xref: /linux/fs/nfs/write.c (revision c053784454550cf750399caa65482b31ffbe3c57)
1 /*
2  * linux/fs/nfs/write.c
3  *
4  * Write file data over NFS.
5  *
6  * Copyright (C) 1996, 1997, Olaf Kirch <okir@monad.swb.de>
7  */
8 
9 #include <linux/types.h>
10 #include <linux/slab.h>
11 #include <linux/mm.h>
12 #include <linux/pagemap.h>
13 #include <linux/file.h>
14 #include <linux/writeback.h>
15 #include <linux/swap.h>
16 #include <linux/migrate.h>
17 
18 #include <linux/sunrpc/clnt.h>
19 #include <linux/nfs_fs.h>
20 #include <linux/nfs_mount.h>
21 #include <linux/nfs_page.h>
22 #include <linux/backing-dev.h>
23 
24 #include <asm/uaccess.h>
25 
26 #include "delegation.h"
27 #include "internal.h"
28 #include "iostat.h"
29 #include "nfs4_fs.h"
30 #include "fscache.h"
31 
32 #define NFSDBG_FACILITY		NFSDBG_PAGECACHE
33 
34 #define MIN_POOL_WRITE		(32)
35 #define MIN_POOL_COMMIT		(4)
36 
37 /*
38  * Local function declarations
39  */
40 static void nfs_pageio_init_write(struct nfs_pageio_descriptor *desc,
41 				  struct inode *inode, int ioflags);
42 static void nfs_redirty_request(struct nfs_page *req);
43 static const struct rpc_call_ops nfs_write_partial_ops;
44 static const struct rpc_call_ops nfs_write_full_ops;
45 static const struct rpc_call_ops nfs_commit_ops;
46 
47 static struct kmem_cache *nfs_wdata_cachep;
48 static mempool_t *nfs_wdata_mempool;
49 static mempool_t *nfs_commit_mempool;
50 
51 struct nfs_write_data *nfs_commitdata_alloc(void)
52 {
53 	struct nfs_write_data *p = mempool_alloc(nfs_commit_mempool, GFP_NOFS);
54 
55 	if (p) {
56 		memset(p, 0, sizeof(*p));
57 		INIT_LIST_HEAD(&p->pages);
58 	}
59 	return p;
60 }
61 
62 void nfs_commit_free(struct nfs_write_data *p)
63 {
64 	if (p && (p->pagevec != &p->page_array[0]))
65 		kfree(p->pagevec);
66 	mempool_free(p, nfs_commit_mempool);
67 }
68 
69 struct nfs_write_data *nfs_writedata_alloc(unsigned int pagecount)
70 {
71 	struct nfs_write_data *p = mempool_alloc(nfs_wdata_mempool, GFP_NOFS);
72 
73 	if (p) {
74 		memset(p, 0, sizeof(*p));
75 		INIT_LIST_HEAD(&p->pages);
76 		p->npages = pagecount;
77 		if (pagecount <= ARRAY_SIZE(p->page_array))
78 			p->pagevec = p->page_array;
79 		else {
80 			p->pagevec = kcalloc(pagecount, sizeof(struct page *), GFP_NOFS);
81 			if (!p->pagevec) {
82 				mempool_free(p, nfs_wdata_mempool);
83 				p = NULL;
84 			}
85 		}
86 	}
87 	return p;
88 }
89 
90 void nfs_writedata_free(struct nfs_write_data *p)
91 {
92 	if (p && (p->pagevec != &p->page_array[0]))
93 		kfree(p->pagevec);
94 	mempool_free(p, nfs_wdata_mempool);
95 }
96 
97 static void nfs_writedata_release(struct nfs_write_data *wdata)
98 {
99 	put_nfs_open_context(wdata->args.context);
100 	nfs_writedata_free(wdata);
101 }
102 
103 static void nfs_context_set_write_error(struct nfs_open_context *ctx, int error)
104 {
105 	ctx->error = error;
106 	smp_wmb();
107 	set_bit(NFS_CONTEXT_ERROR_WRITE, &ctx->flags);
108 }
109 
110 static struct nfs_page *nfs_page_find_request_locked(struct page *page)
111 {
112 	struct nfs_page *req = NULL;
113 
114 	if (PagePrivate(page)) {
115 		req = (struct nfs_page *)page_private(page);
116 		if (req != NULL)
117 			kref_get(&req->wb_kref);
118 	}
119 	return req;
120 }
121 
122 static struct nfs_page *nfs_page_find_request(struct page *page)
123 {
124 	struct inode *inode = page->mapping->host;
125 	struct nfs_page *req = NULL;
126 
127 	spin_lock(&inode->i_lock);
128 	req = nfs_page_find_request_locked(page);
129 	spin_unlock(&inode->i_lock);
130 	return req;
131 }
132 
133 /* Adjust the file length if we're writing beyond the end */
134 static void nfs_grow_file(struct page *page, unsigned int offset, unsigned int count)
135 {
136 	struct inode *inode = page->mapping->host;
137 	loff_t end, i_size;
138 	pgoff_t end_index;
139 
140 	spin_lock(&inode->i_lock);
141 	i_size = i_size_read(inode);
142 	end_index = (i_size - 1) >> PAGE_CACHE_SHIFT;
143 	if (i_size > 0 && page->index < end_index)
144 		goto out;
145 	end = ((loff_t)page->index << PAGE_CACHE_SHIFT) + ((loff_t)offset+count);
146 	if (i_size >= end)
147 		goto out;
148 	i_size_write(inode, end);
149 	nfs_inc_stats(inode, NFSIOS_EXTENDWRITE);
150 out:
151 	spin_unlock(&inode->i_lock);
152 }
153 
154 /* A writeback failed: mark the page as bad, and invalidate the page cache */
155 static void nfs_set_pageerror(struct page *page)
156 {
157 	SetPageError(page);
158 	nfs_zap_mapping(page->mapping->host, page->mapping);
159 }
160 
161 /* We can set the PG_uptodate flag if we see that a write request
162  * covers the full page.
163  */
164 static void nfs_mark_uptodate(struct page *page, unsigned int base, unsigned int count)
165 {
166 	if (PageUptodate(page))
167 		return;
168 	if (base != 0)
169 		return;
170 	if (count != nfs_page_length(page))
171 		return;
172 	SetPageUptodate(page);
173 }
174 
175 static int wb_priority(struct writeback_control *wbc)
176 {
177 	if (wbc->for_reclaim)
178 		return FLUSH_HIGHPRI | FLUSH_STABLE;
179 	if (wbc->for_kupdate || wbc->for_background)
180 		return FLUSH_LOWPRI;
181 	return 0;
182 }
183 
184 /*
185  * NFS congestion control
186  */
187 
188 int nfs_congestion_kb;
189 
190 #define NFS_CONGESTION_ON_THRESH 	(nfs_congestion_kb >> (PAGE_SHIFT-10))
191 #define NFS_CONGESTION_OFF_THRESH	\
192 	(NFS_CONGESTION_ON_THRESH - (NFS_CONGESTION_ON_THRESH >> 2))
193 
194 static int nfs_set_page_writeback(struct page *page)
195 {
196 	int ret = test_set_page_writeback(page);
197 
198 	if (!ret) {
199 		struct inode *inode = page->mapping->host;
200 		struct nfs_server *nfss = NFS_SERVER(inode);
201 
202 		page_cache_get(page);
203 		if (atomic_long_inc_return(&nfss->writeback) >
204 				NFS_CONGESTION_ON_THRESH) {
205 			set_bdi_congested(&nfss->backing_dev_info,
206 						BLK_RW_ASYNC);
207 		}
208 	}
209 	return ret;
210 }
211 
212 static void nfs_end_page_writeback(struct page *page)
213 {
214 	struct inode *inode = page->mapping->host;
215 	struct nfs_server *nfss = NFS_SERVER(inode);
216 
217 	end_page_writeback(page);
218 	page_cache_release(page);
219 	if (atomic_long_dec_return(&nfss->writeback) < NFS_CONGESTION_OFF_THRESH)
220 		clear_bdi_congested(&nfss->backing_dev_info, BLK_RW_ASYNC);
221 }
222 
223 static struct nfs_page *nfs_find_and_lock_request(struct page *page, bool nonblock)
224 {
225 	struct inode *inode = page->mapping->host;
226 	struct nfs_page *req;
227 	int ret;
228 
229 	spin_lock(&inode->i_lock);
230 	for (;;) {
231 		req = nfs_page_find_request_locked(page);
232 		if (req == NULL)
233 			break;
234 		if (nfs_set_page_tag_locked(req))
235 			break;
236 		/* Note: If we hold the page lock, as is the case in nfs_writepage,
237 		 *	 then the call to nfs_set_page_tag_locked() will always
238 		 *	 succeed provided that someone hasn't already marked the
239 		 *	 request as dirty (in which case we don't care).
