_commit_inode(struct inode *inode, int how)
1433 {
1434 	LIST_HEAD(head);
1435 	int may_wait = how & FLUSH_SYNC;
1436 	int res = 0;
1437 
1438 	if (!nfs_commit_set_lock(NFS_I(inode), may_wait))
1439 		goto out_mark_dirty;
1440 	spin_lock(&inode->i_lock);
1441 	res = nfs_scan_commit(inode, &head, 0, 0);
1442 	spin_unlock(&inode->i_lock);
1443 	if (res) {
1444 		int error = nfs_commit_list(inode, &head, how);
1445 		if (error < 0)
1446 			return error;
1447 		if (may_wait)
1448 			wait_on_bit(&NFS_I(inode)->flags, NFS_INO_COMMIT,
1449 					nfs_wait_bit_killable,
1450 					TASK_KILLABLE);
1451 		else
1452 			goto out_mark_dirty;
1453 	} else
1454 		nfs_commit_clear_lock(NFS_I(inode));
1455 	return res;
1456 	/* Note: If we exit without ensuring that the commit is complete,
1457 	 * we must mark the inode as dirty. Otherwise, future calls to
1458 	 * sync_inode() with the WB_SYNC_ALL flag set will fail to ensure
1459 	 * that the data is on the disk.
1460 	 */
1461 out_mark_dirty:
1462 	__mark_inode_dirty(inode, I_DIRTY_DATASYNC);
1463 	return res;
1464 }
1465 
1466 static int nfs_commit_unstable_pages(struct inode *inode, struct writeback_control *wbc)
1467 {
1468 	struct nfs_inode *nfsi = NFS_I(inode);
1469 	int flags = FLUSH_SYNC;
1470 	int ret = 0;
1471 
1472 	if (wbc->sync_mode == WB_SYNC_NONE) {
1473 		/* Don't commit yet if this is a non-blocking flush and there
1474 		 * are a lot of outstanding writes for this mapping.
1475 		 */
1476 		if (nfsi->ncommit <= (nfsi->npages >> 1))
1477 			goto out_mark_dirty;
1478 
1479 		/* don't wait for the COMMIT response */
1480 		flags = 0;
1481 	}
1482 
1483 	ret = nfs_commit_inode(inode, flags);
1484 	if (ret >= 0) {
1485 		if (wbc->sync_mode == WB_SYNC_NONE) {
1486 			if (ret < wbc->nr_to_write)
1487 				wbc->nr_to_write -= ret;
1488 			else
1489 				wbc->nr_to_write = 0;
1490 		}
1491 		return 0;
1492 	}
1493 out_mark_dirty:
1494 	__mark_inode_dirty(inode, I_DIRTY_DATASYNC);
1495 	return ret;
1496 }
1497 #else
1498 static int nfs_commit_unstable_pages(struct inode *inode, struct writeback_control *wbc)
1499 {
1500 	return 0;
1501 }
1502 #endif
1503 
1504 int nfs_write_inode(struct inode *inode, struct writeback_control *wbc)
1505 {
1506 	return nfs_commit_unstable_pages(inode, wbc);
1507 }
1508 
1509 /*
1510  * flush the inode to disk.
1511  */
1512 int nfs_wb_all(struct inode *inode)
1513 {
1514 	struct writeback_control wbc = {
1515 		.sync_mode = WB_SYNC_ALL,
1516 		.nr_to_write = LONG_MAX,
1517 		.range_start = 0,
1518 		.range_end = LLONG_MAX,
1519 	};
1520 
1521 	return sync_inode(inode, &wbc);
1522 }
1523 
1524 int nfs_wb_page_cancel(struct inode *inode, struct page *page)
1525 {
1526 	struct nfs_page *req;
1527 	int ret = 0;
1528 
1529 	BUG_ON(!PageLocked(page));
1530 	for (;;) {
1531 		wait_on_page_writeback(page);
1532 		req = nfs_page_find_request(page);
1533 		if (req == NULL)
1534 			break;
1535 		if (nfs_lock_request_dontget(req)) {
1536 			nfs_inode_remove_request(req);
1537 			/*
1538 			 * In case nfs_inode_remove_request has marked the
1539 			 * page as being dirty
1540 			 */
1541 			cancel_dirty_page(page, PAGE_CACHE_SIZE);
1542 			nfs_unlock_request(req);
1543 			break;
1544 		}
1545 		ret = nfs_wait_on_request(req);
1546 		nfs_release_request(req);
1547 		if (ret < 0)
1548 			break;
1549 	}
1550 	return ret;
1551 }
1552 
1553 /*
1554  * Write back all requests on one page - we do this before reading it.
