1 /* 2 * linux/fs/nfs/write.c 3 * 4 * Writing file data over NFS. 5 * 6 * We do it like this: When a (user) process wishes to write data to an 7 * NFS file, a write request is allocated that contains the RPC task data 8 * plus some info on the page to be written, and added to the inode's 9 * write chain. If the process writes past the end of the page, an async 10 * RPC call to write the page is scheduled immediately; otherwise, the call 11 * is delayed for a few seconds. 12 * 13 * Just like readahead, no async I/O is performed if wsize < PAGE_SIZE. 14 * 15 * Write requests are kept on the inode's writeback list. Each entry in 16 * that list references the page (portion) to be written. When the 17 * cache timeout has expired, the RPC task is woken up, and tries to 18 * lock the page. As soon as it manages to do so, the request is moved 19 * from the writeback list to the writelock list. 20 * 21 * Note: we must make sure never to confuse the inode passed in the 22 * write_page request with the one in page->inode. As far as I understand 23 * it, these are different when doing a swap-out. 24 * 25 * To understand everything that goes on here and in the NFS read code, 26 * one should be aware that a page is locked in exactly one of the following 27 * cases: 28 * 29 * - A write request is in progress. 30 * - A user process is in generic_file_write/nfs_update_page 31 * - A user process is in generic_file_read 32 * 33 * Also note that because of the way pages are invalidated in 34 * nfs_revalidate_inode, the following assertions hold: 35 * 36 * - If a page is dirty, there will be no read requests (a page will 37 * not be re-read unless invalidated by nfs_revalidate_inode). 38 * - If the page is not uptodate, there will be no pending write 39 * requests, and no process will be in nfs_update_page. 40 * 41 * FIXME: Interaction with the vmscan routines is not optimal yet. 42 * Either vmscan must be made nfs-savvy, or we need a different page 43 * reclaim concept that supports something like FS-independent 44 * buffer_heads with a b_ops-> field. 45 * 46 * Copyright (C) 1996, 1997, Olaf Kirch <okir@monad.swb.de> 47 */ 48 49 #include <linux/config.h> 50 #include <linux/types.h> 51 #include <linux/slab.h> 52 #include <linux/mm.h> 53 #include <linux/pagemap.h> 54 #include <linux/file.h> 55 #include <linux/mpage.h> 56 #include <linux/writeback.h> 57 58 #include <linux/sunrpc/clnt.h> 59 #include <linux/nfs_fs.h> 60 #include <linux/nfs_mount.h> 61 #include <linux/nfs_page.h> 62 #include <asm/uaccess.h> 63 #include <linux/smp_lock.h> 64 65 #include "delegation.h" 66 67 #define NFSDBG_FACILITY NFSDBG_PAGECACHE 68 69 #define MIN_POOL_WRITE (32) 70 #define MIN_POOL_COMMIT (4) 71 72 /* 73 * Local function declarations 74 */ 75 static struct nfs_page * nfs_update_request(struct nfs_open_context*, 76 struct inode *, 77 struct page *, 78 unsigned int, unsigned int); 79 static void nfs_writeback_done_partial(struct nfs_write_data *, int); 80 static void nfs_writeback_done_full(struct nfs_write_data *, int); 81 static int nfs_wait_on_write_congestion(struct address_space *, int); 82 static int nfs_wait_on_requests(struct inode *, unsigned long, unsigned int); 83 static int nfs_flush_inode(struct inode *inode, unsigned long idx_start, 84 unsigned int npages, int how); 85 86 static kmem_cache_t *nfs_wdata_cachep; 87 mempool_t *nfs_wdata_mempool; 88 static mempool_t *nfs_commit_mempool; 89 90 static DECLARE_WAIT_QUEUE_HEAD(nfs_write_congestion); 91 92 static inline struct nfs_write_data *nfs_commit_alloc(void) 93 { 94 struct nfs_write_data *p = mempool_alloc(nfs_commit_mempool, SLAB_NOFS); 95 if (p) { 96 memset(p, 0, sizeof(*p)); 97 INIT_LIST_HEAD(&p->pages); 98 } 99 return p; 100 } 101 102 static inline void nfs_commit_free(struct nfs_write_data *p) 103 { 104 mempool_free(p, nfs_commit_mempool); 105 } 106 107 static void nfs_writedata_release(struct rpc_task *task) 108 { 109 struct nfs_write_data *wdata = (struct nfs_write_data *)task->tk_calldata; 110 nfs_writedata_free(wdata); 111 } 112 113 /* Adjust the file length if we're writing beyond the end */ 114 static void nfs_grow_file(struct page *page, unsigned int offset, unsigned int count) 115 { 116 struct inode *inode = page->mapping->host; 117 loff_t end, i_size = i_size_read(inode); 118 unsigned long end_index = (i_size - 1) >> PAGE_CACHE_SHIFT; 119 120 if (i_size > 0 && page->index < end_index) 121 return; 122 end = ((loff_t)page->index << PAGE_CACHE_SHIFT) + ((loff_t)offset+count); 123 if (i_size >= end) 124 return; 125 i_size_write(inode, end); 126 } 127 128 /* We can set the PG_uptodate flag if we see that a write request 129 * covers the full page. 130 */ 131 static void nfs_mark_uptodate(struct page *page, unsigned int base, unsigned int count) 132 { 133 loff_t end_offs; 134 135 if (PageUptodate(page)) 136 return; 137 if (base != 0) 138 return; 139 if (count == PAGE_CACHE_SIZE) { 140 SetPageUptodate(page); 141 return; 142 } 143 144 end_offs = i_size_read(page->mapping->host) - 1; 145 if (end_offs < 0) 146 return; 147 /* Is this the last page? */ 148 if (page->index != (unsigned long)(end_offs >> PAGE_CACHE_SHIFT)) 149 return; 150 /* This is the last page: set PG_uptodate if we cover the entire 151 * extent of the data, then zero the rest of the page. 152 */ 153 if (count == (unsigned int)(end_offs & (PAGE_CACHE_SIZE - 1)) + 1) { 154 memclear_highpage_flush(page, count, PAGE_CACHE_SIZE - count); 155 SetPageUptodate(page); 156 } 157 } 158 159 /* 160 * Write a page synchronously. 