xref: /linux/fs/nfs/write.c (revision b43ab901d671e3e3cad425ea5e9a3c74e266dcdd)
1 /*
2  * linux/fs/nfs/write.c
3  *
4  * Write file data over NFS.
5  *
6  * Copyright (C) 1996, 1997, Olaf Kirch <okir@monad.swb.de>
7  */
8 
9 #include <linux/types.h>
10 #include <linux/slab.h>
11 #include <linux/mm.h>
12 #include <linux/pagemap.h>
13 #include <linux/file.h>
14 #include <linux/writeback.h>
15 #include <linux/swap.h>
16 #include <linux/migrate.h>
17 
18 #include <linux/sunrpc/clnt.h>
19 #include <linux/nfs_fs.h>
20 #include <linux/nfs_mount.h>
21 #include <linux/nfs_page.h>
22 #include <linux/backing-dev.h>
23 #include <linux/export.h>
24 
25 #include <asm/uaccess.h>
26 
27 #include "delegation.h"
28 #include "internal.h"
29 #include "iostat.h"
30 #include "nfs4_fs.h"
31 #include "fscache.h"
32 #include "pnfs.h"
33 
34 #define NFSDBG_FACILITY		NFSDBG_PAGECACHE
35 
36 #define MIN_POOL_WRITE		(32)
37 #define MIN_POOL_COMMIT		(4)
38 
39 /*
40  * Local function declarations
41  */
42 static void nfs_pageio_init_write(struct nfs_pageio_descriptor *desc,
43 				  struct inode *inode, int ioflags);
44 static void nfs_redirty_request(struct nfs_page *req);
45 static const struct rpc_call_ops nfs_write_partial_ops;
46 static const struct rpc_call_ops nfs_write_full_ops;
47 static const struct rpc_call_ops nfs_commit_ops;
48 
49 static struct kmem_cache *nfs_wdata_cachep;
50 static mempool_t *nfs_wdata_mempool;
51 static mempool_t *nfs_commit_mempool;
52 
53 struct nfs_write_data *nfs_commitdata_alloc(void)
54 {
55 	struct nfs_write_data *p = mempool_alloc(nfs_commit_mempool, GFP_NOFS);
56 
57 	if (p) {
58 		memset(p, 0, sizeof(*p));
59 		INIT_LIST_HEAD(&p->pages);
60 	}
61 	return p;
62 }
63 EXPORT_SYMBOL_GPL(nfs_commitdata_alloc);
64 
65 void nfs_commit_free(struct nfs_write_data *p)
66 {
67 	if (p && (p->pagevec != &p->page_array[0]))
68 		kfree(p->pagevec);
69 	mempool_free(p, nfs_commit_mempool);
70 }
71 EXPORT_SYMBOL_GPL(nfs_commit_free);
72 
73 struct nfs_write_data *nfs_writedata_alloc(unsigned int pagecount)
74 {
75 	struct nfs_write_data *p = mempool_alloc(nfs_wdata_mempool, GFP_NOFS);
76 
77 	if (p) {
78 		memset(p, 0, sizeof(*p));
79 		INIT_LIST_HEAD(&p->pages);
80 		p->npages = pagecount;
81 		if (pagecount <= ARRAY_SIZE(p->page_array))
82 			p->pagevec = p->page_array;
83 		else {
84 			p->pagevec = kcalloc(pagecount, sizeof(struct page *), GFP_NOFS);
85 			if (!p->pagevec) {
86 				mempool_free(p, nfs_wdata_mempool);
87 				p = NULL;
88 			}
89 		}
90 	}
91 	return p;
92 }
93 
94 void nfs_writedata_free(struct nfs_write_data *p)
95 {
96 	if (p && (p->pagevec != &p->page_array[0]))
97 		kfree(p->pagevec);
98 	mempool_free(p, nfs_wdata_mempool);
99 }
100 
101 void nfs_writedata_release(struct nfs_write_data *wdata)
102 {
103 	put_lseg(wdata->lseg);
104 	put_nfs_open_context(wdata->args.context);
105 	nfs_writedata_free(wdata);
106 }
107 
108 static void nfs_context_set_write_error(struct nfs_open_context *ctx, int error)
109 {
110 	ctx->error = error;
111 	smp_wmb();
112 	set_bit(NFS_CONTEXT_ERROR_WRITE, &ctx->flags);
113 }
114 
115 static struct nfs_page *nfs_page_find_request_locked(struct page *page)
116 {
117 	struct nfs_page *req = NULL;
118 
119 	if (PagePrivate(page)) {
120 		req = (struct nfs_page *)page_private(page);
121 		if (req != NULL)
122 			kref_get(&req->wb_kref);
123 	}
124 	return req;
125 }
126 
127 static struct nfs_page *nfs_page_find_request(struct page *page)
128 {
129 	struct inode *inode = page->mapping->host;
130 	struct nfs_page *req = NULL;
131 
132 	spin_lock(&inode->i_lock);
133 	req = nfs_page_find_request_locked(page);
134 	spin_unlock(&inode->i_lock);
135 	return req;
136 }
137 
138 /* Adjust the file length if we're writing beyond the end */
139 static void nfs_grow_file(struct page *page, unsigned int offset, unsigned int count)
140 {
141 	struct inode *inode = page->mapping->host;
142 	loff_t end, i_size;
143 	pgoff_t end_index;
144 
145 	spin_lock(&inode->i_lock);
146 	i_size = i_size_read(inode);
147 	end_index = (i_size - 1) >> PAGE_CACHE_SHIFT;
148 	if (i_size > 0 && page->index < end_index)
149 		goto out;
150 	end = ((loff_t)page->index << PAGE_CACHE_SHIFT) + ((loff_t)offset+count);
151 	if (i_size >= end)
152 		goto out;
153 	i_size_write(inode, end);
154 	nfs_inc_stats(inode, NFSIOS_EXTENDWRITE);
155 out:
156 	spin_unlock(&inode->i_lock);
157 }
158 
159 /* A writeback failed: mark the page as bad, and invalidate the page cache */
160 static void nfs_set_pageerror(struct page *page)
161 {
162 	SetPageError(page);
163 	nfs_zap_mapping(page->mapping->host, page->mapping);
164 }
165 
166 /* We can set the PG_uptodate flag if we see that a write request
167  * covers the full page.
168  */
169 static void nfs_mark_uptodate(struct page *page, unsigned int base, unsigned int count)
170 {
171 	if (PageUptodate(page))
172 		return;
173 	if (base != 0)
174 		return;
175 	if (count != nfs_page_length(page))
176 		return;
177 	SetPageUptodate(page);
178 }
179 
180 static int wb_priority(struct writeback_control *wbc)
181 {
182 	if (wbc->for_reclaim)
183 		return FLUSH_HIGHPRI | FLUSH_STABLE;
184 	if (wbc->for_kupdate || wbc->for_background)
185 		return FLUSH_LOWPRI | FLUSH_COND_STABLE;
186 	return FLUSH_COND_STABLE;
187 }
188 
189 /*
190  * NFS congestion control
191  */
192 
193 int nfs_congestion_kb;
194 
195 #define NFS_CONGESTION_ON_THRESH 	(nfs_congestion_kb >> (PAGE_SHIFT-10))
196 #define NFS_CONGESTION_OFF_THRESH	\
197 	(NFS_CONGESTION_ON_THRESH - (NFS_CONGESTION_ON_THRESH >> 2))
198 
199 static int nfs_set_page_writeback(struct page *page)
200 {
201 	int ret = test_set_page_writeback(page);
202 
203 	if (!ret) {
204 		struct inode *inode = page->mapping->host;
205 		struct nfs_server *nfss = NFS_SERVER(inode);
206 
207 		page_cache_get(page);
208 		if (atomic_long_inc_return(&nfss->writeback) >
209 				NFS_CONGESTION_ON_THRESH) {
210 			set_bdi_congested(&nfss->backing_dev_info,
211 						BLK_RW_ASYNC);
212 		}
213 	}
214 	return ret;
215 }
216 
217 static void nfs_end_page_writeback(struct page *page)
218 {
219 	struct inode *inode = page->mapping->host;
220 	struct nfs_server *nfss = NFS_SERVER(inode);
221 
222 	end_page_writeback(page);
223 	page_cache_release(page);
224 	if (atomic_long_dec_return(&nfss->writeback) < NFS_CONGESTION_OFF_THRESH)
225 		clear_bdi_congested(&nfss->backing_dev_info, BLK_RW_ASYNC);
226 }
227 
228 static struct nfs_page *nfs_find_and_lock_request(struct page *page, bool nonblock)
229 {
230 	struct inode *inode = page->mapping->host;
231 	struct nfs_page *req;
232 	int ret;
233 
234 	spin_lock(&inode->i_lock);
235 	for (;;) {
236 		req = nfs_page_find_request_locked(page);
237 		if (req == NULL)
238 			break;
239 		if (nfs_set_page_tag_locked(req))
240 			break;
241 		/* Note: If we hold the page lock, as is the case in nfs_writepage,
242 		 *	 then the call to nfs_set_page_tag_locked() will always
243 		 *	 succeed provided that someone hasn't already marked the
244 		 *	 request as dirty (in which case we don't care).
