1 /* 2 * linux/fs/nfs/write.c 3 * 4 * Write file data over NFS. 5 * 6 * Copyright (C) 1996, 1997, Olaf Kirch <okir@monad.swb.de> 7 */ 8 9 #include <linux/types.h> 10 #include <linux/slab.h> 11 #include <linux/mm.h> 12 #include <linux/pagemap.h> 13 #include <linux/file.h> 14 #include <linux/writeback.h> 15 #include <linux/swap.h> 16 #include <linux/migrate.h> 17 18 #include <linux/sunrpc/clnt.h> 19 #include <linux/nfs_fs.h> 20 #include <linux/nfs_mount.h> 21 #include <linux/nfs_page.h> 22 #include <linux/backing-dev.h> 23 24 #include <asm/uaccess.h> 25 26 #include "delegation.h" 27 #include "internal.h" 28 #include "iostat.h" 29 #include "nfs4_fs.h" 30 #include "fscache.h" 31 #include "pnfs.h" 32 33 #define NFSDBG_FACILITY NFSDBG_PAGECACHE 34 35 #define MIN_POOL_WRITE (32) 36 #define MIN_POOL_COMMIT (4) 37 38 /* 39 * Local function declarations 40 */ 41 static void nfs_pageio_init_write(struct nfs_pageio_descriptor *desc, 42 struct inode *inode, int ioflags); 43 static void nfs_redirty_request(struct nfs_page *req); 44 static const struct rpc_call_ops nfs_write_partial_ops; 45 static const struct rpc_call_ops nfs_write_full_ops; 46 static const struct rpc_call_ops nfs_commit_ops; 47 48 static struct kmem_cache *nfs_wdata_cachep; 49 static mempool_t *nfs_wdata_mempool; 50 static mempool_t *nfs_commit_mempool; 51 52 struct nfs_write_data *nfs_commitdata_alloc(void) 53 { 54 struct nfs_write_data *p = mempool_alloc(nfs_commit_mempool, GFP_NOFS); 55 56 if (p) { 57 memset(p, 0, sizeof(*p)); 58 INIT_LIST_HEAD(&p->pages); 59 } 60 return p; 61 } 62 EXPORT_SYMBOL_GPL(nfs_commitdata_alloc); 63 64 void nfs_commit_free(struct nfs_write_data *p) 65 { 66 if (p && (p->pagevec != &p->page_array[0])) 67 kfree(p->pagevec); 68 mempool_free(p, nfs_commit_mempool); 69 } 70 EXPORT_SYMBOL_GPL(nfs_commit_free); 71 72 struct nfs_write_data *nfs_writedata_alloc(unsigned int pagecount) 73 { 74 struct nfs_write_data *p = mempool_alloc(nfs_wdata_mempool, GFP_NOFS); 75 76 if (p) { 77 memset(p, 0, sizeof(*p)); 78 INIT_LIST_HEAD(&p->pages); 79 p->npages = pagecount; 80 if (pagecount <= ARRAY_SIZE(p->page_array)) 81 p->pagevec = p->page_array; 82 else { 83 p->pagevec = kcalloc(pagecount, sizeof(struct page *), GFP_NOFS); 84 if (!p->pagevec) { 85 mempool_free(p, nfs_wdata_mempool); 86 p = NULL; 87 } 88 } 89 } 90 return p; 91 } 92 93 void nfs_writedata_free(struct nfs_write_data *p) 94 { 95 if (p && (p->pagevec != &p->page_array[0])) 96 kfree(p->pagevec); 97 mempool_free(p, nfs_wdata_mempool); 98 } 99 100 void nfs_writedata_release(struct nfs_write_data *wdata) 101 { 102 put_lseg(wdata->lseg); 103 put_nfs_open_context(wdata->args.context); 104 nfs_writedata_free(wdata); 105 } 106 107 static void nfs_context_set_write_error(struct nfs_open_context *ctx, int error) 108 { 109 ctx->error = error; 110 smp_wmb(); 111 set_bit(NFS_CONTEXT_ERROR_WRITE, &ctx->flags); 112 } 113 114 static struct nfs_page *nfs_page_find_request_locked(struct page *page) 115 { 116 struct nfs_page *req = NULL; 117 118 if (PagePrivate(page)) { 119 req = (struct nfs_page *)page_private(page); 120 if (req != NULL) 121 kref_get(&req->wb_kref); 122 } 123 return req; 124 } 125 126 static struct nfs_page *nfs_page_find_request(struct page *page) 127 { 128 struct inode *inode = page->mapping->host; 129 struct nfs_page *req = NULL; 130 131 spin_lock(&inode->i_lock); 132 req = nfs_page_find_request_locked(page); 133 spin_unlock(&inode->i_lock); 134 return req; 135 } 136 137 /* Adjust the file length if we're writing beyond the end */ 138 static void nfs_grow_file(struct page *page, unsigned int offset, unsigned int count) 139 { 140 struct inode *inode = page->mapping->host; 141 loff_t end, i_size; 142 pgoff_t end_index; 143 144 spin_lock(&inode->i_lock); 145 i_size = i_size_read(inode); 146 end_index = (i_size - 1) >> PAGE_CACHE_SHIFT; 147 if (i_size > 0 && page->index < end_index) 148 goto out; 149 end = ((loff_t)page->index << PAGE_CACHE_SHIFT) + ((loff_t)offset+count); 150 if (i_size >= end) 151 goto out; 152 i_size_write(inode, end); 153 nfs_inc_stats(inode, NFSIOS_EXTENDWRITE); 154 out: 155 spin_unlock(&inode->i_lock); 156 } 157 158 /* A writeback failed: mark the page as bad, and invalidate the page cache */ 159 static void nfs_set_pageerror(struct page *page) 160 { 161 SetPageError(page); 162 nfs_zap_mapping(page->mapping->host, page->mapping); 163 } 164 165 /* We can set the PG_uptodate flag if we see that a write request 166 * covers the full page. 167 */ 168 static void nfs_mark_uptodate(struct page *page, unsigned int base, unsigned int count) 169 { 170 if (PageUptodate(page)) 171 return; 172 if (base != 0) 173 return; 174 if (count != nfs_page_length(page)) 175 return; 176 SetPageUptodate(page); 177 } 178 179 static int wb_priority(struct writeback_control *wbc) 180 { 181 if (wbc->for_reclaim) 182 return FLUSH_HIGHPRI | FLUSH_STABLE; 183 if (wbc->for_kupdate || wbc->for_background) 184 return FLUSH_LOWPRI | FLUSH_COND_STABLE; 185 return FLUSH_COND_STABLE; 186 } 187 188 /* 189 * NFS congestion control 190 */ 191 192 int nfs_congestion_kb; 193 194 #define NFS_CONGESTION_ON_THRESH (nfs_congestion_kb >> (PAGE_SHIFT-10)) 195 #define NFS_CONGESTION_OFF_THRESH \ 196 (NFS_CONGESTION_ON_THRESH - (NFS_CONGESTION_ON_THRESH >> 2)) 197 198 static int nfs_set_page_writeback(struct page *page) 199 { 200 int ret = test_set_page_writeback(page); 201 202 if (!ret) { 203 struct inode *inode = page->mapping->host; 204 struct nfs_server *nfss = NFS_SERVER(inode); 205 206 page_cache_get(page); 207 if (atomic_long_inc_return(&nfss->writeback) > 208 NFS_CONGESTION_ON_THRESH) { 209 set_bdi_congested(&nfss->backing_dev_info, 210 BLK_RW_ASYNC); 211 } 212 } 213 return ret; 214 } 215 216 static void nfs_end_page_writeback(struct page *page) 217 { 218 struct inode *inode = page->mapping->host; 219 struct nfs_server *nfss = NFS_SERVER(inode); 220 221 end_page_writeback(page); 222 page_cache_release(page); 223 if (atomic_long_dec_return(&nfss->writeback) < NFS_CONGESTION_OFF_THRESH) 224 clear_bdi_congested(&nfss->backing_dev_info, BLK_RW_ASYNC); 225 } 226 227 static struct nfs_page *nfs_find_and_lock_request(struct page *page, bool nonblock) 228 { 229 struct inode *inode = page->mapping->host; 230 struct nfs_page *req; 231 int ret; 232 233 spin_lock(&inode->i_lock); 234 for (;;) { 235 req = nfs_page_find_request_locked(page); 236 if (req == NULL) 237 break; 238 if (nfs_set_page_tag_locked(req)) 239 break; 240 /* Note: If we hold the page lock, as is the case in nfs_writepage, 241 * then the call to nfs_set_page_tag_locked() will always 242 * succeed provided that someone hasn't already marked the 243 * request as dirty (in which case we don't care). 