240 		 */
241 		spin_unlock(&inode->i_lock);
242 		if (!nonblock)
243 			ret = nfs_wait_on_request(req);
244 		else
245 			ret = -EAGAIN;
246 		nfs_release_request(req);
247 		if (ret != 0)
248 			return ERR_PTR(ret);
249 		spin_lock(&inode->i_lock);
250 	}
251 	spin_unlock(&inode->i_lock);
252 	return req;
253 }
254 
255 /*
256  * Find an associated nfs write request, and prepare to flush it out
257  * May return an error if the user signalled nfs_wait_on_request().
258  */
259 static int nfs_page_async_flush(struct nfs_pageio_descriptor *pgio,
260 				struct page *page, bool nonblock)
261 {
262 	struct nfs_page *req;
263 	int ret = 0;
264 
265 	req = nfs_find_and_lock_request(page, nonblock);
266 	if (!req)
267 		goto out;
268 	ret = PTR_ERR(req);
269 	if (IS_ERR(req))
270 		goto out;
271 
272 	ret = nfs_set_page_writeback(page);
273 	BUG_ON(ret != 0);
274 	BUG_ON(test_bit(PG_CLEAN, &req->wb_flags));
275 
276 	if (!nfs_pageio_add_request(pgio, req)) {
277 		nfs_redirty_request(req);
278 		ret = pgio->pg_error;
279 	}
280 out:
281 	return ret;
282 }
283 
284 static int nfs_do_writepage(struct page *page, struct writeback_control *wbc, struct nfs_pageio_descriptor *pgio)
285 {
286 	struct inode *inode = page->mapping->host;
287 	int ret;
288 
289 	nfs_inc_stats(inode, NFSIOS_VFSWRITEPAGE);
290 	nfs_add_stats(inode, NFSIOS_WRITEPAGES, 1);
291 
292 	nfs_pageio_cond_complete(pgio, page->index);
293 	ret = nfs_page_async_flush(pgio, page,
294 			wbc->sync_mode == WB_SYNC_NONE ||
295 			wbc->nonblocking != 0);
296 	if (ret == -EAGAIN) {
297 		redirty_page_for_writepage(wbc, page);
298 		ret = 0;
299 	}
300 	return ret;
301 }
302 
303 /*
304  * Write an mmapped page to the server.
305  */
306 static int nfs_writepage_locked(struct page *page, struct writeback_control *wbc)
307 {
308 	struct nfs_pageio_descriptor pgio;
309 	int err;
310 
311 	nfs_pageio_init_write(&pgio, page->mapping->host, wb_priority(wbc));
312 	err = nfs_do_writepage(page, wbc, &pgio);
313 	nfs_pageio_complete(&pgio);
314 	if (err < 0)
315 		return err;
316 	if (pgio.pg_error < 0)
317 		return pgio.pg_error;
318 	return 0;
319 }
320 
321 int nfs_writepage(struct page *page, struct writeback_control *wbc)
322 {
323 	int ret;
324 
325 	ret = nfs_writepage_locked(page, wbc);
326 	unlock_page(page);
327 	return ret;
328 }
329 
330 static int nfs_writepages_callback(struct page *page, struct writeback_control *wbc, void *data)
331 {
332 	int ret;
333 
334 	ret = nfs_do_writepage(page, wbc, data);
335 	unlock_page(page);
336 	return ret;
337 }
338 
339 int nfs_writepages(struct address_space *mapping, struct writeback_control *wbc)
340 {
341 	struct inode *inode = mapping->host;
342 	unsigned long *bitlock = &NFS_I(inode)->flags;
343 	struct nfs_pageio_descriptor pgio;
344 	int err;
345 
346 	/* Stop dirtying of new pages while we sync */
347 	err = wait_on_bit_lock(bitlock, NFS_INO_FLUSHING,
348 			nfs_wait_bit_killable, TASK_KILLABLE);
349 	if (err)
350 		goto out_err;
351 
352 	nfs_inc_stats(inode, NFSIOS_VFSWRITEPAGES);
353 
354 	nfs_pageio_init_write(&pgio, inode, wb_priority(wbc));
355 	err = write_cache_pages(mapping, wbc, nfs_writepages_callback, &pgio);
356 	nfs_pageio_complete(&pgio);
357 
358 	clear_bit_unlock(NFS_INO_FLUSHING, bitlock);
359 	smp_mb__after_clear_bit();
360 	wake_up_bit(bitlock, NFS_INO_FLUSHING);
361 
362 	if (err < 0)
363 		goto out_err;
364 	err = pgio.pg_error;
365 	if (err < 0)
366 		goto out_err;
367 	return 0;
368 out_err:
369 	return err;
370 }
371 
372 /*
373  * Insert a write request into an inode
374  */
375 static int nfs_inode_add_request(struct inode *inode, struct nfs_page *req)
376 {
377 	struct nfs_inode *nfsi = NFS_I(inode);
378 	int error;
379 
380 	error = radix_tree_preload(GFP_NOFS);
381 	if (error != 0)
382 		goto out;
383 
384 	/* Lock the request! */
385 	nfs_lock_request_dontget(req);
386 
387 	spin_lock(&inode->i_lock);
388 	error = radix_tree_insert(&nfsi->nfs_page_tree, req->wb_index, req);
389 	BUG_ON(error);
390 	if (!nfsi->npages) {
391 		igrab(inode);
392 		if (nfs_have_delegation(inode, FMODE_WRITE))
393 			nfsi->change_attr++;
394 	}
395 	SetPagePrivate(req->wb_page);
396 	set_page_private(req->wb_page, (unsigned long)req);
397 	nfsi->npages++;
398 	kref_get(&req->wb_kref);
399 	radix_tree_tag_set(&nfsi->nfs_page_tree, req->wb_index,
400 				NFS_PAGE_TAG_LOCKED);
401 	spin_unlock(&inode->i_lock);
402 	radix_tree_preload_end();
403 out:
404 	return error;
405 }
406 
407 /*
408  * Remove a write request from an inode
409  */
410 static void nfs_inode_remove_request(struct nfs_page *req)
411 {
412 	struct inode *inode = req->wb_context->path.dentry->d_inode;
413 	struct nfs_inode *nfsi = NFS_I(inode);
414 
415 	BUG_ON (!NFS_WBACK_BUSY(req));
416 
417 	spin_lock(&inode->i_lock);
418 	set_page_private(req->wb_page, 0);
419 	ClearPagePrivate(req->wb_page);
420 	radix_tree_delete(&nfsi->nfs_page_tree, req->wb_index);
421 	nfsi->npages--;
422 	if (!nfsi->npages) {
423 		spin_unlock(&inode->i_lock);
424 		iput(inode);
425 	} else
426 		spin_unlock(&inode->i_lock);
427 	nfs_clear_request(req);
428 	nfs_release_request(req);
429 }
430 
431 static void
432 nfs_mark_request_dirty(struct nfs_page *req)
433 {
434 	__set_page_dirty_nobuffers(req->wb_page);
435 	__mark_inode_dirty(req->wb_page->mapping->host, I_DIRTY_DATASYNC);
436 }
437 
438 #if defined(CONFIG_NFS_V3) || defined(CONFIG_NFS_V4)
439 /*
440  * Add a request to the inode's commit list.
