xref: /linux/fs/nfs/write.c (revision ba6e8564f459211117ce300eae2c7fdd23befe34)
1 /*
2  * linux/fs/nfs/write.c
3  *
4  * Write file data over NFS.
5  *
6  * Copyright (C) 1996, 1997, Olaf Kirch <okir@monad.swb.de>
7  */
8 
9 #include <linux/types.h>
10 #include <linux/slab.h>
11 #include <linux/mm.h>
12 #include <linux/pagemap.h>
13 #include <linux/file.h>
14 #include <linux/writeback.h>
15 #include <linux/swap.h>
16 
17 #include <linux/sunrpc/clnt.h>
18 #include <linux/nfs_fs.h>
19 #include <linux/nfs_mount.h>
20 #include <linux/nfs_page.h>
21 #include <linux/backing-dev.h>
22 
23 #include <asm/uaccess.h>
24 #include <linux/smp_lock.h>
25 
26 #include "delegation.h"
27 #include "internal.h"
28 #include "iostat.h"
29 
30 #define NFSDBG_FACILITY		NFSDBG_PAGECACHE
31 
32 #define MIN_POOL_WRITE		(32)
33 #define MIN_POOL_COMMIT		(4)
34 
35 /*
36  * Local function declarations
37  */
38 static struct nfs_page * nfs_update_request(struct nfs_open_context*,
39 					    struct page *,
40 					    unsigned int, unsigned int);
41 static void nfs_mark_request_dirty(struct nfs_page *req);
42 static long nfs_flush_mapping(struct address_space *mapping, struct writeback_control *wbc, int how);
43 static const struct rpc_call_ops nfs_write_partial_ops;
44 static const struct rpc_call_ops nfs_write_full_ops;
45 static const struct rpc_call_ops nfs_commit_ops;
46 
47 static struct kmem_cache *nfs_wdata_cachep;
48 static mempool_t *nfs_wdata_mempool;
49 static mempool_t *nfs_commit_mempool;
50 
51 struct nfs_write_data *nfs_commit_alloc(void)
52 {
53 	struct nfs_write_data *p = mempool_alloc(nfs_commit_mempool, GFP_NOFS);
54 
55 	if (p) {
56 		memset(p, 0, sizeof(*p));
57 		INIT_LIST_HEAD(&p->pages);
58 	}
59 	return p;
60 }
61 
62 void nfs_commit_rcu_free(struct rcu_head *head)
63 {
64 	struct nfs_write_data *p = container_of(head, struct nfs_write_data, task.u.tk_rcu);
65 	if (p && (p->pagevec != &p->page_array[0]))
66 		kfree(p->pagevec);
67 	mempool_free(p, nfs_commit_mempool);
68 }
69 
70 void nfs_commit_free(struct nfs_write_data *wdata)
71 {
72 	call_rcu_bh(&wdata->task.u.tk_rcu, nfs_commit_rcu_free);
73 }
74 
75 struct nfs_write_data *nfs_writedata_alloc(size_t len)
76 {
77 	unsigned int pagecount = (len + PAGE_SIZE - 1) >> PAGE_SHIFT;
78 	struct nfs_write_data *p = mempool_alloc(nfs_wdata_mempool, GFP_NOFS);
79 
80 	if (p) {
81 		memset(p, 0, sizeof(*p));
82 		INIT_LIST_HEAD(&p->pages);
83 		p->npages = pagecount;
84 		if (pagecount <= ARRAY_SIZE(p->page_array))
85 			p->pagevec = p->page_array;
86 		else {
87 			p->pagevec = kcalloc(pagecount, sizeof(struct page *), GFP_NOFS);
88 			if (!p->pagevec) {
89 				mempool_free(p, nfs_wdata_mempool);
90 				p = NULL;
91 			}
92 		}
93 	}
94 	return p;
95 }
96 
97 static void nfs_writedata_rcu_free(struct rcu_head *head)
98 {
99 	struct nfs_write_data *p = container_of(head, struct nfs_write_data, task.u.tk_rcu);
100 	if (p && (p->pagevec != &p->page_array[0]))
101 		kfree(p->pagevec);
102 	mempool_free(p, nfs_wdata_mempool);
103 }
104 
105 static void nfs_writedata_free(struct nfs_write_data *wdata)
106 {
107 	call_rcu_bh(&wdata->task.u.tk_rcu, nfs_writedata_rcu_free);
108 }
109 
110 void nfs_writedata_release(void *wdata)
111 {
112 	nfs_writedata_free(wdata);
113 }
114 
115 static struct nfs_page *nfs_page_find_request_locked(struct page *page)
116 {
117 	struct nfs_page *req = NULL;
118 
119 	if (PagePrivate(page)) {
120 		req = (struct nfs_page *)page_private(page);
121 		if (req != NULL)
122 			atomic_inc(&req->wb_count);
123 	}
124 	return req;
125 }
126 
127 static struct nfs_page *nfs_page_find_request(struct page *page)
128 {
129 	struct nfs_page *req = NULL;
130 	spinlock_t *req_lock = &NFS_I(page->mapping->host)->req_lock;
131 
132 	spin_lock(req_lock);
133 	req = nfs_page_find_request_locked(page);
134 	spin_unlock(req_lock);
135 	return req;
136 }
137 
138 /* Adjust the file length if we're writing beyond the end */
139 static void nfs_grow_file(struct page *page, unsigned int offset, unsigned int count)
140 {
141 	struct inode *inode = page->mapping->host;
142 	loff_t end, i_size = i_size_read(inode);
143 	unsigned long end_index = (i_size - 1) >> PAGE_CACHE_SHIFT;
144 
145 	if (i_size > 0 && page->index < end_index)
146 		return;
147 	end = ((loff_t)page->index << PAGE_CACHE_SHIFT) + ((loff_t)offset+count);
148 	if (i_size >= end)
149 		return;
150 	nfs_inc_stats(inode, NFSIOS_EXTENDWRITE);
151 	i_size_write(inode, end);
152 }
153 
154 /* A writeback failed: mark the page as bad, and invalidate the page cache */
155 static void nfs_set_pageerror(struct page *page)
156 {
157 	SetPageError(page);
158 	nfs_zap_mapping(page->mapping->host, page->mapping);
159 }
160 
161 /* We can set the PG_uptodate flag if we see that a write request
162  * covers the full page.