244 */ 245 spin_unlock(&inode->i_lock); 246 if (!nonblock) 247 ret = nfs_wait_on_request(req); 248 else 249 ret = -EAGAIN; 250 nfs_release_request(req); 251 if (ret != 0) 252 return ERR_PTR(ret); 253 spin_lock(&inode->i_lock); 254 } 255 spin_unlock(&inode->i_lock); 256 return req; 257 } 258 259 /* 260 * Find an associated nfs write request, and prepare to flush it out 261 * May return an error if the user signalled nfs_wait_on_request(). 262 */ 263 static int nfs_page_async_flush(struct nfs_pageio_descriptor *pgio, 264 struct page *page, bool nonblock) 265 { 266 struct nfs_page *req; 267 int ret = 0; 268 269 req = nfs_find_and_lock_request(page, nonblock); 270 if (!req) 271 goto out; 272 ret = PTR_ERR(req); 273 if (IS_ERR(req)) 274 goto out; 275 276 ret = nfs_set_page_writeback(page); 277 BUG_ON(ret != 0); 278 BUG_ON(test_bit(PG_CLEAN, &req->wb_flags)); 279 280 if (!nfs_pageio_add_request(pgio, req)) { 281 nfs_redirty_request(req); 282 ret = pgio->pg_error; 283 } 284 out: 285 return ret; 286 } 287 288 static int nfs_do_writepage(struct page *page, struct writeback_control *wbc, struct nfs_pageio_descriptor *pgio) 289 { 290 struct inode *inode = page->mapping->host; 291 int ret; 292 293 nfs_inc_stats(inode, NFSIOS_VFSWRITEPAGE); 294 nfs_add_stats(inode, NFSIOS_WRITEPAGES, 1); 295 296 nfs_pageio_cond_complete(pgio, page->index); 297 ret = nfs_page_async_flush(pgio, page, wbc->sync_mode == WB_SYNC_NONE); 298 if (ret == -EAGAIN) { 299 redirty_page_for_writepage(wbc, page); 300 ret = 0; 301 } 302 return ret; 303 } 304 305 /* 306 * Write an mmapped page to the server. 307 */ 308 static int nfs_writepage_locked(struct page *page, struct writeback_control *wbc) 309 { 310 struct nfs_pageio_descriptor pgio; 311 int err; 312 313 nfs_pageio_init_write(&pgio, page->mapping->host, wb_priority(wbc)); 314 err = nfs_do_writepage(page, wbc, &pgio); 315 nfs_pageio_complete(&pgio); 316 if (err < 0) 317 return err; 318 if (pgio.pg_error < 0) 319 return pgio.pg_error; 320 return 0; 321 } 322 323 int nfs_writepage(struct page *page, struct writeback_control *wbc) 324 { 325 int ret; 326 327 ret = nfs_writepage_locked(page, wbc); 328 unlock_page(page); 329 return ret; 330 } 331 332 static int nfs_writepages_callback(struct page *page, struct writeback_control *wbc, void *data) 333 { 334 int ret; 335 336 ret = nfs_do_writepage(page, wbc, data); 337 unlock_page(page); 338 return ret; 339 } 340 341 int nfs_writepages(struct address_space *mapping, struct writeback_control *wbc) 342 { 343 struct inode *inode = mapping->host; 344 unsigned long *bitlock = &NFS_I(inode)->flags; 345 struct nfs_pageio_descriptor pgio; 346 int err; 347 348 /* Stop dirtying of new pages while we sync */ 349 err = wait_on_bit_lock(bitlock, NFS_INO_FLUSHING, 350 nfs_wait_bit_killable, TASK_KILLABLE); 351 if (err) 352 goto out_err; 353 354 nfs_inc_stats(inode, NFSIOS_VFSWRITEPAGES); 355 356 nfs_pageio_init_write(&pgio, inode, wb_priority(wbc)); 357 err = write_cache_pages(mapping, wbc, nfs_writepages_callback, &pgio); 358 nfs_pageio_complete(&pgio); 359 360 clear_bit_unlock(NFS_INO_FLUSHING, bitlock); 361 smp_mb__after_clear_bit(); 362 wake_up_bit(bitlock, NFS_INO_FLUSHING); 363 364 if (err < 0) 365 goto out_err; 366 err = pgio.pg_error; 367 if (err < 0) 368 goto out_err; 369 return 0; 370 out_err: 371 return err; 372 } 373 374 /* 375 * Insert a write request into an inode 376 */ 377 static int nfs_inode_add_request(struct inode *inode, struct nfs_page *req) 378 { 379 struct nfs_inode *nfsi = NFS_I(inode); 380 int error; 381 382 error = radix_tree_preload(GFP_NOFS); 383 if (error != 0) 384 goto out; 385 386 /* Lock the request! */ 387 nfs_lock_request_dontget(req); 388 389 spin_lock(&inode->i_lock); 390 error = radix_tree_insert(&nfsi->nfs_page_tree, req->wb_index, req); 391 BUG_ON(error); 392 if (!nfsi->npages && nfs_have_delegation(inode, FMODE_WRITE)) 393 nfsi->change_attr++; 394 set_bit(PG_MAPPED, &req->wb_flags); 395 SetPagePrivate(req->wb_page); 396 set_page_private(req->wb_page, (unsigned long)req); 397 nfsi->npages++; 398 kref_get(&req->wb_kref); 399 radix_tree_tag_set(&nfsi->nfs_page_tree, req->wb_index, 400 NFS_PAGE_TAG_LOCKED); 401 spin_unlock(&inode->i_lock); 402 radix_tree_preload_end(); 403 out: 404 return error; 405 } 406 407 /* 408 * Remove a write request from an inode 409 */ 410 static void nfs_inode_remove_request(struct nfs_page *req) 411 { 412 struct inode *inode = req->wb_context->dentry->d_inode; 413 struct nfs_inode *nfsi = NFS_I(inode); 414 415 BUG_ON (!NFS_WBACK_BUSY(req)); 416 417 spin_lock(&inode->i_lock); 418 set_page_private(req->wb_page, 0); 419 ClearPagePrivate(req->wb_page); 420 clear_bit(PG_MAPPED, &req->wb_flags); 421 radix_tree_delete(&nfsi->nfs_page_tree, req->wb_index); 422 nfsi->npages--; 423 spin_unlock(&inode->i_lock); 424 nfs_release_request(req); 425 } 426 427 static void 428 nfs_mark_request_dirty(struct nfs_page *req) 429 { 430 __set_page_dirty_nobuffers(req->wb_page); 431 __mark_inode_dirty(req->wb_page->mapping->host, I_DIRTY_DATASYNC); 432 } 433 434 #if defined(CONFIG_NFS_V3) || defined(CONFIG_NFS_V4) 435 /* 436 * Add a request to the inode's commit list. 437 */ 438 static void 439 nfs_mark_request_commit(struct nfs_page *req, struct pnfs_layout_segment *lseg) 440 { 441 struct inode *inode = req->wb_context->dentry->d_inode; 442 struct nfs_inode *nfsi = NFS_I(inode); 443 444 spin_lock(&inode->i_lock); 445 set_bit(PG_CLEAN, &(req)->wb_flags); 446 radix_tree_tag_set(&nfsi->nfs_page_tree, 447 req->wb_index, 448 NFS_PAGE_TAG_COMMIT); 449 nfsi->ncommit++; 450 spin_unlock(&inode->i_lock); 451 pnfs_mark_request_commit(req, lseg); 452 inc_zone_page_state(req->wb_page, NR_UNSTABLE_NFS); 453 inc_bdi_stat(req->wb_page->mapping->backing_dev_info, BDI_RECLAIMABLE); 454 __mark_inode_dirty(inode, I_DIRTY_DATASYNC); 455 } 456 457 static int 458 nfs_clear_request_commit(struct nfs_page *req) 459 { 460 struct page *page = req->wb_page; 461 462 if (test_and_clear_bit(PG_CLEAN, &(req)->wb_flags)) { 