441  */
442 static void
443 nfs_mark_request_commit(struct nfs_page *req)
444 {
445 	struct inode *inode = req->wb_context->path.dentry->d_inode;
446 	struct nfs_inode *nfsi = NFS_I(inode);
447 
448 	spin_lock(&inode->i_lock);
449 	set_bit(PG_CLEAN, &(req)->wb_flags);
450 	radix_tree_tag_set(&nfsi->nfs_page_tree,
451 			req->wb_index,
452 			NFS_PAGE_TAG_COMMIT);
453 	nfsi->ncommit++;
454 	spin_unlock(&inode->i_lock);
455 	inc_zone_page_state(req->wb_page, NR_UNSTABLE_NFS);
456 	inc_bdi_stat(req->wb_page->mapping->backing_dev_info, BDI_RECLAIMABLE);
457 	__mark_inode_dirty(inode, I_DIRTY_DATASYNC);
458 }
459 
460 static int
461 nfs_clear_request_commit(struct nfs_page *req)
462 {
463 	struct page *page = req->wb_page;
464 
465 	if (test_and_clear_bit(PG_CLEAN, &(req)->wb_flags)) {
466 		dec_zone_page_state(page, NR_UNSTABLE_NFS);
467 		dec_bdi_stat(page->mapping->backing_dev_info, BDI_RECLAIMABLE);
468 		return 1;
469 	}
470 	return 0;
471 }
472 
473 static inline
474 int nfs_write_need_commit(struct nfs_write_data *data)
475 {
476 	return data->verf.committed != NFS_FILE_SYNC;
477 }
478 
479 static inline
480 int nfs_reschedule_unstable_write(struct nfs_page *req)
481 {
482 	if (test_and_clear_bit(PG_NEED_COMMIT, &req->wb_flags)) {
483 		nfs_mark_request_commit(req);
484 		return 1;
485 	}
486 	if (test_and_clear_bit(PG_NEED_RESCHED, &req->wb_flags)) {
487 		nfs_mark_request_dirty(req);
488 		return 1;
489 	}
490 	return 0;
491 }
492 #else
493 static inline void
494 nfs_mark_request_commit(struct nfs_page *req)
495 {
496 }
497 
498 static inline int
499 nfs_clear_request_commit(struct nfs_page *req)
500 {
501 	return 0;
502 }
503 
504 static inline
505 int nfs_write_need_commit(struct nfs_write_data *data)
506 {
507 	return 0;
508 }
509 
510 static inline
511 int nfs_reschedule_unstable_write(struct nfs_page *req)
512 {
513 	return 0;
514 }
515 #endif
516 
517 #if defined(CONFIG_NFS_V3) || defined(CONFIG_NFS_V4)
518 static int
519 nfs_need_commit(struct nfs_inode *nfsi)
520 {
521 	return radix_tree_tagged(&nfsi->nfs_page_tree, NFS_PAGE_TAG_COMMIT);
522 }
523 
524 /*
525  * nfs_scan_commit - Scan an inode for commit requests
526  * @inode: NFS inode to scan
527  * @dst: destination list
528  * @idx_start: lower bound of page->index to scan.
529  * @npages: idx_start + npages sets the upper bound to scan.
530  *
531  * Moves requests from the inode's 'commit' request list.
532  * The requests are *not* checked to ensure that they form a contiguous set.
533  */
534 static int
535 nfs_scan_commit(struct inode *inode, struct list_head *dst, pgoff_t idx_start, unsigned int npages)
536 {
537 	struct nfs_inode *nfsi = NFS_I(inode);
538 	int ret;
539 
540 	if (!nfs_need_commit(nfsi))
541 		return 0;
542 
543 	ret = nfs_scan_list(nfsi, dst, idx_start, npages, NFS_PAGE_TAG_COMMIT);
544 	if (ret > 0)
545 		nfsi->ncommit -= ret;
546 	if (nfs_need_commit(NFS_I(inode)))
547 		__mark_inode_dirty(inode, I_DIRTY_DATASYNC);
548 	return ret;
549 }
550 #else
551 static inline int nfs_need_commit(struct nfs_inode *nfsi)
552 {
553 	return 0;
554 }
555 
556 static inline int nfs_scan_commit(struct inode *inode, struct list_head *dst, pgoff_t idx_start, unsigned int npages)
557 {
558 	return 0;
559 }
560 #endif
561 
562 /*
563  * Search for an existing write request, and attempt to update
564  * it to reflect a new dirty region on a given page.
565  *
566  * If the attempt fails, then the existing request is flushed out
567  * to disk.
568  */
569 static struct nfs_page *nfs_try_to_update_request(struct inode *inode,
570 		struct page *page,
571 		unsigned int offset,
572 		unsigned int bytes)
573 {
574 	struct nfs_page *req;
575 	unsigned int rqend;
576 	unsigned int end;
577 	int error;
578 
579 	if (!PagePrivate(page))
580 		return NULL;
581 
582 	end = offset + bytes;
583 	spin_lock(&inode->i_lock);
584 
585 	for (;;) {
586 		req = nfs_page_find_request_locked(page);
587 		if (req == NULL)
588 			goto out_unlock;
589 
590 		rqend = req->wb_offset + req->wb_bytes;
591 		/*
592 		 * Tell the caller to flush out the request if
593 		 * the offsets are non-contiguous.
594 		 * Note: nfs_flush_incompatible() will already
595 		 * have flushed out requests having wrong owners.
596 		 */
597 		if (offset > rqend
598 		    || end < req->wb_offset)
599 			goto out_flushme;
600 
601 		if (nfs_set_page_tag_locked(req))
602 			break;
603 
604 		/* The request is locked, so wait and then retry */
605 		spin_unlock(&inode->i_lock);
606 		error = nfs_wait_on_request(req);
607 		nfs_release_request(req);
608 		if (error != 0)
609 			goto out_err;
610 		spin_lock(&inode->i_lock);
611 	}
612 
613 	if (nfs_clear_request_commit(req) &&
614 			radix_tree_tag_clear(&NFS_I(inode)->nfs_page_tree,
615 				req->wb_index, NFS_PAGE_TAG_COMMIT) != NULL)
616 		NFS_I(inode)->ncommit--;
617 
618 	/* Okay, the request matches. Update the region */
619 	if (offset < req->wb_offset) {
620 		req->wb_offset = offset;
621 		req->wb_pgbase = offset;
622 	}
623 	if (end > rqend)
624 		req->wb_bytes = end - req->wb_offset;
625 	else
626 		req->wb_bytes = rqend - req->wb_offset;
627 out_unlock:
628 	spin_unlock(&inode->i_lock);
629 	return req;
630 out_flushme:
631 	spin_unlock(&inode->i_lock);
632 	nfs_release_request(req);
633 	error = nfs_wb_page(inode, page);
634 out_err:
635 	return ERR_PTR(error);
636 }
637 
638 /*
639  * Try to update an existing write request, or create one if there is none.
640  *
641  * Note: Should always be called with the Page Lock held to prevent races
642  * if we have to add a new request. Also assumes that the caller has
643  * already called nfs_flush_incompatible() if necessary.
