1 /* 2 * linux/fs/nfs/write.c 3 * 4 * Write file data over NFS. 5 * 6 * Copyright (C) 1996, 1997, Olaf Kirch <okir@monad.swb.de> 7 */ 8 9 #include <linux/types.h> 10 #include <linux/slab.h> 11 #include <linux/mm.h> 12 #include <linux/pagemap.h> 13 #include <linux/file.h> 14 #include <linux/writeback.h> 15 #include <linux/swap.h> 16 17 #include <linux/sunrpc/clnt.h> 18 #include <linux/nfs_fs.h> 19 #include <linux/nfs_mount.h> 20 #include <linux/nfs_page.h> 21 #include <linux/backing-dev.h> 22 23 #include <asm/uaccess.h> 24 #include <linux/smp_lock.h> 25 26 #include "delegation.h" 27 #include "internal.h" 28 #include "iostat.h" 29 30 #define NFSDBG_FACILITY NFSDBG_PAGECACHE 31 32 #define MIN_POOL_WRITE (32) 33 #define MIN_POOL_COMMIT (4) 34 35 /* 36 * Local function declarations 37 */ 38 static struct nfs_page * nfs_update_request(struct nfs_open_context*, 39 struct page *, 40 unsigned int, unsigned int); 41 static void nfs_mark_request_dirty(struct nfs_page *req); 42 static long nfs_flush_mapping(struct address_space *mapping, struct writeback_control *wbc, int how); 43 static const struct rpc_call_ops nfs_write_partial_ops; 44 static const struct rpc_call_ops nfs_write_full_ops; 45 static const struct rpc_call_ops nfs_commit_ops; 46 47 static struct kmem_cache *nfs_wdata_cachep; 48 static mempool_t *nfs_wdata_mempool; 49 static mempool_t *nfs_commit_mempool; 50 51 struct nfs_write_data *nfs_commit_alloc(void) 52 { 53 struct nfs_write_data *p = mempool_alloc(nfs_commit_mempool, GFP_NOFS); 54 55 if (p) { 56 memset(p, 0, sizeof(*p)); 57 INIT_LIST_HEAD(&p->pages); 58 } 59 return p; 60 } 61 62 void nfs_commit_rcu_free(struct rcu_head *head) 63 { 64 struct nfs_write_data *p = container_of(head, struct nfs_write_data, task.u.tk_rcu); 65 if (p && (p->pagevec != &p->page_array[0])) 66 kfree(p->pagevec); 67 mempool_free(p, nfs_commit_mempool); 68 } 69 70 void nfs_commit_free(struct nfs_write_data *wdata) 71 { 72 call_rcu_bh(&wdata->task.u.tk_rcu, nfs_commit_rcu_free); 73 } 74 75 struct nfs_write_data *nfs_writedata_alloc(size_t len) 76 { 77 unsigned int pagecount = (len + PAGE_SIZE - 1) >> PAGE_SHIFT; 78 struct nfs_write_data *p = mempool_alloc(nfs_wdata_mempool, GFP_NOFS); 79 80 if (p) { 81 memset(p, 0, sizeof(*p)); 82 INIT_LIST_HEAD(&p->pages); 83 p->npages = pagecount; 84 if (pagecount <= ARRAY_SIZE(p->page_array)) 85 p->pagevec = p->page_array; 86 else { 87 p->pagevec = kcalloc(pagecount, sizeof(struct page *), GFP_NOFS); 88 if (!p->pagevec) { 89 mempool_free(p, nfs_wdata_mempool); 90 p = NULL; 91 } 92 } 93 } 94 return p; 95 } 96 97 static void nfs_writedata_rcu_free(struct rcu_head *head) 98 { 99 struct nfs_write_data *p = container_of(head, struct nfs_write_data, task.u.tk_rcu); 100 if (p && (p->pagevec != &p->page_array[0])) 101 kfree(p->pagevec); 102 mempool_free(p, nfs_wdata_mempool); 103 } 104 105 static void nfs_writedata_free(struct nfs_write_data *wdata) 106 { 107 call_rcu_bh(&wdata->task.u.tk_rcu, nfs_writedata_rcu_free); 108 } 109 110 void nfs_writedata_release(void *wdata) 111 { 112 nfs_writedata_free(wdata); 113 } 114 115 static struct nfs_page *nfs_page_find_request_locked(struct page *page) 116 { 117 struct nfs_page *req = NULL; 118 119 if (PagePrivate(page)) { 120 req = (struct nfs_page *)page_private(page); 121 if (req != NULL) 122 atomic_inc(&req->wb_count); 123 } 124 return req; 125 } 126 127 static struct nfs_page *nfs_page_find_request(struct page *page) 128 { 129 struct nfs_page *req = NULL; 130 spinlock_t *req_lock = &NFS_I(page->mapping->host)->req_lock; 131 132 spin_lock(req_lock); 133 req = nfs_page_find_request_locked(page); 134 spin_unlock(req_lock); 135 return req; 136 } 137 138 /* Adjust the file length if we're writing beyond the end */ 139 static void nfs_grow_file(struct page *page, unsigned int offset, unsigned int count) 140 { 141 struct inode *inode = page->mapping->host; 142 loff_t end, i_size = i_size_read(inode); 143 unsigned long end_index = (i_size - 1) >> PAGE_CACHE_SHIFT; 144 145 if (i_size > 0 && page->index < end_index) 146 return; 147 end = ((loff_t)page->index << PAGE_CACHE_SHIFT) + ((loff_t)offset+count); 148 if (i_size >= end) 149 return; 150 nfs_inc_stats(inode, NFSIOS_EXTENDWRITE); 151 i_size_write(inode, end); 152 } 153 154 /* A writeback failed: mark the page as bad, and invalidate the page cache */ 155 static void nfs_set_pageerror(struct page *page) 156 { 157 SetPageError(page); 158 nfs_zap_mapping(page->mapping->host, page->mapping); 159 } 160 161 /* We can set the PG_uptodate flag if we see that a write request 162 * covers the full page. 163 */ 164 static void nfs_mark_uptodate(struct page *page, unsigned int base, unsigned int count) 165 { 166 if (PageUptodate(page)) 167 return; 168 if (base != 0) 169 return; 170 if (count != nfs_page_length(page)) 171 return; 172 if (count != PAGE_CACHE_SIZE) 173 memclear_highpage_flush(page, count, PAGE_CACHE_SIZE - count); 174 SetPageUptodate(page); 175 } 176 177 static int nfs_writepage_setup(struct nfs_open_context *ctx, struct page *page, 178 unsigned int offset, unsigned int count) 179 { 180 struct nfs_page *req; 181 int ret; 182 183 for (;;) { 184 req = nfs_update_request(ctx, page, offset, count); 185 if (!IS_ERR(req)) 186 break; 187 ret = PTR_ERR(req); 188 if (ret != -EBUSY) 189 return ret; 190 ret = nfs_wb_page(page->mapping->host, page); 191 if (ret != 0) 192 return ret; 193 } 194 /* Update file length */ 195 nfs_grow_file(page, offset, count); 196 /* Set the PG_uptodate flag? */ 197 nfs_mark_uptodate(page, offset, count); 198 nfs_unlock_request(req); 