161 * Offset is the data offset within the page. 162 */ 163 static int nfs_writepage_sync(struct nfs_open_context *ctx, struct inode *inode, 164 struct page *page, unsigned int offset, unsigned int count, 165 int how) 166 { 167 unsigned int wsize = NFS_SERVER(inode)->wsize; 168 int result, written = 0; 169 struct nfs_write_data *wdata; 170 171 wdata = nfs_writedata_alloc(); 172 if (!wdata) 173 return -ENOMEM; 174 175 wdata->flags = how; 176 wdata->cred = ctx->cred; 177 wdata->inode = inode; 178 wdata->args.fh = NFS_FH(inode); 179 wdata->args.context = ctx; 180 wdata->args.pages = &page; 181 wdata->args.stable = NFS_FILE_SYNC; 182 wdata->args.pgbase = offset; 183 wdata->args.count = wsize; 184 wdata->res.fattr = &wdata->fattr; 185 wdata->res.verf = &wdata->verf; 186 187 dprintk("NFS: nfs_writepage_sync(%s/%Ld %d@%Ld)\n", 188 inode->i_sb->s_id, 189 (long long)NFS_FILEID(inode), 190 count, (long long)(page_offset(page) + offset)); 191 192 set_page_writeback(page); 193 nfs_begin_data_update(inode); 194 do { 195 if (count < wsize) 196 wdata->args.count = count; 197 wdata->args.offset = page_offset(page) + wdata->args.pgbase; 198 199 result = NFS_PROTO(inode)->write(wdata); 200 201 if (result < 0) { 202 /* Must mark the page invalid after I/O error */ 203 ClearPageUptodate(page); 204 goto io_error; 205 } 206 if (result < wdata->args.count) 207 printk(KERN_WARNING "NFS: short write, count=%u, result=%d\n", 208 wdata->args.count, result); 209 210 wdata->args.offset += result; 211 wdata->args.pgbase += result; 212 written += result; 213 count -= result; 214 } while (count); 215 /* Update file length */ 216 nfs_grow_file(page, offset, written); 217 /* Set the PG_uptodate flag? */ 218 nfs_mark_uptodate(page, offset, written); 219 220 if (PageError(page)) 221 ClearPageError(page); 222 223 io_error: 224 nfs_end_data_update(inode); 225 end_page_writeback(page); 226 nfs_writedata_free(wdata); 227 return written ? written : result; 228 } 229 230 static int nfs_writepage_async(struct nfs_open_context *ctx, 231 struct inode *inode, struct page *page, 232 unsigned int offset, unsigned int count) 233 { 234 struct nfs_page *req; 235 int status; 236 237 req = nfs_update_request(ctx, inode, page, offset, count); 238 status = (IS_ERR(req)) ? PTR_ERR(req) : 0; 239 if (status < 0) 240 goto out; 241 /* Update file length */ 242 nfs_grow_file(page, offset, count); 243 /* Set the PG_uptodate flag? */ 244 nfs_mark_uptodate(page, offset, count); 245 nfs_unlock_request(req); 246 out: 247 return status; 248 } 249 250 static int wb_priority(struct writeback_control *wbc) 251 { 252 if (wbc->for_reclaim) 253 return FLUSH_HIGHPRI; 254 if (wbc->for_kupdate) 255 return FLUSH_LOWPRI; 256 return 0; 257 } 258 259 /* 260 * Write an mmapped page to the server. 261 */ 262 int nfs_writepage(struct page *page, struct writeback_control *wbc) 263 { 264 struct nfs_open_context *ctx; 265 struct inode *inode = page->mapping->host; 266 unsigned long end_index; 267 unsigned offset = PAGE_CACHE_SIZE; 268 loff_t i_size = i_size_read(inode); 269 int inode_referenced = 0; 270 int priority = wb_priority(wbc); 271 int err; 272 273 /* 274 * Note: We need to ensure that we have a reference to the inode 275 * if we are to do asynchronous writes. If not, waiting 276 * in nfs_wait_on_request() may deadlock with clear_inode(). 277 * 278 * If igrab() fails here, then it is in any case safe to 279 * call nfs_wb_page(), since there will be no pending writes. 280 */ 281 if (igrab(inode) != 0) 282 inode_referenced = 1; 283 end_index = i_size >> PAGE_CACHE_SHIFT; 284 285 /* Ensure we've flushed out any previous writes */ 286 nfs_wb_page_priority(inode, page, priority); 287 288 /* easy case */ 289 if (page->index < end_index) 290 goto do_it; 291 /* things got complicated... */ 292 offset = i_size & (PAGE_CACHE_SIZE-1); 293 294 /* OK, are we completely out? */ 295 err = 0; /* potential race with truncate - ignore */ 296 if (page->index >= end_index+1 || !offset) 297 goto out; 298 do_it: 299 ctx = nfs_find_open_context(inode, NULL, FMODE_WRITE); 300 if (ctx == NULL) { 301 err = -EBADF; 302 goto out; 303 } 304 lock_kernel(); 305 if (!IS_SYNC(inode) && inode_referenced) { 306 err = nfs_writepage_async(ctx, inode, page, 0, offset); 307 if (err >= 0) { 308 err = 0; 309 if (wbc->for_reclaim) 310 nfs_flush_inode(inode, 0, 0, FLUSH_STABLE); 311 } 312 } else { 313 err = nfs_writepage_sync(ctx, inode, page, 0, 314 offset, priority); 315 if (err >= 0) { 316 if (err != offset) 317 redirty_page_for_writepage(wbc, page); 318 err = 0; 319 } 320 } 321 unlock_kernel(); 322 put_nfs_open_context(ctx); 323 out: 324 unlock_page(page); 325 if (inode_referenced) 326 iput(inode); 327 return err; 328 } 329 330 /* 331 * Note: causes nfs_update_request() to block on the assumption 332 * that the writeback is generated due to memory pressure. 