1 /* 2 * linux/fs/nfs/write.c 3 * 4 * Write file data over NFS. 5 * 6 * Copyright (C) 1996, 1997, Olaf Kirch <okir@monad.swb.de> 7 */ 8 9 #include <linux/types.h> 10 #include <linux/slab.h> 11 #include <linux/mm.h> 12 #include <linux/pagemap.h> 13 #include <linux/file.h> 14 #include <linux/writeback.h> 15 #include <linux/swap.h> 16 #include <linux/migrate.h> 17 18 #include <linux/sunrpc/clnt.h> 19 #include <linux/nfs_fs.h> 20 #include <linux/nfs_mount.h> 21 #include <linux/nfs_page.h> 22 #include <linux/backing-dev.h> 23 24 #include <asm/uaccess.h> 25 26 #include "delegation.h" 27 #include "internal.h" 28 #include "iostat.h" 29 #include "nfs4_fs.h" 30 #include "fscache.h" 31 32 #define NFSDBG_FACILITY NFSDBG_PAGECACHE 33 34 #define MIN_POOL_WRITE (32) 35 #define MIN_POOL_COMMIT (4) 36 37 /* 38 * Local function declarations 39 */ 40 static void nfs_pageio_init_write(struct nfs_pageio_descriptor *desc, 41 struct inode *inode, int ioflags); 42 static void nfs_redirty_request(struct nfs_page *req); 43 static const struct rpc_call_ops nfs_write_partial_ops; 44 static const struct rpc_call_ops nfs_write_full_ops; 45 static const struct rpc_call_ops nfs_commit_ops; 46 47 static struct kmem_cache *nfs_wdata_cachep; 48 static mempool_t *nfs_wdata_mempool; 49 static mempool_t *nfs_commit_mempool; 50 51 struct nfs_write_data *nfs_commitdata_alloc(void) 52 { 53 struct nfs_write_data *p = mempool_alloc(nfs_commit_mempool, GFP_NOFS); 54 55 if (p) { 56 memset(p, 0, sizeof(*p)); 57 INIT_LIST_HEAD(&p->pages); 58 } 59 return p; 60 } 61 62 void nfs_commit_free(struct nfs_write_data *p) 63 { 64 if (p && (p->pagevec != &p->page_array[0])) 65 kfree(p->pagevec); 66 mempool_free(p, nfs_commit_mempool); 67 } 68 69 struct nfs_write_data *nfs_writedata_alloc(unsigned int pagecount) 70 { 71 struct nfs_write_data *p = mempool_alloc(nfs_wdata_mempool, GFP_NOFS); 72 73 if (p) { 74 memset(p, 0, sizeof(*p)); 75 INIT_LIST_HEAD(&p->pages); 76 p->npages = pagecount; 77 if (pagecount <= ARRAY_SIZE(p->page_array)) 78 p->pagevec = p->page_array; 79 else { 80 p->pagevec = kcalloc(pagecount, sizeof(struct page *), GFP_NOFS); 81 if (!p->pagevec) { 82 mempool_free(p, nfs_wdata_mempool); 83 p = NULL; 84 } 85 } 86 } 87 return p; 88 } 89 90 void nfs_writedata_free(struct nfs_write_data *p) 91 { 92 if (p && (p->pagevec != &p->page_array[0])) 93 kfree(p->pagevec); 94 mempool_free(p, nfs_wdata_mempool); 95 } 96 97 static void nfs_writedata_release(struct nfs_write_data *wdata) 98 { 99 put_nfs_open_context(wdata->args.context); 100 nfs_writedata_free(wdata); 101 } 102 103 static void nfs_context_set_write_error(struct nfs_open_context *ctx, int error) 104 { 105 ctx->error = error; 106 smp_wmb(); 107 set_bit(NFS_CONTEXT_ERROR_WRITE, &ctx->flags); 108 } 109 110 static struct nfs_page *nfs_page_find_request_locked(struct page *page) 111 { 112 struct nfs_page *req = NULL; 113 114 if (PagePrivate(page)) { 115 req = (struct nfs_page *)page_private(page); 116 if (req != NULL) 117 kref_get(&req->wb_kref); 118 } 119 return req; 120 } 121 122 static struct nfs_page *nfs_page_find_request(struct page *page) 123 { 124 struct inode *inode = page->mapping->host; 125 struct nfs_page *req = NULL; 126 127 spin_lock(&inode->i_lock); 128 req = nfs_page_find_request_locked(page); 129 spin_unlock(&inode->i_lock); 130 return req; 131 } 132 133 /* Adjust the file length if we're writing beyond the end */ 134 static void nfs_grow_file(struct page *page, unsigned int offset, unsigned int count) 135 { 136 struct inode *inode = page->mapping->host; 137 loff_t end, i_size; 138 pgoff_t end_index; 139 140 spin_lock(&inode->i_lock); 141 i_size = i_size_read(inode); 142 end_index = (i_size - 1) >> PAGE_CACHE_SHIFT; 143 if (i_size > 0 && page->index < end_index) 144 goto out; 145 end = ((loff_t)page->index << PAGE_CACHE_SHIFT) + ((loff_t)offset+count); 146 if (i_size >= end) 147 goto out; 148 i_size_write(inode, end); 149 nfs_inc_stats(inode, NFSIOS_EXTENDWRITE); 150 out: 151 spin_unlock(&inode->i_lock); 152 } 153 154 /* A writeback failed: mark the page as bad, and invalidate the page cache */ 155 static void nfs_set_pageerror(struct page *page) 156 { 157 SetPageError(page); 158 nfs_zap_mapping(page->mapping->host, page->mapping); 159 } 160 161 /* We can set the PG_uptodate flag if we see that a write request 162 * covers the full page. 163 */ 164 static void nfs_mark_uptodate(struct page *page, unsigned int base, unsigned int count) 165 { 166 if (PageUptodate(page)) 167 return; 168 if (base != 0) 169 return; 170 if (count != nfs_page_length(page)) 171 return; 172 SetPageUptodate(page); 173 } 174 175 static int wb_priority(struct writeback_control *wbc) 176 { 177 if (wbc->for_reclaim) 178 return FLUSH_HIGHPRI | FLUSH_STABLE; 179 if (wbc->for_kupdate || wbc->for_background) 180 return FLUSH_LOWPRI; 181 return 0; 182 } 183 184 /* 185 * NFS congestion control 186 */ 187 188 int nfs_congestion_kb; 189 190 #define NFS_CONGESTION_ON_THRESH (nfs_congestion_kb >> (PAGE_SHIFT-10)) 191 #define NFS_CONGESTION_OFF_THRESH \ 192 (NFS_CONGESTION_ON_THRESH - (NFS_CONGESTION_ON_THRESH >> 2)) 193 194 static int nfs_set_page_writeback(struct page *page) 195 { 196 int ret = test_set_page_writeback(page); 197 198 if (!ret) { 199 struct inode *inode = page->mapping->host; 200 struct nfs_server *nfss = NFS_SERVER(inode); 201 202 page_cache_get(page); 203 if (atomic_long_inc_return(&nfss->writeback) > 204 NFS_CONGESTION_ON_THRESH) { 205 set_bdi_congested(&nfss->backing_dev_info, 206 BLK_RW_ASYNC); 207 } 208 } 209 return ret; 210 } 211 212 static void nfs_end_page_writeback(struct page *page) 213 { 214 struct inode *inode = page->mapping->host; 215 struct nfs_server *nfss = NFS_SERVER(inode); 216 217 end_page_writeback(page); 218 page_cache_release(page); 219 if (atomic_long_dec_return(&nfss->writeback) < NFS_CONGESTION_OFF_THRESH) 220 clear_bdi_congested(&nfss->backing_dev_info, BLK_RW_ASYNC); 221 } 222 223 static struct nfs_page *nfs_find_and_lock_request(struct page *page, bool nonblock) 224 { 225 struct inode *inode = page->mapping->host; 226 struct nfs_page *req; 227 int ret; 228 229 spin_lock(&inode->i_lock); 230 for (;;) { 231 req = nfs_page_find_request_locked(page); 232 if (req == NULL) 233 break; 234 if (nfs_set_page_tag_locked(req)) 235 break; 236 /* Note: If we hold the page lock, as is the case in nfs_writepage, 237 * then the call to nfs_set_page_tag_locked() will always 238 * succeed provided that someone hasn't already marked the 239 * request as dirty (in which case we don't care). 