1 /* 2 * linux/fs/nfs/write.c 3 * 4 * Write file data over NFS. 5 * 6 * Copyright (C) 1996, 1997, Olaf Kirch <okir@monad.swb.de> 7 */ 8 9 #include <linux/types.h> 10 #include <linux/slab.h> 11 #include <linux/mm.h> 12 #include <linux/pagemap.h> 13 #include <linux/file.h> 14 #include <linux/writeback.h> 15 #include <linux/swap.h> 16 #include <linux/migrate.h> 17 18 #include <linux/sunrpc/clnt.h> 19 #include <linux/nfs_fs.h> 20 #include <linux/nfs_mount.h> 21 #include <linux/nfs_page.h> 22 #include <linux/backing-dev.h> 23 #include <linux/export.h> 24 #include <linux/freezer.h> 25 #include <linux/wait.h> 26 #include <linux/iversion.h> 27 28 #include <linux/uaccess.h> 29 #include <linux/sched/mm.h> 30 31 #include "delegation.h" 32 #include "internal.h" 33 #include "iostat.h" 34 #include "nfs4_fs.h" 35 #include "fscache.h" 36 #include "pnfs.h" 37 38 #include "nfstrace.h" 39 40 #define NFSDBG_FACILITY NFSDBG_PAGECACHE 41 42 #define MIN_POOL_WRITE (32) 43 #define MIN_POOL_COMMIT (4) 44 45 struct nfs_io_completion { 46 void (*complete)(void *data); 47 void *data; 48 struct kref refcount; 49 }; 50 51 /* 52 * Local function declarations 53 */ 54 static void nfs_redirty_request(struct nfs_page *req); 55 static const struct rpc_call_ops nfs_commit_ops; 56 static const struct nfs_pgio_completion_ops nfs_async_write_completion_ops; 57 static const struct nfs_commit_completion_ops nfs_commit_completion_ops; 58 static const struct nfs_rw_ops nfs_rw_write_ops; 59 static void nfs_clear_request_commit(struct nfs_page *req); 60 static void nfs_init_cinfo_from_inode(struct nfs_commit_info *cinfo, 61 struct inode *inode); 62 static struct nfs_page * 63 nfs_page_search_commits_for_head_request_locked(struct nfs_inode *nfsi, 64 struct page *page); 65 66 static struct kmem_cache *nfs_wdata_cachep; 67 static mempool_t *nfs_wdata_mempool; 68 static struct kmem_cache *nfs_cdata_cachep; 69 static mempool_t *nfs_commit_mempool; 70 71 struct nfs_commit_data *nfs_commitdata_alloc(bool never_fail) 72 { 73 struct nfs_commit_data *p; 74 75 if (never_fail) 76 p = mempool_alloc(nfs_commit_mempool, GFP_NOIO); 77 else { 78 /* It is OK to do some reclaim, not no safe to wait 79 * for anything to be returned to the pool. 80 * mempool_alloc() cannot handle that particular combination, 81 * so we need two separate attempts. 82 */ 83 p = mempool_alloc(nfs_commit_mempool, GFP_NOWAIT); 84 if (!p) 85 p = kmem_cache_alloc(nfs_cdata_cachep, GFP_NOIO | 86 __GFP_NOWARN | __GFP_NORETRY); 87 if (!p) 88 return NULL; 89 } 90 91 memset(p, 0, sizeof(*p)); 92 INIT_LIST_HEAD(&p->pages); 93 return p; 94 } 95 EXPORT_SYMBOL_GPL(nfs_commitdata_alloc); 96 97 void nfs_commit_free(struct nfs_commit_data *p) 98 { 99 mempool_free(p, nfs_commit_mempool); 100 } 101 EXPORT_SYMBOL_GPL(nfs_commit_free); 102 103 static struct nfs_pgio_header *nfs_writehdr_alloc(void) 104 { 105 struct nfs_pgio_header *p = mempool_alloc(nfs_wdata_mempool, GFP_NOIO); 106 107 memset(p, 0, sizeof(*p)); 108 p->rw_mode = FMODE_WRITE; 109 return p; 110 } 111 112 static void nfs_writehdr_free(struct nfs_pgio_header *hdr) 113 { 114 mempool_free(hdr, nfs_wdata_mempool); 115 } 116 117 static struct nfs_io_completion *nfs_io_completion_alloc(gfp_t gfp_flags) 118 { 119 return kmalloc(sizeof(struct nfs_io_completion), gfp_flags); 120 } 121 122 static void nfs_io_completion_init(struct nfs_io_completion *ioc, 123 void (*complete)(void *), void *data) 124 { 125 ioc->complete = complete; 126 ioc->data = data; 127 kref_init(&ioc->refcount); 128 } 129 130 static void nfs_io_completion_release(struct kref *kref) 131 { 132 struct nfs_io_completion *ioc = container_of(kref, 133 struct nfs_io_completion, refcount); 134 ioc->complete(ioc->data); 135 kfree(ioc); 136 } 137 138 static void nfs_io_completion_get(struct nfs_io_completion *ioc) 139 { 140 if (ioc != NULL) 141 kref_get(&ioc->refcount); 142 } 143 144 static void nfs_io_completion_put(struct nfs_io_completion *ioc) 145 { 146 if (ioc != NULL) 147 kref_put(&ioc->refcount, nfs_io_completion_release); 148 } 149 150 static struct nfs_page * 151 nfs_page_private_request(struct page *page) 152 { 153 if (!PagePrivate(page)) 154 return NULL; 155 return (struct nfs_page *)page_private(page); 156 } 157 158 /* 159 * nfs_page_find_head_request_locked - find head request associated with @page 160 * 161 * must be called while holding the inode lock. 162 * 163 * returns matching head request with reference held, or NULL if not found. 