245 		 */
246 		spin_unlock(&inode->i_lock);
247 		if (!nonblock)
248 			ret = nfs_wait_on_request(req);
249 		else
250 			ret = -EAGAIN;
251 		nfs_release_request(req);
252 		if (ret != 0)
253 			return ERR_PTR(ret);
254 		spin_lock(&inode->i_lock);
255 	}
256 	spin_unlock(&inode->i_lock);
257 	return req;
258 }
259 
260 /*
261  * Find an associated nfs write request, and prepare to flush it out
262  * May return an error if the user signalled nfs_wait_on_request().
263  */
264 static int nfs_page_async_flush(struct nfs_pageio_descriptor *pgio,
265 				struct page *page, bool nonblock)
266 {
267 	struct nfs_page *req;
268 	int ret = 0;
269 
270 	req = nfs_find_and_lock_request(page, nonblock);
271 	if (!req)
272 		goto out;
273 	ret = PTR_ERR(req);
274 	if (IS_ERR(req))
275 		goto out;
276 
277 	ret = nfs_set_page_writeback(page);
278 	BUG_ON(ret != 0);
279 	BUG_ON(test_bit(PG_CLEAN, &req->wb_flags));
280 
281 	if (!nfs_pageio_add_request(pgio, req)) {
282 		nfs_redirty_request(req);
283 		ret = pgio->pg_error;
284 	}
285 out:
286 	return ret;
287 }
288 
289 static int nfs_do_writepage(struct page *page, struct writeback_control *wbc, struct nfs_pageio_descriptor *pgio)
290 {
291 	struct inode *inode = page->mapping->host;
292 	int ret;
293 
294 	nfs_inc_stats(inode, NFSIOS_VFSWRITEPAGE);
295 	nfs_add_stats(inode, NFSIOS_WRITEPAGES, 1);
296 
297 	nfs_pageio_cond_complete(pgio, page->index);
298 	ret = nfs_page_async_flush(pgio, page, wbc->sync_mode == WB_SYNC_NONE);
299 	if (ret == -EAGAIN) {
300 		redirty_page_for_writepage(wbc, page);
301 		ret = 0;
302 	}
303 	return ret;
304 }
305 
306 /*
307  * Write an mmapped page to the server.
308  */
309 static int nfs_writepage_locked(struct page *page, struct writeback_control *wbc)
310 {
311 	struct nfs_pageio_descriptor pgio;
312 	int err;
313 
314 	nfs_pageio_init_write(&pgio, page->mapping->host, wb_priority(wbc));
315 	err = nfs_do_writepage(page, wbc, &pgio);
316 	nfs_pageio_complete(&pgio);
317 	if (err < 0)
318 		return err;
319 	if (pgio.pg_error < 0)
320 		return pgio.pg_error;
321 	return 0;
322 }
323 
324 int nfs_writepage(struct page *page, struct writeback_control *wbc)
325 {
326 	int ret;
327 
328 	ret = nfs_writepage_locked(page, wbc);
329 	unlock_page(page);
330 	return ret;
331 }
332 
333 static int nfs_writepages_callback(struct page *page, struct writeback_control *wbc, void *data)
334 {
335 	int ret;
336 
337 	ret = nfs_do_writepage(page, wbc, data);
338 	unlock_page(page);
339 	return ret;
340 }
341 
342 int nfs_writepages(struct address_space *mapping, struct writeback_control *wbc)
343 {
344 	struct inode *inode = mapping->host;
345 	unsigned long *bitlock = &NFS_I(inode)->flags;
346 	struct nfs_pageio_descriptor pgio;
347 	int err;
348 
349 	/* Stop dirtying of new pages while we sync */
350 	err = wait_on_bit_lock(bitlock, NFS_INO_FLUSHING,
351 			nfs_wait_bit_killable, TASK_KILLABLE);
352 	if (err)
353 		goto out_err;
354 
355 	nfs_inc_stats(inode, NFSIOS_VFSWRITEPAGES);
356 
357 	nfs_pageio_init_write(&pgio, inode, wb_priority(wbc));
358 	err = write_cache_pages(mapping, wbc, nfs_writepages_callback, &pgio);
359 	nfs_pageio_complete(&pgio);
360 
361 	clear_bit_unlock(NFS_INO_FLUSHING, bitlock);
362 	smp_mb__after_clear_bit();
363 	wake_up_bit(bitlock, NFS_INO_FLUSHING);
364 
365 	if (err < 0)
366 		goto out_err;
367 	err = pgio.pg_error;
368 	if (err < 0)
369 		goto out_err;
370 	return 0;
371 out_err:
372 	return err;
373 }
374 
375 /*
376  * Insert a write request into an inode
377  */
378 static int nfs_inode_add_request(struct inode *inode, struct nfs_page *req)
379 {
380 	struct nfs_inode *nfsi = NFS_I(inode);
381 	int error;
382 
383 	error = radix_tree_preload(GFP_NOFS);
384 	if (error != 0)
385 		goto out;
386 
387 	/* Lock the request! */
388 	nfs_lock_request_dontget(req);
389 
390 	spin_lock(&inode->i_lock);
391 	error = radix_tree_insert(&nfsi->nfs_page_tree, req->wb_index, req);
392 	BUG_ON(error);
393 	if (!nfsi->npages && nfs_have_delegation(inode, FMODE_WRITE))
394 		inode->i_version++;
395 	set_bit(PG_MAPPED, &req->wb_flags);
396 	SetPagePrivate(req->wb_page);
397 	set_page_private(req->wb_page, (unsigned long)req);
398 	nfsi->npages++;
399 	kref_get(&req->wb_kref);
400 	radix_tree_tag_set(&nfsi->nfs_page_tree, req->wb_index,
401 				NFS_PAGE_TAG_LOCKED);
402 	spin_unlock(&inode->i_lock);
403 	radix_tree_preload_end();
404 out:
405 	return error;
406 }
407 
408 /*
409  * Remove a write request from an inode
410  */
411 static void nfs_inode_remove_request(struct nfs_page *req)
412 {
413 	struct inode *inode = req->wb_context->dentry->d_inode;
414 	struct nfs_inode *nfsi = NFS_I(inode);
415 
416 	BUG_ON (!NFS_WBACK_BUSY(req));
417 
418 	spin_lock(&inode->i_lock);
419 	set_page_private(req->wb_page, 0);
420 	ClearPagePrivate(req->wb_page);
421 	clear_bit(PG_MAPPED, &req->wb_flags);
422 	radix_tree_delete(&nfsi->nfs_page_tree, req->wb_index);
423 	nfsi->npages--;
424 	spin_unlock(&inode->i_lock);
425 	nfs_release_request(req);
426 }
427 
428 static void
429 nfs_mark_request_dirty(struct nfs_page *req)
430 {
431 	__set_page_dirty_nobuffers(req->wb_page);
432 }
433 
434 #if defined(CONFIG_NFS_V3) || defined(CONFIG_NFS_V4)
435 /*
436  * Add a request to the inode's commit list.