240 */ 241 spin_unlock(&inode->i_lock); 242 if (!nonblock) 243 ret = nfs_wait_on_request(req); 244 else 245 ret = -EAGAIN; 246 nfs_release_request(req); 247 if (ret != 0) 248 return ERR_PTR(ret); 249 spin_lock(&inode->i_lock); 250 } 251 spin_unlock(&inode->i_lock); 252 return req; 253 } 254 255 /* 256 * Find an associated nfs write request, and prepare to flush it out 257 * May return an error if the user signalled nfs_wait_on_request(). 258 */ 259 static int nfs_page_async_flush(struct nfs_pageio_descriptor *pgio, 260 struct page *page, bool nonblock) 261 { 262 struct nfs_page *req; 263 int ret = 0; 264 265 req = nfs_find_and_lock_request(page, nonblock); 266 if (!req) 267 goto out; 268 ret = PTR_ERR(req); 269 if (IS_ERR(req)) 270 goto out; 271 272 ret = nfs_set_page_writeback(page); 273 BUG_ON(ret != 0); 274 BUG_ON(test_bit(PG_CLEAN, &req->wb_flags)); 275 276 if (!nfs_pageio_add_request(pgio, req)) { 277 nfs_redirty_request(req); 278 ret = pgio->pg_error; 279 } 280 out: 281 return ret; 282 } 283 284 static int nfs_do_writepage(struct page *page, struct writeback_control *wbc, struct nfs_pageio_descriptor *pgio) 285 { 286 struct inode *inode = page->mapping->host; 287 int ret; 288 289 nfs_inc_stats(inode, NFSIOS_VFSWRITEPAGE); 290 nfs_add_stats(inode, NFSIOS_WRITEPAGES, 1); 291 292 nfs_pageio_cond_complete(pgio, page->index); 293 ret = nfs_page_async_flush(pgio, page, 294 wbc->sync_mode == WB_SYNC_NONE || 295 wbc->nonblocking != 0); 296 if (ret == -EAGAIN) { 297 redirty_page_for_writepage(wbc, page); 298 ret = 0; 299 } 300 return ret; 301 } 302 303 /* 304 * Write an mmapped page to the server. 305 */ 306 static int nfs_writepage_locked(struct page *page, struct writeback_control *wbc) 307 { 308 struct nfs_pageio_descriptor pgio; 309 int err; 310 311 nfs_pageio_init_write(&pgio, page->mapping->host, wb_priority(wbc)); 312 err = nfs_do_writepage(page, wbc, &pgio); 313 nfs_pageio_complete(&pgio); 314 if (err < 0) 315 return err; 316 if (pgio.pg_error < 0) 317 return pgio.pg_error; 318 return 0; 319 } 320 321 int nfs_writepage(struct page *page, struct writeback_control *wbc) 322 { 323 int ret; 324 325 ret = nfs_writepage_locked(page, wbc); 326 unlock_page(page); 327 return ret; 328 } 329 330 static int nfs_writepages_callback(struct page *page, struct writeback_control *wbc, void *data) 331 { 332 int ret; 333 334 ret = nfs_do_writepage(page, wbc, data); 335 unlock_page(page); 336 return ret; 337 } 338 339 int nfs_writepages(struct address_space *mapping, struct writeback_control *wbc) 340 { 341 struct inode *inode = mapping->host; 342 unsigned long *bitlock = &NFS_I(inode)->flags; 343 struct nfs_pageio_descriptor pgio; 344 int err; 345 346 /* Stop dirtying of new pages while we sync */ 347 err = wait_on_bit_lock(bitlock, NFS_INO_FLUSHING, 348 nfs_wait_bit_killable, TASK_KILLABLE); 349 if (err) 350 goto out_err; 351 352 nfs_inc_stats(inode, NFSIOS_VFSWRITEPAGES); 353 354 nfs_pageio_init_write(&pgio, inode, wb_priority(wbc)); 355 err = write_cache_pages(mapping, wbc, nfs_writepages_callback, &pgio); 356 nfs_pageio_complete(&pgio); 357 358 clear_bit_unlock(NFS_INO_FLUSHING, bitlock); 359 smp_mb__after_clear_bit(); 360 wake_up_bit(bitlock, NFS_INO_FLUSHING); 361 362 if (err < 0) 363 goto out_err; 364 err = pgio.pg_error; 365 if (err < 0) 366 goto out_err; 367 return 0; 368 out_err: 369 return err; 370 } 371 372 /* 373 * Insert a write request into an inode 374 */ 375 static int nfs_inode_add_request(struct inode *inode, struct nfs_page *req) 376 { 377 struct nfs_inode *nfsi = NFS_I(inode); 378 int error; 379 380 error = radix_tree_preload(GFP_NOFS); 381 if (error != 0) 382 goto out; 383 384 /* Lock the request! */ 385 nfs_lock_request_dontget(req); 386 387 spin_lock(&inode->i_lock); 388 error = radix_tree_insert(&nfsi->nfs_page_tree, req->wb_index, req); 389 BUG_ON(error); 390 if (!nfsi->npages) { 391 igrab(inode); 392 if (nfs_have_delegation(inode, FMODE_WRITE)) 393 nfsi->change_attr++; 394 } 395 SetPagePrivate(req->wb_page); 396 set_page_private(req->wb_page, (unsigned long)req); 397 nfsi->npages++; 398 kref_get(&req->wb_kref); 399 radix_tree_tag_set(&nfsi->nfs_page_tree, req->wb_index, 400 NFS_PAGE_TAG_LOCKED); 401 spin_unlock(&inode->i_lock); 402 radix_tree_preload_end(); 403 out: 404 return error; 405 } 406 407 /* 408 * Remove a write request from an inode 409 */ 410 static void nfs_inode_remove_request(struct nfs_page *req) 411 { 412 struct inode *inode = req->wb_context->path.dentry->d_inode; 413 struct nfs_inode *nfsi = NFS_I(inode); 414 415 BUG_ON (!NFS_WBACK_BUSY(req)); 416 417 spin_lock(&inode->i_lock); 418 set_page_private(req->wb_page, 0); 419 ClearPagePrivate(req->wb_page); 420 radix_tree_delete(&nfsi->nfs_page_tree, req->wb_index); 421 nfsi->npages--; 422 if (!nfsi->npages) { 423 spin_unlock(&inode->i_lock); 424 iput(inode); 425 } else 426 spin_unlock(&inode->i_lock); 427 nfs_clear_request(req); 428 nfs_release_request(req); 429 } 430 431 static void 432 nfs_mark_request_dirty(struct nfs_page *req) 433 { 434 __set_page_dirty_nobuffers(req->wb_page); 435 __mark_inode_dirty(req->wb_page->mapping->host, I_DIRTY_DATASYNC); 436 } 437 438 #if defined(CONFIG_NFS_V3) || defined(CONFIG_NFS_V4) 439 /* 440 * Add a request to the inode's commit list. 441 */ 442 static void 443 nfs_mark_request_commit(struct nfs_page *req) 444 { 445 struct inode *inode = req->wb_context->path.dentry->d_inode; 446 struct nfs_inode *nfsi = NFS_I(inode); 447 448 spin_lock(&inode->i_lock); 449 set_bit(PG_CLEAN, &(req)->wb_flags); 450 radix_tree_tag_set(&nfsi->nfs_page_tree, 451 req->wb_index, 452 NFS_PAGE_TAG_COMMIT); 453 nfsi->ncommit++; 454 spin_unlock(&inode->i_lock); 455 inc_zone_page_state(req->wb_page, NR_UNSTABLE_NFS); 456 inc_bdi_stat(req->wb_page->mapping->backing_dev_info, BDI_RECLAIMABLE); 457 __mark_inode_dirty(inode, I_DIRTY_DATASYNC); 458 } 459 460 static int 461 nfs_clear_request_commit(struct nfs_page *req) 462 { 463 struct page *page = req->wb_page; 464 465 if (test_and_clear_bit(PG_CLEAN, &(req)->wb_flags)) { 466 dec_zone_page_state(page, NR_UNSTABLE_NFS); 467 dec_bdi_stat(page->mapping->backing_dev_info, BDI_RECLAIMABLE); 468 return 1; 469 } 470 return 0; 471 } 472 473 static inline 474 int nfs_write_need_commit(struct nfs_write_data *data) 475 { 476 return data->verf.committed != NFS_FILE_SYNC; 477 } 478 479 static inline 480 int nfs_reschedule_unstable_write(struct nfs_page *req) 481 { 482 if (test_and_clear_bit(PG_NEED_COMMIT, &req->wb_flags)) { 483 nfs_mark_request_commit(req); 484 return 1; 485 } 486 if (test_and_clear_bit(PG_NEED_RESCHED, &req->wb_flags)) { 487 nfs_mark_request_dirty(req); 488 return 1; 489 } 490 return 0; 491 } 492 #else 493 static inline void 494 nfs_mark_request_commit(struct nfs_page *req) 495 { 496 } 497 498 static inline int 499 nfs_clear_request_commit(struct nfs_page *req) 500 { 501 return 0; 502 } 503 504 static inline 505 int nfs_write_need_commit(struct nfs_write_data *data) 506 { 507 return 0; 508 } 509 510 static inline 511 int nfs_reschedule_unstable_write(struct nfs_page *req) 512 { 513 return 0; 514 } 515 #endif 516 517 #if defined(CONFIG_NFS_V3) || defined(CONFIG_NFS_V4) 518 static int 519 nfs_need_commit(struct nfs_inode *nfsi) 520 { 521 return radix_tree_tagged(&nfsi->nfs_page_tree, NFS_PAGE_TAG_COMMIT); 522 } 523 524 /* 525 * nfs_scan_commit - Scan an inode for commit requests 526 * @inode: NFS inode to scan 527 * @dst: destination list 528 * @idx_start: lower bound of page->index to scan. 529 * @npages: idx_start + npages sets the upper bound to scan. 530 * 531 * Moves requests from the inode's 'commit' request list. 532 * The requests are *not* checked to ensure that they form a contiguous set. 533 */ 534 static int 535 nfs_scan_commit(struct inode *inode, struct list_head *dst, pgoff_t idx_start, unsigned int npages) 536 { 537 struct nfs_inode *nfsi = NFS_I(inode); 538 int ret; 539 540 if (!nfs_need_commit(nfsi)) 541 return 0; 542 543 ret = nfs_scan_list(nfsi, dst, idx_start, npages, NFS_PAGE_TAG_COMMIT); 544 if (ret > 0) 545 nfsi->ncommit -= ret; 546 if (nfs_need_commit(NFS_I(inode))) 547 __mark_inode_dirty(inode, I_DIRTY_DATASYNC); 548 return ret; 549 } 550 #else 551 static inline int nfs_need_commit(struct nfs_inode *nfsi) 552 { 553 return 0; 554 } 555 556 static inline int nfs_scan_commit(struct inode *inode, struct list_head *dst, pgoff_t idx_start, unsigned int npages) 557 { 558 return 0; 559 } 560 #endif 561 562 /* 563 * Search for an existing write request, and attempt to update 564 * it to reflect a new dirty region on a given page. 565 * 566 * If the attempt fails, then the existing request is flushed out 567 * to disk. 568 */ 569 static struct nfs_page *nfs_try_to_update_request(struct inode *inode, 570 struct page *page, 571 unsigned int offset, 572 unsigned int bytes) 573 { 574 struct nfs_page *req; 575 unsigned int rqend; 576 unsigned int end; 577 int error; 578 579 if (!PagePrivate(page)) 580 return NULL; 581 582 end = offset + bytes; 583 spin_lock(&inode->i_lock); 584 585 for (;;) { 586 req = nfs_page_find_request_locked(page); 587 if (req == NULL) 588 goto out_unlock; 589 590 rqend = req->wb_offset + req->wb_bytes; 591 /* 592 * Tell the caller to flush out the request if 593 * the offsets are non-contiguous. 594 * Note: nfs_flush_incompatible() will already 595 * have flushed out requests having wrong owners. 596 */ 597 if (offset > rqend 598 || end < req->wb_offset) 599 goto out_flushme; 600 601 if (nfs_set_page_tag_locked(req)) 602 break; 603 604 /* The request is locked, so wait and then retry */ 605 spin_unlock(&inode->i_lock); 606 error = nfs_wait_on_request(req); 607 nfs_release_request(req); 608 if (error != 0) 609 goto out_err; 610 spin_lock(&inode->i_lock); 611 } 612 613 if (nfs_clear_request_commit(req) && 614 radix_tree_tag_clear(&NFS_I(inode)->nfs_page_tree, 615 req->wb_index, NFS_PAGE_TAG_COMMIT) != NULL) 616 NFS_I(inode)->ncommit--; 617 618 /* Okay, the request matches. Update the region */ 619 if (offset < req->wb_offset) { 620 req->wb_offset = offset; 621 req->wb_pgbase = offset; 622 } 623 if (end > rqend) 624 req->wb_bytes = end - req->wb_offset; 625 else 626 req->wb_bytes = rqend - req->wb_offset; 627 out_unlock: 628 spin_unlock(&inode->i_lock); 629 return req; 630 out_flushme: 631 spin_unlock(&inode->i_lock); 632 nfs_release_request(req); 633 error = nfs_wb_page(inode, page); 634 out_err: 635 return ERR_PTR(error); 636 } 637 638 /* 639 * Try to update an existing write request, or create one if there is none. 640 * 641 * Note: Should always be called with the Page Lock held to prevent races 642 * if we have to add a new request. Also assumes that the caller has 643 * already called nfs_flush_incompatible() if necessary. 