644  */
645 static struct nfs_page * nfs_setup_write_request(struct nfs_open_context* ctx,
646 		struct page *page, unsigned int offset, unsigned int bytes)
647 {
648 	struct inode *inode = page->mapping->host;
649 	struct nfs_page	*req;
650 	int error;
651 
652 	req = nfs_try_to_update_request(inode, page, offset, bytes);
653 	if (req != NULL)
654 		goto out;
655 	req = nfs_create_request(ctx, inode, page, offset, bytes);
656 	if (IS_ERR(req))
657 		goto out;
658 	error = nfs_inode_add_request(inode, req);
659 	if (error != 0) {
660 		nfs_release_request(req);
661 		req = ERR_PTR(error);
662 	}
663 out:
664 	return req;
665 }
666 
667 static int nfs_writepage_setup(struct nfs_open_context *ctx, struct page *page,
668 		unsigned int offset, unsigned int count)
669 {
670 	struct nfs_page	*req;
671 
672 	req = nfs_setup_write_request(ctx, page, offset, count);
673 	if (IS_ERR(req))
674 		return PTR_ERR(req);
675 	nfs_mark_request_dirty(req);
676 	/* Update file length */
677 	nfs_grow_file(page, offset, count);
678 	nfs_mark_uptodate(page, req->wb_pgbase, req->wb_bytes);
679 	nfs_mark_request_dirty(req);
680 	nfs_clear_page_tag_locked(req);
681 	return 0;
682 }
683 
684 int nfs_flush_incompatible(struct file *file, struct page *page)
685 {
686 	struct nfs_open_context *ctx = nfs_file_open_context(file);
687 	struct nfs_page	*req;
688 	int do_flush, status;
689 	/*
690 	 * Look for a request corresponding to this page. If there
691 	 * is one, and it belongs to another file, we flush it out
692 	 * before we try to copy anything into the page. Do this
693 	 * due to the lack of an ACCESS-type call in NFSv2.
694 	 * Also do the same if we find a request from an existing
695 	 * dropped page.
696 	 */
697 	do {
698 		req = nfs_page_find_request(page);
699 		if (req == NULL)
700 			return 0;
701 		do_flush = req->wb_page != page || req->wb_context != ctx ||
702 			req->wb_lock_context->lockowner != current->files ||
703 			req->wb_lock_context->pid != current->tgid;
704 		nfs_release_request(req);
705 		if (!do_flush)
706 			return 0;
707 		status = nfs_wb_page(page->mapping->host, page);
708 	} while (status == 0);
709 	return status;
710 }
711 
712 /*
713  * If the page cache is marked as unsafe or invalid, then we can't rely on
714  * the PageUptodate() flag. In this case, we will need to turn off
715  * write optimisations that depend on the page contents being correct.
716  */
717 static int nfs_write_pageuptodate(struct page *page, struct inode *inode)
718 {
719 	return PageUptodate(page) &&
720 		!(NFS_I(inode)->cache_validity & (NFS_INO_REVAL_PAGECACHE|NFS_INO_INVALID_DATA));
721 }
722 
723 /*
724  * Update and possibly write a cached page of an NFS file.
725  *
726  * XXX: Keep an eye on generic_file_read to make sure it doesn't do bad
727  * things with a page scheduled for an RPC call (e.g. invalidate it).
728  */
729 int nfs_updatepage(struct file *file, struct page *page,
730 		unsigned int offset, unsigned int count)
731 {
732 	struct nfs_open_context *ctx = nfs_file_open_context(file);
733 	struct inode	*inode = page->mapping->host;
734 	int		status = 0;
735 
736 	nfs_inc_stats(inode, NFSIOS_VFSUPDATEPAGE);
737 
738 	dprintk("NFS:       nfs_updatepage(%s/%s %d@%lld)\n",
739 		file->f_path.dentry->d_parent->d_name.name,
740 		file->f_path.dentry->d_name.name, count,
741 		(long long)(page_offset(page) + offset));
742 
743 	/* If we're not using byte range locks, and we know the page
744 	 * is up to date, it may be more efficient to extend the write
745 	 * to cover the entire page in order to avoid fragmentation
746 	 * inefficiencies.
747 	 */
748 	if (nfs_write_pageuptodate(page, inode) &&
749 			inode->i_flock == NULL &&
750 			!(file->f_flags & O_DSYNC)) {
751 		count = max(count + offset, nfs_page_length(page));
752 		offset = 0;
753 	}
754 
755 	status = nfs_writepage_setup(ctx, page, offset, count);
756 	if (status < 0)
757 		nfs_set_pageerror(page);
758 
759 	dprintk("NFS:       nfs_updatepage returns %d (isize %lld)\n",
760 			status, (long long)i_size_read(inode));
761 	return status;
762 }
763 
764 static void nfs_writepage_release(struct nfs_page *req)
765 {
766 	struct page *page = req->wb_page;
767 
768 	if (PageError(req->wb_page) || !nfs_reschedule_unstable_write(req))
769 		nfs_inode_remove_request(req);
770 	nfs_clear_page_tag_locked(req);
771 	nfs_end_page_writeback(page);
772 }
773 
774 static int flush_task_priority(int how)
775 {
776 	switch (how & (FLUSH_HIGHPRI|FLUSH_LOWPRI)) {
777 		case FLUSH_HIGHPRI:
778 			return RPC_PRIORITY_HIGH;
779 		case FLUSH_LOWPRI:
780 			return RPC_PRIORITY_LOW;
781 	}
782 	return RPC_PRIORITY_NORMAL;
783 }
784 
785 /*
786  * Set up the argument/result storage required for the RPC call.
787  */
788 static int nfs_write_rpcsetup(struct nfs_page *req,
789 		struct nfs_write_data *data,
790 		const struct rpc_call_ops *call_ops,
791 		unsigned int count, unsigned int offset,
792 		int how)
793 {
794 	struct inode *inode = req->wb_context->path.dentry->d_inode;
795 	int priority = flush_task_priority(how);
796 	struct rpc_task *task;
797 	struct rpc_message msg = {
798 		.rpc_argp = &data->args,
799 		.rpc_resp = &data->res,
800 		.rpc_cred = req->wb_context->cred,
801 	};
802 	struct rpc_task_setup task_setup_data = {
803 		.rpc_client = NFS_CLIENT(inode),
804 		.task = &data->task,
805 		.rpc_message = &msg,
806 		.callback_ops = call_ops,
807 		.callback_data = data,
808 		.workqueue = nfsiod_workqueue,
809 		.flags = RPC_TASK_ASYNC,
810 		.priority = priority,
811 	};
812 	int ret = 0;
813 
814 	/* Set up the RPC argument and reply structs
815 	 * NB: take care not to mess about with data->commit et al. */
816 
817 	data->req = req;
818 	data->inode = inode = req->wb_context->path.dentry->d_inode;
819 	data->cred = msg.rpc_cred;
820 
821 	data->args.fh     = NFS_FH(inode);
822 	data->args.offset = req_offset(req) + offset;
823 	data->args.pgbase = req->wb_pgbase + offset;
824 	data->args.pages  = data->pagevec;
825 	data->args.count  = count;
826 	data->args.context = get_nfs_open_context(req->wb_context);
827 	data->args.lock_context = req->wb_lock_context;
828 	data->args.stable  = NFS_UNSTABLE;
829 	if (how & FLUSH_STABLE) {
830 		data->args.stable = NFS_DATA_SYNC;
831 		if (!nfs_need_commit(NFS_I(inode)))
832 			data->args.stable = NFS_FILE_SYNC;
833 	}
834 
835 	data->res.fattr   = &data->fattr;
836 	data->res.count   = count;
837 	data->res.verf    = &data->verf;
838 	nfs_fattr_init(&data->fattr);
839 
840 	/* Set up the initial task struct.  */
841 	NFS_PROTO(inode)->write_setup(data, &msg);
842 
843 	dprintk("NFS: %5u initiated write call "
844 		"(req %s/%lld, %u bytes @ offset %llu)\n",
845 		data->task.tk_pid,
846 		inode->i_sb->s_id,
847 		(long long)NFS_FILEID(inode),
848 		count,
849 		(unsigned long long)data->args.offset);
850 
851 	task = rpc_run_task(&task_setup_data);
852 	if (IS_ERR(task)) {
853 		ret = PTR_ERR(task);
854 		goto out;
855 	}
856 	if (how & FLUSH_SYNC) {
857 		ret = rpc_wait_for_completion_task(task);
858 		if (ret == 0)
859 			ret = task->tk_status;
860 	}
861 	rpc_put_task(task);
862 out:
863 	return ret;
864 }
865 
866 /* If a nfs_flush_* function fails, it should remove reqs from @head and
867  * call this on each, which will prepare them to be retried on next
868  * writeback using standard nfs.