437  */
438 static void
439 nfs_mark_request_commit(struct nfs_page *req, struct pnfs_layout_segment *lseg)
440 {
441 	struct inode *inode = req->wb_context->dentry->d_inode;
442 	struct nfs_inode *nfsi = NFS_I(inode);
443 
444 	spin_lock(&inode->i_lock);
445 	set_bit(PG_CLEAN, &(req)->wb_flags);
446 	radix_tree_tag_set(&nfsi->nfs_page_tree,
447 			req->wb_index,
448 			NFS_PAGE_TAG_COMMIT);
449 	nfsi->ncommit++;
450 	spin_unlock(&inode->i_lock);
451 	pnfs_mark_request_commit(req, lseg);
452 	inc_zone_page_state(req->wb_page, NR_UNSTABLE_NFS);
453 	inc_bdi_stat(req->wb_page->mapping->backing_dev_info, BDI_RECLAIMABLE);
454 	__mark_inode_dirty(inode, I_DIRTY_DATASYNC);
455 }
456 
457 static int
458 nfs_clear_request_commit(struct nfs_page *req)
459 {
460 	struct page *page = req->wb_page;
461 
462 	if (test_and_clear_bit(PG_CLEAN, &(req)->wb_flags)) {
463 		dec_zone_page_state(page, NR_UNSTABLE_NFS);
464 		dec_bdi_stat(page->mapping->backing_dev_info, BDI_RECLAIMABLE);
465 		return 1;
466 	}
467 	return 0;
468 }
469 
470 static inline
471 int nfs_write_need_commit(struct nfs_write_data *data)
472 {
473 	if (data->verf.committed == NFS_DATA_SYNC)
474 		return data->lseg == NULL;
475 	else
476 		return data->verf.committed != NFS_FILE_SYNC;
477 }
478 
479 static inline
480 int nfs_reschedule_unstable_write(struct nfs_page *req,
481 				  struct nfs_write_data *data)
482 {
483 	if (test_and_clear_bit(PG_NEED_COMMIT, &req->wb_flags)) {
484 		nfs_mark_request_commit(req, data->lseg);
485 		return 1;
486 	}
487 	if (test_and_clear_bit(PG_NEED_RESCHED, &req->wb_flags)) {
488 		nfs_mark_request_dirty(req);
489 		return 1;
490 	}
491 	return 0;
492 }
493 #else
494 static inline void
495 nfs_mark_request_commit(struct nfs_page *req, struct pnfs_layout_segment *lseg)
496 {
497 }
498 
499 static inline int
500 nfs_clear_request_commit(struct nfs_page *req)
501 {
502 	return 0;
503 }
504 
505 static inline
506 int nfs_write_need_commit(struct nfs_write_data *data)
507 {
508 	return 0;
509 }
510 
511 static inline
512 int nfs_reschedule_unstable_write(struct nfs_page *req,
513 				  struct nfs_write_data *data)
514 {
515 	return 0;
516 }
517 #endif
518 
519 #if defined(CONFIG_NFS_V3) || defined(CONFIG_NFS_V4)
520 static int
521 nfs_need_commit(struct nfs_inode *nfsi)
522 {
523 	return radix_tree_tagged(&nfsi->nfs_page_tree, NFS_PAGE_TAG_COMMIT);
524 }
525 
526 /*
527  * nfs_scan_commit - Scan an inode for commit requests
528  * @inode: NFS inode to scan
529  * @dst: destination list
530  * @idx_start: lower bound of page->index to scan.
531  * @npages: idx_start + npages sets the upper bound to scan.
532  *
533  * Moves requests from the inode's 'commit' request list.
534  * The requests are *not* checked to ensure that they form a contiguous set.
535  */
536 static int
537 nfs_scan_commit(struct inode *inode, struct list_head *dst, pgoff_t idx_start, unsigned int npages)
538 {
539 	struct nfs_inode *nfsi = NFS_I(inode);
540 	int ret;
541 
542 	if (!nfs_need_commit(nfsi))
543 		return 0;
544 
545 	spin_lock(&inode->i_lock);
546 	ret = nfs_scan_list(nfsi, dst, idx_start, npages, NFS_PAGE_TAG_COMMIT);
547 	if (ret > 0)
548 		nfsi->ncommit -= ret;
549 	spin_unlock(&inode->i_lock);
550 
551 	if (nfs_need_commit(NFS_I(inode)))
552 		__mark_inode_dirty(inode, I_DIRTY_DATASYNC);
553 
554 	return ret;
555 }
556 #else
557 static inline int nfs_need_commit(struct nfs_inode *nfsi)
558 {
559 	return 0;
560 }
561 
562 static inline int nfs_scan_commit(struct inode *inode, struct list_head *dst, pgoff_t idx_start, unsigned int npages)
563 {
564 	return 0;
565 }
566 #endif
567 
568 /*
569  * Search for an existing write request, and attempt to update
570  * it to reflect a new dirty region on a given page.
571  *
572  * If the attempt fails, then the existing request is flushed out
573  * to disk.
574  */
575 static struct nfs_page *nfs_try_to_update_request(struct inode *inode,
576 		struct page *page,
577 		unsigned int offset,
578 		unsigned int bytes)
579 {
580 	struct nfs_page *req;
581 	unsigned int rqend;
582 	unsigned int end;
583 	int error;
584 
585 	if (!PagePrivate(page))
586 		return NULL;
587 
588 	end = offset + bytes;
589 	spin_lock(&inode->i_lock);
590 
591 	for (;;) {
592 		req = nfs_page_find_request_locked(page);
593 		if (req == NULL)
594 			goto out_unlock;
595 
596 		rqend = req->wb_offset + req->wb_bytes;
597 		/*
598 		 * Tell the caller to flush out the request if
599 		 * the offsets are non-contiguous.
600 		 * Note: nfs_flush_incompatible() will already
601 		 * have flushed out requests having wrong owners.
602 		 */
603 		if (offset > rqend
604 		    || end < req->wb_offset)
605 			goto out_flushme;
606 
607 		if (nfs_set_page_tag_locked(req))
608 			break;
609 
610 		/* The request is locked, so wait and then retry */
611 		spin_unlock(&inode->i_lock);
612 		error = nfs_wait_on_request(req);
613 		nfs_release_request(req);
614 		if (error != 0)
615 			goto out_err;
616 		spin_lock(&inode->i_lock);
617 	}
618 
619 	if (nfs_clear_request_commit(req) &&
620 	    radix_tree_tag_clear(&NFS_I(inode)->nfs_page_tree,
621 				 req->wb_index, NFS_PAGE_TAG_COMMIT) != NULL) {
622 		NFS_I(inode)->ncommit--;
623 		pnfs_clear_request_commit(req);
624 	}
625 
626 	/* Okay, the request matches. Update the region */
627 	if (offset < req->wb_offset) {
628 		req->wb_offset = offset;
629 		req->wb_pgbase = offset;
630 	}
631 	if (end > rqend)
632 		req->wb_bytes = end - req->wb_offset;
633 	else
634 		req->wb_bytes = rqend - req->wb_offset;
635 out_unlock:
636 	spin_unlock(&inode->i_lock);
637 	return req;
638 out_flushme:
639 	spin_unlock(&inode->i_lock);
640 	nfs_release_request(req);
641 	error = nfs_wb_page(inode, page);
642 out_err:
643 	return ERR_PTR(error);
644 }
645 
646 /*
647  * Try to update an existing write request, or create one if there is none.
648  *
649  * Note: Should always be called with the Page Lock held to prevent races
650  * if we have to add a new request. Also assumes that the caller has
651  * already called nfs_flush_incompatible() if necessary.
652  */
653 static struct nfs_page * nfs_setup_write_request(struct nfs_open_context* ctx,
654 		struct page *page, unsigned int offset, unsigned int bytes)
655 {
656 	struct inode *inode = page->mapping->host;
657 	struct nfs_page	*req;
658 	int error;
659 
660 	req = nfs_try_to_update_request(inode, page, offset, bytes);
661 	if (req != NULL)
662 		goto out;
663 	req = nfs_create_request(ctx, inode, page, offset, bytes);
664 	if (IS_ERR(req))
665 		goto out;
666 	error = nfs_inode_add_request(inode, req);
667 	if (error != 0) {
668 		nfs_release_request(req);
669 		req = ERR_PTR(error);
670 	}
671 out:
672 	return req;
673 }
674 
675 static int nfs_writepage_setup(struct nfs_open_context *ctx, struct page *page,
676 		unsigned int offset, unsigned int count)
677 {
678 	struct nfs_page	*req;
679 
680 	req = nfs_setup_write_request(ctx, page, offset, count);
681 	if (IS_ERR(req))
682 		return PTR_ERR(req);
683 	/* Update file length */
684 	nfs_grow_file(page, offset, count);
685 	nfs_mark_uptodate(page, req->wb_pgbase, req->wb_bytes);
686 	nfs_mark_request_dirty(req);
687 	nfs_clear_page_tag_locked(req);
688 	return 0;
689 }
690 
691 int nfs_flush_incompatible(struct file *file, struct page *page)
692 {
693 	struct nfs_open_context *ctx = nfs_file_open_context(file);
694 	struct nfs_page	*req;
695 	int do_flush, status;
696 	/*
697 	 * Look for a request corresponding to this page. If there
698 	 * is one, and it belongs to another file, we flush it out
699 	 * before we try to copy anything into the page. Do this
700 	 * due to the lack of an ACCESS-type call in NFSv2.