163  */
164 static void nfs_mark_uptodate(struct page *page, unsigned int base, unsigned int count)
165 {
166 	if (PageUptodate(page))
167 		return;
168 	if (base != 0)
169 		return;
170 	if (count != nfs_page_length(page))
171 		return;
172 	if (count != PAGE_CACHE_SIZE)
173 		memclear_highpage_flush(page, count, PAGE_CACHE_SIZE - count);
174 	SetPageUptodate(page);
175 }
176 
177 static int nfs_writepage_setup(struct nfs_open_context *ctx, struct page *page,
178 		unsigned int offset, unsigned int count)
179 {
180 	struct nfs_page	*req;
181 	int ret;
182 
183 	for (;;) {
184 		req = nfs_update_request(ctx, page, offset, count);
185 		if (!IS_ERR(req))
186 			break;
187 		ret = PTR_ERR(req);
188 		if (ret != -EBUSY)
189 			return ret;
190 		ret = nfs_wb_page(page->mapping->host, page);
191 		if (ret != 0)
192 			return ret;
193 	}
194 	/* Update file length */
195 	nfs_grow_file(page, offset, count);
196 	/* Set the PG_uptodate flag? */
197 	nfs_mark_uptodate(page, offset, count);
198 	nfs_unlock_request(req);
199 	return 0;
200 }
201 
202 static int wb_priority(struct writeback_control *wbc)
203 {
204 	if (wbc->for_reclaim)
205 		return FLUSH_HIGHPRI;
206 	if (wbc->for_kupdate)
207 		return FLUSH_LOWPRI;
208 	return 0;
209 }
210 
211 /*
212  * NFS congestion control
213  */
214 
215 int nfs_congestion_kb;
216 
217 #define NFS_CONGESTION_ON_THRESH 	(nfs_congestion_kb >> (PAGE_SHIFT-10))
218 #define NFS_CONGESTION_OFF_THRESH	\
219 	(NFS_CONGESTION_ON_THRESH - (NFS_CONGESTION_ON_THRESH >> 2))
220 
221 static void nfs_set_page_writeback(struct page *page)
222 {
223 	if (!test_set_page_writeback(page)) {
224 		struct inode *inode = page->mapping->host;
225 		struct nfs_server *nfss = NFS_SERVER(inode);
226 
227 		if (atomic_inc_return(&nfss->writeback) >
228 				NFS_CONGESTION_ON_THRESH)
229 			set_bdi_congested(&nfss->backing_dev_info, WRITE);
230 	}
231 }
232 
233 static void nfs_end_page_writeback(struct page *page)
234 {
235 	struct inode *inode = page->mapping->host;
236 	struct nfs_server *nfss = NFS_SERVER(inode);
237 
238 	end_page_writeback(page);
239 	if (atomic_dec_return(&nfss->writeback) < NFS_CONGESTION_OFF_THRESH) {
240 		clear_bdi_congested(&nfss->backing_dev_info, WRITE);
241 		congestion_end(WRITE);
242 	}
243 }
244 
245 /*
246  * Find an associated nfs write request, and prepare to flush it out
247  * Returns 1 if there was no write request, or if the request was
248  * already tagged by nfs_set_page_dirty.Returns 0 if the request
249  * was not tagged.
250  * May also return an error if the user signalled nfs_wait_on_request().
251  */
252 static int nfs_page_mark_flush(struct page *page)
253 {
254 	struct nfs_page *req;
255 	spinlock_t *req_lock = &NFS_I(page->mapping->host)->req_lock;
256 	int ret;
257 
258 	spin_lock(req_lock);
259 	for(;;) {
260 		req = nfs_page_find_request_locked(page);
261 		if (req == NULL) {
262 			spin_unlock(req_lock);
263 			return 1;
264 		}
265 		if (nfs_lock_request_dontget(req))
266 			break;
267 		/* Note: If we hold the page lock, as is the case in nfs_writepage,
268 		 *	 then the call to nfs_lock_request_dontget() will always
269 		 *	 succeed provided that someone hasn't already marked the
270 		 *	 request as dirty (in which case we don't care).
271 		 */
272 		spin_unlock(req_lock);
273 		ret = nfs_wait_on_request(req);
274 		nfs_release_request(req);
275 		if (ret != 0)
276 			return ret;
277 		spin_lock(req_lock);
278 	}
279 	spin_unlock(req_lock);
280 	if (test_and_set_bit(PG_FLUSHING, &req->wb_flags) == 0) {
281 		nfs_mark_request_dirty(req);
282 		nfs_set_page_writeback(page);
283 	}
284 	ret = test_bit(PG_NEED_FLUSH, &req->wb_flags);
285 	nfs_unlock_request(req);
286 	return ret;
287 }
288 
289 /*
290  * Write an mmapped page to the server.
291  */
292 static int nfs_writepage_locked(struct page *page, struct writeback_control *wbc)
293 {
294 	struct nfs_open_context *ctx;
295 	struct inode *inode = page->mapping->host;
296 	unsigned offset;
297 	int err;
298 
299 	nfs_inc_stats(inode, NFSIOS_VFSWRITEPAGE);
300 	nfs_add_stats(inode, NFSIOS_WRITEPAGES, 1);
301 
302 	err = nfs_page_mark_flush(page);
303 	if (err <= 0)
304 		goto out;
305 	err = 0;
306 	offset = nfs_page_length(page);
307 	if (!offset)
308 		goto out;
309 
310 	ctx = nfs_find_open_context(inode, NULL, FMODE_WRITE);
311 	if (ctx == NULL) {
312 		err = -EBADF;
313 		goto out;
314 	}
315 	err = nfs_writepage_setup(ctx, page, 0, offset);
316 	put_nfs_open_context(ctx);
317 	if (err != 0)
318 		goto out;
319 	err = nfs_page_mark_flush(page);
320 	if (err > 0)
321 		err = 0;
322 out:
323 	if (!wbc->for_writepages)
324 		nfs_flush_mapping(page->mapping, wbc, FLUSH_STABLE|wb_priority(wbc));
325 	return err;
326 }
327 
328 int nfs_writepage(struct page *page, struct writeback_control *wbc)
329 {
330 	int err;
331 
332 	err = nfs_writepage_locked(page, wbc);
333 	unlock_page(page);
334 	return err;
335 }
336 
337 int nfs_writepages(struct address_space *mapping, struct writeback_control *wbc)
338 {
339 	struct inode *inode = mapping->host;
340 	int err;
341 
342 	nfs_inc_stats(inode, NFSIOS_VFSWRITEPAGES);
343 
344 	err = generic_writepages(mapping, wbc);
345 	if (err)
346 		return err;
347 	err = nfs_flush_mapping(mapping, wbc, wb_priority(wbc));
348 	if (err < 0)
349 		goto out;
350 	nfs_add_stats(inode, NFSIOS_WRITEPAGES, err);
351 	err = 0;
352 out:
353 	return err;
354 }
355 
356 /*
357  * Insert a write request into an inode
358  */
359 static int nfs_inode_add_request(struct inode *inode, struct nfs_page *req)
360 {
361 	struct nfs_inode *nfsi = NFS_I(inode);
362 	int error;
363 
364 	error = radix_tree_insert(&nfsi->nfs_page_tree, req->wb_index, req);
365 	BUG_ON(error == -EEXIST);
366 	if (error)
367 		return error;
368 	if (!nfsi->npages) {
369 		igrab(inode);
370 		nfs_begin_data_update(inode);
371 		if (nfs_have_delegation(inode, FMODE_WRITE))
372 			nfsi->change_attr++;
373 	}
374 	SetPagePrivate(req->wb_page);
375 	set_page_private(req->wb_page, (unsigned long)req);
376 	nfsi->npages++;
377 	atomic_inc(&req->wb_count);
378 	return 0;
379 }
380 
381 /*
382  * Remove a write request from an inode
383  */
384 static void nfs_inode_remove_request(struct nfs_page *req)
385 {
386 	struct inode *inode = req->wb_context->dentry->d_inode;
387 	struct nfs_inode *nfsi = NFS_I(inode);
388 
389 	BUG_ON (!NFS_WBACK_BUSY(req));
390 
391 	spin_lock(&nfsi->req_lock);
392 	set_page_private(req->wb_page, 0);
393 	ClearPagePrivate(req->wb_page);
394 	radix_tree_delete(&nfsi->nfs_page_tree, req->wb_index);
395 	nfsi->npages--;
396 	if (!nfsi->npages) {
397 		spin_unlock(&nfsi->req_lock);
398 		nfs_end_data_update(inode);
399 		iput(inode);
400 	} else
401 		spin_unlock(&nfsi->req_lock);
402 	nfs_clear_request(req);
403 	nfs_release_request(req);
404 }
405 
406 /*
407  * Add a request to the inode's dirty list.