869  */
870 static void nfs_redirty_request(struct nfs_page *req)
871 {
872 	struct page *page = req->wb_page;
873 
874 	nfs_mark_request_dirty(req);
875 	nfs_clear_page_tag_locked(req);
876 	nfs_end_page_writeback(page);
877 }
878 
879 /*
880  * Generate multiple small requests to write out a single
881  * contiguous dirty area on one page.
882  */
883 static int nfs_flush_multi(struct inode *inode, struct list_head *head, unsigned int npages, size_t count, int how)
884 {
885 	struct nfs_page *req = nfs_list_entry(head->next);
886 	struct page *page = req->wb_page;
887 	struct nfs_write_data *data;
888 	size_t wsize = NFS_SERVER(inode)->wsize, nbytes;
889 	unsigned int offset;
890 	int requests = 0;
891 	int ret = 0;
892 	LIST_HEAD(list);
893 
894 	nfs_list_remove_request(req);
895 
896 	nbytes = count;
897 	do {
898 		size_t len = min(nbytes, wsize);
899 
900 		data = nfs_writedata_alloc(1);
901 		if (!data)
902 			goto out_bad;
903 		list_add(&data->pages, &list);
904 		requests++;
905 		nbytes -= len;
906 	} while (nbytes != 0);
907 	atomic_set(&req->wb_complete, requests);
908 
909 	ClearPageError(page);
910 	offset = 0;
911 	nbytes = count;
912 	do {
913 		int ret2;
914 
915 		data = list_entry(list.next, struct nfs_write_data, pages);
916 		list_del_init(&data->pages);
917 
918 		data->pagevec[0] = page;
919 
920 		if (nbytes < wsize)
921 			wsize = nbytes;
922 		ret2 = nfs_write_rpcsetup(req, data, &nfs_write_partial_ops,
923 				   wsize, offset, how);
924 		if (ret == 0)
925 			ret = ret2;
926 		offset += wsize;
927 		nbytes -= wsize;
928 	} while (nbytes != 0);
929 
930 	return ret;
931 
932 out_bad:
933 	while (!list_empty(&list)) {
934 		data = list_entry(list.next, struct nfs_write_data, pages);
935 		list_del(&data->pages);
936 		nfs_writedata_release(data);
937 	}
938 	nfs_redirty_request(req);
939 	return -ENOMEM;
940 }
941 
942 /*
943  * Create an RPC task for the given write request and kick it.
944  * The page must have been locked by the caller.
945  *
946  * It may happen that the page we're passed is not marked dirty.
947  * This is the case if nfs_updatepage detects a conflicting request
948  * that has been written but not committed.
949  */
950 static int nfs_flush_one(struct inode *inode, struct list_head *head, unsigned int npages, size_t count, int how)
951 {
952 	struct nfs_page		*req;
953 	struct page		**pages;
954 	struct nfs_write_data	*data;
955 
956 	data = nfs_writedata_alloc(npages);
957 	if (!data)
958 		goto out_bad;
959 
960 	pages = data->pagevec;
961 	while (!list_empty(head)) {
962 		req = nfs_list_entry(head->next);
963 		nfs_list_remove_request(req);
964 		nfs_list_add_request(req, &data->pages);
965 		ClearPageError(req->wb_page);
966 		*pages++ = req->wb_page;
967 	}
968 	req = nfs_list_entry(data->pages.next);
969 
970 	/* Set up the argument struct */
971 	return nfs_write_rpcsetup(req, data, &nfs_write_full_ops, count, 0, how);
972  out_bad:
973 	while (!list_empty(head)) {
974 		req = nfs_list_entry(head->next);
975 		nfs_list_remove_request(req);
976 		nfs_redirty_request(req);
977 	}
978 	return -ENOMEM;
979 }
980 
981 static void nfs_pageio_init_write(struct nfs_pageio_descriptor *pgio,
982 				  struct inode *inode, int ioflags)
983 {
984 	size_t wsize = NFS_SERVER(inode)->wsize;
985 
986 	if (wsize < PAGE_CACHE_SIZE)
987 		nfs_pageio_init(pgio, inode, nfs_flush_multi, wsize, ioflags);
988 	else
989 		nfs_pageio_init(pgio, inode, nfs_flush_one, wsize, ioflags);
990 }
991 
992 /*
993  * Handle a write reply that flushed part of a page.
994  */
995 static void nfs_writeback_done_partial(struct rpc_task *task, void *calldata)
996 {
997 	struct nfs_write_data	*data = calldata;
998 
999 	dprintk("NFS: %5u write(%s/%lld %d@%lld)",
1000 		task->tk_pid,
1001 		data->req->wb_context->path.dentry->d_inode->i_sb->s_id,
1002 		(long long)
1003 		  NFS_FILEID(data->req->wb_context->path.dentry->d_inode),
1004 		data->req->wb_bytes, (long long)req_offset(data->req));
1005 
1006 	nfs_writeback_done(task, data);
1007 }
1008 
1009 static void nfs_writeback_release_partial(void *calldata)
1010 {
1011 	struct nfs_write_data	*data = calldata;
1012 	struct nfs_page		*req = data->req;
1013 	struct page		*page = req->wb_page;
1014 	int status = data->task.tk_status;
1015 
1016 	if (status < 0) {
1017 		nfs_set_pageerror(page);
1018 		nfs_context_set_write_error(req->wb_context, status);
1019 		dprintk(", error = %d\n", status);
1020 		goto out;
1021 	}
1022 
1023 	if (nfs_write_need_commit(data)) {
1024 		struct inode *inode = page->mapping->host;
1025 
1026 		spin_lock(&inode->i_lock);
1027 		if (test_bit(PG_NEED_RESCHED, &req->wb_flags)) {
1028 			/* Do nothing we need to resend the writes */
1029 		} else if (!test_and_set_bit(PG_NEED_COMMIT, &req->wb_flags)) {
1030 			memcpy(&req->wb_verf, &data->verf, sizeof(req->wb_verf));
1031 			dprintk(" defer commit\n");
1032 		} else if (memcmp(&req->wb_verf, &data->verf, sizeof(req->wb_verf))) {
1033 			set_bit(PG_NEED_RESCHED, &req->wb_flags);
1034 			clear_bit(PG_NEED_COMMIT, &req->wb_flags);
1035 			dprintk(" server reboot detected\n");
1036 		}
1037 		spin_unlock(&inode->i_lock);
1038 	} else
1039 		dprintk(" OK\n");
1040 
1041 out:
1042 	if (atomic_dec_and_test(&req->wb_complete))
1043 		nfs_writepage_release(req);
1044 	nfs_writedata_release(calldata);
1045 }
1046 
1047 #if defined(CONFIG_NFS_V4_1)
1048 void nfs_write_prepare(struct rpc_task *task, void *calldata)
1049 {
1050 	struct nfs_write_data *data = calldata;
1051 
1052 	if (nfs4_setup_sequence(NFS_SERVER(data->inode),
1053 				&data->args.seq_args,
1054 				&data->res.seq_res, 1, task))
1055 		return;
1056 	rpc_call_start(task);
1057 }
1058 #endif /* CONFIG_NFS_V4_1 */
1059 
1060 static const struct rpc_call_ops nfs_write_partial_ops = {
1061 #if defined(CONFIG_NFS_V4_1)
1062 	.rpc_call_prepare = nfs_write_prepare,
1063 #endif /* CONFIG_NFS_V4_1 */
1064 	.rpc_call_done = nfs_writeback_done_partial,
1065 	.rpc_release = nfs_writeback_release_partial,
1066 };
1067 
1068 /*
1069  * Handle a write reply that flushes a whole page.