644 */ 645 static struct nfs_page * nfs_setup_write_request(struct nfs_open_context* ctx, 646 struct page *page, unsigned int offset, unsigned int bytes) 647 { 648 struct inode *inode = page->mapping->host; 649 struct nfs_page *req; 650 int error; 651 652 req = nfs_try_to_update_request(inode, page, offset, bytes); 653 if (req != NULL) 654 goto out; 655 req = nfs_create_request(ctx, inode, page, offset, bytes); 656 if (IS_ERR(req)) 657 goto out; 658 error = nfs_inode_add_request(inode, req); 659 if (error != 0) { 660 nfs_release_request(req); 661 req = ERR_PTR(error); 662 } 663 out: 664 return req; 665 } 666 667 static int nfs_writepage_setup(struct nfs_open_context *ctx, struct page *page, 668 unsigned int offset, unsigned int count) 669 { 670 struct nfs_page *req; 671 672 req = nfs_setup_write_request(ctx, page, offset, count); 673 if (IS_ERR(req)) 674 return PTR_ERR(req); 675 nfs_mark_request_dirty(req); 676 /* Update file length */ 677 nfs_grow_file(page, offset, count); 678 nfs_mark_uptodate(page, req->wb_pgbase, req->wb_bytes); 679 nfs_mark_request_dirty(req); 680 nfs_clear_page_tag_locked(req); 681 return 0; 682 } 683 684 int nfs_flush_incompatible(struct file *file, struct page *page) 685 { 686 struct nfs_open_context *ctx = nfs_file_open_context(file); 687 struct nfs_page *req; 688 int do_flush, status; 689 /* 690 * Look for a request corresponding to this page. If there 691 * is one, and it belongs to another file, we flush it out 692 * before we try to copy anything into the page. Do this 693 * due to the lack of an ACCESS-type call in NFSv2. 694 * Also do the same if we find a request from an existing 695 * dropped page. 696 */ 697 do { 698 req = nfs_page_find_request(page); 699 if (req == NULL) 700 return 0; 701 do_flush = req->wb_page != page || req->wb_context != ctx || 702 req->wb_lock_context->lockowner != current->files || 703 req->wb_lock_context->pid != current->tgid; 704 nfs_release_request(req); 705 if (!do_flush) 706 return 0; 707 status = nfs_wb_page(page->mapping->host, page); 708 } while (status == 0); 709 return status; 710 } 711 712 /* 713 * If the page cache is marked as unsafe or invalid, then we can't rely on 714 * the PageUptodate() flag. In this case, we will need to turn off 715 * write optimisations that depend on the page contents being correct. 716 */ 717 static int nfs_write_pageuptodate(struct page *page, struct inode *inode) 718 { 719 return PageUptodate(page) && 720 !(NFS_I(inode)->cache_validity & (NFS_INO_REVAL_PAGECACHE|NFS_INO_INVALID_DATA)); 721 } 722 723 /* 724 * Update and possibly write a cached page of an NFS file. 725 * 726 * XXX: Keep an eye on generic_file_read to make sure it doesn't do bad 727 * things with a page scheduled for an RPC call (e.g. invalidate it). 728 */ 729 int nfs_updatepage(struct file *file, struct page *page, 730 unsigned int offset, unsigned int count) 731 { 732 struct nfs_open_context *ctx = nfs_file_open_context(file); 733 struct inode *inode = page->mapping->host; 734 int status = 0; 735 736 nfs_inc_stats(inode, NFSIOS_VFSUPDATEPAGE); 737 738 dprintk("NFS: nfs_updatepage(%s/%s %d@%lld)\n", 739 file->f_path.dentry->d_parent->d_name.name, 740 file->f_path.dentry->d_name.name, count, 741 (long long)(page_offset(page) + offset)); 742 743 /* If we're not using byte range locks, and we know the page 744 * is up to date, it may be more efficient to extend the write 745 * to cover the entire page in order to avoid fragmentation 746 * inefficiencies. 747 */ 748 if (nfs_write_pageuptodate(page, inode) && 749 inode->i_flock == NULL && 750 !(file->f_flags & O_DSYNC)) { 751 count = max(count + offset, nfs_page_length(page)); 752 offset = 0; 753 } 754 755 status = nfs_writepage_setup(ctx, page, offset, count); 756 if (status < 0) 757 nfs_set_pageerror(page); 758 759 dprintk("NFS: nfs_updatepage returns %d (isize %lld)\n", 760 status, (long long)i_size_read(inode)); 761 return status; 762 } 763 764 static void nfs_writepage_release(struct nfs_page *req) 765 { 766 struct page *page = req->wb_page; 767 768 if (PageError(req->wb_page) || !nfs_reschedule_unstable_write(req)) 769 nfs_inode_remove_request(req); 770 nfs_clear_page_tag_locked(req); 771 nfs_end_page_writeback(page); 772 } 773 774 static int flush_task_priority(int how) 775 { 776 switch (how & (FLUSH_HIGHPRI|FLUSH_LOWPRI)) { 777 case FLUSH_HIGHPRI: 778 return RPC_PRIORITY_HIGH; 779 case FLUSH_LOWPRI: 780 return RPC_PRIORITY_LOW; 781 } 782 return RPC_PRIORITY_NORMAL; 783 } 784 785 /* 786 * Set up the argument/result storage required for the RPC call. 787 */ 788 static int nfs_write_rpcsetup(struct nfs_page *req, 789 struct nfs_write_data *data, 790 const struct rpc_call_ops *call_ops, 791 unsigned int count, unsigned int offset, 792 int how) 793 { 794 struct inode *inode = req->wb_context->path.dentry->d_inode; 795 int priority = flush_task_priority(how); 796 struct rpc_task *task; 797 struct rpc_message msg = { 798 .rpc_argp = &data->args, 799 .rpc_resp = &data->res, 800 .rpc_cred = req->wb_context->cred, 801 }; 802 struct rpc_task_setup task_setup_data = { 803 .rpc_client = NFS_CLIENT(inode), 804 .task = &data->task, 805 .rpc_message = &msg, 806 .callback_ops = call_ops, 807 .callback_data = data, 808 .workqueue = nfsiod_workqueue, 809 .flags = RPC_TASK_ASYNC, 810 .priority = priority, 811 }; 812 int ret = 0; 813 814 /* Set up the RPC argument and reply structs 815 * NB: take care not to mess about with data->commit et al. */ 816 817 data->req = req; 818 data->inode = inode = req->wb_context->path.dentry->d_inode; 819 data->cred = msg.rpc_cred; 820 821 data->args.fh = NFS_FH(inode); 822 data->args.offset = req_offset(req) + offset; 823 data->args.pgbase = req->wb_pgbase + offset; 824 data->args.pages = data->pagevec; 825 data->args.count = count; 826 data->args.context = get_nfs_open_context(req->wb_context); 827 data->args.lock_context = req->wb_lock_context; 828 data->args.stable = NFS_UNSTABLE; 829 if (how & FLUSH_STABLE) { 830 data->args.stable = NFS_DATA_SYNC; 