463 dec_zone_page_state(page, NR_UNSTABLE_NFS); 464 dec_bdi_stat(page->mapping->backing_dev_info, BDI_RECLAIMABLE); 465 return 1; 466 } 467 return 0; 468 } 469 470 static inline 471 int nfs_write_need_commit(struct nfs_write_data *data) 472 { 473 if (data->verf.committed == NFS_DATA_SYNC) 474 return data->lseg == NULL; 475 else 476 return data->verf.committed != NFS_FILE_SYNC; 477 } 478 479 static inline 480 int nfs_reschedule_unstable_write(struct nfs_page *req, 481 struct nfs_write_data *data) 482 { 483 if (test_and_clear_bit(PG_NEED_COMMIT, &req->wb_flags)) { 484 nfs_mark_request_commit(req, data->lseg); 485 return 1; 486 } 487 if (test_and_clear_bit(PG_NEED_RESCHED, &req->wb_flags)) { 488 nfs_mark_request_dirty(req); 489 return 1; 490 } 491 return 0; 492 } 493 #else 494 static inline void 495 nfs_mark_request_commit(struct nfs_page *req, struct pnfs_layout_segment *lseg) 496 { 497 } 498 499 static inline int 500 nfs_clear_request_commit(struct nfs_page *req) 501 { 502 return 0; 503 } 504 505 static inline 506 int nfs_write_need_commit(struct nfs_write_data *data) 507 { 508 return 0; 509 } 510 511 static inline 512 int nfs_reschedule_unstable_write(struct nfs_page *req, 513 struct nfs_write_data *data) 514 { 515 return 0; 516 } 517 #endif 518 519 #if defined(CONFIG_NFS_V3) || defined(CONFIG_NFS_V4) 520 static int 521 nfs_need_commit(struct nfs_inode *nfsi) 522 { 523 return radix_tree_tagged(&nfsi->nfs_page_tree, NFS_PAGE_TAG_COMMIT); 524 } 525 526 /* 527 * nfs_scan_commit - Scan an inode for commit requests 528 * @inode: NFS inode to scan 529 * @dst: destination list 530 * @idx_start: lower bound of page->index to scan. 531 * @npages: idx_start + npages sets the upper bound to scan. 532 * 533 * Moves requests from the inode's 'commit' request list. 534 * The requests are *not* checked to ensure that they form a contiguous set. 535 */ 536 static int 537 nfs_scan_commit(struct inode *inode, struct list_head *dst, pgoff_t idx_start, unsigned int npages) 538 { 539 struct nfs_inode *nfsi = NFS_I(inode); 540 int ret; 541 542 if (!nfs_need_commit(nfsi)) 543 return 0; 544 545 spin_lock(&inode->i_lock); 546 ret = nfs_scan_list(nfsi, dst, idx_start, npages, NFS_PAGE_TAG_COMMIT); 547 if (ret > 0) 548 nfsi->ncommit -= ret; 549 spin_unlock(&inode->i_lock); 550 551 if (nfs_need_commit(NFS_I(inode))) 552 __mark_inode_dirty(inode, I_DIRTY_DATASYNC); 553 554 return ret; 555 } 556 #else 557 static inline int nfs_need_commit(struct nfs_inode *nfsi) 558 { 559 return 0; 560 } 561 562 static inline int nfs_scan_commit(struct inode *inode, struct list_head *dst, pgoff_t idx_start, unsigned int npages) 563 { 564 return 0; 565 } 566 #endif 567 568 /* 569 * Search for an existing write request, and attempt to update 570 * it to reflect a new dirty region on a given page. 571 * 572 * If the attempt fails, then the existing request is flushed out 573 * to disk. 574 */ 575 static struct nfs_page *nfs_try_to_update_request(struct inode *inode, 576 struct page *page, 577 unsigned int offset, 578 unsigned int bytes) 579 { 580 struct nfs_page *req; 581 unsigned int rqend; 582 unsigned int end; 583 int error; 584 585 if (!PagePrivate(page)) 586 return NULL; 587 588 end = offset + bytes; 589 spin_lock(&inode->i_lock); 590 591 for (;;) { 592 req = nfs_page_find_request_locked(page); 593 if (req == NULL) 594 goto out_unlock; 595 596 rqend = req->wb_offset + req->wb_bytes; 597 /* 598 * Tell the caller to flush out the request if 599 * the offsets are non-contiguous. 600 * Note: nfs_flush_incompatible() will already 601 * have flushed out requests having wrong owners. 602 */ 603 if (offset > rqend 604 || end < req->wb_offset) 605 goto out_flushme; 606 607 if (nfs_set_page_tag_locked(req)) 608 break; 609 610 /* The request is locked, so wait and then retry */ 611 spin_unlock(&inode->i_lock); 612 error = nfs_wait_on_request(req); 613 nfs_release_request(req); 614 if (error != 0) 615 goto out_err; 616 spin_lock(&inode->i_lock); 617 } 618 619 if (nfs_clear_request_commit(req) && 620 radix_tree_tag_clear(&NFS_I(inode)->nfs_page_tree, 621 req->wb_index, NFS_PAGE_TAG_COMMIT) != NULL) { 622 NFS_I(inode)->ncommit--; 623 pnfs_clear_request_commit(req); 624 } 625 626 /* Okay, the request matches. Update the region */ 627 if (offset < req->wb_offset) { 628 req->wb_offset = offset; 629 req->wb_pgbase = offset; 630 } 631 if (end > rqend) 632 req->wb_bytes = end - req->wb_offset; 633 else 634 req->wb_bytes = rqend - req->wb_offset; 635 out_unlock: 636 spin_unlock(&inode->i_lock); 637 return req; 638 out_flushme: 639 spin_unlock(&inode->i_lock); 640 nfs_release_request(req); 641 error = nfs_wb_page(inode, page); 642 out_err: 643 return ERR_PTR(error); 644 } 645 646 /* 647 * Try to update an existing write request, or create one if there is none. 648 * 649 * Note: Should always be called with the Page Lock held to prevent races 650 * if we have to add a new request. Also assumes that the caller has 651 * already called nfs_flush_incompatible() if necessary. 652 */ 653 static struct nfs_page * nfs_setup_write_request(struct nfs_open_context* ctx, 654 struct page *page, unsigned int offset, unsigned int bytes) 655 { 656 struct inode *inode = page->mapping->host; 657 struct nfs_page *req; 658 int error; 659 660 req = nfs_try_to_update_request(inode, page, offset, bytes); 661 if (req != NULL) 662 goto out; 663 req = nfs_create_request(ctx, inode, page, offset, bytes); 664 if (IS_ERR(req)) 665 goto out; 666 error = nfs_inode_add_request(inode, req); 667 if (error != 0) { 668 nfs_release_request(req); 669 req = ERR_PTR(error); 670 } 671 out: 672 return req; 673 } 674 675 static int nfs_writepage_setup(struct nfs_open_context *ctx, struct page *page, 676 unsigned int offset, unsigned int count) 677 { 678 struct nfs_page *req; 679 680 req = nfs_setup_write_request(ctx, page, offset, count); 681 if (IS_ERR(req)) 682 return PTR_ERR(req); 683 /* Update file length */ 684 nfs_grow_file(page, offset, count); 685 nfs_mark_uptodate(page, req->wb_pgbase, req->wb_bytes); 686 nfs_mark_request_dirty(req); 687 nfs_clear_page_tag_locked(req); 688 return 0; 689 } 690 691 int nfs_flush_incompatible(struct file *file, struct page *page) 692 { 693 struct nfs_open_context *ctx = nfs_file_open_context(file); 694 struct nfs_page *req; 695 int do_flush, status; 696 /* 697 * Look for a request corresponding to this page. If there 698 * is one, and it belongs to another file, we flush it out 699 * before we try to copy anything into the page. Do this 700 * due to the lack of an ACCESS-type call in NFSv2. 