1555  */
1556 int nfs_wb_page(struct inode *inode, struct page *page)
1557 {
1558 	loff_t range_start = page_offset(page);
1559 	loff_t range_end = range_start + (loff_t)(PAGE_CACHE_SIZE - 1);
1560 	struct writeback_control wbc = {
1561 		.sync_mode = WB_SYNC_ALL,
1562 		.nr_to_write = 0,
1563 		.range_start = range_start,
1564 		.range_end = range_end,
1565 	};
1566 	int ret;
1567 
1568 	for (;;) {
1569 		wait_on_page_writeback(page);
1570 		if (clear_page_dirty_for_io(page)) {
1571 			ret = nfs_writepage_locked(page, &wbc);
1572 			if (ret < 0)
1573 				goto out_error;
1574 			continue;
1575 		}
1576 		if (!PagePrivate(page))
1577 			break;
1578 		ret = nfs_commit_inode(inode, FLUSH_SYNC);
1579 		if (ret < 0)
1580 			goto out_error;
1581 	}
1582 	return 0;
1583 out_error:
1584 	return ret;
1585 }
1586 
1587 #ifdef CONFIG_MIGRATION
1588 int nfs_migrate_page(struct address_space *mapping, struct page *newpage,
1589 		struct page *page)
1590 {
1591 	struct nfs_page *req;
1592 	int ret;
1593 
1594 	nfs_fscache_release_page(page, GFP_KERNEL);
1595 
1596 	req = nfs_find_and_lock_request(page, false);
1597 	ret = PTR_ERR(req);
1598 	if (IS_ERR(req))
1599 		goto out;
1600 
1601 	ret = migrate_page(mapping, newpage, page);
1602 	if (!req)
1603 		goto out;
1604 	if (ret)
1605 		goto out_unlock;
1606 	page_cache_get(newpage);
1607 	spin_lock(&mapping->host->i_lock);
1608 	req->wb_page = newpage;
1609 	SetPagePrivate(newpage);
1610 	set_page_private(newpage, (unsigned long)req);
1611 	ClearPagePrivate(page);
1612 	set_page_private(page, 0);
1613 	spin_unlock(&mapping->host->i_lock);
1614 	page_cache_release(page);
1615 out_unlock:
1616 	nfs_clear_page_tag_locked(req);
1617 out:
1618 	return ret;
1619 }
1620 #endif
1621 
1622 int __init nfs_init_writepagecache(void)
1623 {
1624 	nfs_wdata_cachep = kmem_cache_create("nfs_write_data",
1625 					     sizeof(struct nfs_write_data),
1626 					     0, SLAB_HWCACHE_ALIGN,
1627 					     NULL);
1628 	if (nfs_wdata_cachep == NULL)
1629 		return -ENOMEM;
1630 
1631 	nfs_wdata_mempool = mempool_create_slab_pool(MIN_POOL_WRITE,
1632 						     nfs_wdata_cachep);
1633 	if (nfs_wdata_mempool == NULL)
1634 		return -ENOMEM;
1635 
1636 	nfs_commit_mempool = mempool_create_slab_pool(MIN_POOL_COMMIT,
1637 						      nfs_wdata_cachep);
1638 	if (nfs_commit_mempool == NULL)
1639 		return -ENOMEM;
1640 
1641 	/*
1642 	 * NFS congestion size, scale with available memory.
1643 	 *
1644 	 *  64MB:    8192k
1645 	 * 128MB:   11585k
1646 	 * 256MB:   16384k
1647 	 * 512MB:   23170k
1648 	 *   1GB:   32768k
1649 	 *   2GB:   46340k
1650 	 *   4GB:   65536k
1651 	 *   8GB:   92681k
1652 	 *  16GB:  131072k
1653 	 *
1654 	 * This allows larger machines to have larger/more transfers.
1655 	 * Limit the default to 256M
1656 	 */
1657 	nfs_congestion_kb = (16*int_sqrt(totalram_pages)) << (PAGE_SHIFT-10);
1658 	if (nfs_congestion_kb > 256*1024)
1659 		nfs_congestion_kb = 256*1024;
1660 
1661 	return 0;
1662 }
1663 
1664 void nfs_destroy_writepagecache(void)
1665 {
1666 	mempool_destroy(nfs_commit_mempool);
1667 	mempool_destroy(nfs_wdata_mempool);
1668 	kmem_cache_destroy(nfs_wdata_cachep);
1669 }
1670 
1671