1070  *
1071  * FIXME: There is an inherent race with invalidate_inode_pages and
1072  *	  writebacks since the page->count is kept > 1 for as long
1073  *	  as the page has a write request pending.
1074  */
1075 static void nfs_writeback_done_full(struct rpc_task *task, void *calldata)
1076 {
1077 	struct nfs_write_data	*data = calldata;
1078 
1079 	nfs_writeback_done(task, data);
1080 }
1081 
1082 static void nfs_writeback_release_full(void *calldata)
1083 {
1084 	struct nfs_write_data	*data = calldata;
1085 	int status = data->task.tk_status;
1086 
1087 	/* Update attributes as result of writeback. */
1088 	while (!list_empty(&data->pages)) {
1089 		struct nfs_page *req = nfs_list_entry(data->pages.next);
1090 		struct page *page = req->wb_page;
1091 
1092 		nfs_list_remove_request(req);
1093 
1094 		dprintk("NFS: %5u write (%s/%lld %d@%lld)",
1095 			data->task.tk_pid,
1096 			req->wb_context->path.dentry->d_inode->i_sb->s_id,
1097 			(long long)NFS_FILEID(req->wb_context->path.dentry->d_inode),
1098 			req->wb_bytes,
1099 			(long long)req_offset(req));
1100 
1101 		if (status < 0) {
1102 			nfs_set_pageerror(page);
1103 			nfs_context_set_write_error(req->wb_context, status);
1104 			dprintk(", error = %d\n", status);
1105 			goto remove_request;
1106 		}
1107 
1108 		if (nfs_write_need_commit(data)) {
1109 			memcpy(&req->wb_verf, &data->verf, sizeof(req->wb_verf));
1110 			nfs_mark_request_commit(req);
1111 			dprintk(" marked for commit\n");
1112 			goto next;
1113 		}
1114 		dprintk(" OK\n");
1115 remove_request:
1116 		nfs_inode_remove_request(req);
1117 	next:
1118 		nfs_clear_page_tag_locked(req);
1119 		nfs_end_page_writeback(page);
1120 	}
1121 	nfs_writedata_release(calldata);
1122 }
1123 
1124 static const struct rpc_call_ops nfs_write_full_ops = {
1125 #if defined(CONFIG_NFS_V4_1)
1126 	.rpc_call_prepare = nfs_write_prepare,
1127 #endif /* CONFIG_NFS_V4_1 */
1128 	.rpc_call_done = nfs_writeback_done_full,
1129 	.rpc_release = nfs_writeback_release_full,
1130 };
1131 
1132 
1133 /*
1134  * This function is called when the WRITE call is complete.
1135  */
1136 int nfs_writeback_done(struct rpc_task *task, struct nfs_write_data *data)
1137 {
1138 	struct nfs_writeargs	*argp = &data->args;
1139 	struct nfs_writeres	*resp = &data->res;
1140 	struct nfs_server	*server = NFS_SERVER(data->inode);
1141 	int status;
1142 
1143 	dprintk("NFS: %5u nfs_writeback_done (status %d)\n",
1144 		task->tk_pid, task->tk_status);
1145 
1146 	/*
1147 	 * ->write_done will attempt to use post-op attributes to detect
1148 	 * conflicting writes by other clients.  A strict interpretation
1149 	 * of close-to-open would allow us to continue caching even if
1150 	 * another writer had changed the file, but some applications
1151 	 * depend on tighter cache coherency when writing.
1152 	 */
1153 	status = NFS_PROTO(data->inode)->write_done(task, data);
1154 	if (status != 0)
1155 		return status;
1156 	nfs_add_stats(data->inode, NFSIOS_SERVERWRITTENBYTES, resp->count);
1157 
1158 #if defined(CONFIG_NFS_V3) || defined(CONFIG_NFS_V4)
1159 	if (resp->verf->committed < argp->stable && task->tk_status >= 0) {
1160 		/* We tried a write call, but the server did not
1161 		 * commit data to stable storage even though we
1162 		 * requested it.
1163 		 * Note: There is a known bug in Tru64 < 5.0 in which
1164 		 *	 the server reports NFS_DATA_SYNC, but performs
1165 		 *	 NFS_FILE_SYNC. We therefore implement this checking
1166 		 *	 as a dprintk() in order to avoid filling syslog.
1167 		 */
1168 		static unsigned long    complain;
1169 
1170 		if (time_before(complain, jiffies)) {
1171 			dprintk("NFS:       faulty NFS server %s:"
1172 				" (committed = %d) != (stable = %d)\n",
1173 				server->nfs_client->cl_hostname,
1174 				resp->verf->committed, argp->stable);
1175 			complain = jiffies + 300 * HZ;
1176 		}
1177 	}
1178 #endif
1179 	/* Is this a short write? */
1180 	if (task->tk_status >= 0 && resp->count < argp->count) {
1181 		static unsigned long    complain;
1182 
1183 		nfs_inc_stats(data->inode, NFSIOS_SHORTWRITE);
1184 
1185 		/* Has the server at least made some progress? */
1186 		if (resp->count != 0) {
1187 			/* Was this an NFSv2 write or an NFSv3 stable write? */
1188 			if (resp->verf->committed != NFS_UNSTABLE) {
1189 				/* Resend from where the server left off */
1190 				argp->offset += resp->count;
1191 				argp->pgbase += resp->count;
1192 				argp->count -= resp->count;
1193 			} else {
1194 				/* Resend as a stable write in order to avoid
1195 				 * headaches in the case of a server crash.
1196 				 */
1197 				argp->stable = NFS_FILE_SYNC;
1198 			}
1199 			nfs_restart_rpc(task, server->nfs_client);
1200 			return -EAGAIN;
1201 		}
1202 		if (time_before(complain, jiffies)) {
1203 			printk(KERN_WARNING
1204 			       "NFS: Server wrote zero bytes, expected %u.\n",
1205 					argp->count);
1206 			complain = jiffies + 300 * HZ;
1207 		}
1208 		/* Can't do anything about it except throw an error. */
1209 		task->tk_status = -EIO;
1210 	}
1211 	return 0;
1212 }
1213 
1214 
1215 #if defined(CONFIG_NFS_V3) || defined(CONFIG_NFS_V4)
1216 static int nfs_commit_set_lock(struct nfs_inode *nfsi, int may_wait)
1217 {
1218 	if (!test_and_set_bit(NFS_INO_COMMIT, &nfsi->flags))
1219 		return 1;
1220 	if (may_wait && !out_of_line_wait_on_bit_lock(&nfsi->flags,
1221 				NFS_INO_COMMIT, nfs_wait_bit_killable,
1222 				TASK_KILLABLE))
1223 		return 1;
1224 	return 0;
1225 }
1226 
1227 static void nfs_commit_clear_lock(struct nfs_inode *nfsi)
1228 {
1229 	clear_bit(NFS_INO_COMMIT, &nfsi->flags);
1230 	smp_mb__after_clear_bit();
1231 	wake_up_bit(&nfsi->flags, NFS_INO_COMMIT);
1232 }
1233 
1234 
1235 static void nfs_commitdata_release(void *data)
1236 {
1237 	struct nfs_write_data *wdata = data;
1238 
1239 	put_nfs_open_context(wdata->args.context);
1240 	nfs_commit_free(wdata);
1241 }
1242 
1243 /*
1244  * Set up the argument/result storage required for the RPC call.