701 	 * Also do the same if we find a request from an existing
702 	 * dropped page.
703 	 */
704 	do {
705 		req = nfs_page_find_request(page);
706 		if (req == NULL)
707 			return 0;
708 		do_flush = req->wb_page != page || req->wb_context != ctx ||
709 			req->wb_lock_context->lockowner != current->files ||
710 			req->wb_lock_context->pid != current->tgid;
711 		nfs_release_request(req);
712 		if (!do_flush)
713 			return 0;
714 		status = nfs_wb_page(page->mapping->host, page);
715 	} while (status == 0);
716 	return status;
717 }
718 
719 /*
720  * If the page cache is marked as unsafe or invalid, then we can't rely on
721  * the PageUptodate() flag. In this case, we will need to turn off
722  * write optimisations that depend on the page contents being correct.
723  */
724 static int nfs_write_pageuptodate(struct page *page, struct inode *inode)
725 {
726 	return PageUptodate(page) &&
727 		!(NFS_I(inode)->cache_validity & (NFS_INO_REVAL_PAGECACHE|NFS_INO_INVALID_DATA));
728 }
729 
730 /*
731  * Update and possibly write a cached page of an NFS file.
732  *
733  * XXX: Keep an eye on generic_file_read to make sure it doesn't do bad
734  * things with a page scheduled for an RPC call (e.g. invalidate it).
735  */
736 int nfs_updatepage(struct file *file, struct page *page,
737 		unsigned int offset, unsigned int count)
738 {
739 	struct nfs_open_context *ctx = nfs_file_open_context(file);
740 	struct inode	*inode = page->mapping->host;
741 	int		status = 0;
742 
743 	nfs_inc_stats(inode, NFSIOS_VFSUPDATEPAGE);
744 
745 	dprintk("NFS:       nfs_updatepage(%s/%s %d@%lld)\n",
746 		file->f_path.dentry->d_parent->d_name.name,
747 		file->f_path.dentry->d_name.name, count,
748 		(long long)(page_offset(page) + offset));
749 
750 	/* If we're not using byte range locks, and we know the page
751 	 * is up to date, it may be more efficient to extend the write
752 	 * to cover the entire page in order to avoid fragmentation
753 	 * inefficiencies.
754 	 */
755 	if (nfs_write_pageuptodate(page, inode) &&
756 			inode->i_flock == NULL &&
757 			!(file->f_flags & O_DSYNC)) {
758 		count = max(count + offset, nfs_page_length(page));
759 		offset = 0;
760 	}
761 
762 	status = nfs_writepage_setup(ctx, page, offset, count);
763 	if (status < 0)
764 		nfs_set_pageerror(page);
765 	else
766 		__set_page_dirty_nobuffers(page);
767 
768 	dprintk("NFS:       nfs_updatepage returns %d (isize %lld)\n",
769 			status, (long long)i_size_read(inode));
770 	return status;
771 }
772 
773 static void nfs_writepage_release(struct nfs_page *req,
774 				  struct nfs_write_data *data)
775 {
776 	struct page *page = req->wb_page;
777 
778 	if (PageError(req->wb_page) || !nfs_reschedule_unstable_write(req, data))
779 		nfs_inode_remove_request(req);
780 	nfs_clear_page_tag_locked(req);
781 	nfs_end_page_writeback(page);
782 }
783 
784 static int flush_task_priority(int how)
785 {
786 	switch (how & (FLUSH_HIGHPRI|FLUSH_LOWPRI)) {
787 		case FLUSH_HIGHPRI:
788 			return RPC_PRIORITY_HIGH;
789 		case FLUSH_LOWPRI:
790 			return RPC_PRIORITY_LOW;
791 	}
792 	return RPC_PRIORITY_NORMAL;
793 }
794 
795 int nfs_initiate_write(struct nfs_write_data *data,
796 		       struct rpc_clnt *clnt,
797 		       const struct rpc_call_ops *call_ops,
798 		       int how)
799 {
800 	struct inode *inode = data->inode;
801 	int priority = flush_task_priority(how);
802 	struct rpc_task *task;
803 	struct rpc_message msg = {
804 		.rpc_argp = &data->args,
805 		.rpc_resp = &data->res,
806 		.rpc_cred = data->cred,
807 	};
808 	struct rpc_task_setup task_setup_data = {
809 		.rpc_client = clnt,
810 		.task = &data->task,
811 		.rpc_message = &msg,
812 		.callback_ops = call_ops,
813 		.callback_data = data,
814 		.workqueue = nfsiod_workqueue,
815 		.flags = RPC_TASK_ASYNC,
816 		.priority = priority,
817 	};
818 	int ret = 0;
819 
820 	/* Set up the initial task struct.  */
821 	NFS_PROTO(inode)->write_setup(data, &msg);
822 
823 	dprintk("NFS: %5u initiated write call "
824 		"(req %s/%lld, %u bytes @ offset %llu)\n",
825 		data->task.tk_pid,
826 		inode->i_sb->s_id,
827 		(long long)NFS_FILEID(inode),
828 		data->args.count,
829 		(unsigned long long)data->args.offset);
830 
831 	task = rpc_run_task(&task_setup_data);
832 	if (IS_ERR(task)) {
833 		ret = PTR_ERR(task);
834 		goto out;
835 	}
836 	if (how & FLUSH_SYNC) {
837 		ret = rpc_wait_for_completion_task(task);
838 		if (ret == 0)
839 			ret = task->tk_status;
840 	}
841 	rpc_put_task(task);
842 out:
843 	return ret;
844 }
845 EXPORT_SYMBOL_GPL(nfs_initiate_write);
846 
847 /*
848  * Set up the argument/result storage required for the RPC call.
849  */
850 static void nfs_write_rpcsetup(struct nfs_page *req,
851 		struct nfs_write_data *data,
852 		unsigned int count, unsigned int offset,
853 		int how)
854 {
855 	struct inode *inode = req->wb_context->dentry->d_inode;
856 
857 	/* Set up the RPC argument and reply structs
858 	 * NB: take care not to mess about with data->commit et al. */
859 
860 	data->req = req;
861 	data->inode = inode = req->wb_context->dentry->d_inode;
862 	data->cred = req->wb_context->cred;
863 
864 	data->args.fh     = NFS_FH(inode);
865 	data->args.offset = req_offset(req) + offset;
866 	/* pnfs_set_layoutcommit needs this */
867 	data->mds_offset = data->args.offset;
868 	data->args.pgbase = req->wb_pgbase + offset;
869 	data->args.pages  = data->pagevec;
870 	data->args.count  = count;
871 	data->args.context = get_nfs_open_context(req->wb_context);
872 	data->args.lock_context = req->wb_lock_context;
873 	data->args.stable  = NFS_UNSTABLE;
874 	switch (how & (FLUSH_STABLE | FLUSH_COND_STABLE)) {
875 	case 0:
876 		break;
877 	case FLUSH_COND_STABLE:
878 		if (nfs_need_commit(NFS_I(inode)))
879 			break;
880 	default:
881 		data->args.stable = NFS_FILE_SYNC;
882 	}
883 
884 	data->res.fattr   = &data->fattr;
885 	data->res.count   = count;
886 	data->res.verf    = &data->verf;
887 	nfs_fattr_init(&data->fattr);
888 }
889 
890 static int nfs_do_write(struct nfs_write_data *data,
891 		const struct rpc_call_ops *call_ops,
892 		int how)
893 {
894 	struct inode *inode = data->args.context->dentry->d_inode;
895 
896 	return nfs_initiate_write(data, NFS_CLIENT(inode), call_ops, how);
897 }
898 
899 static int nfs_do_multiple_writes(struct list_head *head,
900 		const struct rpc_call_ops *call_ops,
901 		int how)
902 {
903 	struct nfs_write_data *data;
904 	int ret = 0;
905 
906 	while (!list_empty(head)) {
907 		int ret2;
908 
909 		data = list_entry(head->next, struct nfs_write_data, list);
910 		list_del_init(&data->list);
911 
912 		ret2 = nfs_do_write(data, call_ops, how);
913 		 if (ret == 0)
914 			 ret = ret2;
915 	}
916 	return ret;
917 }
918 
919 /* If a nfs_flush_* function fails, it should remove reqs from @head and
920  * call this on each, which will prepare them to be retried on next
921  * writeback using standard nfs.