199 return 0; 200 } 201 202 static int wb_priority(struct writeback_control *wbc) 203 { 204 if (wbc->for_reclaim) 205 return FLUSH_HIGHPRI; 206 if (wbc->for_kupdate) 207 return FLUSH_LOWPRI; 208 return 0; 209 } 210 211 /* 212 * NFS congestion control 213 */ 214 215 int nfs_congestion_kb; 216 217 #define NFS_CONGESTION_ON_THRESH (nfs_congestion_kb >> (PAGE_SHIFT-10)) 218 #define NFS_CONGESTION_OFF_THRESH \ 219 (NFS_CONGESTION_ON_THRESH - (NFS_CONGESTION_ON_THRESH >> 2)) 220 221 static void nfs_set_page_writeback(struct page *page) 222 { 223 if (!test_set_page_writeback(page)) { 224 struct inode *inode = page->mapping->host; 225 struct nfs_server *nfss = NFS_SERVER(inode); 226 227 if (atomic_inc_return(&nfss->writeback) > 228 NFS_CONGESTION_ON_THRESH) 229 set_bdi_congested(&nfss->backing_dev_info, WRITE); 230 } 231 } 232 233 static void nfs_end_page_writeback(struct page *page) 234 { 235 struct inode *inode = page->mapping->host; 236 struct nfs_server *nfss = NFS_SERVER(inode); 237 238 end_page_writeback(page); 239 if (atomic_dec_return(&nfss->writeback) < NFS_CONGESTION_OFF_THRESH) { 240 clear_bdi_congested(&nfss->backing_dev_info, WRITE); 241 congestion_end(WRITE); 242 } 243 } 244 245 /* 246 * Find an associated nfs write request, and prepare to flush it out 247 * Returns 1 if there was no write request, or if the request was 248 * already tagged by nfs_set_page_dirty.Returns 0 if the request 249 * was not tagged. 250 * May also return an error if the user signalled nfs_wait_on_request(). 251 */ 252 static int nfs_page_mark_flush(struct page *page) 253 { 254 struct nfs_page *req; 255 spinlock_t *req_lock = &NFS_I(page->mapping->host)->req_lock; 256 int ret; 257 258 spin_lock(req_lock); 259 for(;;) { 260 req = nfs_page_find_request_locked(page); 261 if (req == NULL) { 262 spin_unlock(req_lock); 263 return 1; 264 } 265 if (nfs_lock_request_dontget(req)) 266 break; 267 /* Note: If we hold the page lock, as is the case in nfs_writepage, 268 * then the call to nfs_lock_request_dontget() will always 269 * succeed provided that someone hasn't already marked the 270 * request as dirty (in which case we don't care). 271 */ 272 spin_unlock(req_lock); 273 ret = nfs_wait_on_request(req); 274 nfs_release_request(req); 275 if (ret != 0) 276 return ret; 277 spin_lock(req_lock); 278 } 279 spin_unlock(req_lock); 280 if (test_and_set_bit(PG_FLUSHING, &req->wb_flags) == 0) { 281 nfs_mark_request_dirty(req); 282 nfs_set_page_writeback(page); 283 } 284 ret = test_bit(PG_NEED_FLUSH, &req->wb_flags); 285 nfs_unlock_request(req); 286 return ret; 287 } 288 289 /* 290 * Write an mmapped page to the server. 291 */ 292 static int nfs_writepage_locked(struct page *page, struct writeback_control *wbc) 293 { 294 struct nfs_open_context *ctx; 295 struct inode *inode = page->mapping->host; 296 unsigned offset; 297 int err; 298 299 nfs_inc_stats(inode, NFSIOS_VFSWRITEPAGE); 300 nfs_add_stats(inode, NFSIOS_WRITEPAGES, 1); 301 302 err = nfs_page_mark_flush(page); 303 if (err <= 0) 304 goto out; 305 err = 0; 306 offset = nfs_page_length(page); 307 if (!offset) 308 goto out; 309 310 ctx = nfs_find_open_context(inode, NULL, FMODE_WRITE); 311 if (ctx == NULL) { 312 err = -EBADF; 313 goto out; 314 } 315 err = nfs_writepage_setup(ctx, page, 0, offset); 316 put_nfs_open_context(ctx); 317 if (err != 0) 318 goto out; 319 err = nfs_page_mark_flush(page); 320 if (err > 0) 321 err = 0; 322 out: 323 if (!wbc->for_writepages) 324 nfs_flush_mapping(page->mapping, wbc, FLUSH_STABLE|wb_priority(wbc)); 325 return err; 326 } 327 328 int nfs_writepage(struct page *page, struct writeback_control *wbc) 329 { 330 int err; 331 332 err = nfs_writepage_locked(page, wbc); 333 unlock_page(page); 334 return err; 335 } 336 337 int nfs_writepages(struct address_space *mapping, struct writeback_control *wbc) 338 { 339 struct inode *inode = mapping->host; 340 int err; 341 342 nfs_inc_stats(inode, NFSIOS_VFSWRITEPAGES); 343 344 err = generic_writepages(mapping, wbc); 345 if (err) 346 return err; 347 err = nfs_flush_mapping(mapping, wbc, wb_priority(wbc)); 348 if (err < 0) 349 goto out; 350 nfs_add_stats(inode, NFSIOS_WRITEPAGES, err); 351 err = 0; 352 out: 353 return err; 354 } 355 356 /* 357 * Insert a write request into an inode 358 */ 359 static int nfs_inode_add_request(struct inode *inode, struct nfs_page *req) 360 { 361 struct nfs_inode *nfsi = NFS_I(inode); 362 int error; 363 364 error = radix_tree_insert(&nfsi->nfs_page_tree, req->wb_index, req); 365 BUG_ON(error == -EEXIST); 366 if (error) 367 return error; 368 if (!nfsi->npages) { 369 igrab(inode); 370 nfs_begin_data_update(inode); 371 if (nfs_have_delegation(inode, FMODE_WRITE)) 372 nfsi->change_attr++; 373 } 374 SetPagePrivate(req->wb_page); 375 set_page_private(req->wb_page, (unsigned long)req); 376 nfsi->npages++; 377 atomic_inc(&req->wb_count); 378 return 0; 379 } 380 381 /* 382 * Remove a write request from an inode 383 */ 384 static void nfs_inode_remove_request(struct nfs_page *req) 385 { 386 struct inode *inode = req->wb_context->dentry->d_inode; 387 struct nfs_inode *nfsi = NFS_I(inode); 388 389 BUG_ON (!NFS_WBACK_BUSY(req)); 390 391 spin_lock(&nfsi->req_lock); 392 set_page_private(req->wb_page, 0); 393 ClearPagePrivate(req->wb_page); 394 radix_tree_delete(&nfsi->nfs_page_tree, req->wb_index); 395 nfsi->npages--; 396 if (!nfsi->npages) { 397 spin_unlock(&nfsi->req_lock); 398 nfs_end_data_update(inode); 399 iput(inode); 400 } else 401 spin_unlock(&nfsi->req_lock); 402 nfs_clear_request(req); 403 nfs_release_request(req); 404 } 405 406 /* 407 * Add a request to the inode's dirty list. 408 */ 409 static void 410 nfs_mark_request_dirty(struct nfs_page *req) 411 { 412 struct inode *inode = req->wb_context->dentry->d_inode; 413 struct nfs_inode *nfsi = NFS_I(inode); 414 415 spin_lock(&nfsi->req_lock); 416 radix_tree_tag_set(&nfsi->nfs_page_tree, 417 req->wb_index, NFS_PAGE_TAG_DIRTY); 418 nfs_list_add_request(req, &nfsi->dirty); 419 nfsi->ndirty++; 420 spin_unlock(&nfsi->req_lock); 421 __mark_inode_dirty(inode, I_DIRTY_PAGES); 422 } 423 424 static void 425 nfs_redirty_request(struct nfs_page *req) 426 { 427 clear_bit(PG_FLUSHING, &req->wb_flags); 428 __set_page_dirty_nobuffers(req->wb_page); 429 } 430 431 /* 432 * Check if a request is dirty 433 */ 434 static inline int 435 nfs_dirty_request(struct nfs_page *req) 436 { 437 return test_bit(PG_FLUSHING, &req->wb_flags) == 0; 438 } 439 440 #if defined(CONFIG_NFS_V3) || defined(CONFIG_NFS_V4) 441 /* 442 * Add a request to the inode's commit list. 443 */ 444 static void 445 nfs_mark_request_commit(struct nfs_page *req) 446 { 447 struct inode *inode = req->wb_context->dentry->d_inode; 448 struct nfs_inode *nfsi = NFS_I(inode); 449 450 spin_lock(&nfsi->req_lock); 451 nfs_list_add_request(req, &nfsi->commit); 452 nfsi->ncommit++; 453 spin_unlock(&nfsi->req_lock); 454 inc_zone_page_state(req->wb_page, NR_UNSTABLE_NFS); 455 __mark_inode_dirty(inode, I_DIRTY_DATASYNC); 456 } 457 #endif 458 459 /* 460 * Wait for a request to complete. 461 * 462 * Interruptible by signals only if mounted with intr flag. 463 */ 464 static int nfs_wait_on_requests_locked(struct inode *inode, unsigned long idx_start, unsigned int npages) 465 { 466 struct nfs_inode *nfsi = NFS_I(inode); 467 struct nfs_page *req; 468 unsigned long idx_end, next; 469 unsigned int res = 0; 470 int error; 471 472 if (npages == 0) 473 idx_end = ~0; 474 else 475 idx_end = idx_start + npages - 1; 476 477 next = idx_start; 478 while (radix_tree_gang_lookup_tag(&nfsi->nfs_page_tree, (void **)&req, next, 1, NFS_PAGE_TAG_WRITEBACK)) { 479 if (req->wb_index > idx_end) 480 break; 481 482 next = req->wb_index + 1; 483 BUG_ON(!NFS_WBACK_BUSY(req)); 484 485 atomic_inc(&req->wb_count); 486 spin_unlock(&nfsi->req_lock); 487 error = nfs_wait_on_request(req); 488 nfs_release_request(req); 489 spin_lock(&nfsi->req_lock); 490 if (error < 0) 491 return error; 492 res++; 493 } 494 return res; 495 } 496 497 static void nfs_cancel_dirty_list(struct list_head *head) 498 { 499 struct nfs_page *req; 500 while(!list_empty(head)) { 501 req = nfs_list_entry(head->next); 502 nfs_list_remove_request(req); 503 nfs_inode_remove_request(req); 504 nfs_clear_page_writeback(req); 505 } 506 } 507 508 static void nfs_cancel_commit_list(struct list_head *head) 509 { 510 struct nfs_page *req; 511 512 while(!list_empty(head)) { 513 req = nfs_list_entry(head->next); 514 dec_zone_page_state(req->wb_page, NR_UNSTABLE_NFS); 515 nfs_list_remove_request(req); 516 nfs_inode_remove_request(req); 517 nfs_unlock_request(req); 518 } 519 } 520 521 #if defined(CONFIG_NFS_V3) || defined(CONFIG_NFS_V4) 522 /* 523 * nfs_scan_commit - Scan an inode for commit requests 524 * @inode: NFS inode to scan 525 * @dst: destination list 526 * @idx_start: lower bound of page->index to scan. 527 * @npages: idx_start + npages sets the upper bound to scan. 528 * 529 * Moves requests from the inode's 'commit' request list. 530 * The requests are *not* checked to ensure that they form a contiguous set. 531 */ 532 static int 533 nfs_scan_commit(struct inode *inode, struct list_head *dst, unsigned long idx_start, unsigned int npages) 534 { 535 struct nfs_inode *nfsi = NFS_I(inode); 536 int res = 0; 537 538 if (nfsi->ncommit != 0) { 539 res = nfs_scan_list(nfsi, &nfsi->commit, dst, idx_start, npages); 540 nfsi->ncommit -= res; 541 if ((nfsi->ncommit == 0) != list_empty(&nfsi->commit)) 542 printk(KERN_ERR "NFS: desynchronized value of nfs_i.ncommit.\n"); 543 } 544 return res; 545 } 546 #else 547 static inline int nfs_scan_commit(struct inode *inode, struct list_head *dst, unsigned long idx_start, unsigned int npages) 548 { 549 return 0; 550 } 551 #endif 552 553 static int nfs_wait_on_write_congestion(struct address_space *mapping) 554 { 555 struct inode *inode = mapping->host; 556 struct backing_dev_info *bdi = mapping->backing_dev_info; 557 int ret = 0; 558 559 might_sleep(); 560 561 if (!bdi_write_congested(bdi)) 562 return 0; 563 564 nfs_inc_stats(inode, NFSIOS_CONGESTIONWAIT); 565 566 do { 567 struct rpc_clnt *clnt = NFS_CLIENT(inode); 568 sigset_t oldset; 569 570 rpc_clnt_sigmask(clnt, &oldset); 571 ret = congestion_wait_interruptible(WRITE, HZ/10); 572 rpc_clnt_sigunmask(clnt, &oldset); 573 if (ret == -ERESTARTSYS) 574 break; 575 ret = 0; 576 } while (bdi_write_congested(bdi)); 577 578 return ret; 579 } 580 581 /* 582 * Try to update any existing write request, or create one if there is none. 583 * In order to match, the request's credentials must match those of 584 * the calling process. 