333 */ 334 int nfs_writepages(struct address_space *mapping, struct writeback_control *wbc) 335 { 336 struct backing_dev_info *bdi = mapping->backing_dev_info; 337 struct inode *inode = mapping->host; 338 int err; 339 340 err = generic_writepages(mapping, wbc); 341 if (err) 342 return err; 343 while (test_and_set_bit(BDI_write_congested, &bdi->state) != 0) { 344 if (wbc->nonblocking) 345 return 0; 346 nfs_wait_on_write_congestion(mapping, 0); 347 } 348 err = nfs_flush_inode(inode, 0, 0, wb_priority(wbc)); 349 if (err < 0) 350 goto out; 351 wbc->nr_to_write -= err; 352 if (!wbc->nonblocking && wbc->sync_mode == WB_SYNC_ALL) { 353 err = nfs_wait_on_requests(inode, 0, 0); 354 if (err < 0) 355 goto out; 356 } 357 err = nfs_commit_inode(inode, wb_priority(wbc)); 358 if (err > 0) { 359 wbc->nr_to_write -= err; 360 err = 0; 361 } 362 out: 363 clear_bit(BDI_write_congested, &bdi->state); 364 wake_up_all(&nfs_write_congestion); 365 return err; 366 } 367 368 /* 369 * Insert a write request into an inode 370 */ 371 static int nfs_inode_add_request(struct inode *inode, struct nfs_page *req) 372 { 373 struct nfs_inode *nfsi = NFS_I(inode); 374 int error; 375 376 error = radix_tree_insert(&nfsi->nfs_page_tree, req->wb_index, req); 377 BUG_ON(error == -EEXIST); 378 if (error) 379 return error; 380 if (!nfsi->npages) { 381 igrab(inode); 382 nfs_begin_data_update(inode); 383 if (nfs_have_delegation(inode, FMODE_WRITE)) 384 nfsi->change_attr++; 385 } 386 nfsi->npages++; 387 atomic_inc(&req->wb_count); 388 return 0; 389 } 390 391 /* 392 * Insert a write request into an inode 393 */ 394 static void nfs_inode_remove_request(struct nfs_page *req) 395 { 396 struct inode *inode = req->wb_context->dentry->d_inode; 397 struct nfs_inode *nfsi = NFS_I(inode); 398 399 BUG_ON (!NFS_WBACK_BUSY(req)); 400 401 spin_lock(&nfsi->req_lock); 402 radix_tree_delete(&nfsi->nfs_page_tree, req->wb_index); 403 nfsi->npages--; 404 if (!nfsi->npages) { 405 spin_unlock(&nfsi->req_lock); 406 nfs_end_data_update(inode); 407 iput(inode); 408 } else 409 spin_unlock(&nfsi->req_lock); 410 nfs_clear_request(req); 411 nfs_release_request(req); 412 } 413 414 /* 415 * Find a request 416 */ 417 static inline struct nfs_page * 418 _nfs_find_request(struct inode *inode, unsigned long index) 419 { 420 struct nfs_inode *nfsi = NFS_I(inode); 421 struct nfs_page *req; 422 423 req = (struct nfs_page*)radix_tree_lookup(&nfsi->nfs_page_tree, index); 424 if (req) 425 atomic_inc(&req->wb_count); 426 return req; 427 } 428 429 static struct nfs_page * 430 nfs_find_request(struct inode *inode, unsigned long index) 431 { 432 struct nfs_page *req; 433 struct nfs_inode *nfsi = NFS_I(inode); 434 435 spin_lock(&nfsi->req_lock); 436 req = _nfs_find_request(inode, index); 437 spin_unlock(&nfsi->req_lock); 438 return req; 439 } 440 441 /* 442 * Add a request to the inode's dirty list. 443 */ 444 static void 445 nfs_mark_request_dirty(struct nfs_page *req) 446 { 447 struct inode *inode = req->wb_context->dentry->d_inode; 448 struct nfs_inode *nfsi = NFS_I(inode); 449 450 spin_lock(&nfsi->req_lock); 451 radix_tree_tag_set(&nfsi->nfs_page_tree, 452 req->wb_index, NFS_PAGE_TAG_DIRTY); 453 nfs_list_add_request(req, &nfsi->dirty); 454 nfsi->ndirty++; 455 spin_unlock(&nfsi->req_lock); 456 inc_page_state(nr_dirty); 457 mark_inode_dirty(inode); 458 } 459 460 /* 461 * Check if a request is dirty 462 */ 463 static inline int 464 nfs_dirty_request(struct nfs_page *req) 465 { 466 struct nfs_inode *nfsi = NFS_I(req->wb_context->dentry->d_inode); 467 return !list_empty(&req->wb_list) && req->wb_list_head == &nfsi->dirty; 468 } 469 470 #if defined(CONFIG_NFS_V3) || defined(CONFIG_NFS_V4) 471 /* 472 * Add a request to the inode's commit list. 473 */ 474 static void 475 nfs_mark_request_commit(struct nfs_page *req) 476 { 477 struct inode *inode = req->wb_context->dentry->d_inode; 478 struct nfs_inode *nfsi = NFS_I(inode); 479 480 spin_lock(&nfsi->req_lock); 481 nfs_list_add_request(req, &nfsi->commit); 482 nfsi->ncommit++; 483 spin_unlock(&nfsi->req_lock); 484 inc_page_state(nr_unstable); 485 mark_inode_dirty(inode); 486 } 487 #endif 488 489 /* 490 * Wait for a request to complete. 491 * 492 * Interruptible by signals only if mounted with intr flag. 493 */ 494 static int 495 nfs_wait_on_requests(struct inode *inode, unsigned long idx_start, unsigned int npages) 496 { 497 struct nfs_inode *nfsi = NFS_I(inode); 498 struct nfs_page *req; 499 unsigned long idx_end, next; 500 unsigned int res = 0; 501 int error; 502 503 if (npages == 0) 504 idx_end = ~0; 505 else 506 idx_end = idx_start + npages - 1; 507 508 spin_lock(&nfsi->req_lock); 509 next = idx_start; 510 while (radix_tree_gang_lookup_tag(&nfsi->nfs_page_tree, (void **)&req, next, 1, NFS_PAGE_TAG_WRITEBACK)) { 511 if (req->wb_index > idx_end) 512 break; 513 514 next = req->wb_index + 1; 515 BUG_ON(!NFS_WBACK_BUSY(req)); 516 517 atomic_inc(&req->wb_count); 518 spin_unlock(&nfsi->req_lock); 519 error = nfs_wait_on_request(req); 520 nfs_release_request(req); 521 if (error < 0) 522 return error; 523 spin_lock(&nfsi->req_lock); 524 res++; 525 } 526 spin_unlock(&nfsi->req_lock); 527 return res; 528 } 529 530 /* 531 * nfs_scan_dirty - Scan an inode for dirty requests 532 * @inode: NFS inode to scan 533 * @dst: destination list 534 * @idx_start: lower bound of page->index to scan. 535 * @npages: idx_start + npages sets the upper bound to scan. 536 * 537 * Moves requests from the inode's dirty page list. 538 * The requests are *not* checked to ensure that they form a contiguous set. 539 */ 540 static int 541 nfs_scan_dirty(struct inode *inode, struct list_head *dst, unsigned long idx_start, unsigned int npages) 542 { 543 struct nfs_inode *nfsi = NFS_I(inode); 544 int res = 0; 545 546 if (nfsi->ndirty != 0) { 547 res = nfs_scan_lock_dirty(nfsi, dst, idx_start, npages); 548 nfsi->ndirty -= res; 549 sub_page_state(nr_dirty,res); 550 if ((nfsi->ndirty == 0) != list_empty(&nfsi->dirty)) 551 printk(KERN_ERR "NFS: desynchronized value of nfs_i.ndirty.