701 * Also do the same if we find a request from an existing 702 * dropped page. 703 */ 704 do { 705 req = nfs_page_find_request(page); 706 if (req == NULL) 707 return 0; 708 do_flush = req->wb_page != page || req->wb_context != ctx || 709 req->wb_lock_context->lockowner != current->files || 710 req->wb_lock_context->pid != current->tgid; 711 nfs_release_request(req); 712 if (!do_flush) 713 return 0; 714 status = nfs_wb_page(page->mapping->host, page); 715 } while (status == 0); 716 return status; 717 } 718 719 /* 720 * If the page cache is marked as unsafe or invalid, then we can't rely on 721 * the PageUptodate() flag. In this case, we will need to turn off 722 * write optimisations that depend on the page contents being correct. 723 */ 724 static int nfs_write_pageuptodate(struct page *page, struct inode *inode) 725 { 726 return PageUptodate(page) && 727 !(NFS_I(inode)->cache_validity & (NFS_INO_REVAL_PAGECACHE|NFS_INO_INVALID_DATA)); 728 } 729 730 /* 731 * Update and possibly write a cached page of an NFS file. 732 * 733 * XXX: Keep an eye on generic_file_read to make sure it doesn't do bad 734 * things with a page scheduled for an RPC call (e.g. invalidate it). 735 */ 736 int nfs_updatepage(struct file *file, struct page *page, 737 unsigned int offset, unsigned int count) 738 { 739 struct nfs_open_context *ctx = nfs_file_open_context(file); 740 struct inode *inode = page->mapping->host; 741 int status = 0; 742 743 nfs_inc_stats(inode, NFSIOS_VFSUPDATEPAGE); 744 745 dprintk("NFS: nfs_updatepage(%s/%s %d@%lld)\n", 746 file->f_path.dentry->d_parent->d_name.name, 747 file->f_path.dentry->d_name.name, count, 748 (long long)(page_offset(page) + offset)); 749 750 /* If we're not using byte range locks, and we know the page 751 * is up to date, it may be more efficient to extend the write 752 * to cover the entire page in order to avoid fragmentation 753 * inefficiencies. 754 */ 755 if (nfs_write_pageuptodate(page, inode) && 756 inode->i_flock == NULL && 757 !(file->f_flags & O_DSYNC)) { 758 count = max(count + offset, nfs_page_length(page)); 759 offset = 0; 760 } 761 762 status = nfs_writepage_setup(ctx, page, offset, count); 763 if (status < 0) 764 nfs_set_pageerror(page); 765 766 dprintk("NFS: nfs_updatepage returns %d (isize %lld)\n", 767 status, (long long)i_size_read(inode)); 768 return status; 769 } 770 771 static void nfs_writepage_release(struct nfs_page *req, 772 struct nfs_write_data *data) 773 { 774 struct page *page = req->wb_page; 775 776 if (PageError(req->wb_page) || !nfs_reschedule_unstable_write(req, data)) 777 nfs_inode_remove_request(req); 778 nfs_clear_page_tag_locked(req); 779 nfs_end_page_writeback(page); 780 } 781 782 static int flush_task_priority(int how) 783 { 784 switch (how & (FLUSH_HIGHPRI|FLUSH_LOWPRI)) { 785 case FLUSH_HIGHPRI: 786 return RPC_PRIORITY_HIGH; 787 case FLUSH_LOWPRI: 788 return RPC_PRIORITY_LOW; 789 } 790 return RPC_PRIORITY_NORMAL; 791 } 792 793 int nfs_initiate_write(struct nfs_write_data *data, 794 struct rpc_clnt *clnt, 795 const struct rpc_call_ops *call_ops, 796 int how) 797 { 798 struct inode *inode = data->inode; 799 int priority = flush_task_priority(how); 800 struct rpc_task *task; 801 struct rpc_message msg = { 802 .rpc_argp = &data->args, 803 .rpc_resp = &data->res, 804 .rpc_cred = data->cred, 805 }; 806 struct rpc_task_setup task_setup_data = { 807 .rpc_client = clnt, 808 .task = &data->task, 809 .rpc_message = &msg, 810 .callback_ops = call_ops, 811 .callback_data = data, 812 .workqueue = nfsiod_workqueue, 813 .flags = RPC_TASK_ASYNC, 814 .priority = priority, 815 }; 816 int ret = 0; 817 818 /* Set up the initial task struct. */ 819 NFS_PROTO(inode)->write_setup(data, &msg); 820 821 dprintk("NFS: %5u initiated write call " 822 "(req %s/%lld, %u bytes @ offset %llu)\n", 823 data->task.tk_pid, 824 inode->i_sb->s_id, 825 (long long)NFS_FILEID(inode), 826 data->args.count, 827 (unsigned long long)data->args.offset); 828 829 task = rpc_run_task(&task_setup_data); 830 if (IS_ERR(task)) { 831 ret = PTR_ERR(task); 832 goto out; 833 } 834 if (how & FLUSH_SYNC) { 835 ret = rpc_wait_for_completion_task(task); 836 if (ret == 0) 837 ret = task->tk_status; 838 } 839 rpc_put_task(task); 840 out: 841 return ret; 842 } 843 EXPORT_SYMBOL_GPL(nfs_initiate_write); 844 845 /* 846 * Set up the argument/result storage required for the RPC call. 847 */ 848 static void nfs_write_rpcsetup(struct nfs_page *req, 849 struct nfs_write_data *data, 850 unsigned int count, unsigned int offset, 851 int how) 852 { 853 struct inode *inode = req->wb_context->dentry->d_inode; 854 855 /* Set up the RPC argument and reply structs 856 * NB: take care not to mess about with data->commit et al. */ 857 858 data->req = req; 859 data->inode = inode = req->wb_context->dentry->d_inode; 860 data->cred = req->wb_context->cred; 861 862 data->args.fh = NFS_FH(inode); 863 data->args.offset = req_offset(req) + offset; 864 /* pnfs_set_layoutcommit needs this */ 865 data->mds_offset = data->args.offset; 866 data->args.pgbase = req->wb_pgbase + offset; 867 data->args.pages = data->pagevec; 868 data->args.count = count; 869 data->args.context = get_nfs_open_context(req->wb_context); 870 data->args.lock_context = req->wb_lock_context; 871 data->args.stable = NFS_UNSTABLE; 872 switch (how & (FLUSH_STABLE | FLUSH_COND_STABLE)) { 873 case 0: 874 break; 875 case FLUSH_COND_STABLE: 876 if (nfs_need_commit(NFS_I(inode))) 877 break; 878 default: 879 data->args.stable = NFS_FILE_SYNC; 880 } 881 882 data->res.fattr = &data->fattr; 883 data->res.count = count; 884 data->res.verf = &data->verf; 885 nfs_fattr_init(&data->fattr); 886 } 887 888 static int nfs_do_write(struct nfs_write_data *data, 889 const struct rpc_call_ops *call_ops, 890 int how) 891 { 892 struct inode *inode = data->args.context->dentry->d_inode; 893 894 return nfs_initiate_write(data, NFS_CLIENT(inode), call_ops, how); 895 } 896 897 static int nfs_do_multiple_writes(struct list_head *head, 898 const struct rpc_call_ops *call_ops, 899 int how) 900 { 901 struct nfs_write_data *data; 902 int ret = 0; 903 904 while (!list_empty(head)) { 905 