408  */
409 static void
410 nfs_mark_request_dirty(struct nfs_page *req)
411 {
412 	struct inode *inode = req->wb_context->dentry->d_inode;
413 	struct nfs_inode *nfsi = NFS_I(inode);
414 
415 	spin_lock(&nfsi->req_lock);
416 	radix_tree_tag_set(&nfsi->nfs_page_tree,
417 			req->wb_index, NFS_PAGE_TAG_DIRTY);
418 	nfs_list_add_request(req, &nfsi->dirty);
419 	nfsi->ndirty++;
420 	spin_unlock(&nfsi->req_lock);
421 	__mark_inode_dirty(inode, I_DIRTY_PAGES);
422 }
423 
424 static void
425 nfs_redirty_request(struct nfs_page *req)
426 {
427 	clear_bit(PG_FLUSHING, &req->wb_flags);
428 	__set_page_dirty_nobuffers(req->wb_page);
429 }
430 
431 /*
432  * Check if a request is dirty
433  */
434 static inline int
435 nfs_dirty_request(struct nfs_page *req)
436 {
437 	return test_bit(PG_FLUSHING, &req->wb_flags) == 0;
438 }
439 
440 #if defined(CONFIG_NFS_V3) || defined(CONFIG_NFS_V4)
441 /*
442  * Add a request to the inode's commit list.
443  */
444 static void
445 nfs_mark_request_commit(struct nfs_page *req)
446 {
447 	struct inode *inode = req->wb_context->dentry->d_inode;
448 	struct nfs_inode *nfsi = NFS_I(inode);
449 
450 	spin_lock(&nfsi->req_lock);
451 	nfs_list_add_request(req, &nfsi->commit);
452 	nfsi->ncommit++;
453 	spin_unlock(&nfsi->req_lock);
454 	inc_zone_page_state(req->wb_page, NR_UNSTABLE_NFS);
455 	__mark_inode_dirty(inode, I_DIRTY_DATASYNC);
456 }
457 #endif
458 
459 /*
460  * Wait for a request to complete.
461  *
462  * Interruptible by signals only if mounted with intr flag.
463  */
464 static int nfs_wait_on_requests_locked(struct inode *inode, unsigned long idx_start, unsigned int npages)
465 {
466 	struct nfs_inode *nfsi = NFS_I(inode);
467 	struct nfs_page *req;
468 	unsigned long		idx_end, next;
469 	unsigned int		res = 0;
470 	int			error;
471 
472 	if (npages == 0)
473 		idx_end = ~0;
474 	else
475 		idx_end = idx_start + npages - 1;
476 
477 	next = idx_start;
478 	while (radix_tree_gang_lookup_tag(&nfsi->nfs_page_tree, (void **)&req, next, 1, NFS_PAGE_TAG_WRITEBACK)) {
479 		if (req->wb_index > idx_end)
480 			break;
481 
482 		next = req->wb_index + 1;
483 		BUG_ON(!NFS_WBACK_BUSY(req));
484 
485 		atomic_inc(&req->wb_count);
486 		spin_unlock(&nfsi->req_lock);
487 		error = nfs_wait_on_request(req);
488 		nfs_release_request(req);
489 		spin_lock(&nfsi->req_lock);
490 		if (error < 0)
491 			return error;
492 		res++;
493 	}
494 	return res;
495 }
496 
497 static void nfs_cancel_dirty_list(struct list_head *head)
498 {
499 	struct nfs_page *req;
500 	while(!list_empty(head)) {
501 		req = nfs_list_entry(head->next);
502 		nfs_list_remove_request(req);
503 		nfs_inode_remove_request(req);
504 		nfs_clear_page_writeback(req);
505 	}
506 }
507 
508 static void nfs_cancel_commit_list(struct list_head *head)
509 {
510 	struct nfs_page *req;
511 
512 	while(!list_empty(head)) {
513 		req = nfs_list_entry(head->next);
514 		dec_zone_page_state(req->wb_page, NR_UNSTABLE_NFS);
515 		nfs_list_remove_request(req);
516 		nfs_inode_remove_request(req);
517 		nfs_unlock_request(req);
518 	}
519 }
520 
521 #if defined(CONFIG_NFS_V3) || defined(CONFIG_NFS_V4)
522 /*
523  * nfs_scan_commit - Scan an inode for commit requests
524  * @inode: NFS inode to scan
525  * @dst: destination list
526  * @idx_start: lower bound of page->index to scan.
527  * @npages: idx_start + npages sets the upper bound to scan.
528  *
529  * Moves requests from the inode's 'commit' request list.
530  * The requests are *not* checked to ensure that they form a contiguous set.
531  */
532 static int
533 nfs_scan_commit(struct inode *inode, struct list_head *dst, unsigned long idx_start, unsigned int npages)
534 {
535 	struct nfs_inode *nfsi = NFS_I(inode);
536 	int res = 0;
537 
538 	if (nfsi->ncommit != 0) {
539 		res = nfs_scan_list(nfsi, &nfsi->commit, dst, idx_start, npages);
540 		nfsi->ncommit -= res;
541 		if ((nfsi->ncommit == 0) != list_empty(&nfsi->commit))
542 			printk(KERN_ERR "NFS: desynchronized value of nfs_i.ncommit.\n");
543 	}
544 	return res;
545 }
546 #else
547 static inline int nfs_scan_commit(struct inode *inode, struct list_head *dst, unsigned long idx_start, unsigned int npages)
548 {
549 	return 0;
550 }
551 #endif
552 
553 static int nfs_wait_on_write_congestion(struct address_space *mapping)
554 {
555 	struct inode *inode = mapping->host;
556 	struct backing_dev_info *bdi = mapping->backing_dev_info;
557 	int ret = 0;
558 
559 	might_sleep();
560 
561 	if (!bdi_write_congested(bdi))
562 		return 0;
563 
564 	nfs_inc_stats(inode, NFSIOS_CONGESTIONWAIT);
565 
566 	do {
567 		struct rpc_clnt *clnt = NFS_CLIENT(inode);
568 		sigset_t oldset;
569 
570 		rpc_clnt_sigmask(clnt, &oldset);
571 		ret = congestion_wait_interruptible(WRITE, HZ/10);
572 		rpc_clnt_sigunmask(clnt, &oldset);
573 		if (ret == -ERESTARTSYS)
574 			break;
575 		ret = 0;
576 	} while (bdi_write_congested(bdi));
577 
578 	return ret;
579 }
580 
581 /*
582  * Try to update any existing write request, or create one if there is none.
583  * In order to match, the request's credentials must match those of
584  * the calling process.
585  *
586  * Note: Should always be called with the Page Lock held!