585 * 586 * Note: Should always be called with the Page Lock held! 587 */ 588 static struct nfs_page * nfs_update_request(struct nfs_open_context* ctx, 589 struct page *page, unsigned int offset, unsigned int bytes) 590 { 591 struct address_space *mapping = page->mapping; 592 struct inode *inode = mapping->host; 593 struct nfs_inode *nfsi = NFS_I(inode); 594 struct nfs_page *req, *new = NULL; 595 unsigned long rqend, end; 596 597 end = offset + bytes; 598 599 if (nfs_wait_on_write_congestion(mapping)) 600 return ERR_PTR(-ERESTARTSYS); 601 for (;;) { 602 /* Loop over all inode entries and see if we find 603 * A request for the page we wish to update 604 */ 605 spin_lock(&nfsi->req_lock); 606 req = nfs_page_find_request_locked(page); 607 if (req) { 608 if (!nfs_lock_request_dontget(req)) { 609 int error; 610 611 spin_unlock(&nfsi->req_lock); 612 error = nfs_wait_on_request(req); 613 nfs_release_request(req); 614 if (error < 0) { 615 if (new) 616 nfs_release_request(new); 617 return ERR_PTR(error); 618 } 619 continue; 620 } 621 spin_unlock(&nfsi->req_lock); 622 if (new) 623 nfs_release_request(new); 624 break; 625 } 626 627 if (new) { 628 int error; 629 nfs_lock_request_dontget(new); 630 error = nfs_inode_add_request(inode, new); 631 if (error) { 632 spin_unlock(&nfsi->req_lock); 633 nfs_unlock_request(new); 634 return ERR_PTR(error); 635 } 636 spin_unlock(&nfsi->req_lock); 637 return new; 638 } 639 spin_unlock(&nfsi->req_lock); 640 641 new = nfs_create_request(ctx, inode, page, offset, bytes); 642 if (IS_ERR(new)) 643 return new; 644 } 645 646 /* We have a request for our page. 647 * If the creds don't match, or the 648 * page addresses don't match, 649 * tell the caller to wait on the conflicting 650 * request. 651 */ 652 rqend = req->wb_offset + req->wb_bytes; 653 if (req->wb_context != ctx 654 || req->wb_page != page 655 || !nfs_dirty_request(req) 656 || offset > rqend || end < req->wb_offset) { 657 nfs_unlock_request(req); 658 return ERR_PTR(-EBUSY); 659 } 660 661 /* Okay, the request matches. Update the region */ 662 if (offset < req->wb_offset) { 663 req->wb_offset = offset; 664 req->wb_pgbase = offset; 665 req->wb_bytes = rqend - req->wb_offset; 666 } 667 668 if (end > rqend) 669 req->wb_bytes = end - req->wb_offset; 670 671 return req; 672 } 673 674 int nfs_flush_incompatible(struct file *file, struct page *page) 675 { 676 struct nfs_open_context *ctx = (struct nfs_open_context *)file->private_data; 677 struct nfs_page *req; 678 int do_flush, status; 679 /* 680 * Look for a request corresponding to this page. If there 681 * is one, and it belongs to another file, we flush it out 682 * before we try to copy anything into the page. Do this 683 * due to the lack of an ACCESS-type call in NFSv2. 684 * Also do the same if we find a request from an existing 685 * dropped page. 686 */ 687 do { 688 req = nfs_page_find_request(page); 689 if (req == NULL) 690 return 0; 691 do_flush = req->wb_page != page || req->wb_context != ctx 692 || !nfs_dirty_request(req); 693 nfs_release_request(req); 694 if (!do_flush) 695 return 0; 696 status = nfs_wb_page(page->mapping->host, page); 697 } while (status == 0); 698 return status; 699 } 700 701 /* 702 * Update and possibly write a cached page of an NFS file. 703 * 704 * XXX: Keep an eye on generic_file_read to make sure it doesn't do bad 705 * things with a page scheduled for an RPC call (e.g. invalidate it). 706 */ 707 int nfs_updatepage(struct file *file, struct page *page, 708 unsigned int offset, unsigned int count) 709 { 710 struct nfs_open_context *ctx = (struct nfs_open_context *)file->private_data; 711 struct inode *inode = page->mapping->host; 712 int status = 0; 713 714 nfs_inc_stats(inode, NFSIOS_VFSUPDATEPAGE); 715 716 dprintk("NFS: nfs_updatepage(%s/%s %d@%Ld)\n", 717 file->f_path.dentry->d_parent->d_name.name, 718 file->f_path.dentry->d_name.name, count, 719 (long long)(page_offset(page) +offset)); 720 721 /* If we're not using byte range locks, and we know the page 722 * is entirely in cache, it may be more efficient to avoid 723 * fragmenting write requests. 724 */ 725 if (PageUptodate(page) && inode->i_flock == NULL && !(file->f_mode & O_SYNC)) { 726 count = max(count + offset, nfs_page_length(page)); 727 offset = 0; 728 } 729 730 status = nfs_writepage_setup(ctx, page, offset, count); 731 __set_page_dirty_nobuffers(page); 732 733 dprintk("NFS: nfs_updatepage returns %d (isize %Ld)\n", 734 status, (long long)i_size_read(inode)); 735 if (status < 0) 736 nfs_set_pageerror(page); 737 return status; 738 } 739 740 static void nfs_writepage_release(struct nfs_page *req) 741 { 742 nfs_end_page_writeback(req->wb_page); 743 744 #if defined(CONFIG_NFS_V3) || defined(CONFIG_NFS_V4) 745 if (!PageError(req->wb_page)) { 746 if (NFS_NEED_RESCHED(req)) { 747 nfs_redirty_request(req); 748 goto out; 749 } else if (NFS_NEED_COMMIT(req)) { 750 nfs_mark_request_commit(req); 751 goto out; 752 } 753 } 754 nfs_inode_remove_request(req); 755 756 out: 757 nfs_clear_commit(req); 758 nfs_clear_reschedule(req); 759 #else 760 nfs_inode_remove_request(req); 761 #endif 762 nfs_clear_page_writeback(req); 763 } 764 765 static inline int flush_task_priority(int how) 766 { 767 switch (how & (FLUSH_HIGHPRI|FLUSH_LOWPRI)) { 768 case FLUSH_HIGHPRI: 769 return RPC_PRIORITY_HIGH; 770 case FLUSH_LOWPRI: 771 return RPC_PRIORITY_LOW; 772 } 773 return RPC_PRIORITY_NORMAL; 774 } 775 776 /* 777 * Set up the argument/result storage required for the RPC call. 778 */ 779 static void nfs_write_rpcsetup(struct nfs_page *req, 780 struct nfs_write_data *data, 781 const struct rpc_call_ops *call_ops, 782 unsigned int count, unsigned int offset, 783 int how) 784 { 785 struct inode *inode; 786 int flags; 787 788 /* Set up the RPC argument and reply structs 789 * NB: take care not to mess about with data->commit et al. */ 790 791 data->req = req; 792 data->inode = inode = req->wb_context->dentry->d_inode; 793 data->cred = req->wb_context->cred; 794 795 data->args.fh = NFS_FH(inode); 796 data->args.offset = req_offset(req) + offset; 797 data->args.pgbase = req->wb_pgbase + offset; 798 data->args.pages = data->pagevec; 799 data->args.count = count; 800 data->args.context = req->wb_context; 801 802 data->res.fattr = &data->fattr; 803 data->res.count = count; 804 data->res.verf = &data->verf; 805 nfs_fattr_init(&data->fattr); 806 807 /* Set up the initial task struct. */ 808 flags = (how & FLUSH_SYNC) ? 