922  */
923 static void nfs_redirty_request(struct nfs_page *req)
924 {
925 	struct page *page = req->wb_page;
926 
927 	nfs_mark_request_dirty(req);
928 	nfs_clear_page_tag_locked(req);
929 	nfs_end_page_writeback(page);
930 }
931 
932 /*
933  * Generate multiple small requests to write out a single
934  * contiguous dirty area on one page.
935  */
936 static int nfs_flush_multi(struct nfs_pageio_descriptor *desc, struct list_head *res)
937 {
938 	struct nfs_page *req = nfs_list_entry(desc->pg_list.next);
939 	struct page *page = req->wb_page;
940 	struct nfs_write_data *data;
941 	size_t wsize = desc->pg_bsize, nbytes;
942 	unsigned int offset;
943 	int requests = 0;
944 	int ret = 0;
945 
946 	nfs_list_remove_request(req);
947 
948 	if ((desc->pg_ioflags & FLUSH_COND_STABLE) &&
949 	    (desc->pg_moreio || NFS_I(desc->pg_inode)->ncommit ||
950 	     desc->pg_count > wsize))
951 		desc->pg_ioflags &= ~FLUSH_COND_STABLE;
952 
953 
954 	offset = 0;
955 	nbytes = desc->pg_count;
956 	do {
957 		size_t len = min(nbytes, wsize);
958 
959 		data = nfs_writedata_alloc(1);
960 		if (!data)
961 			goto out_bad;
962 		data->pagevec[0] = page;
963 		nfs_write_rpcsetup(req, data, len, offset, desc->pg_ioflags);
964 		list_add(&data->list, res);
965 		requests++;
966 		nbytes -= len;
967 		offset += len;
968 	} while (nbytes != 0);
969 	atomic_set(&req->wb_complete, requests);
970 	desc->pg_rpc_callops = &nfs_write_partial_ops;
971 	return ret;
972 
973 out_bad:
974 	while (!list_empty(res)) {
975 		data = list_entry(res->next, struct nfs_write_data, list);
976 		list_del(&data->list);
977 		nfs_writedata_free(data);
978 	}
979 	nfs_redirty_request(req);
980 	return -ENOMEM;
981 }
982 
983 /*
984  * Create an RPC task for the given write request and kick it.
985  * The page must have been locked by the caller.
986  *
987  * It may happen that the page we're passed is not marked dirty.
988  * This is the case if nfs_updatepage detects a conflicting request
989  * that has been written but not committed.
990  */
991 static int nfs_flush_one(struct nfs_pageio_descriptor *desc, struct list_head *res)
992 {
993 	struct nfs_page		*req;
994 	struct page		**pages;
995 	struct nfs_write_data	*data;
996 	struct list_head *head = &desc->pg_list;
997 	int ret = 0;
998 
999 	data = nfs_writedata_alloc(nfs_page_array_len(desc->pg_base,
1000 						      desc->pg_count));
1001 	if (!data) {
1002 		while (!list_empty(head)) {
1003 			req = nfs_list_entry(head->next);
1004 			nfs_list_remove_request(req);
1005 			nfs_redirty_request(req);
1006 		}
1007 		ret = -ENOMEM;
1008 		goto out;
1009 	}
1010 	pages = data->pagevec;
1011 	while (!list_empty(head)) {
1012 		req = nfs_list_entry(head->next);
1013 		nfs_list_remove_request(req);
1014 		nfs_list_add_request(req, &data->pages);
1015 		*pages++ = req->wb_page;
1016 	}
1017 	req = nfs_list_entry(data->pages.next);
1018 
1019 	if ((desc->pg_ioflags & FLUSH_COND_STABLE) &&
1020 	    (desc->pg_moreio || NFS_I(desc->pg_inode)->ncommit))
1021 		desc->pg_ioflags &= ~FLUSH_COND_STABLE;
1022 
1023 	/* Set up the argument struct */
1024 	nfs_write_rpcsetup(req, data, desc->pg_count, 0, desc->pg_ioflags);
1025 	list_add(&data->list, res);
1026 	desc->pg_rpc_callops = &nfs_write_full_ops;
1027 out:
1028 	return ret;
1029 }
1030 
1031 int nfs_generic_flush(struct nfs_pageio_descriptor *desc, struct list_head *head)
1032 {
1033 	if (desc->pg_bsize < PAGE_CACHE_SIZE)
1034 		return nfs_flush_multi(desc, head);
1035 	return nfs_flush_one(desc, head);
1036 }
1037 
1038 static int nfs_generic_pg_writepages(struct nfs_pageio_descriptor *desc)
1039 {
1040 	LIST_HEAD(head);
1041 	int ret;
1042 
1043 	ret = nfs_generic_flush(desc, &head);
1044 	if (ret == 0)
1045 		ret = nfs_do_multiple_writes(&head, desc->pg_rpc_callops,
1046 				desc->pg_ioflags);
1047 	return ret;
1048 }
1049 
1050 static const struct nfs_pageio_ops nfs_pageio_write_ops = {
1051 	.pg_test = nfs_generic_pg_test,
1052 	.pg_doio = nfs_generic_pg_writepages,
1053 };
1054 
1055 void nfs_pageio_init_write_mds(struct nfs_pageio_descriptor *pgio,
1056 				  struct inode *inode, int ioflags)
1057 {
1058 	nfs_pageio_init(pgio, inode, &nfs_pageio_write_ops,
1059 				NFS_SERVER(inode)->wsize, ioflags);
1060 }
1061 
1062 void nfs_pageio_reset_write_mds(struct nfs_pageio_descriptor *pgio)
1063 {
1064 	pgio->pg_ops = &nfs_pageio_write_ops;
1065 	pgio->pg_bsize = NFS_SERVER(pgio->pg_inode)->wsize;
1066 }
1067 EXPORT_SYMBOL_GPL(nfs_pageio_reset_write_mds);
1068 
1069 static void nfs_pageio_init_write(struct nfs_pageio_descriptor *pgio,
1070 				  struct inode *inode, int ioflags)
1071 {
1072 	if (!pnfs_pageio_init_write(pgio, inode, ioflags))
1073 		nfs_pageio_init_write_mds(pgio, inode, ioflags);
1074 }
1075 
1076 /*
1077  * Handle a write reply that flushed part of a page.
1078  */
1079 static void nfs_writeback_done_partial(struct rpc_task *task, void *calldata)
1080 {
1081 	struct nfs_write_data	*data = calldata;
1082 
1083 	dprintk("NFS: %5u write(%s/%lld %d@%lld)",
1084 		task->tk_pid,
1085 		data->req->wb_context->dentry->d_inode->i_sb->s_id,
1086 		(long long)
1087 		  NFS_FILEID(data->req->wb_context->dentry->d_inode),
1088 		data->req->wb_bytes, (long long)req_offset(data->req));
1089 
1090 	nfs_writeback_done(task, data);
1091 }
1092 
1093 static void nfs_writeback_release_partial(void *calldata)
1094 {
1095 	struct nfs_write_data	*data = calldata;
1096 	struct nfs_page		*req = data->req;
1097 	struct page		*page = req->wb_page;
1098 	int status = data->task.tk_status;
1099 
1100 	if (status < 0) {
1101 		nfs_set_pageerror(page);
1102 		nfs_context_set_write_error(req->wb_context, status);
1103 		dprintk(", error = %d\n", status);
1104 		goto out;
1105 	}
1106 
1107 	if (nfs_write_need_commit(data)) {
1108 		struct inode *inode = page->mapping->host;
1109 
1110 		spin_lock(&inode->i_lock);
1111 		if (test_bit(PG_NEED_RESCHED, &req->wb_flags)) {
1112 			/* Do nothing we need to resend the writes */
1113 		} else if (!test_and_set_bit(PG_NEED_COMMIT, &req->wb_flags)) {
1114 			memcpy(&req->wb_verf, &data->verf, sizeof(req->wb_verf));
1115 			dprintk(" defer commit\n");
1116 		} else if (memcmp(&req->wb_verf, &data->verf, sizeof(req->wb_verf))) {
1117 			set_bit(PG_NEED_RESCHED, &req->wb_flags);
1118 			clear_bit(PG_NEED_COMMIT, &req->wb_flags);
1119 			dprintk(" server reboot detected\n");
1120 		}
1121 		spin_unlock(&inode->i_lock);
1122 	} else
1123 		dprintk(" OK\n");
1124 
1125 out:
1126 	if (atomic_dec_and_test(&req->wb_complete))
1127 		nfs_writepage_release(req, data);
1128 	nfs_writedata_release(calldata);
1129 }
1130 
1131 #if defined(CONFIG_NFS_V4_1)
1132 void nfs_write_prepare(struct rpc_task *task, void *calldata)
1133 {
1134 	struct nfs_write_data *data = calldata;
1135 
1136 	if (nfs4_setup_sequence(NFS_SERVER(data->inode),
1137 				&data->args.seq_args,
1138 				&data->res.seq_res, 1, task))
1139 		return;
1140 	rpc_call_start(task);
1141 }
1142 #endif /* CONFIG_NFS_V4_1 */
1143 
1144 static const struct rpc_call_ops nfs_write_partial_ops = {
1145 #if defined(CONFIG_NFS_V4_1)
1146 	.rpc_call_prepare = nfs_write_prepare,
1147 #endif /* CONFIG_NFS_V4_1 */
1148 	.rpc_call_done = nfs_writeback_done_partial,
1149 	.rpc_release = nfs_writeback_release_partial,
1150 };
1151 
1152 /*
1153  * Handle a write reply that flushes a whole page.