int ret2; 906 907 data = list_entry(head->next, struct nfs_write_data, list); 908 list_del_init(&data->list); 909 910 ret2 = nfs_do_write(data, call_ops, how); 911 if (ret == 0) 912 ret = ret2; 913 } 914 return ret; 915 } 916 917 /* If a nfs_flush_* function fails, it should remove reqs from @head and 918 * call this on each, which will prepare them to be retried on next 919 * writeback using standard nfs. 920 */ 921 static void nfs_redirty_request(struct nfs_page *req) 922 { 923 struct page *page = req->wb_page; 924 925 nfs_mark_request_dirty(req); 926 nfs_clear_page_tag_locked(req); 927 nfs_end_page_writeback(page); 928 } 929 930 /* 931 * Generate multiple small requests to write out a single 932 * contiguous dirty area on one page. 933 */ 934 static int nfs_flush_multi(struct nfs_pageio_descriptor *desc, struct list_head *res) 935 { 936 struct nfs_page *req = nfs_list_entry(desc->pg_list.next); 937 struct page *page = req->wb_page; 938 struct nfs_write_data *data; 939 size_t wsize = desc->pg_bsize, nbytes; 940 unsigned int offset; 941 int requests = 0; 942 int ret = 0; 943 944 nfs_list_remove_request(req); 945 946 if ((desc->pg_ioflags & FLUSH_COND_STABLE) && 947 (desc->pg_moreio || NFS_I(desc->pg_inode)->ncommit || 948 desc->pg_count > wsize)) 949 desc->pg_ioflags &= ~FLUSH_COND_STABLE; 950 951 952 offset = 0; 953 nbytes = desc->pg_count; 954 do { 955 size_t len = min(nbytes, wsize); 956 957 data = nfs_writedata_alloc(1); 958 if (!data) 959 goto out_bad; 960 data->pagevec[0] = page; 961 nfs_write_rpcsetup(req, data, len, offset, desc->pg_ioflags); 962 list_add(&data->list, res); 963 requests++; 964 nbytes -= len; 965 offset += len; 966 } while (nbytes != 0); 967 atomic_set(&req->wb_complete, requests); 968 desc->pg_rpc_callops = &nfs_write_partial_ops; 969 return ret; 970 971 out_bad: 972 while (!list_empty(res)) { 973 data = list_entry(res->next, struct nfs_write_data, list); 974 list_del(&data->list); 975 nfs_writedata_free(data); 976 } 977 nfs_redirty_request(req); 978 return -ENOMEM; 979 } 980 981 /* 982 * Create an RPC task for the given write request and kick it. 983 * The page must have been locked by the caller. 984 * 985 * It may happen that the page we're passed is not marked dirty. 986 * This is the case if nfs_updatepage detects a conflicting request 987 * that has been written but not committed. 988 */ 989 static int nfs_flush_one(struct nfs_pageio_descriptor *desc, struct list_head *res) 990 { 991 struct nfs_page *req; 992 struct page **pages; 993 struct nfs_write_data *data; 994 struct list_head *head = &desc->pg_list; 995 int ret = 0; 996 997 data = nfs_writedata_alloc(nfs_page_array_len(desc->pg_base, 998 desc->pg_count)); 999 if (!data) { 1000 while (!list_empty(head)) { 1001 req = nfs_list_entry(head->next); 1002 nfs_list_remove_request(req); 1003 nfs_redirty_request(req); 1004 } 1005 ret = -ENOMEM; 1006 goto out; 1007 } 1008 pages = data->pagevec; 1009 while (!list_empty(head)) { 1010 req = nfs_list_entry(head->next); 1011 nfs_list_remove_request(req); 1012 nfs_list_add_request(req, &data->pages); 1013 ClearPageError(req->wb_page); 1014 *pages++ = req->wb_page; 1015 } 1016 req = nfs_list_entry(data->pages.next); 1017 1018 if ((desc->pg_ioflags & FLUSH_COND_STABLE) && 1019 (desc->pg_moreio || NFS_I(desc->pg_inode)->ncommit)) 1020 desc->pg_ioflags &= ~FLUSH_COND_STABLE; 1021 1022 /* Set up the argument struct */ 1023 nfs_write_rpcsetup(req, data, desc->pg_count, 0, desc->pg_ioflags); 1024 list_add(&data->list, res); 1025 desc->pg_rpc_callops = &nfs_write_full_ops; 1026 out: 1027 return ret; 1028 } 1029 1030 int nfs_generic_flush(struct nfs_pageio_descriptor *desc, struct list_head *head) 1031 { 1032 if (desc->pg_bsize < PAGE_CACHE_SIZE) 1033 return nfs_flush_multi(desc, head); 1034 return nfs_flush_one(desc, head); 1035 } 1036 1037 static int nfs_generic_pg_writepages(struct nfs_pageio_descriptor *desc) 1038 { 1039 LIST_HEAD(head); 1040 int ret; 1041 1042 ret = nfs_generic_flush(desc, &head); 1043 if (ret == 0) 1044 ret = nfs_do_multiple_writes(&head, desc->pg_rpc_callops, 1045 desc->pg_ioflags); 1046 return ret; 1047 } 1048 1049 static const struct nfs_pageio_ops nfs_pageio_write_ops = { 1050 .pg_test = nfs_generic_pg_test, 1051 .pg_doio = nfs_generic_pg_writepages, 1052 }; 1053 1054 static void nfs_pageio_init_write_mds(struct nfs_pageio_descriptor *pgio, 1055 struct inode *inode, int ioflags) 1056 { 1057 nfs_pageio_init(pgio, inode, &nfs_pageio_write_ops, 1058 NFS_SERVER(inode)->wsize, ioflags); 1059 } 1060 1061 void nfs_pageio_reset_write_mds(struct nfs_pageio_descriptor *pgio) 1062 { 1063 pgio->pg_ops = &nfs_pageio_write_ops; 1064 pgio->pg_bsize = NFS_SERVER(pgio->pg_inode)->wsize; 1065 } 1066 EXPORT_SYMBOL_GPL(nfs_pageio_reset_write_mds); 1067 1068 static void nfs_pageio_init_write(struct nfs_pageio_descriptor *pgio, 1069 struct inode *inode, int ioflags) 1070 { 1071 if (!pnfs_pageio_init_write(pgio, inode, ioflags)) 1072 nfs_pageio_init_write_mds(pgio, inode, ioflags); 1073 } 1074 1075 /* 1076 * Handle a write reply that flushed part of a page. 1077 */ 1078 static void nfs_writeback_done_partial(struct rpc_task *task, void *calldata) 1079 { 1080 struct nfs_write_data *data = calldata; 1081 1082 dprintk("NFS: %5u write(%s/%lld %d@%lld)", 1083 task->tk_pid, 1084 data->req->wb_context->dentry->d_inode->i_sb->s_id, 1085 (long long) 1086 NFS_FILEID(data->req->wb_context->dentry->d_inode), 1087 data->req->wb_bytes, (long long)req_offset(data->req)); 1088 1089 nfs_writeback_done(task, data); 1090 } 1091 1092 static void nfs_writeback_release_partial(void *calldata) 1093 { 1094 struct nfs_write_data *data = calldata; 1095 struct nfs_page *req = data->req; 1096 struct page *page = req->wb_page; 1097 int status = data->task.tk_status; 1098 1099 if (status < 0) { 1100 nfs_set_pageerror(page); 1101 nfs_context_set_write_error(req->wb_context, status); 1102 dprintk(", error = %d\n", status); 1103 goto out; 1104 } 1105 1106 if (nfs_write_need_commit(data)) { 1107 struct inode *inode = page->mapping->host; 1108 1109 spin_lock(&inode->i_lock); 1110 if (test_bit(PG_NEED_RESCHED, &req->wb_flags)) { 1111 /* Do nothing we need to resend the writes */ 1112 } else if (!test_and_set_bit(PG_NEED_COMMIT, &req->wb_flags)) { 1113 memcpy(&req->wb_verf, &data->verf, sizeof(req->wb_verf)); 1114 dprintk(" defer