587  */
588 static struct nfs_page * nfs_update_request(struct nfs_open_context* ctx,
589 		struct page *page, unsigned int offset, unsigned int bytes)
590 {
591 	struct address_space *mapping = page->mapping;
592 	struct inode *inode = mapping->host;
593 	struct nfs_inode *nfsi = NFS_I(inode);
594 	struct nfs_page		*req, *new = NULL;
595 	unsigned long		rqend, end;
596 
597 	end = offset + bytes;
598 
599 	if (nfs_wait_on_write_congestion(mapping))
600 		return ERR_PTR(-ERESTARTSYS);
601 	for (;;) {
602 		/* Loop over all inode entries and see if we find
603 		 * A request for the page we wish to update
604 		 */
605 		spin_lock(&nfsi->req_lock);
606 		req = nfs_page_find_request_locked(page);
607 		if (req) {
608 			if (!nfs_lock_request_dontget(req)) {
609 				int error;
610 
611 				spin_unlock(&nfsi->req_lock);
612 				error = nfs_wait_on_request(req);
613 				nfs_release_request(req);
614 				if (error < 0) {
615 					if (new)
616 						nfs_release_request(new);
617 					return ERR_PTR(error);
618 				}
619 				continue;
620 			}
621 			spin_unlock(&nfsi->req_lock);
622 			if (new)
623 				nfs_release_request(new);
624 			break;
625 		}
626 
627 		if (new) {
628 			int error;
629 			nfs_lock_request_dontget(new);
630 			error = nfs_inode_add_request(inode, new);
631 			if (error) {
632 				spin_unlock(&nfsi->req_lock);
633 				nfs_unlock_request(new);
634 				return ERR_PTR(error);
635 			}
636 			spin_unlock(&nfsi->req_lock);
637 			return new;
638 		}
639 		spin_unlock(&nfsi->req_lock);
640 
641 		new = nfs_create_request(ctx, inode, page, offset, bytes);
642 		if (IS_ERR(new))
643 			return new;
644 	}
645 
646 	/* We have a request for our page.
647 	 * If the creds don't match, or the
648 	 * page addresses don't match,
649 	 * tell the caller to wait on the conflicting
650 	 * request.
651 	 */
652 	rqend = req->wb_offset + req->wb_bytes;
653 	if (req->wb_context != ctx
654 	    || req->wb_page != page
655 	    || !nfs_dirty_request(req)
656 	    || offset > rqend || end < req->wb_offset) {
657 		nfs_unlock_request(req);
658 		return ERR_PTR(-EBUSY);
659 	}
660 
661 	/* Okay, the request matches. Update the region */
662 	if (offset < req->wb_offset) {
663 		req->wb_offset = offset;
664 		req->wb_pgbase = offset;
665 		req->wb_bytes = rqend - req->wb_offset;
666 	}
667 
668 	if (end > rqend)
669 		req->wb_bytes = end - req->wb_offset;
670 
671 	return req;
672 }
673 
674 int nfs_flush_incompatible(struct file *file, struct page *page)
675 {
676 	struct nfs_open_context *ctx = (struct nfs_open_context *)file->private_data;
677 	struct nfs_page	*req;
678 	int do_flush, status;
679 	/*
680 	 * Look for a request corresponding to this page. If there
681 	 * is one, and it belongs to another file, we flush it out
682 	 * before we try to copy anything into the page. Do this
683 	 * due to the lack of an ACCESS-type call in NFSv2.
684 	 * Also do the same if we find a request from an existing
685 	 * dropped page.
686 	 */
687 	do {
688 		req = nfs_page_find_request(page);
689 		if (req == NULL)
690 			return 0;
691 		do_flush = req->wb_page != page || req->wb_context != ctx
692 			|| !nfs_dirty_request(req);
693 		nfs_release_request(req);
694 		if (!do_flush)
695 			return 0;
696 		status = nfs_wb_page(page->mapping->host, page);
697 	} while (status == 0);
698 	return status;
699 }
700 
701 /*
702  * Update and possibly write a cached page of an NFS file.
703  *
704  * XXX: Keep an eye on generic_file_read to make sure it doesn't do bad
705  * things with a page scheduled for an RPC call (e.g. invalidate it).
706  */
707 int nfs_updatepage(struct file *file, struct page *page,
708 		unsigned int offset, unsigned int count)
709 {
710 	struct nfs_open_context *ctx = (struct nfs_open_context *)file->private_data;
711 	struct inode	*inode = page->mapping->host;
712 	int		status = 0;
713 
714 	nfs_inc_stats(inode, NFSIOS_VFSUPDATEPAGE);
715 
716 	dprintk("NFS:      nfs_updatepage(%s/%s %d@%Ld)\n",
717 		file->f_path.dentry->d_parent->d_name.name,
718 		file->f_path.dentry->d_name.name, count,
719 		(long long)(page_offset(page) +offset));
720 
721 	/* If we're not using byte range locks, and we know the page
722 	 * is entirely in cache, it may be more efficient to avoid
723 	 * fragmenting write requests.
724 	 */
725 	if (PageUptodate(page) && inode->i_flock == NULL && !(file->f_mode & O_SYNC)) {
726 		count = max(count + offset, nfs_page_length(page));
727 		offset = 0;
728 	}
729 
730 	status = nfs_writepage_setup(ctx, page, offset, count);
731 	__set_page_dirty_nobuffers(page);
732 
733         dprintk("NFS:      nfs_updatepage returns %d (isize %Ld)\n",
734 			status, (long long)i_size_read(inode));
735 	if (status < 0)
736 		nfs_set_pageerror(page);
737 	return status;
738 }
739 
740 static void nfs_writepage_release(struct nfs_page *req)
741 {
742 	nfs_end_page_writeback(req->wb_page);
743 
744 #if defined(CONFIG_NFS_V3) || defined(CONFIG_NFS_V4)
745 	if (!PageError(req->wb_page)) {
746 		if (NFS_NEED_RESCHED(req)) {
747 			nfs_redirty_request(req);
748 			goto out;
749 		} else if (NFS_NEED_COMMIT(req)) {
750 			nfs_mark_request_commit(req);
751 			goto out;
752 		}
753 	}
754 	nfs_inode_remove_request(req);
755 
756 out:
757 	nfs_clear_commit(req);
758 	nfs_clear_reschedule(req);
759 #else
760 	nfs_inode_remove_request(req);
761 #endif
762 	nfs_clear_page_writeback(req);
763 }
764 
765 static inline int flush_task_priority(int how)
766 {
767 	switch (how & (FLUSH_HIGHPRI|FLUSH_LOWPRI)) {
768 		case FLUSH_HIGHPRI:
769 			return RPC_PRIORITY_HIGH;
770 		case FLUSH_LOWPRI:
771 			return RPC_PRIORITY_LOW;
772 	}
773 	return RPC_PRIORITY_NORMAL;
774 }
775 
776 /*
777  * Set up the argument/result storage required for the RPC call.