1154  *
1155  * FIXME: There is an inherent race with invalidate_inode_pages and
1156  *	  writebacks since the page->count is kept > 1 for as long
1157  *	  as the page has a write request pending.
1158  */
1159 static void nfs_writeback_done_full(struct rpc_task *task, void *calldata)
1160 {
1161 	struct nfs_write_data	*data = calldata;
1162 
1163 	nfs_writeback_done(task, data);
1164 }
1165 
1166 static void nfs_writeback_release_full(void *calldata)
1167 {
1168 	struct nfs_write_data	*data = calldata;
1169 	int status = data->task.tk_status;
1170 
1171 	/* Update attributes as result of writeback. */
1172 	while (!list_empty(&data->pages)) {
1173 		struct nfs_page *req = nfs_list_entry(data->pages.next);
1174 		struct page *page = req->wb_page;
1175 
1176 		nfs_list_remove_request(req);
1177 
1178 		dprintk("NFS: %5u write (%s/%lld %d@%lld)",
1179 			data->task.tk_pid,
1180 			req->wb_context->dentry->d_inode->i_sb->s_id,
1181 			(long long)NFS_FILEID(req->wb_context->dentry->d_inode),
1182 			req->wb_bytes,
1183 			(long long)req_offset(req));
1184 
1185 		if (status < 0) {
1186 			nfs_set_pageerror(page);
1187 			nfs_context_set_write_error(req->wb_context, status);
1188 			dprintk(", error = %d\n", status);
1189 			goto remove_request;
1190 		}
1191 
1192 		if (nfs_write_need_commit(data)) {
1193 			memcpy(&req->wb_verf, &data->verf, sizeof(req->wb_verf));
1194 			nfs_mark_request_commit(req, data->lseg);
1195 			dprintk(" marked for commit\n");
1196 			goto next;
1197 		}
1198 		dprintk(" OK\n");
1199 remove_request:
1200 		nfs_inode_remove_request(req);
1201 	next:
1202 		nfs_clear_page_tag_locked(req);
1203 		nfs_end_page_writeback(page);
1204 	}
1205 	nfs_writedata_release(calldata);
1206 }
1207 
1208 static const struct rpc_call_ops nfs_write_full_ops = {
1209 #if defined(CONFIG_NFS_V4_1)
1210 	.rpc_call_prepare = nfs_write_prepare,
1211 #endif /* CONFIG_NFS_V4_1 */
1212 	.rpc_call_done = nfs_writeback_done_full,
1213 	.rpc_release = nfs_writeback_release_full,
1214 };
1215 
1216 
1217 /*
1218  * This function is called when the WRITE call is complete.
1219  */
1220 void nfs_writeback_done(struct rpc_task *task, struct nfs_write_data *data)
1221 {
1222 	struct nfs_writeargs	*argp = &data->args;
1223 	struct nfs_writeres	*resp = &data->res;
1224 	int status;
1225 
1226 	dprintk("NFS: %5u nfs_writeback_done (status %d)\n",
1227 		task->tk_pid, task->tk_status);
1228 
1229 	/*
1230 	 * ->write_done will attempt to use post-op attributes to detect
1231 	 * conflicting writes by other clients.  A strict interpretation
1232 	 * of close-to-open would allow us to continue caching even if
1233 	 * another writer had changed the file, but some applications
1234 	 * depend on tighter cache coherency when writing.
1235 	 */
1236 	status = NFS_PROTO(data->inode)->write_done(task, data);
1237 	if (status != 0)
1238 		return;
1239 	nfs_add_stats(data->inode, NFSIOS_SERVERWRITTENBYTES, resp->count);
1240 
1241 #if defined(CONFIG_NFS_V3) || defined(CONFIG_NFS_V4)
1242 	if (resp->verf->committed < argp->stable && task->tk_status >= 0) {
1243 		/* We tried a write call, but the server did not
1244 		 * commit data to stable storage even though we
1245 		 * requested it.
1246 		 * Note: There is a known bug in Tru64 < 5.0 in which
1247 		 *	 the server reports NFS_DATA_SYNC, but performs
1248 		 *	 NFS_FILE_SYNC. We therefore implement this checking
1249 		 *	 as a dprintk() in order to avoid filling syslog.
1250 		 */
1251 		static unsigned long    complain;
1252 
1253 		/* Note this will print the MDS for a DS write */
1254 		if (time_before(complain, jiffies)) {
1255 			dprintk("NFS:       faulty NFS server %s:"
1256 				" (committed = %d) != (stable = %d)\n",
1257 				NFS_SERVER(data->inode)->nfs_client->cl_hostname,
1258 				resp->verf->committed, argp->stable);
1259 			complain = jiffies + 300 * HZ;
1260 		}
1261 	}
1262 #endif
1263 	/* Is this a short write? */
1264 	if (task->tk_status >= 0 && resp->count < argp->count) {
1265 		static unsigned long    complain;
1266 
1267 		nfs_inc_stats(data->inode, NFSIOS_SHORTWRITE);
1268 
1269 		/* Has the server at least made some progress? */
1270 		if (resp->count != 0) {
1271 			/* Was this an NFSv2 write or an NFSv3 stable write? */
1272 			if (resp->verf->committed != NFS_UNSTABLE) {
1273 				/* Resend from where the server left off */
1274 				data->mds_offset += resp->count;
1275 				argp->offset += resp->count;
1276 				argp->pgbase += resp->count;
1277 				argp->count -= resp->count;
1278 			} else {
1279 				/* Resend as a stable write in order to avoid
1280 				 * headaches in the case of a server crash.