0 : RPC_TASK_ASYNC; 809 rpc_init_task(&data->task, NFS_CLIENT(inode), flags, call_ops, data); 810 NFS_PROTO(inode)->write_setup(data, how); 811 812 data->task.tk_priority = flush_task_priority(how); 813 data->task.tk_cookie = (unsigned long)inode; 814 815 dprintk("NFS: %5u initiated write call " 816 "(req %s/%Ld, %u bytes @ offset %Lu)\n", 817 data->task.tk_pid, 818 inode->i_sb->s_id, 819 (long long)NFS_FILEID(inode), 820 count, 821 (unsigned long long)data->args.offset); 822 } 823 824 static void nfs_execute_write(struct nfs_write_data *data) 825 { 826 struct rpc_clnt *clnt = NFS_CLIENT(data->inode); 827 sigset_t oldset; 828 829 rpc_clnt_sigmask(clnt, &oldset); 830 rpc_execute(&data->task); 831 rpc_clnt_sigunmask(clnt, &oldset); 832 } 833 834 /* 835 * Generate multiple small requests to write out a single 836 * contiguous dirty area on one page. 837 */ 838 static int nfs_flush_multi(struct inode *inode, struct list_head *head, int how) 839 { 840 struct nfs_page *req = nfs_list_entry(head->next); 841 struct page *page = req->wb_page; 842 struct nfs_write_data *data; 843 size_t wsize = NFS_SERVER(inode)->wsize, nbytes; 844 unsigned int offset; 845 int requests = 0; 846 LIST_HEAD(list); 847 848 nfs_list_remove_request(req); 849 850 nbytes = req->wb_bytes; 851 do { 852 size_t len = min(nbytes, wsize); 853 854 data = nfs_writedata_alloc(len); 855 if (!data) 856 goto out_bad; 857 list_add(&data->pages, &list); 858 requests++; 859 nbytes -= len; 860 } while (nbytes != 0); 861 atomic_set(&req->wb_complete, requests); 862 863 ClearPageError(page); 864 offset = 0; 865 nbytes = req->wb_bytes; 866 do { 867 data = list_entry(list.next, struct nfs_write_data, pages); 868 list_del_init(&data->pages); 869 870 data->pagevec[0] = page; 871 872 if (nbytes > wsize) { 873 nfs_write_rpcsetup(req, data, &nfs_write_partial_ops, 874 wsize, offset, how); 875 offset += wsize; 876 nbytes -= wsize; 877 } else { 878 nfs_write_rpcsetup(req, data, &nfs_write_partial_ops, 879 nbytes, offset, how); 880 nbytes = 0; 881 } 882 nfs_execute_write(data); 883 } while (nbytes != 0); 884 885 return 0; 886 887 out_bad: 888 while (!list_empty(&list)) { 889 data = list_entry(list.next, struct nfs_write_data, pages); 890 list_del(&data->pages); 891 nfs_writedata_release(data); 892 } 893 nfs_redirty_request(req); 894 nfs_clear_page_writeback(req); 895 return -ENOMEM; 896 } 897 898 /* 899 * Create an RPC task for the given write request and kick it. 900 * The page must have been locked by the caller. 901 * 902 * It may happen that the page we're passed is not marked dirty. 903 * This is the case if nfs_updatepage detects a conflicting request 904 * that has been written but not committed. 905 */ 906 static int nfs_flush_one(struct inode *inode, struct list_head *head, int how) 907 { 908 struct nfs_page *req; 909 struct page **pages; 910 struct nfs_write_data *data; 911 unsigned int count; 912 913 data = nfs_writedata_alloc(NFS_SERVER(inode)->wsize); 914 if (!data) 915 goto out_bad; 916 917 pages = data->pagevec; 918 count = 0; 919 while (!list_empty(head)) { 920 req = nfs_list_entry(head->next); 921 nfs_list_remove_request(req); 922 nfs_list_add_request(req, &data->pages); 923 ClearPageError(req->wb_page); 924 *pages++ = req->wb_page; 925 count += req->wb_bytes; 926 } 927 req = nfs_list_entry(data->pages.next); 928 929 /* Set up the argument struct */ 930 nfs_write_rpcsetup(req, data, &nfs_write_full_ops, count, 0, how); 931 932 nfs_execute_write(data); 933 return 0; 934 out_bad: 935 while (!list_empty(head)) { 936 struct nfs_page *req = nfs_list_entry(head->next); 937 nfs_list_remove_request(req); 938 nfs_redirty_request(req); 939 nfs_clear_page_writeback(req); 940 } 941 return -ENOMEM; 942 } 943 944 static int nfs_flush_list(struct inode *inode, struct list_head *head, int npages, int how) 945 { 946 LIST_HEAD(one_request); 947 int (*flush_one)(struct inode *, struct list_head *, int); 948 struct nfs_page *req; 949 int wpages = NFS_SERVER(inode)->wpages; 950 int wsize = NFS_SERVER(inode)->wsize; 951 int error; 952 953 flush_one = nfs_flush_one; 954 if (wsize < PAGE_CACHE_SIZE) 955 flush_one = nfs_flush_multi; 956 /* For single writes, FLUSH_STABLE is more efficient */ 957 if (npages <= wpages && npages == NFS_I(inode)->npages 958 && nfs_list_entry(head->next)->wb_bytes <= wsize) 959 how |= FLUSH_STABLE; 960 961 do { 962 nfs_coalesce_requests(head, &one_request, wpages); 963 req = nfs_list_entry(one_request.next); 964 error = flush_one(inode, &one_request, how); 965 if (error < 0) 966 goto out_err; 967 } while (!list_empty(head)); 968 return 0; 969 out_err: 970 while (!list_empty(head)) { 971 req = nfs_list_entry(head->next); 972 nfs_list_remove_request(req); 973 nfs_redirty_request(req); 974 nfs_clear_page_writeback(req); 975 } 976 return error; 977 } 978 979 /* 980 * Handle a write reply that flushed part of a page. 981 */ 982 static void nfs_writeback_done_partial(struct rpc_task *task, void *calldata) 983 { 984 struct nfs_write_data *data = calldata; 985 struct nfs_page *req = data->req; 986 struct page *page = req->wb_page; 987 988 dprintk("NFS: write (%s/%Ld %d@%Ld)", 989 req->wb_context->dentry->d_inode->i_sb->s_id, 990 (long long)NFS_FILEID(req->wb_context->dentry->d_inode), 991 req->wb_bytes, 