831 if (!nfs_need_commit(NFS_I(inode))) 832 data->args.stable = NFS_FILE_SYNC; 833 } 834 835 data->res.fattr = &data->fattr; 836 data->res.count = count; 837 data->res.verf = &data->verf; 838 nfs_fattr_init(&data->fattr); 839 840 /* Set up the initial task struct. */ 841 NFS_PROTO(inode)->write_setup(data, &msg); 842 843 dprintk("NFS: %5u initiated write call " 844 "(req %s/%lld, %u bytes @ offset %llu)\n", 845 data->task.tk_pid, 846 inode->i_sb->s_id, 847 (long long)NFS_FILEID(inode), 848 count, 849 (unsigned long long)data->args.offset); 850 851 task = rpc_run_task(&task_setup_data); 852 if (IS_ERR(task)) { 853 ret = PTR_ERR(task); 854 goto out; 855 } 856 if (how & FLUSH_SYNC) { 857 ret = rpc_wait_for_completion_task(task); 858 if (ret == 0) 859 ret = task->tk_status; 860 } 861 rpc_put_task(task); 862 out: 863 return ret; 864 } 865 866 /* If a nfs_flush_* function fails, it should remove reqs from @head and 867 * call this on each, which will prepare them to be retried on next 868 * writeback using standard nfs. 869 */ 870 static void nfs_redirty_request(struct nfs_page *req) 871 { 872 struct page *page = req->wb_page; 873 874 nfs_mark_request_dirty(req); 875 nfs_clear_page_tag_locked(req); 876 nfs_end_page_writeback(page); 877 } 878 879 /* 880 * Generate multiple small requests to write out a single 881 * contiguous dirty area on one page. 882 */ 883 static int nfs_flush_multi(struct inode *inode, struct list_head *head, unsigned int npages, size_t count, int how) 884 { 885 struct nfs_page *req = nfs_list_entry(head->next); 886 struct page *page = req->wb_page; 887 struct nfs_write_data *data; 888 size_t wsize = NFS_SERVER(inode)->wsize, nbytes; 889 unsigned int offset; 890 int requests = 0; 891 int ret = 0; 892 LIST_HEAD(list); 893 894 nfs_list_remove_request(req); 895 896 nbytes = count; 897 do { 898 size_t len = min(nbytes, wsize); 899 900 data = nfs_writedata_alloc(1); 901 if (!data) 902 goto out_bad; 903 list_add(&data->pages, &list); 904 requests++; 905 nbytes -= len; 906 } while (nbytes != 0); 907 atomic_set(&req->wb_complete, requests); 908 909 ClearPageError(page); 910 offset = 0; 911 nbytes = count; 912 do { 913 int ret2; 914 915 data = list_entry(list.next, struct nfs_write_data, pages); 916 list_del_init(&data->pages); 917 918 data->pagevec[0] = page; 919 920 if (nbytes < wsize) 921 wsize = nbytes; 922 ret2 = nfs_write_rpcsetup(req, data, &nfs_write_partial_ops, 923 wsize, offset, how); 924 if (ret == 0) 925 ret = ret2; 926 offset += wsize; 927 nbytes -= wsize; 928 } while (nbytes != 0); 929 930 return ret; 931 932 out_bad: 933 while (!list_empty(&list)) { 934 data = list_entry(list.next, struct nfs_write_data, pages); 935 list_del(&data->pages); 936 nfs_writedata_release(data); 937 } 938 nfs_redirty_request(req); 939 return -ENOMEM; 940 } 941 942 /* 943 * Create an RPC task for the given write request and kick it. 944 * The page must have been locked by the caller. 945 * 946 * It may happen that the page we're passed is not marked dirty. 947 * This is the case if nfs_updatepage detects a conflicting request 948 * that has been written but not committed. 949 */ 950 static int nfs_flush_one(struct inode *inode, struct list_head *head, unsigned int npages, size_t count, int how) 951 { 952 struct nfs_page *req; 953 struct page **pages; 954 struct nfs_write_data *data; 955 956 data = nfs_writedata_alloc(npages); 957 if (!data) 958 goto out_bad; 959 960 pages = data->pagevec; 961 while (!list_empty(head)) { 962 req = nfs_list_entry(head->next); 963 nfs_list_remove_request(req); 964 nfs_list_add_request(req, &data->pages); 965 ClearPageError(req->wb_page); 966 *pages++ = req->wb_page; 967 } 968 req = nfs_list_entry(data->pages.next); 969 970 /* Set up the argument struct */ 971 return nfs_write_rpcsetup(req, data, &nfs_write_full_ops, count, 0, how); 972 out_bad: 973 while (!list_empty(head)) { 974 req = nfs_list_entry(head->next); 975 nfs_list_remove_request(req); 976 nfs_redirty_request(req); 977 } 978 return -ENOMEM; 979 } 980 981 static void nfs_pageio_init_write(struct nfs_pageio_descriptor *pgio, 982 struct inode *inode, int ioflags) 983 { 984 size_t wsize = NFS_SERVER(inode)->wsize; 985 986 if (wsize < PAGE_CACHE_SIZE) 987 nfs_pageio_init(pgio, inode, nfs_flush_multi, wsize, ioflags); 988 else 989 nfs_pageio_init(pgio, inode, nfs_flush_one, wsize, ioflags); 990 } 991 992 /* 993 * Handle a write reply that flushed part of a page. 994 */ 995 static void nfs_writeback_done_partial(struct rpc_task *task, void *calldata) 996 { 997 struct nfs_write_data *data = calldata; 998 999 dprintk("NFS: %5u write(%s/%lld %d@%lld)", 1000 task->tk_pid, 1001 data->req->wb_context->path.dentry->d_inode->i_sb->s_id, 1002 (long long) 1003 NFS_FILEID(data->req->wb_context->path.dentry->d_inode), 1004 data->req->wb_bytes, (long long)req_offset(data->req)); 1005 1006 nfs_writeback_done(task, data); 1007 } 1008 1009 static void nfs_writeback_release_partial(void *calldata) 1010 { 1011 struct nfs_write_data *data = calldata; 1012 struct nfs_page *req = data->req; 1013 struct page *page = req->wb_page; 1014 int status = data->task.tk_status; 1015 1016 if (status < 0) { 1017 nfs_set_pageerror(page); 1018 nfs_context_set_write_error(req->wb_context, status); 1019 dprintk(", error = %d\n", status); 1020 goto out; 1021 } 1022 1023 if (nfs_write_need_commit(data)) { 1024 struct inode *inode = page->mapping->host; 1025 1026 spin_lock(&inode->i_lock); 1027 if (test_bit(PG_NEED_RESCHED, &req->wb_flags)) { 1028 /* Do nothing we need to resend the writes */ 1029 } else if (!test_and_set_bit(PG_NEED_COMMIT, &req->wb_flags)) { 1030 memcpy(&req->wb_verf, &data->verf, sizeof(req->wb_verf)); 1031 dprintk(" defer commit\n"); 1032 } else if (memcmp(&req->wb_verf, &data->verf, sizeof(req->wb_verf))) { 1033 