1281 				 */
1282 				argp->stable = NFS_FILE_SYNC;
1283 			}
1284 			rpc_restart_call_prepare(task);
1285 			return;
1286 		}
1287 		if (time_before(complain, jiffies)) {
1288 			printk(KERN_WARNING
1289 			       "NFS: Server wrote zero bytes, expected %u.\n",
1290 					argp->count);
1291 			complain = jiffies + 300 * HZ;
1292 		}
1293 		/* Can't do anything about it except throw an error. */
1294 		task->tk_status = -EIO;
1295 	}
1296 	return;
1297 }
1298 
1299 
1300 #if defined(CONFIG_NFS_V3) || defined(CONFIG_NFS_V4)
1301 static int nfs_commit_set_lock(struct nfs_inode *nfsi, int may_wait)
1302 {
1303 	int ret;
1304 
1305 	if (!test_and_set_bit(NFS_INO_COMMIT, &nfsi->flags))
1306 		return 1;
1307 	if (!may_wait)
1308 		return 0;
1309 	ret = out_of_line_wait_on_bit_lock(&nfsi->flags,
1310 				NFS_INO_COMMIT,
1311 				nfs_wait_bit_killable,
1312 				TASK_KILLABLE);
1313 	return (ret < 0) ? ret : 1;
1314 }
1315 
1316 void nfs_commit_clear_lock(struct nfs_inode *nfsi)
1317 {
1318 	clear_bit(NFS_INO_COMMIT, &nfsi->flags);
1319 	smp_mb__after_clear_bit();
1320 	wake_up_bit(&nfsi->flags, NFS_INO_COMMIT);
1321 }
1322 EXPORT_SYMBOL_GPL(nfs_commit_clear_lock);
1323 
1324 void nfs_commitdata_release(void *data)
1325 {
1326 	struct nfs_write_data *wdata = data;
1327 
1328 	put_lseg(wdata->lseg);
1329 	put_nfs_open_context(wdata->args.context);
1330 	nfs_commit_free(wdata);
1331 }
1332 EXPORT_SYMBOL_GPL(nfs_commitdata_release);
1333 
1334 int nfs_initiate_commit(struct nfs_write_data *data, struct rpc_clnt *clnt,
1335 			const struct rpc_call_ops *call_ops,
1336 			int how)
1337 {
1338 	struct rpc_task *task;
1339 	int priority = flush_task_priority(how);
1340 	struct rpc_message msg = {
1341 		.rpc_argp = &data->args,
1342 		.rpc_resp = &data->res,
1343 		.rpc_cred = data->cred,
1344 	};
1345 	struct rpc_task_setup task_setup_data = {
1346 		.task = &data->task,
1347 		.rpc_client = clnt,
1348 		.rpc_message = &msg,
1349 		.callback_ops = call_ops,
1350 		.callback_data = data,
1351 		.workqueue = nfsiod_workqueue,
1352 		.flags = RPC_TASK_ASYNC,
1353 		.priority = priority,
1354 	};
1355 	/* Set up the initial task struct.  */
1356 	NFS_PROTO(data->inode)->commit_setup(data, &msg);
1357 
1358 	dprintk("NFS: %5u initiated commit call\n", data->task.tk_pid);
1359 
1360 	task = rpc_run_task(&task_setup_data);
1361 	if (IS_ERR(task))
1362 		return PTR_ERR(task);
1363 	if (how & FLUSH_SYNC)
1364 		rpc_wait_for_completion_task(task);
1365 	rpc_put_task(task);
1366 	return 0;
1367 }
1368 EXPORT_SYMBOL_GPL(nfs_initiate_commit);
1369 
1370 /*
1371  * Set up the argument/result storage required for the RPC call.
1372  */
1373 void nfs_init_commit(struct nfs_write_data *data,
1374 			    struct list_head *head,
1375 			    struct pnfs_layout_segment *lseg)
1376 {
1377 	struct nfs_page *first = nfs_list_entry(head->next);
1378 	struct inode *inode = first->wb_context->dentry->d_inode;
1379 
1380 	/* Set up the RPC argument and reply structs
1381 	 * NB: take care not to mess about with data->commit et al. */
1382 
1383 	list_splice_init(head, &data->pages);
1384 
1385 	data->inode	  = inode;
1386 	data->cred	  = first->wb_context->cred;
1387 	data->lseg	  = lseg; /* reference transferred */
1388 	data->mds_ops     = &nfs_commit_ops;
1389 
1390 	data->args.fh     = NFS_FH(data->inode);
1391 	/* Note: we always request a commit of the entire inode */
1392 	data->args.offset = 0;
1393 	data->args.count  = 0;
1394 	data->args.context = get_nfs_open_context(first->wb_context);
1395 	data->res.count   = 0;
1396 	data->res.fattr   = &data->fattr;
1397 	data->res.verf    = &data->verf;
1398 	nfs_fattr_init(&data->fattr);
1399 }
1400 EXPORT_SYMBOL_GPL(nfs_init_commit);
1401 
1402 void nfs_retry_commit(struct list_head *page_list,
1403 		      struct pnfs_layout_segment *lseg)
1404 {
1405 	struct nfs_page *req;
1406 
1407 	while (!list_empty(page_list)) {
1408 		req = nfs_list_entry(page_list->next);
1409 		nfs_list_remove_request(req);
1410 		nfs_mark_request_commit(req, lseg);
1411 		dec_zone_page_state(req->wb_page, NR_UNSTABLE_NFS);
1412 		dec_bdi_stat(req->wb_page->mapping->backing_dev_info,
1413 			     BDI_RECLAIMABLE);
1414 		nfs_clear_page_tag_locked(req);
1415 	}
1416 }
1417 EXPORT_SYMBOL_GPL(nfs_retry_commit);
1418 
1419 /*
1420  * Commit dirty pages
1421  */
1422 static int
1423 nfs_commit_list(struct inode *inode, struct list_head *head, int how)
1424 {
1425 	struct nfs_write_data	*data;
1426 
1427 	data = nfs_commitdata_alloc();
1428 
1429 	if (!data)
1430 		goto out_bad;
1431 
1432 	/* Set up the argument struct */
1433 	nfs_init_commit(data, head, NULL);
1434 	return nfs_initiate_commit(data, NFS_CLIENT(inode), data->mds_ops, how);
1435  out_bad:
1436 	nfs_retry_commit(head, NULL);
1437 	nfs_commit_clear_lock(NFS_I(inode));
1438 	return -ENOMEM;
1439 }
1440 
1441 /*
1442  * COMMIT call returned
1443  */
1444 static void nfs_commit_done(struct rpc_task *task, void *calldata)
1445 {
1446 	struct nfs_write_data	*data = calldata;
1447 
1448         dprintk("NFS: %5u nfs_commit_done (status %d)\n",
1449                                 task->tk_pid, task->tk_status);
1450 
1451 	/* Call the NFS version-specific code */
1452 	NFS_PROTO(data->inode)->commit_done(task, data);
1453 }
1454 
1455 void nfs_commit_release_pages(struct nfs_write_data *data)
1456 {
1457 	struct nfs_page	*req;
1458 	int status = data->task.tk_status;
1459 
1460 	while (!list_empty(&data->pages)) {
1461 		req = nfs_list_entry(data->pages.next);
1462 		nfs_list_remove_request(req);
1463 		nfs_clear_request_commit(req);
1464 
1465 		dprintk("NFS:       commit (%s/%lld %d@%lld)",
1466 			req->wb_context->dentry->d_sb->s_id,
1467 			(long long)NFS_FILEID(req->wb_context->dentry->d_inode),
1468 			req->wb_bytes,
1469 			(long long)req_offset(req));
1470 		if (status < 0) {
1471 			nfs_context_set_write_error(req->wb_context, status);
1472 			nfs_inode_remove_request(req);
1473 			dprintk(", error = %d\n", status);
1474 			goto next;
1475 		}
1476 
1477 		/* Okay, COMMIT succeeded, apparently. Check the verifier
1478 		 * returned by the server against all stored verfs. */
1479 		if (!memcmp(req->wb_verf.verifier, data->verf.verifier, sizeof(data->verf.verifier))) {
1480 			/* We have a match */
1481 			nfs_inode_remove_request(req);
1482 			dprintk(" OK\n");
1483 			goto next;
1484 		}
1485 		/* We have a mismatch. Write the page again */
1486 		dprintk(" mismatch\n");
1487 		nfs_mark_request_dirty(req);
1488 	next:
1489 		nfs_clear_page_tag_locked(req);
1490 	}
1491 }
1492 EXPORT_SYMBOL_GPL(nfs_commit_release_pages);
1493 
1494 static void nfs_commit_release(void *calldata)
1495 {
1496 	struct nfs_write_data *data = calldata;
1497 
1498 	nfs_commit_release_pages(data);
1499 	nfs_commit_clear_lock(NFS_I(data->inode));
1500 	nfs_commitdata_release(calldata);
1501 }
1502 
1503 static const struct rpc_call_ops nfs_commit_ops = {
1504 #if defined(CONFIG_NFS_V4_1)
1505 	.rpc_call_prepare = nfs_write_prepare,
1506 #endif /* CONFIG_NFS_V4_1 */
1507 	.rpc_call_done = nfs_commit_done,
1508 	.rpc_release = nfs_commit_release,
1509 };
1510 
1511 int nfs_commit_inode(struct inode *inode, int how)
1512 {
1513 	LIST_HEAD(head);
1514 	int may_wait = how & FLUSH_SYNC;
1515 	int res;
1516 
1517 	res = nfs_commit_set_lock(NFS_I(inode), may_wait);
1518 	if (res <= 0)
1519 		goto out_mark_dirty;
1520 	res = nfs_scan_commit(inode, &head, 0, 0);
1521 	if (res) {
1522 		int error;
1523 
1524 		error = pnfs_commit_list(inode, &head, how);
1525 		if (error == PNFS_NOT_ATTEMPTED)
1526 			error = nfs_commit_list(inode, &head, how);
1527 		if (error < 0)
1528 			return error;
1529 		if (!may_wait)
1530 			goto out_mark_dirty;
1531 		error = wait_on_bit(&NFS_I(inode)->flags,
1532 				NFS_INO_COMMIT,
1533 				nfs_wait_bit_killable,
1534 				TASK_KILLABLE);
1535 		if (error < 0)
1536 			return error;
1537 	} else
1538 		nfs_commit_clear_lock(NFS_I(inode));
1539 	return res;
1540 	/* Note: If we exit without ensuring that the commit is complete,
1541 	 * we must mark the inode as dirty. Otherwise, future calls to
1542 	 * sync_inode() with the WB_SYNC_ALL flag set will fail to ensure
1543 	 * that the data is on the disk.