992 (long long)req_offset(req)); 993 994 if (nfs_writeback_done(task, data) != 0) 995 return; 996 997 if (task->tk_status < 0) { 998 nfs_set_pageerror(page); 999 req->wb_context->error = task->tk_status; 1000 dprintk(", error = %d\n", task->tk_status); 1001 } else { 1002 #if defined(CONFIG_NFS_V3) || defined(CONFIG_NFS_V4) 1003 if (data->verf.committed < NFS_FILE_SYNC) { 1004 if (!NFS_NEED_COMMIT(req)) { 1005 nfs_defer_commit(req); 1006 memcpy(&req->wb_verf, &data->verf, sizeof(req->wb_verf)); 1007 dprintk(" defer commit\n"); 1008 } else if (memcmp(&req->wb_verf, &data->verf, sizeof(req->wb_verf))) { 1009 nfs_defer_reschedule(req); 1010 dprintk(" server reboot detected\n"); 1011 } 1012 } else 1013 #endif 1014 dprintk(" OK\n"); 1015 } 1016 1017 if (atomic_dec_and_test(&req->wb_complete)) 1018 nfs_writepage_release(req); 1019 } 1020 1021 static const struct rpc_call_ops nfs_write_partial_ops = { 1022 .rpc_call_done = nfs_writeback_done_partial, 1023 .rpc_release = nfs_writedata_release, 1024 }; 1025 1026 /* 1027 * Handle a write reply that flushes a whole page. 1028 * 1029 * FIXME: There is an inherent race with invalidate_inode_pages and 1030 * writebacks since the page->count is kept > 1 for as long 1031 * as the page has a write request pending. 1032 */ 1033 static void nfs_writeback_done_full(struct rpc_task *task, void *calldata) 1034 { 1035 struct nfs_write_data *data = calldata; 1036 struct nfs_page *req; 1037 struct page *page; 1038 1039 if (nfs_writeback_done(task, data) != 0) 1040 return; 1041 1042 /* Update attributes as result of writeback. */ 1043 while (!list_empty(&data->pages)) { 1044 req = nfs_list_entry(data->pages.next); 1045 nfs_list_remove_request(req); 1046 page = req->wb_page; 1047 1048 dprintk("NFS: write (%s/%Ld %d@%Ld)", 1049 req->wb_context->dentry->d_inode->i_sb->s_id, 1050 (long long)NFS_FILEID(req->wb_context->dentry->d_inode), 1051 req->wb_bytes, 1052 (long long)req_offset(req)); 1053 1054 if (task->tk_status < 0) { 1055 nfs_set_pageerror(page); 1056 req->wb_context->error = task->tk_status; 1057 nfs_end_page_writeback(page); 1058 nfs_inode_remove_request(req); 1059 dprintk(", error = %d\n", task->tk_status); 1060 goto next; 1061 } 1062 nfs_end_page_writeback(page); 1063 1064 #if defined(CONFIG_NFS_V3) || defined(CONFIG_NFS_V4) 1065 if (data->args.stable != NFS_UNSTABLE || data->verf.committed == NFS_FILE_SYNC) { 1066 nfs_inode_remove_request(req); 1067 dprintk(" OK\n"); 1068 goto next; 1069 } 1070 memcpy(&req->wb_verf, &data->verf, sizeof(req->wb_verf)); 1071 nfs_mark_request_commit(req); 1072 dprintk(" marked for commit\n"); 1073 #else 1074 nfs_inode_remove_request(req); 1075 #endif 1076 next: 1077 nfs_clear_page_writeback(req); 1078 } 1079 } 1080 1081 static const struct rpc_call_ops nfs_write_full_ops = { 1082 .rpc_call_done = nfs_writeback_done_full, 1083 .rpc_release = nfs_writedata_release, 1084 }; 1085 1086 1087 /* 1088 * This function is called when the WRITE call is complete. 1089 */ 1090 int nfs_writeback_done(struct rpc_task *task, struct nfs_write_data *data) 1091 { 1092 struct nfs_writeargs *argp = &data->args; 1093 struct nfs_writeres *resp = &data->res; 1094 int status; 1095 1096 dprintk("NFS: %5u nfs_writeback_done (status %d)\n", 1097 task->tk_pid, task->tk_status); 1098 1099 /* 1100 * ->write_done will attempt to use post-op attributes to detect 1101 * conflicting writes by other clients. A strict interpretation 1102 * of close-to-open would allow us to continue caching even if 1103 * another writer had changed the file, but some applications 1104 * depend on tighter cache coherency when writing. 1105 */ 1106 status = NFS_PROTO(data->inode)->write_done(task, data); 1107 if (status != 0) 1108 return status; 1109 nfs_add_stats(data->inode, NFSIOS_SERVERWRITTENBYTES, resp->count); 1110 1111 #if defined(CONFIG_NFS_V3) || defined(CONFIG_NFS_V4) 1112 if (resp->verf->committed < argp->stable && task->tk_status >= 0) { 1113 /* We tried a write call, but the server did not 1114 * commit data to stable storage even though we 1115 * requested it. 1116 * Note: There is a known bug in Tru64 < 5.0 in which 1117 * the server reports NFS_DATA_SYNC, but performs 1118 * NFS_FILE_SYNC. We therefore implement this checking 1119 * as a dprintk() in order to avoid filling syslog. 1120 */ 1121 static unsigned long complain; 1122 1123 if (time_before(complain, jiffies)) { 1124 dprintk("NFS: faulty NFS server %s:" 1125 " (committed = %d) != (stable = %d)\n", 1126 NFS_SERVER(data->inode)->nfs_client->cl_hostname, 1127 resp->verf->committed, argp->stable); 1128 complain = jiffies + 300 * HZ; 1129 } 1130 } 1131 #endif 1132 /* Is this a short write? */ 1133 if (task->tk_status >= 0 && resp->count < argp->count) { 1134 static unsigned long complain; 1135 1136 nfs_inc_stats(data->inode, NFSIOS_SHORTWRITE); 1137 1138 /* Has the server at least made some progress? */ 1139 if (resp->count != 0) { 1140 /* Was this an NFSv2 write or an NFSv3 stable write? */ 1141 if (resp->verf->committed != NFS_UNSTABLE) { 1142 /* Resend from where the server left off */ 1143 argp->offset += resp->count; 1144 argp->pgbase += resp->count; 1145 argp->count -= resp->count; 1146 } else { 1147 /* Resend as a stable write in order to avoid 1148 * headaches in the case of a server crash. 1149 */ 1150 argp->stable = NFS_FILE_SYNC; 1151 } 1152 rpc_restart_call(task); 1153 return -EAGAIN; 1154 } 1155 if (time_before(complain, jiffies)) { 1156 printk(KERN_WARNING 1157 "NFS: Server wrote zero bytes, expected %u.