1245  */
1246 static int nfs_commit_rpcsetup(struct list_head *head,
1247 		struct nfs_write_data *data,
1248 		int how)
1249 {
1250 	struct nfs_page *first = nfs_list_entry(head->next);
1251 	struct inode *inode = first->wb_context->path.dentry->d_inode;
1252 	int priority = flush_task_priority(how);
1253 	struct rpc_task *task;
1254 	struct rpc_message msg = {
1255 		.rpc_argp = &data->args,
1256 		.rpc_resp = &data->res,
1257 		.rpc_cred = first->wb_context->cred,
1258 	};
1259 	struct rpc_task_setup task_setup_data = {
1260 		.task = &data->task,
1261 		.rpc_client = NFS_CLIENT(inode),
1262 		.rpc_message = &msg,
1263 		.callback_ops = &nfs_commit_ops,
1264 		.callback_data = data,
1265 		.workqueue = nfsiod_workqueue,
1266 		.flags = RPC_TASK_ASYNC,
1267 		.priority = priority,
1268 	};
1269 
1270 	/* Set up the RPC argument and reply structs
1271 	 * NB: take care not to mess about with data->commit et al. */
1272 
1273 	list_splice_init(head, &data->pages);
1274 
1275 	data->inode	  = inode;
1276 	data->cred	  = msg.rpc_cred;
1277 
1278 	data->args.fh     = NFS_FH(data->inode);
1279 	/* Note: we always request a commit of the entire inode */
1280 	data->args.offset = 0;
1281 	data->args.count  = 0;
1282 	data->args.context = get_nfs_open_context(first->wb_context);
1283 	data->res.count   = 0;
1284 	data->res.fattr   = &data->fattr;
1285 	data->res.verf    = &data->verf;
1286 	nfs_fattr_init(&data->fattr);
1287 
1288 	/* Set up the initial task struct.  */
1289 	NFS_PROTO(inode)->commit_setup(data, &msg);
1290 
1291 	dprintk("NFS: %5u initiated commit call\n", data->task.tk_pid);
1292 
1293 	task = rpc_run_task(&task_setup_data);
1294 	if (IS_ERR(task))
1295 		return PTR_ERR(task);
1296 	rpc_put_task(task);
1297 	return 0;
1298 }
1299 
1300 /*
1301  * Commit dirty pages
1302  */
1303 static int
1304 nfs_commit_list(struct inode *inode, struct list_head *head, int how)
1305 {
1306 	struct nfs_write_data	*data;
1307 	struct nfs_page         *req;
1308 
1309 	data = nfs_commitdata_alloc();
1310 
1311 	if (!data)
1312 		goto out_bad;
1313 
1314 	/* Set up the argument struct */
1315 	return nfs_commit_rpcsetup(head, data, how);
1316  out_bad:
1317 	while (!list_empty(head)) {
1318 		req = nfs_list_entry(head->next);
1319 		nfs_list_remove_request(req);
1320 		nfs_mark_request_commit(req);
1321 		dec_zone_page_state(req->wb_page, NR_UNSTABLE_NFS);
1322 		dec_bdi_stat(req->wb_page->mapping->backing_dev_info,
1323 				BDI_RECLAIMABLE);
1324 		nfs_clear_page_tag_locked(req);
1325 	}
1326 	nfs_commit_clear_lock(NFS_I(inode));
1327 	return -ENOMEM;
1328 }
1329 
1330 /*
1331  * COMMIT call returned
1332  */
1333 static void nfs_commit_done(struct rpc_task *task, void *calldata)
1334 {
1335 	struct nfs_write_data	*data = calldata;
1336 
1337         dprintk("NFS: %5u nfs_commit_done (status %d)\n",
1338                                 task->tk_pid, task->tk_status);
1339 
1340 	/* Call the NFS version-specific code */
1341 	if (NFS_PROTO(data->inode)->commit_done(task, data) != 0)
1342 		return;
1343 }
1344 
1345 static void nfs_commit_release(void *calldata)
1346 {
1347 	struct nfs_write_data	*data = calldata;
1348 	struct nfs_page		*req;
1349 	int status = data->task.tk_status;
1350 
1351 	while (!list_empty(&data->pages)) {
1352 		req = nfs_list_entry(data->pages.next);
1353 		nfs_list_remove_request(req);
1354 		nfs_clear_request_commit(req);
1355 
1356 		dprintk("NFS:       commit (%s/%lld %d@%lld)",
1357 			req->wb_context->path.dentry->d_inode->i_sb->s_id,
1358 			(long long)NFS_FILEID(req->wb_context->path.dentry->d_inode),
1359 			req->wb_bytes,
1360 			(long long)req_offset(req));
1361 		if (status < 0) {
1362 			nfs_context_set_write_error(req->wb_context, status);
1363 			nfs_inode_remove_request(req);
1364 			dprintk(", error = %d\n", status);
1365 			goto next;
1366 		}
1367 
1368 		/* Okay, COMMIT succeeded, apparently. Check the verifier
1369 		 * returned by the server against all stored verfs. */
1370 		if (!memcmp(req->wb_verf.verifier, data->verf.verifier, sizeof(data->verf.verifier))) {
1371 			/* We have a match */
1372 			nfs_inode_remove_request(req);
1373 			dprintk(" OK\n");
1374 			goto next;
1375 		}
1376 		/* We have a mismatch. Write the page again */
1377 		dprintk(" mismatch\n");
1378 		nfs_mark_request_dirty(req);
1379 	next:
1380 		nfs_clear_page_tag_locked(req);
1381 	}
1382 	nfs_commit_clear_lock(NFS_I(data->inode));
1383 	nfs_commitdata_release(calldata);
1384 }
1385 
1386 static const struct rpc_call_ops nfs_commit_ops = {
1387 #if defined(CONFIG_NFS_V4_1)
1388 	.rpc_call_prepare = nfs_write_prepare,
1389 #endif /* CONFIG_NFS_V4_1 */
1390 	.rpc_call_done = nfs_commit_done,
1391 	.rpc_release = nfs_commit_release,
1392 };
1393 
1394 int nfs_commit_inode(struct inode *inode, int how)
1395 {
1396 	LIST_HEAD(head);
1397 	int may_wait = how & FLUSH_SYNC;
1398 	int res = 0;
1399 
1400 	if (!nfs_commit_set_lock(NFS_I(inode), may_wait))
1401 		goto out_mark_dirty;
1402 	spin_lock(&inode->i_lock);
1403 	res = nfs_scan_commit(inode, &head, 0, 0);
1404 	spin_unlock(&inode->i_lock);
1405 	if (res) {
1406 		int error = nfs_commit_list(inode, &head, how);
1407 		if (error < 0)
1408 			return error;
1409 		if (may_wait)
1410 			wait_on_bit(&NFS_I(inode)->flags, NFS_INO_COMMIT,
1411 					nfs_wait_bit_killable,
1412 					TASK_KILLABLE);
1413 		else
1414 			goto out_mark_dirty;
1415 	} else
1416 		nfs_commit_clear_lock(NFS_I(inode));
1417 	return res;
1418 	/* Note: If we exit without ensuring that the commit is complete,
1419 	 * we must mark the inode as dirty. Otherwise, future calls to
1420 	 * sync_inode() with the WB_SYNC_ALL flag set will fail to ensure
1421 	 * that the data is on the disk.