1544 	 */
1545 out_mark_dirty:
1546 	__mark_inode_dirty(inode, I_DIRTY_DATASYNC);
1547 	return res;
1548 }
1549 
1550 static int nfs_commit_unstable_pages(struct inode *inode, struct writeback_control *wbc)
1551 {
1552 	struct nfs_inode *nfsi = NFS_I(inode);
1553 	int flags = FLUSH_SYNC;
1554 	int ret = 0;
1555 
1556 	/* no commits means nothing needs to be done */
1557 	if (!nfsi->ncommit)
1558 		return ret;
1559 
1560 	if (wbc->sync_mode == WB_SYNC_NONE) {
1561 		/* Don't commit yet if this is a non-blocking flush and there
1562 		 * are a lot of outstanding writes for this mapping.
1563 		 */
1564 		if (nfsi->ncommit <= (nfsi->npages >> 1))
1565 			goto out_mark_dirty;
1566 
1567 		/* don't wait for the COMMIT response */
1568 		flags = 0;
1569 	}
1570 
1571 	ret = nfs_commit_inode(inode, flags);
1572 	if (ret >= 0) {
1573 		if (wbc->sync_mode == WB_SYNC_NONE) {
1574 			if (ret < wbc->nr_to_write)
1575 				wbc->nr_to_write -= ret;
1576 			else
1577 				wbc->nr_to_write = 0;
1578 		}
1579 		return 0;
1580 	}
1581 out_mark_dirty:
1582 	__mark_inode_dirty(inode, I_DIRTY_DATASYNC);
1583 	return ret;
1584 }
1585 #else
1586 static int nfs_commit_unstable_pages(struct inode *inode, struct writeback_control *wbc)
1587 {
1588 	return 0;
1589 }
1590 #endif
1591 
1592 int nfs_write_inode(struct inode *inode, struct writeback_control *wbc)
1593 {
1594 	int ret;
1595 
1596 	ret = nfs_commit_unstable_pages(inode, wbc);
1597 	if (ret >= 0 && test_bit(NFS_INO_LAYOUTCOMMIT, &NFS_I(inode)->flags)) {
1598 		int status;
1599 		bool sync = true;
1600 
1601 		if (wbc->sync_mode == WB_SYNC_NONE)
1602 			sync = false;
1603 
1604 		status = pnfs_layoutcommit_inode(inode, sync);
1605 		if (status < 0)
1606 			return status;
1607 	}
1608 	return ret;
1609 }
1610 
1611 /*
1612  * flush the inode to disk.
1613  */
1614 int nfs_wb_all(struct inode *inode)
1615 {
1616 	struct writeback_control wbc = {
1617 		.sync_mode = WB_SYNC_ALL,
1618 		.nr_to_write = LONG_MAX,
1619 		.range_start = 0,
1620 		.range_end = LLONG_MAX,
1621 	};
1622 
1623 	return sync_inode(inode, &wbc);
1624 }
1625 
1626 int nfs_wb_page_cancel(struct inode *inode, struct page *page)
1627 {
1628 	struct nfs_page *req;
1629 	int ret = 0;
1630 
1631 	BUG_ON(!PageLocked(page));
1632 	for (;;) {
1633 		wait_on_page_writeback(page);
1634 		req = nfs_page_find_request(page);
1635 		if (req == NULL)
1636 			break;
1637 		if (nfs_lock_request_dontget(req)) {
1638 			nfs_inode_remove_request(req);
1639 			/*
1640 			 * In case nfs_inode_remove_request has marked the
1641 			 * page as being dirty
1642 			 */
1643 			cancel_dirty_page(page, PAGE_CACHE_SIZE);
1644 			nfs_unlock_request(req);
1645 			break;
1646 		}
1647 		ret = nfs_wait_on_request(req);
1648 		nfs_release_request(req);
1649 		if (ret < 0)
1650 			break;
1651 	}
1652 	return ret;
1653 }
1654 
1655 /*
1656  * Write back all requests on one page - we do this before reading it.
1657  */
1658 int nfs_wb_page(struct inode *inode, struct page *page)
1659 {
1660 	loff_t range_start = page_offset(page);
1661 	loff_t range_end = range_start + (loff_t)(PAGE_CACHE_SIZE - 1);
1662 	struct writeback_control wbc = {
1663 		.sync_mode = WB_SYNC_ALL,
1664 		.nr_to_write = 0,
1665 		.range_start = range_start,
1666 		.range_end = range_end,
1667 	};
1668 	int ret;
1669 
1670 	for (;;) {
1671 		wait_on_page_writeback(page);
1672 		if (clear_page_dirty_for_io(page)) {
1673 			ret = nfs_writepage_locked(page, &wbc);
1674 			if (ret < 0)
1675 				goto out_error;
1676 			continue;
1677 		}
1678 		if (!PagePrivate(page))
1679 			break;
1680 		ret = nfs_commit_inode(inode, FLUSH_SYNC);
1681 		if (ret < 0)
1682 			goto out_error;
1683 	}
1684 	return 0;
1685 out_error:
1686 	return ret;
1687 }
1688 
1689 #ifdef CONFIG_MIGRATION
1690 int nfs_migrate_page(struct address_space *mapping, struct page *newpage,
1691 		struct page *page, enum migrate_mode mode)
1692 {
1693 	/*
1694 	 * If PagePrivate is set, then the page is currently associated with
1695 	 * an in-progress read or write request. Don't try to migrate it.
1696 	 *
1697 	 * FIXME: we could do this in principle, but we'll need a way to ensure
1698 	 *        that we can safely release the inode reference while holding
1699 	 *        the page lock.
1700 	 */
1701 	if (PagePrivate(page))
1702 		return -EBUSY;
1703 
1704 	nfs_fscache_release_page(page, GFP_KERNEL);
1705 
1706 	return migrate_page(mapping, newpage, page, mode);
1707 }
1708 #endif
1709 
1710 int __init nfs_init_writepagecache(void)
1711 {
1712 	nfs_wdata_cachep = kmem_cache_create("nfs_write_data",
1713 					     sizeof(struct nfs_write_data),
1714 					     0, SLAB_HWCACHE_ALIGN,
1715 					     NULL);
1716 	if (nfs_wdata_cachep == NULL)
1717 		return -ENOMEM;
1718 
1719 	nfs_wdata_mempool = mempool_create_slab_pool(MIN_POOL_WRITE,
1720 						     nfs_wdata_cachep);
1721 	if (nfs_wdata_mempool == NULL)
1722 		return -ENOMEM;
1723 
1724 	nfs_commit_mempool = mempool_create_slab_pool(MIN_POOL_COMMIT,
1725 						      nfs_wdata_cachep);
1726 	if (nfs_commit_mempool == NULL)
1727 		return -ENOMEM;
1728 
1729 	/*
1730 	 * NFS congestion size, scale with available memory.
1731 	 *
1732 	 *  64MB:    8192k
1733 	 * 128MB:   11585k
1734 	 * 256MB:   16384k
1735 	 * 512MB:   23170k
1736 	 *   1GB:   32768k
1737 	 *   2GB:   46340k
1738 	 *   4GB:   65536k
1739 	 *   8GB:   92681k
1740 	 *  16GB:  131072k
1741 	 *
1742 	 * This allows larger machines to have larger/more transfers.
1743 	 * Limit the default to 256M
1744 	 */
1745 	nfs_congestion_kb = (16*int_sqrt(totalram_pages)) << (PAGE_SHIFT-10);
1746 	if (nfs_congestion_kb > 256*1024)
1747 		nfs_congestion_kb = 256*1024;
1748 
1749 	return 0;
1750 }
1751 
1752 void nfs_destroy_writepagecache(void)
1753 {
1754 	mempool_destroy(nfs_commit_mempool);
1755 	mempool_destroy(nfs_wdata_mempool);
1756 	kmem_cache_destroy(nfs_wdata_cachep);
1757 }
1758 
1759