\n", 1158 argp->count); 1159 complain = jiffies + 300 * HZ; 1160 } 1161 /* Can't do anything about it except throw an error. */ 1162 task->tk_status = -EIO; 1163 } 1164 return 0; 1165 } 1166 1167 1168 #if defined(CONFIG_NFS_V3) || defined(CONFIG_NFS_V4) 1169 void nfs_commit_release(void *wdata) 1170 { 1171 nfs_commit_free(wdata); 1172 } 1173 1174 /* 1175 * Set up the argument/result storage required for the RPC call. 1176 */ 1177 static void nfs_commit_rpcsetup(struct list_head *head, 1178 struct nfs_write_data *data, 1179 int how) 1180 { 1181 struct nfs_page *first; 1182 struct inode *inode; 1183 int flags; 1184 1185 /* Set up the RPC argument and reply structs 1186 * NB: take care not to mess about with data->commit et al. */ 1187 1188 list_splice_init(head, &data->pages); 1189 first = nfs_list_entry(data->pages.next); 1190 inode = first->wb_context->dentry->d_inode; 1191 1192 data->inode = inode; 1193 data->cred = first->wb_context->cred; 1194 1195 data->args.fh = NFS_FH(data->inode); 1196 /* Note: we always request a commit of the entire inode */ 1197 data->args.offset = 0; 1198 data->args.count = 0; 1199 data->res.count = 0; 1200 data->res.fattr = &data->fattr; 1201 data->res.verf = &data->verf; 1202 nfs_fattr_init(&data->fattr); 1203 1204 /* Set up the initial task struct. */ 1205 flags = (how & FLUSH_SYNC) ? 0 : RPC_TASK_ASYNC; 1206 rpc_init_task(&data->task, NFS_CLIENT(inode), flags, &nfs_commit_ops, data); 1207 NFS_PROTO(inode)->commit_setup(data, how); 1208 1209 data->task.tk_priority = flush_task_priority(how); 1210 data->task.tk_cookie = (unsigned long)inode; 1211 1212 dprintk("NFS: %5u initiated commit call\n", data->task.tk_pid); 1213 } 1214 1215 /* 1216 * Commit dirty pages 1217 */ 1218 static int 1219 nfs_commit_list(struct inode *inode, struct list_head *head, int how) 1220 { 1221 struct nfs_write_data *data; 1222 struct nfs_page *req; 1223 1224 data = nfs_commit_alloc(); 1225 1226 if (!data) 1227 goto out_bad; 1228 1229 /* Set up the argument struct */ 1230 nfs_commit_rpcsetup(head, data, how); 1231 1232 nfs_execute_write(data); 1233 return 0; 1234 out_bad: 1235 while (!list_empty(head)) { 1236 req = nfs_list_entry(head->next); 1237 nfs_list_remove_request(req); 1238 nfs_mark_request_commit(req); 1239 dec_zone_page_state(req->wb_page, NR_UNSTABLE_NFS); 1240 nfs_clear_page_writeback(req); 1241 } 1242 return -ENOMEM; 1243 } 1244 1245 /* 1246 * COMMIT call returned 1247 */ 1248 static void nfs_commit_done(struct rpc_task *task, void *calldata) 1249 { 1250 struct nfs_write_data *data = calldata; 1251 struct nfs_page *req; 1252 1253 dprintk("NFS: %5u nfs_commit_done (status %d)\n", 1254 task->tk_pid, task->tk_status); 1255 1256 /* Call the NFS version-specific code */ 1257 if (NFS_PROTO(data->inode)->commit_done(task, data) != 0) 1258 return; 1259 1260 while (!list_empty(&data->pages)) { 1261 req = nfs_list_entry(data->pages.next); 1262 nfs_list_remove_request(req); 1263 dec_zone_page_state(req->wb_page, NR_UNSTABLE_NFS); 1264 1265 dprintk("NFS: commit (%s/%Ld %d@%Ld)", 1266 req->wb_context->dentry->d_inode->i_sb->s_id, 1267 (long long)NFS_FILEID(req->wb_context->dentry->d_inode), 1268 req->wb_bytes, 1269 (long long)req_offset(req)); 1270 if (task->tk_status < 0) { 1271 req->wb_context->error = task->tk_status; 1272 nfs_inode_remove_request(req); 1273 dprintk(", error = %d\n", task->tk_status); 1274 goto next; 1275 } 1276 1277 /* Okay, COMMIT succeeded, apparently. Check the verifier 1278 * returned by the server against all stored verfs. */ 1279 if (!memcmp(req->wb_verf.verifier, data->verf.verifier, sizeof(data->verf.verifier))) { 1280 /* We have a match */ 1281 nfs_inode_remove_request(req); 1282 dprintk(" OK\n"); 1283 goto next; 1284 } 1285 /* We have a mismatch. Write the page again */ 1286 dprintk(" mismatch\n"); 1287 nfs_redirty_request(req); 1288 next: 1289 nfs_clear_page_writeback(req); 1290 } 1291 } 1292 1293 static const struct rpc_call_ops nfs_commit_ops = { 1294 .rpc_call_done = nfs_commit_done, 1295 .rpc_release = nfs_commit_release, 1296 }; 1297 #else 1298 static inline int nfs_commit_list(struct inode *inode, struct list_head *head, int how) 1299 { 1300 return 0; 1301 } 1302 #endif 1303 1304 static long nfs_flush_mapping(struct address_space *mapping, struct writeback_control *wbc, int how) 1305 { 1306 struct nfs_inode *nfsi = NFS_I(mapping->host); 1307 LIST_HEAD(head); 1308 long res; 1309 1310 spin_lock(&nfsi->req_lock); 1311 res = nfs_scan_dirty(mapping, wbc, &head); 1312 spin_unlock(&nfsi->req_lock); 1313 if (res) { 1314 int error = nfs_flush_list(mapping->host, &head, res, how); 1315 if (error < 0) 1316 return error; 1317 } 1318 return res; 1319 } 1320 1321 #if defined(CONFIG_NFS_V3) || defined(CONFIG_NFS_V4) 1322 int nfs_commit_inode(struct inode *inode, int how) 1323 { 1324 struct nfs_inode *nfsi = NFS_I(inode); 1325 LIST_HEAD(head); 1326 int res; 1327 1328 spin_lock(&nfsi->req_lock); 1329 res = nfs_scan_commit(inode, &head, 0, 0); 1330 spin_unlock(&nfsi->req_lock); 1331 if (res) { 1332 int error = nfs_commit_list(inode, &head, how); 1333 if (error < 0) 1334 return error; 1335 } 1336 return res; 1337 } 1338 #endif 1339 1340 long nfs_sync_mapping_wait(struct address_space *mapping, struct writeback_control *wbc, int how) 1341 { 1342 struct inode *inode = mapping->host; 1343 struct nfs_inode *nfsi = NFS_I(inode); 1344 unsigned long idx_start, idx_end; 1345 unsigned int npages = 0; 1346 LIST_HEAD(head); 1347 int nocommit = how & FLUSH_NOCOMMIT; 1348 long pages, ret; 1349 1350 /* FIXME */ 1351 if (wbc->range_cyclic) 1352 idx_start = 0; 1353 else { 1354 