commit\n"); 1115 } else if (memcmp(&req->wb_verf, &data->verf, sizeof(req->wb_verf))) { 1116 set_bit(PG_NEED_RESCHED, &req->wb_flags); 1117 clear_bit(PG_NEED_COMMIT, &req->wb_flags); 1118 dprintk(" server reboot detected\n"); 1119 } 1120 spin_unlock(&inode->i_lock); 1121 } else 1122 dprintk(" OK\n"); 1123 1124 out: 1125 if (atomic_dec_and_test(&req->wb_complete)) 1126 nfs_writepage_release(req, data); 1127 nfs_writedata_release(calldata); 1128 } 1129 1130 #if defined(CONFIG_NFS_V4_1) 1131 void nfs_write_prepare(struct rpc_task *task, void *calldata) 1132 { 1133 struct nfs_write_data *data = calldata; 1134 1135 if (nfs4_setup_sequence(NFS_SERVER(data->inode), 1136 &data->args.seq_args, 1137 &data->res.seq_res, 1, task)) 1138 return; 1139 rpc_call_start(task); 1140 } 1141 #endif /* CONFIG_NFS_V4_1 */ 1142 1143 static const struct rpc_call_ops nfs_write_partial_ops = { 1144 #if defined(CONFIG_NFS_V4_1) 1145 .rpc_call_prepare = nfs_write_prepare, 1146 #endif /* CONFIG_NFS_V4_1 */ 1147 .rpc_call_done = nfs_writeback_done_partial, 1148 .rpc_release = nfs_writeback_release_partial, 1149 }; 1150 1151 /* 1152 * Handle a write reply that flushes a whole page. 1153 * 1154 * FIXME: There is an inherent race with invalidate_inode_pages and 1155 * writebacks since the page->count is kept > 1 for as long 1156 * as the page has a write request pending. 1157 */ 1158 static void nfs_writeback_done_full(struct rpc_task *task, void *calldata) 1159 { 1160 struct nfs_write_data *data = calldata; 1161 1162 nfs_writeback_done(task, data); 1163 } 1164 1165 static void nfs_writeback_release_full(void *calldata) 1166 { 1167 struct nfs_write_data *data = calldata; 1168 int status = data->task.tk_status; 1169 1170 /* Update attributes as result of writeback. */ 1171 while (!list_empty(&data->pages)) { 1172 struct nfs_page *req = nfs_list_entry(data->pages.next); 1173 struct page *page = req->wb_page; 1174 1175 nfs_list_remove_request(req); 1176 1177 dprintk("NFS: %5u write (%s/%lld %d@%lld)", 1178 data->task.tk_pid, 1179 req->wb_context->dentry->d_inode->i_sb->s_id, 1180 (long long)NFS_FILEID(req->wb_context->dentry->d_inode), 1181 req->wb_bytes, 1182 (long long)req_offset(req)); 1183 1184 if (status < 0) { 1185 nfs_set_pageerror(page); 1186 nfs_context_set_write_error(req->wb_context, status); 1187 dprintk(", error = %d\n", status); 1188 goto remove_request; 1189 } 1190 1191 if (nfs_write_need_commit(data)) { 1192 memcpy(&req->wb_verf, &data->verf, sizeof(req->wb_verf)); 1193 nfs_mark_request_commit(req, data->lseg); 1194 dprintk(" marked for commit\n"); 1195 goto next; 1196 } 1197 dprintk(" OK\n"); 1198 remove_request: 1199 nfs_inode_remove_request(req); 1200 next: 1201 nfs_clear_page_tag_locked(req); 1202 nfs_end_page_writeback(page); 1203 } 1204 nfs_writedata_release(calldata); 1205 } 1206 1207 static const struct rpc_call_ops nfs_write_full_ops = { 1208 #if defined(CONFIG_NFS_V4_1) 1209 .rpc_call_prepare = nfs_write_prepare, 1210 #endif /* CONFIG_NFS_V4_1 */ 1211 .rpc_call_done = nfs_writeback_done_full, 1212 .rpc_release = nfs_writeback_release_full, 1213 }; 1214 1215 1216 /* 1217 * This function is called when the WRITE call is complete. 1218 */ 1219 void nfs_writeback_done(struct rpc_task *task, struct nfs_write_data *data) 1220 { 1221 struct nfs_writeargs *argp = &data->args; 1222 struct nfs_writeres *resp = &data->res; 1223 struct nfs_server *server = NFS_SERVER(data->inode); 1224 int status; 1225 1226 dprintk("NFS: %5u nfs_writeback_done (status %d)\n", 1227 task->tk_pid, task->tk_status); 1228 1229 /* 1230 * ->write_done will attempt to use post-op attributes to detect 1231 * conflicting writes by other clients. A strict interpretation 1232 * of close-to-open would allow us to continue caching even if 1233 * another writer had changed the file, but some applications 1234 * depend on tighter cache coherency when writing. 1235 */ 1236 status = NFS_PROTO(data->inode)->write_done(task, data); 1237 if (status != 0) 1238 return; 1239 nfs_add_stats(data->inode, NFSIOS_SERVERWRITTENBYTES, resp->count); 1240 1241 #if defined(CONFIG_NFS_V3) || defined(CONFIG_NFS_V4) 1242 if (resp->verf->committed < argp->stable && task->tk_status >= 0) { 1243 /* We tried a write call, but the server did not 1244 * commit data to stable storage even though we 1245 * requested it. 1246 * Note: There is a known bug in Tru64 < 5.0 in which 1247 * the server reports NFS_DATA_SYNC, but performs 1248 * NFS_FILE_SYNC. We therefore implement this checking 1249 * as a dprintk() in order to avoid filling syslog. 1250 */ 1251 static unsigned long complain; 1252 1253 /* Note this will print the MDS for a DS write */ 1254 if (time_before(complain, jiffies)) { 1255 dprintk("NFS: faulty NFS server %s:" 1256 " (committed = %d) != (stable = %d)\n", 1257 server->nfs_client->cl_hostname, 1258 resp->verf->committed, argp->stable); 1259 complain = jiffies + 300 * HZ; 1260 } 1261 } 1262 #endif 1263 /* Is this a short write? */ 1264 if (task->tk_status >= 0 && resp->count < argp->count) { 1265 static unsigned long complain; 1266 1267 nfs_inc_stats(data->inode, NFSIOS_SHORTWRITE); 1268 1269 /* Has the server at least made some progress? */ 1270 if (resp->count != 0) { 1271 /* Was this an NFSv2 write or an NFSv3 stable write? */ 1272 if (resp->verf->committed != NFS_UNSTABLE) { 1273 /* Resend from where the server left off */ 1274 data->mds_offset += resp->count; 1275 argp->offset += resp->count; 1276 argp->pgbase += resp->count; 1277 argp->count -= resp->count; 1278 } else { 1279 /* Resend as a stable write in order to avoid 1280 * headaches in the case of a server crash. 1281 */ 1282 argp->stable = NFS_FILE_SYNC; 1283 } 1284 nfs_restart_rpc(task, server->nfs_client); 1285 return; 1286 } 1287 if (time_before(complain, jiffies)) { 1288 printk(KERN_WARNING 1289 "NFS: Server wrote zero bytes, expected %u.