set_bit(PG_NEED_RESCHED, &req->wb_flags); 1034 clear_bit(PG_NEED_COMMIT, &req->wb_flags); 1035 dprintk(" server reboot detected\n"); 1036 } 1037 spin_unlock(&inode->i_lock); 1038 } else 1039 dprintk(" OK\n"); 1040 1041 out: 1042 if (atomic_dec_and_test(&req->wb_complete)) 1043 nfs_writepage_release(req); 1044 nfs_writedata_release(calldata); 1045 } 1046 1047 #if defined(CONFIG_NFS_V4_1) 1048 void nfs_write_prepare(struct rpc_task *task, void *calldata) 1049 { 1050 struct nfs_write_data *data = calldata; 1051 1052 if (nfs4_setup_sequence(NFS_SERVER(data->inode), 1053 &data->args.seq_args, 1054 &data->res.seq_res, 1, task)) 1055 return; 1056 rpc_call_start(task); 1057 } 1058 #endif /* CONFIG_NFS_V4_1 */ 1059 1060 static const struct rpc_call_ops nfs_write_partial_ops = { 1061 #if defined(CONFIG_NFS_V4_1) 1062 .rpc_call_prepare = nfs_write_prepare, 1063 #endif /* CONFIG_NFS_V4_1 */ 1064 .rpc_call_done = nfs_writeback_done_partial, 1065 .rpc_release = nfs_writeback_release_partial, 1066 }; 1067 1068 /* 1069 * Handle a write reply that flushes a whole page. 1070 * 1071 * FIXME: There is an inherent race with invalidate_inode_pages and 1072 * writebacks since the page->count is kept > 1 for as long 1073 * as the page has a write request pending. 1074 */ 1075 static void nfs_writeback_done_full(struct rpc_task *task, void *calldata) 1076 { 1077 struct nfs_write_data *data = calldata; 1078 1079 nfs_writeback_done(task, data); 1080 } 1081 1082 static void nfs_writeback_release_full(void *calldata) 1083 { 1084 struct nfs_write_data *data = calldata; 1085 int status = data->task.tk_status; 1086 1087 /* Update attributes as result of writeback. */ 1088 while (!list_empty(&data->pages)) { 1089 struct nfs_page *req = nfs_list_entry(data->pages.next); 1090 struct page *page = req->wb_page; 1091 1092 nfs_list_remove_request(req); 1093 1094 dprintk("NFS: %5u write (%s/%lld %d@%lld)", 1095 data->task.tk_pid, 1096 req->wb_context->path.dentry->d_inode->i_sb->s_id, 1097 (long long)NFS_FILEID(req->wb_context->path.dentry->d_inode), 1098 req->wb_bytes, 1099 (long long)req_offset(req)); 1100 1101 if (status < 0) { 1102 nfs_set_pageerror(page); 1103 nfs_context_set_write_error(req->wb_context, status); 1104 dprintk(", error = %d\n", status); 1105 goto remove_request; 1106 } 1107 1108 if (nfs_write_need_commit(data)) { 1109 memcpy(&req->wb_verf, &data->verf, sizeof(req->wb_verf)); 1110 nfs_mark_request_commit(req); 1111 dprintk(" marked for commit\n"); 1112 goto next; 1113 } 1114 dprintk(" OK\n"); 1115 remove_request: 1116 nfs_inode_remove_request(req); 1117 next: 1118 nfs_clear_page_tag_locked(req); 1119 nfs_end_page_writeback(page); 1120 } 1121 nfs_writedata_release(calldata); 1122 } 1123 1124 static const struct rpc_call_ops nfs_write_full_ops = { 1125 #if defined(CONFIG_NFS_V4_1) 1126 .rpc_call_prepare = nfs_write_prepare, 1127 #endif /* CONFIG_NFS_V4_1 */ 1128 .rpc_call_done = nfs_writeback_done_full, 1129 .rpc_release = nfs_writeback_release_full, 1130 }; 1131 1132 1133 /* 1134 * This function is called when the WRITE call is complete. 1135 */ 1136 int nfs_writeback_done(struct rpc_task *task, struct nfs_write_data *data) 1137 { 1138 struct nfs_writeargs *argp = &data->args; 1139 struct nfs_writeres *resp = &data->res; 1140 struct nfs_server *server = NFS_SERVER(data->inode); 1141 int status; 1142 1143 dprintk("NFS: %5u nfs_writeback_done (status %d)\n", 1144 task->tk_pid, task->tk_status); 1145 1146 /* 1147 * ->write_done will attempt to use post-op attributes to detect 1148 * conflicting writes by other clients. A strict interpretation 1149 * of close-to-open would allow us to continue caching even if 1150 * another writer had changed the file, but some applications 1151 * depend on tighter cache coherency when writing. 1152 */ 1153 status = NFS_PROTO(data->inode)->write_done(task, data); 1154 if (status != 0) 1155 return status; 1156 nfs_add_stats(data->inode, NFSIOS_SERVERWRITTENBYTES, resp->count); 1157 1158 #if defined(CONFIG_NFS_V3) || defined(CONFIG_NFS_V4) 1159 if (resp->verf->committed < argp->stable && task->tk_status >= 0) { 1160 /* We tried a write call, but the server did not 1161 * commit data to stable storage even though we 1162 * requested it. 1163 * Note: There is a known bug in Tru64 < 5.0 in which 1164 * the server reports NFS_DATA_SYNC, but performs 1165 * NFS_FILE_SYNC. We therefore implement this checking 1166 * as a dprintk() in order to avoid filling syslog. 1167 */ 1168 static unsigned long complain; 1169 1170 if (time_before(complain, jiffies)) { 1171 dprintk("NFS: faulty NFS server %s:" 1172 " (committed = %d) != (stable = %d)\n", 1173 server->nfs_client->cl_hostname, 1174 resp->verf->committed, argp->stable); 1175 complain = jiffies + 300 * HZ; 1176 } 1177 } 1178 #endif 1179 /* Is this a short write? */ 1180 if (task->tk_status >= 0 && resp->count < argp->count) { 1181 static unsigned long complain; 1182 1183 nfs_inc_stats(data->inode, NFSIOS_SHORTWRITE); 1184 1185 /* Has the server at least made some progress? */ 1186 if (resp->count != 0) { 1187 /* Was this an NFSv2 write or an NFSv3 stable write? */ 1188 if (resp->verf->committed != NFS_UNSTABLE) { 1189 /* Resend from where the server left off */ 1190 argp->offset += resp->count; 1191 argp->pgbase += resp->count; 1192 argp->count -= resp->count; 1193 } else { 1194 /* Resend as a stable write in order to avoid 1195 * headaches in the case of a server crash. 1196 */ 1197 argp->stable = NFS_FILE_SYNC; 1198 } 1199 nfs_restart_rpc(task, server->nfs_client); 1200 return -EAGAIN; 1201 } 1202 if (time_before(complain, jiffies)) { 1203 printk(KERN_WARNING 1204 "NFS: Server wrote zero bytes, expected %u.