\n"); 552 } 553 return res; 554 } 555 556 #if defined(CONFIG_NFS_V3) || defined(CONFIG_NFS_V4) 557 /* 558 * nfs_scan_commit - Scan an inode for commit requests 559 * @inode: NFS inode to scan 560 * @dst: destination list 561 * @idx_start: lower bound of page->index to scan. 562 * @npages: idx_start + npages sets the upper bound to scan. 563 * 564 * Moves requests from the inode's 'commit' request list. 565 * The requests are *not* checked to ensure that they form a contiguous set. 566 */ 567 static int 568 nfs_scan_commit(struct inode *inode, struct list_head *dst, unsigned long idx_start, unsigned int npages) 569 { 570 struct nfs_inode *nfsi = NFS_I(inode); 571 int res = 0; 572 573 if (nfsi->ncommit != 0) { 574 res = nfs_scan_list(&nfsi->commit, dst, idx_start, npages); 575 nfsi->ncommit -= res; 576 if ((nfsi->ncommit == 0) != list_empty(&nfsi->commit)) 577 printk(KERN_ERR "NFS: desynchronized value of nfs_i.ncommit.\n"); 578 } 579 return res; 580 } 581 #endif 582 583 static int nfs_wait_on_write_congestion(struct address_space *mapping, int intr) 584 { 585 struct backing_dev_info *bdi = mapping->backing_dev_info; 586 DEFINE_WAIT(wait); 587 int ret = 0; 588 589 might_sleep(); 590 591 if (!bdi_write_congested(bdi)) 592 return 0; 593 if (intr) { 594 struct rpc_clnt *clnt = NFS_CLIENT(mapping->host); 595 sigset_t oldset; 596 597 rpc_clnt_sigmask(clnt, &oldset); 598 prepare_to_wait(&nfs_write_congestion, &wait, TASK_INTERRUPTIBLE); 599 if (bdi_write_congested(bdi)) { 600 if (signalled()) 601 ret = -ERESTARTSYS; 602 else 603 schedule(); 604 } 605 rpc_clnt_sigunmask(clnt, &oldset); 606 } else { 607 prepare_to_wait(&nfs_write_congestion, &wait, TASK_UNINTERRUPTIBLE); 608 if (bdi_write_congested(bdi)) 609 schedule(); 610 } 611 finish_wait(&nfs_write_congestion, &wait); 612 return ret; 613 } 614 615 616 /* 617 * Try to update any existing write request, or create one if there is none. 618 * In order to match, the request's credentials must match those of 619 * the calling process. 620 * 621 * Note: Should always be called with the Page Lock held! 622 */ 623 static struct nfs_page * nfs_update_request(struct nfs_open_context* ctx, 624 struct inode *inode, struct page *page, 625 unsigned int offset, unsigned int bytes) 626 { 627 struct nfs_server *server = NFS_SERVER(inode); 628 struct nfs_inode *nfsi = NFS_I(inode); 629 struct nfs_page *req, *new = NULL; 630 unsigned long rqend, end; 631 632 end = offset + bytes; 633 634 if (nfs_wait_on_write_congestion(page->mapping, server->flags & NFS_MOUNT_INTR)) 635 return ERR_PTR(-ERESTARTSYS); 636 for (;;) { 637 /* Loop over all inode entries and see if we find 638 * A request for the page we wish to update 639 */ 640 spin_lock(&nfsi->req_lock); 641 req = _nfs_find_request(inode, page->index); 642 if (req) { 643 if (!nfs_lock_request_dontget(req)) { 644 int error; 645 spin_unlock(&nfsi->req_lock); 646 error = nfs_wait_on_request(req); 647 nfs_release_request(req); 648 if (error < 0) 649 return ERR_PTR(error); 650 continue; 651 } 652 spin_unlock(&nfsi->req_lock); 653 if (new) 654 nfs_release_request(new); 655 break; 656 } 657 658 if (new) { 659 int error; 660 nfs_lock_request_dontget(new); 661 error = nfs_inode_add_request(inode, new); 662 if (error) { 663 spin_unlock(&nfsi->req_lock); 664 nfs_unlock_request(new); 665 return ERR_PTR(error); 666 } 667 spin_unlock(&nfsi->req_lock); 668 nfs_mark_request_dirty(new); 669 return new; 670 } 671 spin_unlock(&nfsi->req_lock); 672 673 new = nfs_create_request(ctx, inode, page, offset, bytes); 674 if (IS_ERR(new)) 675 return new; 676 } 677 678 /* We have a request for our page. 679 * If the creds don't match, or the 680 * page addresses don't match, 681 * tell the caller to wait on the conflicting 682 * request. 683 */ 684 rqend = req->wb_offset + req->wb_bytes; 685 if (req->wb_context != ctx 686 || req->wb_page != page 687 || !nfs_dirty_request(req) 688 || offset > rqend || end < req->wb_offset) { 689 nfs_unlock_request(req); 690 return ERR_PTR(-EBUSY); 691 } 692 693 /* Okay, the request matches. Update the region */ 694 if (offset < req->wb_offset) { 695 req->wb_offset = offset; 696 req->wb_pgbase = offset; 697 req->wb_bytes = rqend - req->wb_offset; 698 } 699 700 if (end > rqend) 701 req->wb_bytes = end - req->wb_offset; 702 703 return req; 704 } 705 706 int nfs_flush_incompatible(struct file *file, struct page *page) 707 { 708 struct nfs_open_context *ctx = (struct nfs_open_context *)file->private_data; 709 struct inode *inode = page->mapping->host; 710 struct nfs_page *req; 711 int status = 0; 712 /* 713 * Look for a request corresponding to this page. If there 714 * is one, and it belongs to another file, we flush it out 715 * before we try to copy anything into the page. Do this 716 * due to the lack of an ACCESS-type call in NFSv2. 