\n", 1290 argp->count); 1291 complain = jiffies + 300 * HZ; 1292 } 1293 /* Can't do anything about it except throw an error. */ 1294 task->tk_status = -EIO; 1295 } 1296 return; 1297 } 1298 1299 1300 #if defined(CONFIG_NFS_V3) || defined(CONFIG_NFS_V4) 1301 static int nfs_commit_set_lock(struct nfs_inode *nfsi, int may_wait) 1302 { 1303 int ret; 1304 1305 if (!test_and_set_bit(NFS_INO_COMMIT, &nfsi->flags)) 1306 return 1; 1307 if (!may_wait) 1308 return 0; 1309 ret = out_of_line_wait_on_bit_lock(&nfsi->flags, 1310 NFS_INO_COMMIT, 1311 nfs_wait_bit_killable, 1312 TASK_KILLABLE); 1313 return (ret < 0) ? ret : 1; 1314 } 1315 1316 void nfs_commit_clear_lock(struct nfs_inode *nfsi) 1317 { 1318 clear_bit(NFS_INO_COMMIT, &nfsi->flags); 1319 smp_mb__after_clear_bit(); 1320 wake_up_bit(&nfsi->flags, NFS_INO_COMMIT); 1321 } 1322 EXPORT_SYMBOL_GPL(nfs_commit_clear_lock); 1323 1324 void nfs_commitdata_release(void *data) 1325 { 1326 struct nfs_write_data *wdata = data; 1327 1328 put_lseg(wdata->lseg); 1329 put_nfs_open_context(wdata->args.context); 1330 nfs_commit_free(wdata); 1331 } 1332 EXPORT_SYMBOL_GPL(nfs_commitdata_release); 1333 1334 int nfs_initiate_commit(struct nfs_write_data *data, struct rpc_clnt *clnt, 1335 const struct rpc_call_ops *call_ops, 1336 int how) 1337 { 1338 struct rpc_task *task; 1339 int priority = flush_task_priority(how); 1340 struct rpc_message msg = { 1341 .rpc_argp = &data->args, 1342 .rpc_resp = &data->res, 1343 .rpc_cred = data->cred, 1344 }; 1345 struct rpc_task_setup task_setup_data = { 1346 .task = &data->task, 1347 .rpc_client = clnt, 1348 .rpc_message = &msg, 1349 .callback_ops = call_ops, 1350 .callback_data = data, 1351 .workqueue = nfsiod_workqueue, 1352 .flags = RPC_TASK_ASYNC, 1353 .priority = priority, 1354 }; 1355 /* Set up the initial task struct. */ 1356 NFS_PROTO(data->inode)->commit_setup(data, &msg); 1357 1358 dprintk("NFS: %5u initiated commit call\n", data->task.tk_pid); 1359 1360 task = rpc_run_task(&task_setup_data); 1361 if (IS_ERR(task)) 1362 return PTR_ERR(task); 1363 if (how & FLUSH_SYNC) 1364 rpc_wait_for_completion_task(task); 1365 rpc_put_task(task); 1366 return 0; 1367 } 1368 EXPORT_SYMBOL_GPL(nfs_initiate_commit); 1369 1370 /* 1371 * Set up the argument/result storage required for the RPC call. 1372 */ 1373 void nfs_init_commit(struct nfs_write_data *data, 1374 struct list_head *head, 1375 struct pnfs_layout_segment *lseg) 1376 { 1377 struct nfs_page *first = nfs_list_entry(head->next); 1378 struct inode *inode = first->wb_context->dentry->d_inode; 1379 1380 /* Set up the RPC argument and reply structs 1381 * NB: take care not to mess about with data->commit et al. */ 1382 1383 list_splice_init(head, &data->pages); 1384 1385 data->inode = inode; 1386 data->cred = first->wb_context->cred; 1387 data->lseg = lseg; /* reference transferred */ 1388 data->mds_ops = &nfs_commit_ops; 1389 1390 data->args.fh = NFS_FH(data->inode); 1391 /* Note: we always request a commit of the entire inode */ 1392 data->args.offset = 0; 1393 data->args.count = 0; 1394 data->args.context = get_nfs_open_context(first->wb_context); 1395 data->res.count = 0; 1396 data->res.fattr = &data->fattr; 1397 data->res.verf = &data->verf; 1398 nfs_fattr_init(&data->fattr); 1399 } 1400 EXPORT_SYMBOL_GPL(nfs_init_commit); 1401 1402 void nfs_retry_commit(struct list_head *page_list, 1403 struct pnfs_layout_segment *lseg) 1404 { 1405 struct nfs_page *req; 1406 1407 while (!list_empty(page_list)) { 1408 req = nfs_list_entry(page_list->next); 1409 nfs_list_remove_request(req); 1410 nfs_mark_request_commit(req, lseg); 1411 dec_zone_page_state(req->wb_page, NR_UNSTABLE_NFS); 1412 dec_bdi_stat(req->wb_page->mapping->backing_dev_info, 1413 BDI_RECLAIMABLE); 1414 nfs_clear_page_tag_locked(req); 1415 } 1416 } 1417 EXPORT_SYMBOL_GPL(nfs_retry_commit); 1418 1419 /* 1420 * Commit dirty pages 1421 */ 1422 static int 1423 nfs_commit_list(struct inode *inode, struct list_head *head, int how) 1424 { 1425 struct nfs_write_data *data; 1426 1427 data = nfs_commitdata_alloc(); 1428 1429 if (!data) 1430 goto out_bad; 1431 1432 /* Set up the argument struct */ 1433 nfs_init_commit(data, head, NULL); 1434 return nfs_initiate_commit(data, NFS_CLIENT(inode), data->mds_ops, how); 1435 out_bad: 1436 nfs_retry_commit(head, NULL); 1437 nfs_commit_clear_lock(NFS_I(inode)); 1438 return -ENOMEM; 1439 } 1440 1441 /* 1442 * COMMIT call returned 1443 */ 1444 static void nfs_commit_done(struct rpc_task *task, void *calldata) 1445 { 1446 struct nfs_write_data *data = calldata; 1447 1448 dprintk("NFS: %5u nfs_commit_done (status %d)\n", 1449 task->tk_pid, task->tk_status); 1450 1451 /* Call the NFS version-specific code */ 1452 NFS_PROTO(data->inode)->commit_done(task, data); 1453 } 1454 1455 void nfs_commit_release_pages(struct nfs_write_data *data) 1456 { 1457 struct nfs_page *req; 1458 int status = data->task.tk_status; 1459 1460 while (!list_empty(&data->pages)) { 1461 req = nfs_list_entry(data->pages.next); 1462 nfs_list_remove_request(req); 1463 nfs_clear_request_commit(req); 1464 1465 dprintk("NFS: commit (%s/%lld %d@%lld)", 1466 req->wb_context->dentry->d_sb->s_id, 1467 (long long)NFS_FILEID(req->wb_context->dentry->d_inode), 1468 req->wb_bytes, 1469 (long long)req_offset(req)); 1470 if (status < 0) { 1471 nfs_context_set_write_error(req->wb_context, status); 1472 nfs_inode_remove_request(req); 1473 dprintk(", error = %d\n", status); 1474 goto next; 1475 } 1476 1477 /* Okay, COMMIT succeeded, apparently. Check the verifier 1478 * returned by the server against all stored verfs. */ 1479 if (!memcmp(req->wb_verf.verifier, data->verf.verifier, sizeof(data->verf.verifier))) { 1480 /* We have a match */ 1481 nfs_inode_remove_request(req); 1482 dprintk(" OK\n"); 1483 goto next; 1484 } 1485 /* We have a mismatch. Write the page again */ 1486 dprintk(" mismatch\n"); 1487 nfs_mark_request_dirty(req); 1488 next: 1489 nfs_clear_page_tag_locked(req); 1490 } 1491 } 1492 EXPORT_SYMBOL_GPL(nfs_commit_release_pages); 1493 1494 static void nfs_commit_release(void *calldata) 1495 { 1496 struct nfs_write_data *data = calldata; 1497 1498 nfs_commit_release_pages(data); 1499 nfs_commit_clear_lock(NFS_I(data->inode)); 1500 nfs_commitdata_release(calldata); 1501 } 1502 1503 static const struct rpc_call_ops nfs_commit_ops = { 1504 #if defined(CONFIG_NFS_V4_1) 1505 .rpc_call_prepare = nfs_write_prepare, 1506 #endif /* CONFIG_NFS_V4_1 */ 1507 .rpc_call_done = nfs_commit_done, 1508 .rpc_release = nfs_commit_release, 1509 }; 1510 1511 int nfs_commit_inode(struct inode *inode, int how) 1512 { 1513 LIST_HEAD(head); 1514 int may_wait = how & FLUSH_SYNC; 1515 int res; 1516 1517 res = nfs_commit_set_lock(NFS_I(inode), may_wait); 1518 if (res <= 0) 1519 goto out_mark_dirty; 1520 res = nfs_scan_commit(inode, &head, 0, 0); 1521 if (res) { 