\n", 1205 argp->count); 1206 complain = jiffies + 300 * HZ; 1207 } 1208 /* Can't do anything about it except throw an error. */ 1209 task->tk_status = -EIO; 1210 } 1211 return 0; 1212 } 1213 1214 1215 #if defined(CONFIG_NFS_V3) || defined(CONFIG_NFS_V4) 1216 static int nfs_commit_set_lock(struct nfs_inode *nfsi, int may_wait) 1217 { 1218 if (!test_and_set_bit(NFS_INO_COMMIT, &nfsi->flags)) 1219 return 1; 1220 if (may_wait && !out_of_line_wait_on_bit_lock(&nfsi->flags, 1221 NFS_INO_COMMIT, nfs_wait_bit_killable, 1222 TASK_KILLABLE)) 1223 return 1; 1224 return 0; 1225 } 1226 1227 static void nfs_commit_clear_lock(struct nfs_inode *nfsi) 1228 { 1229 clear_bit(NFS_INO_COMMIT, &nfsi->flags); 1230 smp_mb__after_clear_bit(); 1231 wake_up_bit(&nfsi->flags, NFS_INO_COMMIT); 1232 } 1233 1234 1235 static void nfs_commitdata_release(void *data) 1236 { 1237 struct nfs_write_data *wdata = data; 1238 1239 put_nfs_open_context(wdata->args.context); 1240 nfs_commit_free(wdata); 1241 } 1242 1243 /* 1244 * Set up the argument/result storage required for the RPC call. 1245 */ 1246 static int nfs_commit_rpcsetup(struct list_head *head, 1247 struct nfs_write_data *data, 1248 int how) 1249 { 1250 struct nfs_page *first = nfs_list_entry(head->next); 1251 struct inode *inode = first->wb_context->path.dentry->d_inode; 1252 int priority = flush_task_priority(how); 1253 struct rpc_task *task; 1254 struct rpc_message msg = { 1255 .rpc_argp = &data->args, 1256 .rpc_resp = &data->res, 1257 .rpc_cred = first->wb_context->cred, 1258 }; 1259 struct rpc_task_setup task_setup_data = { 1260 .task = &data->task, 1261 .rpc_client = NFS_CLIENT(inode), 1262 .rpc_message = &msg, 1263 .callback_ops = &nfs_commit_ops, 1264 .callback_data = data, 1265 .workqueue = nfsiod_workqueue, 1266 .flags = RPC_TASK_ASYNC, 1267 .priority = priority, 1268 }; 1269 1270 /* Set up the RPC argument and reply structs 1271 * NB: take care not to mess about with data->commit et al. */ 1272 1273 list_splice_init(head, &data->pages); 1274 1275 data->inode = inode; 1276 data->cred = msg.rpc_cred; 1277 1278 data->args.fh = NFS_FH(data->inode); 1279 /* Note: we always request a commit of the entire inode */ 1280 data->args.offset = 0; 1281 data->args.count = 0; 1282 data->args.context = get_nfs_open_context(first->wb_context); 1283 data->res.count = 0; 1284 data->res.fattr = &data->fattr; 1285 data->res.verf = &data->verf; 1286 nfs_fattr_init(&data->fattr); 1287 1288 /* Set up the initial task struct. */ 1289 NFS_PROTO(inode)->commit_setup(data, &msg); 1290 1291 dprintk("NFS: %5u initiated commit call\n", data->task.tk_pid); 1292 1293 task = rpc_run_task(&task_setup_data); 1294 if (IS_ERR(task)) 1295 return PTR_ERR(task); 1296 rpc_put_task(task); 1297 return 0; 1298 } 1299 1300 /* 1301 * Commit dirty pages 1302 */ 1303 static int 1304 nfs_commit_list(struct inode *inode, struct list_head *head, int how) 1305 { 1306 struct nfs_write_data *data; 1307 struct nfs_page *req; 1308 1309 data = nfs_commitdata_alloc(); 1310 1311 if (!data) 1312 goto out_bad; 1313 1314 /* Set up the argument struct */ 1315 return nfs_commit_rpcsetup(head, data, how); 1316 out_bad: 1317 while (!list_empty(head)) { 1318 req = nfs_list_entry(head->next); 1319 nfs_list_remove_request(req); 1320 nfs_mark_request_commit(req); 1321 dec_zone_page_state(req->wb_page, NR_UNSTABLE_NFS); 1322 dec_bdi_stat(req->wb_page->mapping->backing_dev_info, 1323 BDI_RECLAIMABLE); 1324 nfs_clear_page_tag_locked(req); 1325 } 1326 nfs_commit_clear_lock(NFS_I(inode)); 1327 return -ENOMEM; 1328 } 1329 1330 /* 1331 * COMMIT call returned 1332 */ 1333 static void nfs_commit_done(struct rpc_task *task, void *calldata) 1334 { 1335 struct nfs_write_data *data = calldata; 1336 1337 dprintk("NFS: %5u nfs_commit_done (status %d)\n", 1338 task->tk_pid, task->tk_status); 1339 1340 /* Call the NFS version-specific code */ 1341 if (NFS_PROTO(data->inode)->commit_done(task, data) != 0) 1342 return; 1343 } 1344 1345 static void nfs_commit_release(void *calldata) 1346 { 1347 struct nfs_write_data *data = calldata; 1348 struct nfs_page *req; 1349 int status = data->task.tk_status; 1350 1351 while (!list_empty(&data->pages)) { 1352 req = nfs_list_entry(data->pages.next); 1353 nfs_list_remove_request(req); 1354 nfs_clear_request_commit(req); 1355 1356 dprintk("NFS: commit (%s/%lld %d@%lld)", 1357 req->wb_context->path.dentry->d_inode->i_sb->s_id, 1358 (long long)NFS_FILEID(req->wb_context->path.dentry->d_inode), 1359 req->wb_bytes, 1360 (long long)req_offset(req)); 1361 if (status < 0) { 1362 nfs_context_set_write_error(req->wb_context, status); 1363 nfs_inode_remove_request(req); 1364 dprintk(", error = %d\n", status); 1365 goto next; 1366 } 1367 1368 /* Okay, COMMIT succeeded, apparently. Check the verifier 1369 * returned by the server against all stored verfs. */ 1370 if (!memcmp(req->wb_verf.verifier, data->verf.verifier, sizeof(data->verf.verifier))) { 1371 /* We have a match */ 1372 nfs_inode_remove_request(req); 1373 dprintk(" OK\n"); 1374 goto next; 1375 } 1376 /* We have a mismatch. Write the page again */ 1377 dprintk(" mismatch\n"); 1378 nfs_mark_request_dirty(req); 1379 next: 1380 nfs_clear_page_tag_locked(req); 1381 } 1382 nfs_commit_clear_lock(NFS_I(data->inode)); 1383 nfs_commitdata_release(calldata); 1384 } 1385 1386 static const struct rpc_call_ops nfs_commit_ops = { 1387 #if defined(CONFIG_NFS_V4_1) 1388 .rpc_call_prepare = nfs_write_prepare, 1389 #endif /* CONFIG_NFS_V4_1 */ 1390 .rpc_call_done = nfs_commit_done, 1391 .rpc_release = nfs_commit_release, 1392 }; 1393 1394 int nfs_commit_inode(struct inode *inode, int how) 1395 { 1396 LIST_HEAD(head); 1397 int may_wait = how & FLUSH_SYNC; 1398 int res = 0; 1399 1400 if (!nfs_commit_set_lock(NFS_I(inode), may_wait)) 1401 goto out_mark_dirty; 1402 spin_lock(&inode->i_lock); 1403 res = nfs_scan_commit(inode, &head, 0, 0); 1404 spin_unlock(&inode->i_lock); 1405 if (res) { 1406 int error = nfs_commit_list(inode, &head, how); 1407 