778  */
779 static void nfs_write_rpcsetup(struct nfs_page *req,
780 		struct nfs_write_data *data,
781 		const struct rpc_call_ops *call_ops,
782 		unsigned int count, unsigned int offset,
783 		int how)
784 {
785 	struct inode		*inode;
786 	int flags;
787 
788 	/* Set up the RPC argument and reply structs
789 	 * NB: take care not to mess about with data->commit et al. */
790 
791 	data->req = req;
792 	data->inode = inode = req->wb_context->dentry->d_inode;
793 	data->cred = req->wb_context->cred;
794 
795 	data->args.fh     = NFS_FH(inode);
796 	data->args.offset = req_offset(req) + offset;
797 	data->args.pgbase = req->wb_pgbase + offset;
798 	data->args.pages  = data->pagevec;
799 	data->args.count  = count;
800 	data->args.context = req->wb_context;
801 
802 	data->res.fattr   = &data->fattr;
803 	data->res.count   = count;
804 	data->res.verf    = &data->verf;
805 	nfs_fattr_init(&data->fattr);
806 
807 	/* Set up the initial task struct.  */
808 	flags = (how & FLUSH_SYNC) ? 0 : RPC_TASK_ASYNC;
809 	rpc_init_task(&data->task, NFS_CLIENT(inode), flags, call_ops, data);
810 	NFS_PROTO(inode)->write_setup(data, how);
811 
812 	data->task.tk_priority = flush_task_priority(how);
813 	data->task.tk_cookie = (unsigned long)inode;
814 
815 	dprintk("NFS: %5u initiated write call "
816 		"(req %s/%Ld, %u bytes @ offset %Lu)\n",
817 		data->task.tk_pid,
818 		inode->i_sb->s_id,
819 		(long long)NFS_FILEID(inode),
820 		count,
821 		(unsigned long long)data->args.offset);
822 }
823 
824 static void nfs_execute_write(struct nfs_write_data *data)
825 {
826 	struct rpc_clnt *clnt = NFS_CLIENT(data->inode);
827 	sigset_t oldset;
828 
829 	rpc_clnt_sigmask(clnt, &oldset);
830 	rpc_execute(&data->task);
831 	rpc_clnt_sigunmask(clnt, &oldset);
832 }
833 
834 /*
835  * Generate multiple small requests to write out a single
836  * contiguous dirty area on one page.
837  */
838 static int nfs_flush_multi(struct inode *inode, struct list_head *head, int how)
839 {
840 	struct nfs_page *req = nfs_list_entry(head->next);
841 	struct page *page = req->wb_page;
842 	struct nfs_write_data *data;
843 	size_t wsize = NFS_SERVER(inode)->wsize, nbytes;
844 	unsigned int offset;
845 	int requests = 0;
846 	LIST_HEAD(list);
847 
848 	nfs_list_remove_request(req);
849 
850 	nbytes = req->wb_bytes;
851 	do {
852 		size_t len = min(nbytes, wsize);
853 
854 		data = nfs_writedata_alloc(len);
855 		if (!data)
856 			goto out_bad;
857 		list_add(&data->pages, &list);
858 		requests++;
859 		nbytes -= len;
860 	} while (nbytes != 0);
861 	atomic_set(&req->wb_complete, requests);
862 
863 	ClearPageError(page);
864 	offset = 0;
865 	nbytes = req->wb_bytes;
866 	do {
867 		data = list_entry(list.next, struct nfs_write_data, pages);
868 		list_del_init(&data->pages);
869 
870 		data->pagevec[0] = page;
871 
872 		if (nbytes > wsize) {
873 			nfs_write_rpcsetup(req, data, &nfs_write_partial_ops,
874 					wsize, offset, how);
875 			offset += wsize;
876 			nbytes -= wsize;
877 		} else {
878 			nfs_write_rpcsetup(req, data, &nfs_write_partial_ops,
879 					nbytes, offset, how);
880 			nbytes = 0;
881 		}
882 		nfs_execute_write(data);
883 	} while (nbytes != 0);
884 
885 	return 0;
886 
887 out_bad:
888 	while (!list_empty(&list)) {
889 		data = list_entry(list.next, struct nfs_write_data, pages);
890 		list_del(&data->pages);
891 		nfs_writedata_release(data);
892 	}
893 	nfs_redirty_request(req);
894 	nfs_clear_page_writeback(req);
895 	return -ENOMEM;
896 }
897 
898 /*
899  * Create an RPC task for the given write request and kick it.
900  * The page must have been locked by the caller.
901  *
902  * It may happen that the page we're passed is not marked dirty.
903  * This is the case if nfs_updatepage detects a conflicting request
904  * that has been written but not committed.
905  */
906 static int nfs_flush_one(struct inode *inode, struct list_head *head, int how)
907 {
908 	struct nfs_page		*req;
909 	struct page		**pages;
910 	struct nfs_write_data	*data;
911 	unsigned int		count;
912 
913 	data = nfs_writedata_alloc(NFS_SERVER(inode)->wsize);
914 	if (!data)
915 		goto out_bad;
916 
917 	pages = data->pagevec;
918 	count = 0;
919 	while (!list_empty(head)) {
920 		req = nfs_list_entry(head->next);
921 		nfs_list_remove_request(req);
922 		nfs_list_add_request(req, &data->pages);
923 		ClearPageError(req->wb_page);
924 		*pages++ = req->wb_page;
925 		count += req->wb_bytes;
926 	}
927 	req = nfs_list_entry(data->pages.next);
928 
929 	/* Set up the argument struct */
930 	nfs_write_rpcsetup(req, data, &nfs_write_full_ops, count, 0, how);
931 
932 	nfs_execute_write(data);
933 	return 0;
934  out_bad:
935 	while (!list_empty(head)) {
936 		struct nfs_page *req = nfs_list_entry(head->next);
937 		nfs_list_remove_request(req);
938 		nfs_redirty_request(req);
939 		nfs_clear_page_writeback(req);
940 	}
941 	return -ENOMEM;
942 }
943 
944 static int nfs_flush_list(struct inode *inode, struct list_head *head, int npages, int how)
945 {
946 	LIST_HEAD(one_request);
947 	int (*flush_one)(struct inode *, struct list_head *, int);
948 	struct nfs_page	*req;
949 	int wpages = NFS_SERVER(inode)->wpages;
950 	int wsize = NFS_SERVER(inode)->wsize;
951 	int error;
952 
953 	flush_one = nfs_flush_one;
954 	if (wsize < PAGE_CACHE_SIZE)
955 		flush_one = nfs_flush_multi;
956 	/* For single writes, FLUSH_STABLE is more efficient */
957 	if (npages <= wpages && npages == NFS_I(inode)->npages
958 			&& nfs_list_entry(head->next)->wb_bytes <= wsize)
959 		how |= FLUSH_STABLE;
960 
961 	do {
962 		nfs_coalesce_requests(head, &one_request, wpages);
963 		req = nfs_list_entry(one_request.next);
964 		error = flush_one(inode, &one_request, how);
965 		if (error < 0)
966 			goto out_err;
967 	} while (!list_empty(head));
968 	return 0;
969 out_err:
970 	while (!list_empty(head)) {
971 		req = nfs_list_entry(head->next);
972 		nfs_list_remove_request(req);
973 		nfs_redirty_request(req);
974 		nfs_clear_page_writeback(req);
975 	}
976 	return error;
977 }
978 
979 /*
980  * Handle a write reply that flushed part of a page.
981  */
982 static void nfs_writeback_done_partial(struct rpc_task *task, void *calldata)
983 {
984 	struct nfs_write_data	*data = calldata;
985 	struct nfs_page		*req = data->req;
986 	struct page		*page = req->wb_page;
987 
988 	dprintk("NFS: write (%s/%Ld %d@%Ld)",
989 		req->wb_context->dentry->d_inode->i_sb->s_id,
990 		(long long)NFS_FILEID(req->wb_context->dentry->d_inode),
991 		req->wb_bytes,
992 		(long long)req_offset(req));
993 
994 	if (nfs_writeback_done(task, data) != 0)
995 		return;
996 
997 	if (task->tk_status < 0) {
998 		nfs_set_pageerror(page);
999 		req->wb_context->error = task->tk_status;
1000 		dprintk(", error = %d\n", task->tk_status);
1001 	} else {
1002 #if defined(CONFIG_NFS_V3) || defined(CONFIG_NFS_V4)
1003 		if (data->verf.committed < NFS_FILE_SYNC) {
1004 			if (!NFS_NEED_COMMIT(req)) {
1005 				nfs_defer_commit(req);
1006 				memcpy(&req->wb_verf, &data->verf, sizeof(req->wb_verf));
1007 				dprintk(" defer commit\n");
1008 			} else if (memcmp(&req->wb_verf, &data->verf, sizeof(req->wb_verf))) {
1009 				nfs_defer_reschedule(req);
1010 				dprintk(" server reboot detected\n");
1011 			}
1012 		} else
1013 #endif
1014 			dprintk(" OK\n");
1015 	}
1016 
1017 	if (atomic_dec_and_test(&req->wb_complete))
1018 		nfs_writepage_release(req);
1019 }
1020 
1021 static const struct rpc_call_ops nfs_write_partial_ops = {
1022 	.rpc_call_done = nfs_writeback_done_partial,
1023 	.rpc_release = nfs_writedata_release,
1024 };
1025 
1026 /*
1027  * Handle a write reply that flushes a whole page.