717 * Also do the same if we find a request from an existing 718 * dropped page. 719 */ 720 req = nfs_find_request(inode, page->index); 721 if (req) { 722 if (req->wb_page != page || ctx != req->wb_context) 723 status = nfs_wb_page(inode, page); 724 nfs_release_request(req); 725 } 726 return (status < 0) ? status : 0; 727 } 728 729 /* 730 * Update and possibly write a cached page of an NFS file. 731 * 732 * XXX: Keep an eye on generic_file_read to make sure it doesn't do bad 733 * things with a page scheduled for an RPC call (e.g. invalidate it). 734 */ 735 int nfs_updatepage(struct file *file, struct page *page, 736 unsigned int offset, unsigned int count) 737 { 738 struct nfs_open_context *ctx = (struct nfs_open_context *)file->private_data; 739 struct inode *inode = page->mapping->host; 740 struct nfs_page *req; 741 int status = 0; 742 743 dprintk("NFS: nfs_updatepage(%s/%s %d@%Ld)\n", 744 file->f_dentry->d_parent->d_name.name, 745 file->f_dentry->d_name.name, count, 746 (long long)(page_offset(page) +offset)); 747 748 if (IS_SYNC(inode)) { 749 status = nfs_writepage_sync(ctx, inode, page, offset, count, 0); 750 if (status > 0) { 751 if (offset == 0 && status == PAGE_CACHE_SIZE) 752 SetPageUptodate(page); 753 return 0; 754 } 755 return status; 756 } 757 758 /* If we're not using byte range locks, and we know the page 759 * is entirely in cache, it may be more efficient to avoid 760 * fragmenting write requests. 761 */ 762 if (PageUptodate(page) && inode->i_flock == NULL && !(file->f_mode & O_SYNC)) { 763 loff_t end_offs = i_size_read(inode) - 1; 764 unsigned long end_index = end_offs >> PAGE_CACHE_SHIFT; 765 766 count += offset; 767 offset = 0; 768 if (unlikely(end_offs < 0)) { 769 /* Do nothing */ 770 } else if (page->index == end_index) { 771 unsigned int pglen; 772 pglen = (unsigned int)(end_offs & (PAGE_CACHE_SIZE-1)) + 1; 773 if (count < pglen) 774 count = pglen; 775 } else if (page->index < end_index) 776 count = PAGE_CACHE_SIZE; 777 } 778 779 /* 780 * Try to find an NFS request corresponding to this page 781 * and update it. 782 * If the existing request cannot be updated, we must flush 783 * it out now. 784 */ 785 do { 786 req = nfs_update_request(ctx, inode, page, offset, count); 787 status = (IS_ERR(req)) ? PTR_ERR(req) : 0; 788 if (status != -EBUSY) 789 break; 790 /* Request could not be updated. Flush it out and try again */ 791 status = nfs_wb_page(inode, page); 792 } while (status >= 0); 793 if (status < 0) 794 goto done; 795 796 status = 0; 797 798 /* Update file length */ 799 nfs_grow_file(page, offset, count); 800 /* Set the PG_uptodate flag? */ 801 nfs_mark_uptodate(page, req->wb_pgbase, req->wb_bytes); 802 nfs_unlock_request(req); 803 done: 804 dprintk("NFS: nfs_updatepage returns %d (isize %Ld)\n", 805 status, (long long)i_size_read(inode)); 806 if (status < 0) 807 ClearPageUptodate(page); 808 return status; 809 } 810 811 static void nfs_writepage_release(struct nfs_page *req) 812 { 813 end_page_writeback(req->wb_page); 814 815 #if defined(CONFIG_NFS_V3) || defined(CONFIG_NFS_V4) 816 if (!PageError(req->wb_page)) { 817 if (NFS_NEED_RESCHED(req)) { 818 nfs_mark_request_dirty(req); 819 goto out; 820 } else if (NFS_NEED_COMMIT(req)) { 821 nfs_mark_request_commit(req); 822 goto out; 823 } 824 } 825 nfs_inode_remove_request(req); 826 827 out: 828 nfs_clear_commit(req); 829 nfs_clear_reschedule(req); 830 #else 831 nfs_inode_remove_request(req); 832 #endif 833 nfs_clear_page_writeback(req); 834 } 835 836 static inline int flush_task_priority(int how) 837 { 838 switch (how & (FLUSH_HIGHPRI|FLUSH_LOWPRI)) { 839 case FLUSH_HIGHPRI: 840 return RPC_PRIORITY_HIGH; 841 case FLUSH_LOWPRI: 842 return RPC_PRIORITY_LOW; 843 } 844 return RPC_PRIORITY_NORMAL; 845 } 846 847 /* 848 * Set up the argument/result storage required for the RPC call. 849 */ 850 static void nfs_write_rpcsetup(struct nfs_page *req, 851 struct nfs_write_data *data, 852 unsigned int count, unsigned int offset, 853 int how) 854 { 855 struct inode *inode; 856 857 /* Set up the RPC argument and reply structs 858 * NB: take care not to mess about with data->commit et al. */ 859 860 data->req = req; 861 data->inode = inode = req->wb_context->dentry->d_inode; 862 data->cred = req->wb_context->cred; 863 864 data->args.fh = NFS_FH(inode); 865 data->args.offset = req_offset(req) + offset; 866 data->args.pgbase = req->wb_pgbase + offset; 867 data->args.pages = data->pagevec; 868 data->args.count = count; 869 data->args.context = req->wb_context; 870 871 data->res.fattr = &data->fattr; 872 data->res.count = count; 873 data->res.verf = &data->verf; 874 nfs_fattr_init(&data->fattr); 875 876 NFS_PROTO(inode)->write_setup(data, how); 877 878 data->task.tk_priority = flush_task_priority(how); 879 data->task.tk_cookie = (unsigned long)inode; 880 data->task.tk_calldata = data; 881 /* Release requests */ 882 data->task.tk_release = nfs_writedata_release; 883 884 dprintk("NFS: %4d initiated write call (req %s/%Ld, %u bytes @ offset %Lu)\n", 885 data->task.tk_pid, 886 inode->i_sb->s_id, 887 (long long)NFS_FILEID(inode), 888 count, 889 (unsigned long long)data->args.offset); 890 } 891 892 static void nfs_execute_write(struct nfs_write_data *data) 893 { 894 struct rpc_clnt *clnt = NFS_CLIENT(data->inode); 895 sigset_t oldset; 896 897 rpc_clnt_sigmask(clnt, &oldset); 898 lock_kernel(); 899 rpc_execute(&data->task); 900 unlock_kernel(); 901 rpc_clnt_sigunmask(clnt, &oldset); 902 } 903 904 /* 905 * Generate multiple small requests to write out a single 906 * contiguous dirty area on one page. 907 */ 908 static int nfs_flush_multi(struct list_head *head, struct inode *inode, int how) 909 { 910 struct nfs_page *req = nfs_list_entry(head->next); 911 struct page *page = req->wb_page; 912 struct nfs_write_data *data; 913 unsigned int wsize = NFS_SERVER(inode)->wsize; 914 unsigned int nbytes, offset; 915 int requests = 0; 916 LIST_HEAD(list); 917 918 nfs_list_remove_request(req); 919 920 nbytes = req->wb_bytes; 921 for (;;) { 922 data = nfs_writedata_alloc(); 923 if (!data) 924 goto out_bad; 925 list_add(&data->pages, &list); 926 requests++; 927 if (nbytes <= wsize) 928 break; 929 nbytes -= wsize; 930 } 931 atomic_set(&req->wb_complete, requests); 932 933 ClearPageError(page); 934 set_page_writeback(page); 935 offset = 0; 936 nbytes = req->wb_bytes; 937 do { 938 data = list_entry(list.next, struct nfs_write_data, pages); 939 list_del_init(&data->pages); 940 941 data->pagevec[0] = page; 942 data->complete = nfs_writeback_done_partial; 943 944 if (nbytes > wsize) { 945 nfs_write_rpcsetup(req, data, wsize, offset, how); 946 offset += wsize; 947 nbytes -= wsize; 948 } else { 949 nfs_write_rpcsetup(req, data, nbytes, offset, how); 950 nbytes = 0; 951 } 952 nfs_execute_write(data); 953 } while (nbytes != 0); 954 955 return 0; 956 957 out_bad: 958 while (!list_empty(&list)) { 959 data = list_entry(list.next, struct nfs_write_data, pages); 960 list_del(&data->pages); 961 nfs_writedata_free(data); 962 } 963 nfs_mark_request_dirty(req); 964 nfs_clear_page_writeback(req); 965 return -ENOMEM; 966 } 967 968 /* 969 * Create an RPC task for the given write request and kick it. 970 * The page must have been locked by the caller. 971 * 972 * It may happen that the page we're passed is not marked dirty. 973 * This is the case if nfs_updatepage detects a conflicting request 974 * that has been written but not committed. 975 */ 976 static int nfs_flush_one(struct list_head *head, struct inode *inode, int how) 977 { 978 struct nfs_page *req; 979 struct page **pages; 980 struct nfs_write_data *data; 981 unsigned int count; 982 983 if (NFS_SERVER(inode)->wsize < PAGE_CACHE_SIZE) 984 return nfs_flush_multi(head, inode, how); 985 986 data = nfs_writedata_alloc(); 987 if (!data) 988 goto out_bad; 989 990 pages = data->pagevec; 991 count = 0; 992 while (!list_empty(head)) { 993 req = nfs_list_entry(head->next); 994 nfs_list_remove_request(req); 995 nfs_list_add_request(req, &data->pages); 996 ClearPageError(req->wb_page); 997 set_page_writeback(req->wb_page); 998 *pages++ = req->wb_page; 999 count += req->wb_bytes; 1000 } 1001 req = nfs_list_entry(data->pages.next); 1002 1003 data->complete = nfs_writeback_done_full; 1004 /* Set up the argument struct */ 1005 nfs_write_rpcsetup(req, data, count, 0, how); 1006 1007 nfs_execute_write(data); 1008 return 0; 1009 out_bad: 1010 while (!list_empty(head)) { 1011 struct nfs_page *req = nfs_list_entry(head->next); 1012 nfs_list_remove_request(req); 1013 nfs_mark_request_dirty(req); 1014 nfs_clear_page_writeback(req); 1015 } 1016 return -ENOMEM; 1017 } 1018 1019 static int 1020 nfs_flush_list(struct list_head *head, int wpages, int how) 1021 { 1022 LIST_HEAD(one_request); 1023 struct nfs_page *req; 1024 int error = 0; 1025 unsigned int pages = 0; 1026 1027 while (!list_empty(head)) { 1028 pages += nfs_coalesce_requests(head, &one_request, wpages); 1029 req = nfs_list_entry(one_request.next); 1030 error = nfs_flush_one(&one_request, req->wb_context->dentry->d_inode, how); 1031 if (error < 0) 1032 break; 1033 } 1034 if (error >= 0) 1035 return pages; 1036 1037 while (!list_empty(head)) { 1038 req = nfs_list_entry(head->next); 1039 nfs_list_remove_request(req); 1040 nfs_mark_request_dirty(req); 1041 nfs_clear_page_writeback(req); 1042 } 1043 return error; 1044 } 1045 1046 /* 1047 * Handle a write reply that flushed part of a page. 1048 */ 1049 static void nfs_writeback_done_partial(struct nfs_write_data *data, int status) 1050 { 1051 struct nfs_page *req = data->req; 1052 struct page *page = req->wb_page; 1053 1054 dprintk("NFS: write (%s/%Ld %d@%Ld)", 1055 req->wb_context->dentry->d_inode->i_sb->s_id, 1056 (long long)NFS_FILEID(req->wb_context->dentry->d_inode), 1057 req->wb_bytes, 1058 (long long)req_offset(req)); 1059 1060 if (status < 0) { 1061 ClearPageUptodate(page); 1062 SetPageError(page); 1063 req->wb_context->error = status; 1064 dprintk(", error = %d\n", status); 1065 } else { 1066 #if defined(CONFIG_NFS_V3) || defined(CONFIG_NFS_V4) 1067 if (data->verf.committed < NFS_FILE_SYNC) { 1068 if (!NFS_NEED_COMMIT(req)) { 1069 nfs_defer_commit(req); 1070 memcpy(&req->wb_verf, &data->verf, sizeof(req->wb_verf)); 1071 dprintk(" defer commit\n"); 1072 } else if (memcmp(&req->wb_verf, &data->verf, sizeof(req->wb_verf))) { 1073 nfs_defer_reschedule(req); 1074 dprintk(" server reboot detected\n"); 1075 } 1076 } else 1077 #endif 1078 dprintk(" OK\n"); 1079 } 1080 1081 if (atomic_dec_and_test(&req->wb_complete)) 1082 nfs_writepage_release(req); 1083 } 1084 1085 /* 1086 * Handle a write reply that flushes a whole page. 1087 * 1088 * FIXME: There is an inherent race with invalidate_inode_pages and 1089 * writebacks since the page->count is kept > 1 for as long 1090 * as the page has a write request pending. 