1522 int error; 1523 1524 error = pnfs_commit_list(inode, &head, how); 1525 if (error == PNFS_NOT_ATTEMPTED) 1526 error = nfs_commit_list(inode, &head, how); 1527 if (error < 0) 1528 return error; 1529 if (!may_wait) 1530 goto out_mark_dirty; 1531 error = wait_on_bit(&NFS_I(inode)->flags, 1532 NFS_INO_COMMIT, 1533 nfs_wait_bit_killable, 1534 TASK_KILLABLE); 1535 if (error < 0) 1536 return error; 1537 } else 1538 nfs_commit_clear_lock(NFS_I(inode)); 1539 return res; 1540 /* Note: If we exit without ensuring that the commit is complete, 1541 * we must mark the inode as dirty. Otherwise, future calls to 1542 * sync_inode() with the WB_SYNC_ALL flag set will fail to ensure 1543 * that the data is on the disk. 1544 */ 1545 out_mark_dirty: 1546 __mark_inode_dirty(inode, I_DIRTY_DATASYNC); 1547 return res; 1548 } 1549 1550 static int nfs_commit_unstable_pages(struct inode *inode, struct writeback_control *wbc) 1551 { 1552 struct nfs_inode *nfsi = NFS_I(inode); 1553 int flags = FLUSH_SYNC; 1554 int ret = 0; 1555 1556 if (wbc->sync_mode == WB_SYNC_NONE) { 1557 /* Don't commit yet if this is a non-blocking flush and there 1558 * are a lot of outstanding writes for this mapping. 1559 */ 1560 if (nfsi->ncommit <= (nfsi->npages >> 1)) 1561 goto out_mark_dirty; 1562 1563 /* don't wait for the COMMIT response */ 1564 flags = 0; 1565 } 1566 1567 ret = nfs_commit_inode(inode, flags); 1568 if (ret >= 0) { 1569 if (wbc->sync_mode == WB_SYNC_NONE) { 1570 if (ret < wbc->nr_to_write) 1571 wbc->nr_to_write -= ret; 1572 else 1573 wbc->nr_to_write = 0; 1574 } 1575 return 0; 1576 } 1577 out_mark_dirty: 1578 __mark_inode_dirty(inode, I_DIRTY_DATASYNC); 1579 return ret; 1580 } 1581 #else 1582 static int nfs_commit_unstable_pages(struct inode *inode, struct writeback_control *wbc) 1583 { 1584 return 0; 1585 } 1586 #endif 1587 1588 int nfs_write_inode(struct inode *inode, struct writeback_control *wbc) 1589 { 1590 int ret; 1591 1592 ret = nfs_commit_unstable_pages(inode, wbc); 1593 if (ret >= 0 && test_bit(NFS_INO_LAYOUTCOMMIT, &NFS_I(inode)->flags)) { 1594 int status; 1595 bool sync = true; 1596 1597 if (wbc->sync_mode == WB_SYNC_NONE) 1598 sync = false; 1599 1600 status = pnfs_layoutcommit_inode(inode, sync); 1601 if (status < 0) 1602 return status; 1603 } 1604 return ret; 1605 } 1606 1607 /* 1608 * flush the inode to disk. 1609 */ 1610 int nfs_wb_all(struct inode *inode) 1611 { 1612 struct writeback_control wbc = { 1613 .sync_mode = WB_SYNC_ALL, 1614 .nr_to_write = LONG_MAX, 1615 .range_start = 0, 1616 .range_end = LLONG_MAX, 1617 }; 1618 1619 return sync_inode(inode, &wbc); 1620 } 1621 1622 int nfs_wb_page_cancel(struct inode *inode, struct page *page) 1623 { 1624 struct nfs_page *req; 1625 int ret = 0; 1626 1627 BUG_ON(!PageLocked(page)); 1628 for (;;) { 1629 wait_on_page_writeback(page); 1630 req = nfs_page_find_request(page); 1631 if (req == NULL) 1632 break; 1633 if (nfs_lock_request_dontget(req)) { 1634 nfs_inode_remove_request(req); 1635 /* 1636 * In case nfs_inode_remove_request has marked the 1637 * page as being dirty 1638 */ 1639 cancel_dirty_page(page, PAGE_CACHE_SIZE); 1640 nfs_unlock_request(req); 1641 break; 1642 } 1643 ret = nfs_wait_on_request(req); 1644 nfs_release_request(req); 1645 if (ret < 0) 1646 break; 1647 } 1648 return ret; 1649 } 1650 1651 /* 1652 * Write back all requests on one page - we do this before reading it. 1653 */ 1654 int nfs_wb_page(struct inode *inode, struct page *page) 1655 { 1656 loff_t range_start = page_offset(page); 1657 loff_t range_end = range_start + (loff_t)(PAGE_CACHE_SIZE - 1); 1658 struct writeback_control wbc = { 1659 .sync_mode = WB_SYNC_ALL, 1660 .nr_to_write = 0, 1661 .range_start = range_start, 1662 .range_end = range_end, 1663 }; 1664 int ret; 1665 1666 for (;;) { 1667 wait_on_page_writeback(page); 1668 if (clear_page_dirty_for_io(page)) { 1669 ret = nfs_writepage_locked(page, &wbc); 1670 if (ret < 0) 1671 goto out_error; 1672 continue; 1673 } 1674 if (!PagePrivate(page)) 1675 break; 1676 ret = nfs_commit_inode(inode, FLUSH_SYNC); 1677 if (ret < 0) 1678 goto out_error; 1679 } 1680 return 0; 1681 out_error: 1682 return ret; 1683 } 1684 1685 #ifdef CONFIG_MIGRATION 1686 int nfs_migrate_page(struct address_space *mapping, struct page *newpage, 1687 struct page *page) 1688 { 1689 struct nfs_page *req; 1690 int ret; 1691 1692 nfs_fscache_release_page(page, GFP_KERNEL); 1693 1694 req = nfs_find_and_lock_request(page, false); 1695 ret = PTR_ERR(req); 1696 if (IS_ERR(req)) 1697 goto out; 1698 1699 ret = migrate_page(mapping, newpage, page); 1700 if (!req) 1701 goto out; 1702 if (ret) 1703 goto out_unlock; 1704 page_cache_get(newpage); 1705 spin_lock(&mapping->host->i_lock); 1706 req->wb_page = newpage; 1707 SetPagePrivate(newpage); 1708 set_page_private(newpage, (unsigned long)req); 1709 ClearPagePrivate(page); 1710 set_page_private(page, 0); 1711 spin_unlock(&mapping->host->i_lock); 1712 page_cache_release(page); 1713 out_unlock: 1714 nfs_clear_page_tag_locked(req); 1715 out: 1716 return ret; 1717 } 1718 #endif 1719 1720 int __init nfs_init_writepagecache(void) 1721 { 1722 nfs_wdata_cachep = kmem_cache_create("nfs_write_data", 1723 sizeof(struct nfs_write_data), 1724 0, SLAB_HWCACHE_ALIGN, 1725 NULL); 1726 if (nfs_wdata_cachep == NULL) 1727 return -ENOMEM; 1728 1729 nfs_wdata_mempool = mempool_create_slab_pool(MIN_POOL_WRITE, 1730 nfs_wdata_cachep); 1731 if (nfs_wdata_mempool == NULL) 1732 return -ENOMEM; 1733 1734 nfs_commit_mempool = mempool_create_slab_pool(MIN_POOL_COMMIT, 1735 nfs_wdata_cachep); 1736 if (nfs_commit_mempool == NULL) 1737 return -ENOMEM; 1738 1739 /* 1740 * NFS congestion size, scale with available memory. 1741 * 1742 * 64MB: 8192k 1743 * 128MB: 11585k 1744 * 256MB: 16384k 1745 * 512MB: 23170k 1746 * 1GB: 32768k 1747 * 2GB: 46340k 1748 * 4GB: 65536k 1749 * 8GB: 92681k 1750 * 16GB: 131072k 1751 * 1752 * This allows larger machines to have larger/more transfers. 1753 * Limit the default to 256M 1754 */ 1755 nfs_congestion_kb = (16*int_sqrt(totalram_pages)) << (PAGE_SHIFT-10); 1756 if (nfs_congestion_kb > 256*1024) 1757 nfs_congestion_kb = 256*1024; 1758 1759 return 0; 1760 } 1761 1762 void nfs_destroy_writepagecache(void) 1763 { 1764 mempool_destroy(nfs_commit_mempool); 1765 mempool_destroy(nfs_wdata_mempool); 1766 kmem_cache_destroy(nfs_wdata_cachep); 1767 } 1768 1769