idx_start = wbc->range_start >> PAGE_CACHE_SHIFT; 1355 idx_end = wbc->range_end >> PAGE_CACHE_SHIFT; 1356 if (idx_end > idx_start) { 1357 unsigned long l_npages = 1 + idx_end - idx_start; 1358 npages = l_npages; 1359 if (sizeof(npages) != sizeof(l_npages) && 1360 (unsigned long)npages != l_npages) 1361 npages = 0; 1362 } 1363 } 1364 how &= ~FLUSH_NOCOMMIT; 1365 spin_lock(&nfsi->req_lock); 1366 do { 1367 wbc->pages_skipped = 0; 1368 ret = nfs_wait_on_requests_locked(inode, idx_start, npages); 1369 if (ret != 0) 1370 continue; 1371 pages = nfs_scan_dirty(mapping, wbc, &head); 1372 if (pages != 0) { 1373 spin_unlock(&nfsi->req_lock); 1374 if (how & FLUSH_INVALIDATE) { 1375 nfs_cancel_dirty_list(&head); 1376 ret = pages; 1377 } else 1378 ret = nfs_flush_list(inode, &head, pages, how); 1379 spin_lock(&nfsi->req_lock); 1380 continue; 1381 } 1382 if (wbc->pages_skipped != 0) 1383 continue; 1384 if (nocommit) 1385 break; 1386 pages = nfs_scan_commit(inode, &head, idx_start, npages); 1387 if (pages == 0) { 1388 if (wbc->pages_skipped != 0) 1389 continue; 1390 break; 1391 } 1392 if (how & FLUSH_INVALIDATE) { 1393 spin_unlock(&nfsi->req_lock); 1394 nfs_cancel_commit_list(&head); 1395 ret = pages; 1396 spin_lock(&nfsi->req_lock); 1397 continue; 1398 } 1399 pages += nfs_scan_commit(inode, &head, 0, 0); 1400 spin_unlock(&nfsi->req_lock); 1401 ret = nfs_commit_list(inode, &head, how); 1402 spin_lock(&nfsi->req_lock); 1403 } while (ret >= 0); 1404 spin_unlock(&nfsi->req_lock); 1405 return ret; 1406 } 1407 1408 /* 1409 * flush the inode to disk. 1410 */ 1411 int nfs_wb_all(struct inode *inode) 1412 { 1413 struct address_space *mapping = inode->i_mapping; 1414 struct writeback_control wbc = { 1415 .bdi = mapping->backing_dev_info, 1416 .sync_mode = WB_SYNC_ALL, 1417 .nr_to_write = LONG_MAX, 1418 .for_writepages = 1, 1419 .range_cyclic = 1, 1420 }; 1421 int ret; 1422 1423 ret = generic_writepages(mapping, &wbc); 1424 if (ret < 0) 1425 goto out; 1426 ret = nfs_sync_mapping_wait(mapping, &wbc, 0); 1427 if (ret >= 0) 1428 return 0; 1429 out: 1430 __mark_inode_dirty(mapping->host, I_DIRTY_PAGES); 1431 return ret; 1432 } 1433 1434 int nfs_sync_mapping_range(struct address_space *mapping, loff_t range_start, loff_t range_end, int how) 1435 { 1436 struct writeback_control wbc = { 1437 .bdi = mapping->backing_dev_info, 1438 .sync_mode = WB_SYNC_ALL, 1439 .nr_to_write = LONG_MAX, 1440 .range_start = range_start, 1441 .range_end = range_end, 1442 .for_writepages = 1, 1443 }; 1444 int ret; 1445 1446 if (!(how & FLUSH_NOWRITEPAGE)) { 1447 ret = generic_writepages(mapping, &wbc); 1448 if (ret < 0) 1449 goto out; 1450 } 1451 ret = nfs_sync_mapping_wait(mapping, &wbc, how); 1452 if (ret >= 0) 1453 return 0; 1454 out: 1455 __mark_inode_dirty(mapping->host, I_DIRTY_PAGES); 1456 return ret; 1457 } 1458 1459 int nfs_wb_page_priority(struct inode *inode, struct page *page, int how) 1460 { 1461 loff_t range_start = page_offset(page); 1462 loff_t range_end = range_start + (loff_t)(PAGE_CACHE_SIZE - 1); 1463 struct writeback_control wbc = { 1464 .bdi = page->mapping->backing_dev_info, 1465 .sync_mode = WB_SYNC_ALL, 1466 .nr_to_write = LONG_MAX, 1467 .range_start = range_start, 1468 .range_end = range_end, 1469 }; 1470 int ret; 1471 1472 BUG_ON(!PageLocked(page)); 1473 if (!(how & FLUSH_NOWRITEPAGE) && clear_page_dirty_for_io(page)) { 1474 ret = nfs_writepage_locked(page, &wbc); 1475 if (ret < 0) 1476 goto out; 1477 } 1478 if (!PagePrivate(page)) 1479 return 0; 1480 ret = nfs_sync_mapping_wait(page->mapping, &wbc, how); 1481 if (ret >= 0) 1482 return 0; 1483 out: 1484 __mark_inode_dirty(inode, I_DIRTY_PAGES); 1485 return ret; 1486 } 1487 1488 /* 1489 * Write back all requests on one page - we do this before reading it. 1490 */ 1491 int nfs_wb_page(struct inode *inode, struct page* page) 1492 { 1493 return nfs_wb_page_priority(inode, page, FLUSH_STABLE); 1494 } 1495 1496 int nfs_set_page_dirty(struct page *page) 1497 { 1498 struct nfs_page *req; 1499 1500 req = nfs_page_find_request(page); 1501 if (req != NULL) { 1502 /* Mark any existing write requests for flushing */ 1503 set_bit(PG_NEED_FLUSH, &req->wb_flags); 1504 nfs_release_request(req); 1505 } 1506 return __set_page_dirty_nobuffers(page); 1507 } 1508 1509 1510 int __init nfs_init_writepagecache(void) 1511 { 1512 nfs_wdata_cachep = kmem_cache_create("nfs_write_data", 1513 sizeof(struct nfs_write_data), 1514 0, SLAB_HWCACHE_ALIGN, 1515 NULL, NULL); 1516 if (nfs_wdata_cachep == NULL) 1517 return -ENOMEM; 1518 1519 nfs_wdata_mempool = mempool_create_slab_pool(MIN_POOL_WRITE, 1520 nfs_wdata_cachep); 1521 if (nfs_wdata_mempool == NULL) 1522 return -ENOMEM; 1523 1524 nfs_commit_mempool = mempool_create_slab_pool(MIN_POOL_COMMIT, 1525 nfs_wdata_cachep); 1526 if (nfs_commit_mempool == NULL) 1527 return -ENOMEM; 1528 1529 /* 1530 * NFS congestion size, scale with available memory. 1531 * 1532 * 64MB: 8192k 1533 * 128MB: 11585k 1534 * 256MB: 16384k 1535 * 512MB: 23170k 1536 * 1GB: 32768k 1537 * 2GB: 46340k 1538 * 4GB: 65536k 1539 * 8GB: 92681k 1540 * 16GB: 131072k 1541 * 1542 * This allows larger machines to have larger/more transfers. 1543 * Limit the default to 256M 1544 */ 1545 nfs_congestion_kb = (16*int_sqrt(totalram_pages)) << (PAGE_SHIFT-10); 1546 if (nfs_congestion_kb > 256*1024) 1547 nfs_congestion_kb = 256*1024; 1548 1549 return 0; 1550 } 1551 1552 void nfs_destroy_writepagecache(void) 1553 { 1554 mempool_destroy(nfs_commit_mempool); 1555 mempool_destroy(nfs_wdata_mempool); 1556 kmem_cache_destroy(nfs_wdata_cachep); 1557 } 1558 1559