if (error < 0) 1408 return error; 1409 if (may_wait) 1410 wait_on_bit(&NFS_I(inode)->flags, NFS_INO_COMMIT, 1411 nfs_wait_bit_killable, 1412 TASK_KILLABLE); 1413 else 1414 goto out_mark_dirty; 1415 } else 1416 nfs_commit_clear_lock(NFS_I(inode)); 1417 return res; 1418 /* Note: If we exit without ensuring that the commit is complete, 1419 * we must mark the inode as dirty. Otherwise, future calls to 1420 * sync_inode() with the WB_SYNC_ALL flag set will fail to ensure 1421 * that the data is on the disk. 1422 */ 1423 out_mark_dirty: 1424 __mark_inode_dirty(inode, I_DIRTY_DATASYNC); 1425 return res; 1426 } 1427 1428 static int nfs_commit_unstable_pages(struct inode *inode, struct writeback_control *wbc) 1429 { 1430 struct nfs_inode *nfsi = NFS_I(inode); 1431 int flags = FLUSH_SYNC; 1432 int ret = 0; 1433 1434 if (wbc->sync_mode == WB_SYNC_NONE) { 1435 /* Don't commit yet if this is a non-blocking flush and there 1436 * are a lot of outstanding writes for this mapping. 1437 */ 1438 if (nfsi->ncommit <= (nfsi->npages >> 1)) 1439 goto out_mark_dirty; 1440 1441 /* don't wait for the COMMIT response */ 1442 flags = 0; 1443 } 1444 1445 ret = nfs_commit_inode(inode, flags); 1446 if (ret >= 0) { 1447 if (wbc->sync_mode == WB_SYNC_NONE) { 1448 if (ret < wbc->nr_to_write) 1449 wbc->nr_to_write -= ret; 1450 else 1451 wbc->nr_to_write = 0; 1452 } 1453 return 0; 1454 } 1455 out_mark_dirty: 1456 __mark_inode_dirty(inode, I_DIRTY_DATASYNC); 1457 return ret; 1458 } 1459 #else 1460 static int nfs_commit_unstable_pages(struct inode *inode, struct writeback_control *wbc) 1461 { 1462 return 0; 1463 } 1464 #endif 1465 1466 int nfs_write_inode(struct inode *inode, struct writeback_control *wbc) 1467 { 1468 return nfs_commit_unstable_pages(inode, wbc); 1469 } 1470 1471 /* 1472 * flush the inode to disk. 1473 */ 1474 int nfs_wb_all(struct inode *inode) 1475 { 1476 struct writeback_control wbc = { 1477 .sync_mode = WB_SYNC_ALL, 1478 .nr_to_write = LONG_MAX, 1479 .range_start = 0, 1480 .range_end = LLONG_MAX, 1481 }; 1482 1483 return sync_inode(inode, &wbc); 1484 } 1485 1486 int nfs_wb_page_cancel(struct inode *inode, struct page *page) 1487 { 1488 struct nfs_page *req; 1489 int ret = 0; 1490 1491 BUG_ON(!PageLocked(page)); 1492 for (;;) { 1493 wait_on_page_writeback(page); 1494 req = nfs_page_find_request(page); 1495 if (req == NULL) 1496 break; 1497 if (nfs_lock_request_dontget(req)) { 1498 nfs_inode_remove_request(req); 1499 /* 1500 * In case nfs_inode_remove_request has marked the 1501 * page as being dirty 1502 */ 1503 cancel_dirty_page(page, PAGE_CACHE_SIZE); 1504 nfs_unlock_request(req); 1505 break; 1506 } 1507 ret = nfs_wait_on_request(req); 1508 nfs_release_request(req); 1509 if (ret < 0) 1510 break; 1511 } 1512 return ret; 1513 } 1514 1515 /* 1516 * Write back all requests on one page - we do this before reading it. 1517 */ 1518 int nfs_wb_page(struct inode *inode, struct page *page) 1519 { 1520 loff_t range_start = page_offset(page); 1521 loff_t range_end = range_start + (loff_t)(PAGE_CACHE_SIZE - 1); 1522 struct writeback_control wbc = { 1523 .sync_mode = WB_SYNC_ALL, 1524 .nr_to_write = 0, 1525 .range_start = range_start, 1526 .range_end = range_end, 1527 }; 1528 int ret; 1529 1530 for (;;) { 1531 wait_on_page_writeback(page); 1532 if (clear_page_dirty_for_io(page)) { 1533 ret = nfs_writepage_locked(page, &wbc); 1534 if (ret < 0) 1535 goto out_error; 1536 continue; 1537 } 1538 if (!PagePrivate(page)) 1539 break; 1540 ret = nfs_commit_inode(inode, FLUSH_SYNC); 1541 if (ret < 0) 1542 goto out_error; 1543 } 1544 return 0; 1545 out_error: 1546 return ret; 1547 } 1548 1549 #ifdef CONFIG_MIGRATION 1550 int nfs_migrate_page(struct address_space *mapping, struct page *newpage, 1551 struct page *page) 1552 { 1553 struct nfs_page *req; 1554 int ret; 1555 1556 nfs_fscache_release_page(page, GFP_KERNEL); 1557 1558 req = nfs_find_and_lock_request(page, false); 1559 ret = PTR_ERR(req); 1560 if (IS_ERR(req)) 1561 goto out; 1562 1563 ret = migrate_page(mapping, newpage, page); 1564 if (!req) 1565 goto out; 1566 if (ret) 1567 goto out_unlock; 1568 page_cache_get(newpage); 1569 spin_lock(&mapping->host->i_lock); 1570 req->wb_page = newpage; 1571 SetPagePrivate(newpage); 1572 set_page_private(newpage, (unsigned long)req); 1573 ClearPagePrivate(page); 1574 set_page_private(page, 0); 1575 spin_unlock(&mapping->host->i_lock); 1576 page_cache_release(page); 1577 out_unlock: 1578 nfs_clear_page_tag_locked(req); 1579 out: 1580 return ret; 1581 } 1582 #endif 1583 1584 int __init nfs_init_writepagecache(void) 1585 { 1586 nfs_wdata_cachep = kmem_cache_create("nfs_write_data", 1587 sizeof(struct nfs_write_data), 1588 0, SLAB_HWCACHE_ALIGN, 1589 NULL); 1590 if (nfs_wdata_cachep == NULL) 1591 return -ENOMEM; 1592 1593 nfs_wdata_mempool = mempool_create_slab_pool(MIN_POOL_WRITE, 1594 nfs_wdata_cachep); 1595 if (nfs_wdata_mempool == NULL) 1596 return -ENOMEM; 1597 1598 nfs_commit_mempool = mempool_create_slab_pool(MIN_POOL_COMMIT, 1599 nfs_wdata_cachep); 1600 if (nfs_commit_mempool == NULL) 1601 return -ENOMEM; 1602 1603 /* 1604 * NFS congestion size, scale with available memory. 1605 * 1606 * 64MB: 8192k 1607 * 128MB: 11585k 1608 * 256MB: 16384k 1609 * 512MB: 23170k 1610 * 1GB: 32768k 1611 * 2GB: 46340k 1612 * 4GB: 65536k 1613 * 8GB: 92681k 1614 * 16GB: 131072k 1615 * 1616 * This allows larger machines to have larger/more transfers. 1617 * Limit the default to 256M 1618 */ 1619 nfs_congestion_kb = (16*int_sqrt(totalram_pages)) << (PAGE_SHIFT-10); 1620 if (nfs_congestion_kb > 256*1024) 1621 nfs_congestion_kb = 256*1024; 1622 1623 return 0; 1624 } 1625 1626 void nfs_destroy_writepagecache(void) 1627 { 1628 mempool_destroy(nfs_commit_mempool); 1629 mempool_destroy(nfs_wdata_mempool); 1630 kmem_cache_destroy(nfs_wdata_cachep); 1631 } 1632 1633