1028  *
1029  * FIXME: There is an inherent race with invalidate_inode_pages and
1030  *	  writebacks since the page->count is kept > 1 for as long
1031  *	  as the page has a write request pending.
1032  */
1033 static void nfs_writeback_done_full(struct rpc_task *task, void *calldata)
1034 {
1035 	struct nfs_write_data	*data = calldata;
1036 	struct nfs_page		*req;
1037 	struct page		*page;
1038 
1039 	if (nfs_writeback_done(task, data) != 0)
1040 		return;
1041 
1042 	/* Update attributes as result of writeback. */
1043 	while (!list_empty(&data->pages)) {
1044 		req = nfs_list_entry(data->pages.next);
1045 		nfs_list_remove_request(req);
1046 		page = req->wb_page;
1047 
1048 		dprintk("NFS: write (%s/%Ld %d@%Ld)",
1049 			req->wb_context->dentry->d_inode->i_sb->s_id,
1050 			(long long)NFS_FILEID(req->wb_context->dentry->d_inode),
1051 			req->wb_bytes,
1052 			(long long)req_offset(req));
1053 
1054 		if (task->tk_status < 0) {
1055 			nfs_set_pageerror(page);
1056 			req->wb_context->error = task->tk_status;
1057 			nfs_end_page_writeback(page);
1058 			nfs_inode_remove_request(req);
1059 			dprintk(", error = %d\n", task->tk_status);
1060 			goto next;
1061 		}
1062 		nfs_end_page_writeback(page);
1063 
1064 #if defined(CONFIG_NFS_V3) || defined(CONFIG_NFS_V4)
1065 		if (data->args.stable != NFS_UNSTABLE || data->verf.committed == NFS_FILE_SYNC) {
1066 			nfs_inode_remove_request(req);
1067 			dprintk(" OK\n");
1068 			goto next;
1069 		}
1070 		memcpy(&req->wb_verf, &data->verf, sizeof(req->wb_verf));
1071 		nfs_mark_request_commit(req);
1072 		dprintk(" marked for commit\n");
1073 #else
1074 		nfs_inode_remove_request(req);
1075 #endif
1076 	next:
1077 		nfs_clear_page_writeback(req);
1078 	}
1079 }
1080 
1081 static const struct rpc_call_ops nfs_write_full_ops = {
1082 	.rpc_call_done = nfs_writeback_done_full,
1083 	.rpc_release = nfs_writedata_release,
1084 };
1085 
1086 
1087 /*
1088  * This function is called when the WRITE call is complete.
1089  */
1090 int nfs_writeback_done(struct rpc_task *task, struct nfs_write_data *data)
1091 {
1092 	struct nfs_writeargs	*argp = &data->args;
1093 	struct nfs_writeres	*resp = &data->res;
1094 	int status;
1095 
1096 	dprintk("NFS: %5u nfs_writeback_done (status %d)\n",
1097 		task->tk_pid, task->tk_status);
1098 
1099 	/*
1100 	 * ->write_done will attempt to use post-op attributes to detect
1101 	 * conflicting writes by other clients.  A strict interpretation
1102 	 * of close-to-open would allow us to continue caching even if
1103 	 * another writer had changed the file, but some applications
1104 	 * depend on tighter cache coherency when writing.
1105 	 */
1106 	status = NFS_PROTO(data->inode)->write_done(task, data);
1107 	if (status != 0)
1108 		return status;
1109 	nfs_add_stats(data->inode, NFSIOS_SERVERWRITTENBYTES, resp->count);
1110 
1111 #if defined(CONFIG_NFS_V3) || defined(CONFIG_NFS_V4)
1112 	if (resp->verf->committed < argp->stable && task->tk_status >= 0) {
1113 		/* We tried a write call, but the server did not
1114 		 * commit data to stable storage even though we
1115 		 * requested it.
1116 		 * Note: There is a known bug in Tru64 < 5.0 in which
1117 		 *	 the server reports NFS_DATA_SYNC, but performs
1118 		 *	 NFS_FILE_SYNC. We therefore implement this checking
1119 		 *	 as a dprintk() in order to avoid filling syslog.
1120 		 */
1121 		static unsigned long    complain;
1122 
1123 		if (time_before(complain, jiffies)) {
1124 			dprintk("NFS: faulty NFS server %s:"
1125 				" (committed = %d) != (stable = %d)\n",
1126 				NFS_SERVER(data->inode)->nfs_client->cl_hostname,
1127 				resp->verf->committed, argp->stable);
1128 			complain = jiffies + 300 * HZ;
1129 		}
1130 	}
1131 #endif
1132 	/* Is this a short write? */
1133 	if (task->tk_status >= 0 && resp->count < argp->count) {
1134 		static unsigned long    complain;
1135 
1136 		nfs_inc_stats(data->inode, NFSIOS_SHORTWRITE);
1137 
1138 		/* Has the server at least made some progress? */
1139 		if (resp->count != 0) {
1140 			/* Was this an NFSv2 write or an NFSv3 stable write? */
1141 			if (resp->verf->committed != NFS_UNSTABLE) {
1142 				/* Resend from where the server left off */
1143 				argp->offset += resp->count;
1144 				argp->pgbase += resp->count;
1145 				argp->count -= resp->count;
1146 			} else {
1147 				/* Resend as a stable write in order to avoid
1148 				 * headaches in the case of a server crash.
1149 				 */
1150 				argp->stable = NFS_FILE_SYNC;
1151 			}
1152 			rpc_restart_call(task);
1153 			return -EAGAIN;
1154 		}
1155 		if (time_before(complain, jiffies)) {
1156 			printk(KERN_WARNING
1157 			       "NFS: Server wrote zero bytes, expected %u.\n",
1158 					argp->count);
1159 			complain = jiffies + 300 * HZ;
1160 		}
1161 		/* Can't do anything about it except throw an error. */
1162 		task->tk_status = -EIO;
1163 	}
1164 	return 0;
1165 }
1166 
1167 
1168 #if defined(CONFIG_NFS_V3) || defined(CONFIG_NFS_V4)
1169 void nfs_commit_release(void *wdata)
1170 {
1171 	nfs_commit_free(wdata);
1172 }
1173 
1174 /*
1175  * Set up the argument/result storage required for the RPC call.