1091 */ 1092 static void nfs_writeback_done_full(struct nfs_write_data *data, int status) 1093 { 1094 struct nfs_page *req; 1095 struct page *page; 1096 1097 /* Update attributes as result of writeback. */ 1098 while (!list_empty(&data->pages)) { 1099 req = nfs_list_entry(data->pages.next); 1100 nfs_list_remove_request(req); 1101 page = req->wb_page; 1102 1103 dprintk("NFS: write (%s/%Ld %d@%Ld)", 1104 req->wb_context->dentry->d_inode->i_sb->s_id, 1105 (long long)NFS_FILEID(req->wb_context->dentry->d_inode), 1106 req->wb_bytes, 1107 (long long)req_offset(req)); 1108 1109 if (status < 0) { 1110 ClearPageUptodate(page); 1111 SetPageError(page); 1112 req->wb_context->error = status; 1113 end_page_writeback(page); 1114 nfs_inode_remove_request(req); 1115 dprintk(", error = %d\n", status); 1116 goto next; 1117 } 1118 end_page_writeback(page); 1119 1120 #if defined(CONFIG_NFS_V3) || defined(CONFIG_NFS_V4) 1121 if (data->args.stable != NFS_UNSTABLE || data->verf.committed == NFS_FILE_SYNC) { 1122 nfs_inode_remove_request(req); 1123 dprintk(" OK\n"); 1124 goto next; 1125 } 1126 memcpy(&req->wb_verf, &data->verf, sizeof(req->wb_verf)); 1127 nfs_mark_request_commit(req); 1128 dprintk(" marked for commit\n"); 1129 #else 1130 nfs_inode_remove_request(req); 1131 #endif 1132 next: 1133 nfs_clear_page_writeback(req); 1134 } 1135 } 1136 1137 /* 1138 * This function is called when the WRITE call is complete. 1139 */ 1140 void nfs_writeback_done(struct rpc_task *task) 1141 { 1142 struct nfs_write_data *data = (struct nfs_write_data *) task->tk_calldata; 1143 struct nfs_writeargs *argp = &data->args; 1144 struct nfs_writeres *resp = &data->res; 1145 1146 dprintk("NFS: %4d nfs_writeback_done (status %d)\n", 1147 task->tk_pid, task->tk_status); 1148 1149 #if defined(CONFIG_NFS_V3) || defined(CONFIG_NFS_V4) 1150 if (resp->verf->committed < argp->stable && task->tk_status >= 0) { 1151 /* We tried a write call, but the server did not 1152 * commit data to stable storage even though we 1153 * requested it. 1154 * Note: There is a known bug in Tru64 < 5.0 in which 1155 * the server reports NFS_DATA_SYNC, but performs 1156 * NFS_FILE_SYNC. We therefore implement this checking 1157 * as a dprintk() in order to avoid filling syslog. 1158 */ 1159 static unsigned long complain; 1160 1161 if (time_before(complain, jiffies)) { 1162 dprintk("NFS: faulty NFS server %s:" 1163 " (committed = %d) != (stable = %d)\n", 1164 NFS_SERVER(data->inode)->hostname, 1165 resp->verf->committed, argp->stable); 1166 complain = jiffies + 300 * HZ; 1167 } 1168 } 1169 #endif 1170 /* Is this a short write? */ 1171 if (task->tk_status >= 0 && resp->count < argp->count) { 1172 static unsigned long complain; 1173 1174 /* Has the server at least made some progress? */ 1175 if (resp->count != 0) { 1176 /* Was this an NFSv2 write or an NFSv3 stable write? */ 1177 if (resp->verf->committed != NFS_UNSTABLE) { 1178 /* Resend from where the server left off */ 1179 argp->offset += resp->count; 1180 argp->pgbase += resp->count; 1181 argp->count -= resp->count; 1182 } else { 1183 /* Resend as a stable write in order to avoid 1184 * headaches in the case of a server crash. 1185 */ 1186 argp->stable = NFS_FILE_SYNC; 1187 } 1188 rpc_restart_call(task); 1189 return; 1190 } 1191 if (time_before(complain, jiffies)) { 1192 printk(KERN_WARNING 1193 "NFS: Server wrote zero bytes, expected %u.\n", 1194 argp->count); 1195 complain = jiffies + 300 * HZ; 1196 } 1197 /* Can't do anything about it except throw an error. */ 1198 task->tk_status = -EIO; 1199 } 1200 1201 /* 1202 * Process the nfs_page list 1203 */ 1204 data->complete(data, task->tk_status); 1205 } 1206 1207 1208 #if defined(CONFIG_NFS_V3) || defined(CONFIG_NFS_V4) 1209 static void nfs_commit_release(struct rpc_task *task) 1210 { 1211 struct nfs_write_data *wdata = (struct nfs_write_data *)task->tk_calldata; 1212 nfs_commit_free(wdata); 1213 } 1214 1215 /* 1216 * Set up the argument/result storage required for the RPC call. 1217 */ 1218 static void nfs_commit_rpcsetup(struct list_head *head, 1219 struct nfs_write_data *data, int how) 1220 { 1221 struct nfs_page *first; 1222 struct inode *inode; 1223 1224 /* Set up the RPC argument and reply structs 1225 * NB: take care not to mess about with data->commit et al. */ 1226 1227 list_splice_init(head, &data->pages); 1228 first = nfs_list_entry(data->pages.next); 1229 inode = first->wb_context->dentry->d_inode; 1230 1231 data->inode = inode; 1232 data->cred = first->wb_context->cred; 1233 1234 data->args.fh = NFS_FH(data->inode); 1235 /* Note: we always request a commit of the entire inode */ 1236 data->args.offset = 0; 1237 data->args.count = 0; 1238 data->res.count = 0; 1239 data->res.fattr = &data->fattr; 1240 data->res.verf = &data->verf; 