1422 	 */
1423 out_mark_dirty:
1424 	__mark_inode_dirty(inode, I_DIRTY_DATASYNC);
1425 	return res;
1426 }
1427 
1428 static int nfs_commit_unstable_pages(struct inode *inode, struct writeback_control *wbc)
1429 {
1430 	struct nfs_inode *nfsi = NFS_I(inode);
1431 	int flags = FLUSH_SYNC;
1432 	int ret = 0;
1433 
1434 	if (wbc->sync_mode == WB_SYNC_NONE) {
1435 		/* Don't commit yet if this is a non-blocking flush and there
1436 		 * are a lot of outstanding writes for this mapping.
1437 		 */
1438 		if (nfsi->ncommit <= (nfsi->npages >> 1))
1439 			goto out_mark_dirty;
1440 
1441 		/* don't wait for the COMMIT response */
1442 		flags = 0;
1443 	}
1444 
1445 	ret = nfs_commit_inode(inode, flags);
1446 	if (ret >= 0) {
1447 		if (wbc->sync_mode == WB_SYNC_NONE) {
1448 			if (ret < wbc->nr_to_write)
1449 				wbc->nr_to_write -= ret;
1450 			else
1451 				wbc->nr_to_write = 0;
1452 		}
1453 		return 0;
1454 	}
1455 out_mark_dirty:
1456 	__mark_inode_dirty(inode, I_DIRTY_DATASYNC);
1457 	return ret;
1458 }
1459 #else
1460 static int nfs_commit_unstable_pages(struct inode *inode, struct writeback_control *wbc)
1461 {
1462 	return 0;
1463 }
1464 #endif
1465 
1466 int nfs_write_inode(struct inode *inode, struct writeback_control *wbc)
1467 {
1468 	return nfs_commit_unstable_pages(inode, wbc);
1469 }
1470 
1471 /*
1472  * flush the inode to disk.
1473  */
1474 int nfs_wb_all(struct inode *inode)
1475 {
1476 	struct writeback_control wbc = {
1477 		.sync_mode = WB_SYNC_ALL,
1478 		.nr_to_write = LONG_MAX,
1479 		.range_start = 0,
1480 		.range_end = LLONG_MAX,
1481 	};
1482 
1483 	return sync_inode(inode, &wbc);
1484 }
1485 
1486 int nfs_wb_page_cancel(struct inode *inode, struct page *page)
1487 {
1488 	struct nfs_page *req;
1489 	int ret = 0;
1490 
1491 	BUG_ON(!PageLocked(page));
1492 	for (;;) {
1493 		wait_on_page_writeback(page);
1494 		req = nfs_page_find_request(page);
1495 		if (req == NULL)
1496 			break;
1497 		if (nfs_lock_request_dontget(req)) {
1498 			nfs_inode_remove_request(req);
1499 			/*
1500 			 * In case nfs_inode_remove_request has marked the
1501 			 * page as being dirty
1502 			 */
1503 			cancel_dirty_page(page, PAGE_CACHE_SIZE);
1504 			nfs_unlock_request(req);
1505 			break;
1506 		}
1507 		ret = nfs_wait_on_request(req);
1508 		nfs_release_request(req);
1509 		if (ret < 0)
1510 			break;
1511 	}
1512 	return ret;
1513 }
1514 
1515 /*
1516  * Write back all requests on one page - we do this before reading it.
1517  */
1518 int nfs_wb_page(struct inode *inode, struct page *page)
1519 {
1520 	loff_t range_start = page_offset(page);
1521 	loff_t range_end = range_start + (loff_t)(PAGE_CACHE_SIZE - 1);
1522 	struct writeback_control wbc = {
1523 		.sync_mode = WB_SYNC_ALL,
1524 		.nr_to_write = 0,
1525 		.range_start = range_start,
1526 		.range_end = range_end,
1527 	};
1528 	int ret;
1529 
1530 	for (;;) {
1531 		wait_on_page_writeback(page);
1532 		if (clear_page_dirty_for_io(page)) {
1533 			ret = nfs_writepage_locked(page, &wbc);
1534 			if (ret < 0)
1535 				goto out_error;
1536 			continue;
1537 		}
1538 		if (!PagePrivate(page))
1539 			break;
1540 		ret = nfs_commit_inode(inode, FLUSH_SYNC);
1541 		if (ret < 0)
1542 			goto out_error;
1543 	}
1544 	return 0;
1545 out_error:
1546 	return ret;
1547 }
1548 
1549 #ifdef CONFIG_MIGRATION
1550 int nfs_migrate_page(struct address_space *mapping, struct page *newpage,
1551 		struct page *page)
1552 {
1553 	struct nfs_page *req;
1554 	int ret;
1555 
1556 	nfs_fscache_release_page(page, GFP_KERNEL);
1557 
1558 	req = nfs_find_and_lock_request(page, false);
1559 	ret = PTR_ERR(req);
1560 	if (IS_ERR(req))
1561 		goto out;
1562 
1563 	ret = migrate_page(mapping, newpage, page);
1564 	if (!req)
1565 		goto out;
1566 	if (ret)
1567 		goto out_unlock;
1568 	page_cache_get(newpage);
1569 	spin_lock(&mapping->host->i_lock);
1570 	req->wb_page = newpage;
1571 	SetPagePrivate(newpage);
1572 	set_page_private(newpage, (unsigned long)req);
1573 	ClearPagePrivate(page);
1574 	set_page_private(page, 0);
1575 	spin_unlock(&mapping->host->i_lock);
1576 	page_cache_release(page);
1577 out_unlock:
1578 	nfs_clear_page_tag_locked(req);
1579 out:
1580 	return ret;
1581 }
1582 #endif
1583 
1584 int __init nfs_init_writepagecache(void)
1585 {
1586 	nfs_wdata_cachep = kmem_cache_create("nfs_write_data",
1587 					     sizeof(struct nfs_write_data),
1588 					     0, SLAB_HWCACHE_ALIGN,
1589 					     NULL);
1590 	if (nfs_wdata_cachep == NULL)
1591 		return -ENOMEM;
1592 
1593 	nfs_wdata_mempool = mempool_create_slab_pool(MIN_POOL_WRITE,
1594 						     nfs_wdata_cachep);
1595 	if (nfs_wdata_mempool == NULL)
1596 		return -ENOMEM;
1597 
1598 	nfs_commit_mempool = mempool_create_slab_pool(MIN_POOL_COMMIT,
1599 						      nfs_wdata_cachep);
1600 	if (nfs_commit_mempool == NULL)
1601 		return -ENOMEM;
1602 
1603 	/*
1604 	 * NFS congestion size, scale with available memory.
1605 	 *
1606 	 *  64MB:    8192k
1607 	 * 128MB:   11585k
1608 	 * 256MB:   16384k
1609 	 * 512MB:   23170k
1610 	 *   1GB:   32768k
1611 	 *   2GB:   46340k
1612 	 *   4GB:   65536k
1613 	 *   8GB:   92681k
1614 	 *  16GB:  131072k
1615 	 *
1616 	 * This allows larger machines to have larger/more transfers.
1617 	 * Limit the default to 256M
1618 	 */
1619 	nfs_congestion_kb = (16*int_sqrt(totalram_pages)) << (PAGE_SHIFT-10);
1620 	if (nfs_congestion_kb > 256*1024)
1621 		nfs_congestion_kb = 256*1024;
1622 
1623 	return 0;
1624 }
1625 
1626 void nfs_destroy_writepagecache(void)
1627 {
1628 	mempool_destroy(nfs_commit_mempool);
1629 	mempool_destroy(nfs_wdata_mempool);
1630 	kmem_cache_destroy(nfs_wdata_cachep);
1631 }
1632 
1633