1176  */
1177 static void nfs_commit_rpcsetup(struct list_head *head,
1178 		struct nfs_write_data *data,
1179 		int how)
1180 {
1181 	struct nfs_page		*first;
1182 	struct inode		*inode;
1183 	int flags;
1184 
1185 	/* Set up the RPC argument and reply structs
1186 	 * NB: take care not to mess about with data->commit et al. */
1187 
1188 	list_splice_init(head, &data->pages);
1189 	first = nfs_list_entry(data->pages.next);
1190 	inode = first->wb_context->dentry->d_inode;
1191 
1192 	data->inode	  = inode;
1193 	data->cred	  = first->wb_context->cred;
1194 
1195 	data->args.fh     = NFS_FH(data->inode);
1196 	/* Note: we always request a commit of the entire inode */
1197 	data->args.offset = 0;
1198 	data->args.count  = 0;
1199 	data->res.count   = 0;
1200 	data->res.fattr   = &data->fattr;
1201 	data->res.verf    = &data->verf;
1202 	nfs_fattr_init(&data->fattr);
1203 
1204 	/* Set up the initial task struct.  */
1205 	flags = (how & FLUSH_SYNC) ? 0 : RPC_TASK_ASYNC;
1206 	rpc_init_task(&data->task, NFS_CLIENT(inode), flags, &nfs_commit_ops, data);
1207 	NFS_PROTO(inode)->commit_setup(data, how);
1208 
1209 	data->task.tk_priority = flush_task_priority(how);
1210 	data->task.tk_cookie = (unsigned long)inode;
1211 
1212 	dprintk("NFS: %5u initiated commit call\n", data->task.tk_pid);
1213 }
1214 
1215 /*
1216  * Commit dirty pages
1217  */
1218 static int
1219 nfs_commit_list(struct inode *inode, struct list_head *head, int how)
1220 {
1221 	struct nfs_write_data	*data;
1222 	struct nfs_page         *req;
1223 
1224 	data = nfs_commit_alloc();
1225 
1226 	if (!data)
1227 		goto out_bad;
1228 
1229 	/* Set up the argument struct */
1230 	nfs_commit_rpcsetup(head, data, how);
1231 
1232 	nfs_execute_write(data);
1233 	return 0;
1234  out_bad:
1235 	while (!list_empty(head)) {
1236 		req = nfs_list_entry(head->next);
1237 		nfs_list_remove_request(req);
1238 		nfs_mark_request_commit(req);
1239 		dec_zone_page_state(req->wb_page, NR_UNSTABLE_NFS);
1240 		nfs_clear_page_writeback(req);
1241 	}
1242 	return -ENOMEM;
1243 }
1244 
1245 /*
1246  * COMMIT call returned
1247  */
1248 static void nfs_commit_done(struct rpc_task *task, void *calldata)
1249 {
1250 	struct nfs_write_data	*data = calldata;
1251 	struct nfs_page		*req;
1252 
1253         dprintk("NFS: %5u nfs_commit_done (status %d)\n",
1254                                 task->tk_pid, task->tk_status);
1255 
1256 	/* Call the NFS version-specific code */
1257 	if (NFS_PROTO(data->inode)->commit_done(task, data) != 0)
1258 		return;
1259 
1260 	while (!list_empty(&data->pages)) {
1261 		req = nfs_list_entry(data->pages.next);
1262 		nfs_list_remove_request(req);
1263 		dec_zone_page_state(req->wb_page, NR_UNSTABLE_NFS);
1264 
1265 		dprintk("NFS: commit (%s/%Ld %d@%Ld)",
1266 			req->wb_context->dentry->d_inode->i_sb->s_id,
1267 			(long long)NFS_FILEID(req->wb_context->dentry->d_inode),
1268 			req->wb_bytes,
1269 			(long long)req_offset(req));
1270 		if (task->tk_status < 0) {
1271 			req->wb_context->error = task->tk_status;
1272 			nfs_inode_remove_request(req);
1273 			dprintk(", error = %d\n", task->tk_status);
1274 			goto next;
1275 		}
1276 
1277 		/* Okay, COMMIT succeeded, apparently. Check the verifier
1278 		 * returned by the server against all stored verfs. */
1279 		if (!memcmp(req->wb_verf.verifier, data->verf.verifier, sizeof(data->verf.verifier))) {
1280 			/* We have a match */
1281 			nfs_inode_remove_request(req);
1282 			dprintk(" OK\n");
1283 			goto next;
1284 		}
1285 		/* We have a mismatch. Write the page again */
1286 		dprintk(" mismatch\n");
1287 		nfs_redirty_request(req);
1288 	next:
1289 		nfs_clear_page_writeback(req);
1290 	}
1291 }
1292 
1293 static const struct rpc_call_ops nfs_commit_ops = {
1294 	.rpc_call_done = nfs_commit_done,
1295 	.rpc_release = nfs_commit_release,
1296 };
1297 #else
1298 static inline int nfs_commit_list(struct inode *inode, struct list_head *head, int how)
1299 {
1300 	return 0;
1301 }
1302 #endif
1303 
1304 static long nfs_flush_mapping(struct address_space *mapping, struct writeback_control *wbc, int how)
1305 {
1306 	struct nfs_inode *nfsi = NFS_I(mapping->host);
1307 	LIST_HEAD(head);
1308 	long res;
1309 
1310 	spin_lock(&nfsi->req_lock);
1311 	res = nfs_scan_dirty(mapping, wbc, &head);
1312 	spin_unlock(&nfsi->req_lock);
1313 	if (res) {
1314 		int error = nfs_flush_list(mapping->host, &head, res, how);
1315 		if (error < 0)
1316 			return error;
1317 	}
1318 	return res;
1319 }
1320 
1321 #if defined(CONFIG_NFS_V3) || defined(CONFIG_NFS_V4)
1322 int nfs_commit_inode(struct inode *inode, int how)
1323 {
1324 	struct nfs_inode *nfsi = NFS_I(inode);
1325 	LIST_HEAD(head);
1326 	int res;
1327 
1328 	spin_lock(&nfsi->req_lock);
1329 	res = nfs_scan_commit(inode, &head, 0, 0);
1330 	spin_unlock(&nfsi->req_lock);
1331 	if (res) {
1332 		int error = nfs_commit_list(inode, &head, how);
1333 		if (error < 0)
1334 			return error;
1335 	}
1336 	return res;
1337 }
1338 #endif
1339 
1340 long nfs_sync_mapping_wait(struct address_space *mapping, struct writeback_control *wbc, int how)
1341 {
1342 	struct inode *inode = mapping->host;
1343 	struct nfs_inode *nfsi = NFS_I(inode);
1344 	unsigned long idx_start, idx_end;
1345 	unsigned int npages = 0;
1346 	LIST_HEAD(head);
1347 	int nocommit = how & FLUSH_NOCOMMIT;
1348 	long pages, ret;
1349 
1350 	/* FIXME */
1351 	if (wbc->range_cyclic)
1352 		idx_start = 0;
1353 	else {
1354 		idx_start = wbc->range_start >> PAGE_CACHE_SHIFT;
1355 		idx_end = wbc->range_end >> PAGE_CACHE_SHIFT;
1356 		if (idx_end > idx_start) {
1357 			unsigned long l_npages = 1 + idx_end - idx_start;
1358 			npages = l_npages;
1359 			if (sizeof(npages) != sizeof(l_npages) &&
1360 					(unsigned long)npages != l_npages)
1361 				npages = 0;
1362 		}
1363 	}
1364 	how &= ~FLUSH_NOCOMMIT;
1365 	spin_lock(&nfsi->req_lock);
1366 	do {
1367 		wbc->pages_skipped = 0;
1368 		ret = nfs_wait_on_requests_locked(inode, idx_start, npages);
1369 		if (ret != 0)
1370 			continue;
1371 		pages = nfs_scan_dirty(mapping, wbc, &head);
1372 		if (pages != 0) {
1373 			spin_unlock(&nfsi->req_lock);
1374 			if (how & FLUSH_INVALIDATE) {
1375 				nfs_cancel_dirty_list(&head);
1376 				ret = pages;
1377 			} else
1378 				ret = nfs_flush_list(inode, &head, pages, how);
1379 			spin_lock(&nfsi->req_lock);
1380 			continue;
1381 		}
1382 		if (wbc->pages_skipped != 0)
1383 			continue;
1384 		if (nocommit)
1385 			break;
1386 		pages = nfs_scan_commit(inode, &head, idx_start, npages);
1387 		if (pages == 0) {
1388 			if (wbc->pages_skipped != 0)
1389 				continue;
1390 			break;
1391 		}
1392 		if (how & FLUSH_INVALIDATE) {
1393 			spin_unlock(&nfsi->req_lock);
1394 			nfs_cancel_commit_list(&head);
1395 			ret = pages;
1396 			spin_lock(&nfsi->req_lock);
1397 			continue;
1398 		}
1399 		pages += nfs_scan_commit(inode, &head, 0, 0);
1400 		spin_unlock(&nfsi->req_lock);
1401 		ret = nfs_commit_list(inode, &head, how);
1402 		spin_lock(&nfsi->req_lock);
1403 	} while (ret >= 0);
1404 	spin_unlock(&nfsi->req_lock);
1405 	return ret;
1406 }
1407 
1408 /*
1409  * flush the inode to disk.