1241 nfs_fattr_init(&data->fattr); 1242 1243 NFS_PROTO(inode)->commit_setup(data, how); 1244 1245 data->task.tk_priority = flush_task_priority(how); 1246 data->task.tk_cookie = (unsigned long)inode; 1247 data->task.tk_calldata = data; 1248 /* Release requests */ 1249 data->task.tk_release = nfs_commit_release; 1250 1251 dprintk("NFS: %4d initiated commit call\n", data->task.tk_pid); 1252 } 1253 1254 /* 1255 * Commit dirty pages 1256 */ 1257 static int 1258 nfs_commit_list(struct list_head *head, int how) 1259 { 1260 struct nfs_write_data *data; 1261 struct nfs_page *req; 1262 1263 data = nfs_commit_alloc(); 1264 1265 if (!data) 1266 goto out_bad; 1267 1268 /* Set up the argument struct */ 1269 nfs_commit_rpcsetup(head, data, how); 1270 1271 nfs_execute_write(data); 1272 return 0; 1273 out_bad: 1274 while (!list_empty(head)) { 1275 req = nfs_list_entry(head->next); 1276 nfs_list_remove_request(req); 1277 nfs_mark_request_commit(req); 1278 nfs_clear_page_writeback(req); 1279 } 1280 return -ENOMEM; 1281 } 1282 1283 /* 1284 * COMMIT call returned 1285 */ 1286 void 1287 nfs_commit_done(struct rpc_task *task) 1288 { 1289 struct nfs_write_data *data = (struct nfs_write_data *)task->tk_calldata; 1290 struct nfs_page *req; 1291 int res = 0; 1292 1293 dprintk("NFS: %4d nfs_commit_done (status %d)\n", 1294 task->tk_pid, task->tk_status); 1295 1296 while (!list_empty(&data->pages)) { 1297 req = nfs_list_entry(data->pages.next); 1298 nfs_list_remove_request(req); 1299 1300 dprintk("NFS: commit (%s/%Ld %d@%Ld)", 1301 req->wb_context->dentry->d_inode->i_sb->s_id, 1302 (long long)NFS_FILEID(req->wb_context->dentry->d_inode), 1303 req->wb_bytes, 1304 (long long)req_offset(req)); 1305 if (task->tk_status < 0) { 1306 req->wb_context->error = task->tk_status; 1307 nfs_inode_remove_request(req); 1308 dprintk(", error = %d\n", task->tk_status); 1309 goto next; 1310 } 1311 1312 /* Okay, COMMIT succeeded, apparently. Check the verifier 1313 * returned by the server against all stored verfs. */ 1314 if (!memcmp(req->wb_verf.verifier, data->verf.verifier, sizeof(data->verf.verifier))) { 1315 /* We have a match */ 1316 nfs_inode_remove_request(req); 1317 dprintk(" OK\n"); 1318 goto next; 1319 } 1320 /* We have a mismatch. Write the page again */ 1321 dprintk(" mismatch\n"); 1322 nfs_mark_request_dirty(req); 1323 next: 1324 nfs_clear_page_writeback(req); 1325 res++; 1326 } 1327 sub_page_state(nr_unstable,res); 1328 } 1329 #endif 1330 1331 static int nfs_flush_inode(struct inode *inode, unsigned long idx_start, 1332 unsigned int npages, int how) 1333 { 1334 struct nfs_inode *nfsi = NFS_I(inode); 1335 LIST_HEAD(head); 1336 int res, 1337 error = 0; 1338 1339 spin_lock(&nfsi->req_lock); 1340 res = nfs_scan_dirty(inode, &head, idx_start, npages); 1341 spin_unlock(&nfsi->req_lock); 1342 if (res) { 1343 struct nfs_server *server = NFS_SERVER(inode); 1344 1345 /* For single writes, FLUSH_STABLE is more efficient */ 1346 if (res == nfsi->npages && nfsi->npages <= server->wpages) { 1347 if (res > 1 || nfs_list_entry(head.next)->wb_bytes <= server->wsize) 1348 how |= FLUSH_STABLE; 1349 } 1350 error = nfs_flush_list(&head, server->wpages, how); 1351 } 1352 if (error < 0) 1353 return error; 1354 return res; 1355 } 1356 1357 #if defined(CONFIG_NFS_V3) || defined(CONFIG_NFS_V4) 1358 int nfs_commit_inode(struct inode *inode, int how) 1359 { 1360 struct nfs_inode *nfsi = NFS_I(inode); 1361 LIST_HEAD(head); 1362 int res, 1363 error = 0; 1364 1365 spin_lock(&nfsi->req_lock); 1366 res = nfs_scan_commit(inode, &head, 0, 0); 1367 spin_unlock(&nfsi->req_lock); 1368 if (res) { 1369 error = nfs_commit_list(&head, how); 1370 if (error < 0) 1371 return error; 1372 } 1373 return res; 1374 } 1375 #endif 1376 1377 int nfs_sync_inode(struct inode *inode, unsigned long idx_start, 1378 unsigned int npages, int how) 1379 { 1380 int error, 1381 wait; 1382 1383 wait = how & FLUSH_WAIT; 1384 how &= ~FLUSH_WAIT; 1385 1386 do { 1387 error = 0; 1388 if (wait) 1389 error = nfs_wait_on_requests(inode, idx_start, npages); 1390 if (error == 0) 1391 error = nfs_flush_inode(inode, idx_start, npages, how); 1392 #if defined(CONFIG_NFS_V3) || defined(CONFIG_NFS_V4) 1393 if (error == 0) 1394 error = nfs_commit_inode(inode, how); 1395 #endif 1396 } while (error > 0); 1397 return error; 1398 } 1399 1400 int nfs_init_writepagecache(void) 1401 { 1402 nfs_wdata_cachep = kmem_cache_create("nfs_write_data", 1403 sizeof(struct nfs_write_data), 1404 0, SLAB_HWCACHE_ALIGN, 1405 NULL, NULL); 1406 if (nfs_wdata_cachep == NULL) 1407 return -ENOMEM; 1408 1409 nfs_wdata_mempool = mempool_create(MIN_POOL_WRITE, 1410 mempool_alloc_slab, 1411 mempool_free_slab, 1412 nfs_wdata_cachep); 1413 if (nfs_wdata_mempool == NULL) 1414 return -ENOMEM; 1415 1416 nfs_commit_mempool = mempool_create(MIN_POOL_COMMIT, 1417 mempool_alloc_slab, 1418 mempool_free_slab, 1419 nfs_wdata_cachep); 1420 if (nfs_commit_mempool == NULL) 1421 return -ENOMEM; 1422 1423 return 0; 1424 } 1425 1426 void nfs_destroy_writepagecache(void) 1427 { 1428 mempool_destroy(nfs_commit_mempool); 1429 mempool_destroy(nfs_wdata_mempool); 1430 if (kmem_cache_destroy(nfs_wdata_cachep)) 1431 printk(KERN_INFO "nfs_write_data: not all structures were freed\n"); 1432 } 1433 1434