1410  */
1411 int nfs_wb_all(struct inode *inode)
1412 {
1413 	struct address_space *mapping = inode->i_mapping;
1414 	struct writeback_control wbc = {
1415 		.bdi = mapping->backing_dev_info,
1416 		.sync_mode = WB_SYNC_ALL,
1417 		.nr_to_write = LONG_MAX,
1418 		.for_writepages = 1,
1419 		.range_cyclic = 1,
1420 	};
1421 	int ret;
1422 
1423 	ret = generic_writepages(mapping, &wbc);
1424 	if (ret < 0)
1425 		goto out;
1426 	ret = nfs_sync_mapping_wait(mapping, &wbc, 0);
1427 	if (ret >= 0)
1428 		return 0;
1429 out:
1430 	__mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
1431 	return ret;
1432 }
1433 
1434 int nfs_sync_mapping_range(struct address_space *mapping, loff_t range_start, loff_t range_end, int how)
1435 {
1436 	struct writeback_control wbc = {
1437 		.bdi = mapping->backing_dev_info,
1438 		.sync_mode = WB_SYNC_ALL,
1439 		.nr_to_write = LONG_MAX,
1440 		.range_start = range_start,
1441 		.range_end = range_end,
1442 		.for_writepages = 1,
1443 	};
1444 	int ret;
1445 
1446 	if (!(how & FLUSH_NOWRITEPAGE)) {
1447 		ret = generic_writepages(mapping, &wbc);
1448 		if (ret < 0)
1449 			goto out;
1450 	}
1451 	ret = nfs_sync_mapping_wait(mapping, &wbc, how);
1452 	if (ret >= 0)
1453 		return 0;
1454 out:
1455 	__mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
1456 	return ret;
1457 }
1458 
1459 int nfs_wb_page_priority(struct inode *inode, struct page *page, int how)
1460 {
1461 	loff_t range_start = page_offset(page);
1462 	loff_t range_end = range_start + (loff_t)(PAGE_CACHE_SIZE - 1);
1463 	struct writeback_control wbc = {
1464 		.bdi = page->mapping->backing_dev_info,
1465 		.sync_mode = WB_SYNC_ALL,
1466 		.nr_to_write = LONG_MAX,
1467 		.range_start = range_start,
1468 		.range_end = range_end,
1469 	};
1470 	int ret;
1471 
1472 	BUG_ON(!PageLocked(page));
1473 	if (!(how & FLUSH_NOWRITEPAGE) && clear_page_dirty_for_io(page)) {
1474 		ret = nfs_writepage_locked(page, &wbc);
1475 		if (ret < 0)
1476 			goto out;
1477 	}
1478 	if (!PagePrivate(page))
1479 		return 0;
1480 	ret = nfs_sync_mapping_wait(page->mapping, &wbc, how);
1481 	if (ret >= 0)
1482 		return 0;
1483 out:
1484 	__mark_inode_dirty(inode, I_DIRTY_PAGES);
1485 	return ret;
1486 }
1487 
1488 /*
1489  * Write back all requests on one page - we do this before reading it.
1490  */
1491 int nfs_wb_page(struct inode *inode, struct page* page)
1492 {
1493 	return nfs_wb_page_priority(inode, page, FLUSH_STABLE);
1494 }
1495 
1496 int nfs_set_page_dirty(struct page *page)
1497 {
1498 	struct nfs_page *req;
1499 
1500 	req = nfs_page_find_request(page);
1501 	if (req != NULL) {
1502 		/* Mark any existing write requests for flushing */
1503 		set_bit(PG_NEED_FLUSH, &req->wb_flags);
1504 		nfs_release_request(req);
1505 	}
1506 	return __set_page_dirty_nobuffers(page);
1507 }
1508 
1509 
1510 int __init nfs_init_writepagecache(void)
1511 {
1512 	nfs_wdata_cachep = kmem_cache_create("nfs_write_data",
1513 					     sizeof(struct nfs_write_data),
1514 					     0, SLAB_HWCACHE_ALIGN,
1515 					     NULL, NULL);
1516 	if (nfs_wdata_cachep == NULL)
1517 		return -ENOMEM;
1518 
1519 	nfs_wdata_mempool = mempool_create_slab_pool(MIN_POOL_WRITE,
1520 						     nfs_wdata_cachep);
1521 	if (nfs_wdata_mempool == NULL)
1522 		return -ENOMEM;
1523 
1524 	nfs_commit_mempool = mempool_create_slab_pool(MIN_POOL_COMMIT,
1525 						      nfs_wdata_cachep);
1526 	if (nfs_commit_mempool == NULL)
1527 		return -ENOMEM;
1528 
1529 	/*
1530 	 * NFS congestion size, scale with available memory.
1531 	 *
1532 	 *  64MB:    8192k
1533 	 * 128MB:   11585k
1534 	 * 256MB:   16384k
1535 	 * 512MB:   23170k
1536 	 *   1GB:   32768k
1537 	 *   2GB:   46340k
1538 	 *   4GB:   65536k
1539 	 *   8GB:   92681k
1540 	 *  16GB:  131072k
1541 	 *
1542 	 * This allows larger machines to have larger/more transfers.
1543 	 * Limit the default to 256M
1544 	 */
1545 	nfs_congestion_kb = (16*int_sqrt(totalram_pages)) << (PAGE_SHIFT-10);
1546 	if (nfs_congestion_kb > 256*1024)
1547 		nfs_congestion_kb = 256*1024;
1548 
1549 	return 0;
1550 }
1551 
1552 void nfs_destroy_writepagecache(void)
1553 {
1554 	mempool_destroy(nfs_commit_mempool);
1555 	mempool_destroy(nfs_wdata_mempool);
1556 	kmem_cache_destroy(nfs_wdata_cachep);
1557 }
1558 
1559