164 */ 165 static struct nfs_page * 166 nfs_page_find_private_request(struct page *page) 167 { 168 struct address_space *mapping = page_file_mapping(page); 169 struct nfs_page *req; 170 171 if (!PagePrivate(page)) 172 return NULL; 173 spin_lock(&mapping->private_lock); 174 req = nfs_page_private_request(page); 175 if (req) { 176 WARN_ON_ONCE(req->wb_head != req); 177 kref_get(&req->wb_kref); 178 } 179 spin_unlock(&mapping->private_lock); 180 return req; 181 } 182 183 static struct nfs_page * 184 nfs_page_find_swap_request(struct page *page) 185 { 186 struct inode *inode = page_file_mapping(page)->host; 187 struct nfs_inode *nfsi = NFS_I(inode); 188 struct nfs_page *req = NULL; 189 if (!PageSwapCache(page)) 190 return NULL; 191 mutex_lock(&nfsi->commit_mutex); 192 if (PageSwapCache(page)) { 193 req = nfs_page_search_commits_for_head_request_locked(nfsi, 194 page); 195 if (req) { 196 WARN_ON_ONCE(req->wb_head != req); 197 kref_get(&req->wb_kref); 198 } 199 } 200 mutex_unlock(&nfsi->commit_mutex); 201 return req; 202 } 203 204 /* 205 * nfs_page_find_head_request - find head request associated with @page 206 * 207 * returns matching head request with reference held, or NULL if not found. 208 */ 209 static struct nfs_page *nfs_page_find_head_request(struct page *page) 210 { 211 struct nfs_page *req; 212 213 req = nfs_page_find_private_request(page); 214 if (!req) 215 req = nfs_page_find_swap_request(page); 216 return req; 217 } 218 219 /* Adjust the file length if we're writing beyond the end */ 220 static void nfs_grow_file(struct page *page, unsigned int offset, unsigned int count) 221 { 222 struct inode *inode = page_file_mapping(page)->host; 223 loff_t end, i_size; 224 pgoff_t end_index; 225 226 spin_lock(&inode->i_lock); 227 i_size = i_size_read(inode); 228 end_index = (i_size - 1) >> PAGE_SHIFT; 229 if (i_size > 0 && page_index(page) < end_index) 230 goto out; 231 end = page_file_offset(page) + ((loff_t)offset+count); 232 if (i_size >= end) 233 goto out; 234 i_size_write(inode, end); 235 NFS_I(inode)->cache_validity &= ~NFS_INO_INVALID_SIZE; 236 nfs_inc_stats(inode, NFSIOS_EXTENDWRITE); 237 out: 238 spin_unlock(&inode->i_lock); 239 } 240 241 /* A writeback failed: mark the page as bad, and invalidate the page cache */ 242 static void nfs_set_pageerror(struct address_space *mapping) 243 { 244 nfs_zap_mapping(mapping->host, mapping); 245 } 246 247 /* 248 * nfs_page_group_search_locked 249 * @head - head request of page group 250 * @page_offset - offset into page 251 * 252 * Search page group with head @head to find a request that contains the 253 * page offset @page_offset. 254 * 255 * Returns a pointer to the first matching nfs request, or NULL if no 256 * match is found. 257 * 258 * Must be called with the page group lock held 259 */ 260 static struct nfs_page * 261 nfs_page_group_search_locked(struct nfs_page *head, unsigned int page_offset) 262 { 263 struct nfs_page *req; 264 265 req = head; 266 do { 267 if (page_offset >= req->wb_pgbase && 268 page_offset < (req->wb_pgbase + req->wb_bytes)) 269 return req; 270 271 req = req->wb_this_page; 272 } while (req != head); 273 274 return NULL; 275 } 276 277 /* 278 * nfs_page_group_covers_page 279 * @head - head request of page group 280 * 281 * Return true if the page group with head @head covers the whole page, 282 * returns false otherwise 283 */ 284 static bool nfs_page_group_covers_page(struct nfs_page *req) 285 { 286 struct nfs_page *tmp; 287 unsigned int pos = 0; 288 unsigned int len = nfs_page_length(req->wb_page); 289 290 nfs_page_group_lock(req); 291 292 for (;;) { 293 tmp = nfs_page_group_search_locked(req->wb_head, pos); 294 if (!tmp) 295 break; 296 pos = tmp->wb_pgbase + tmp->wb_bytes; 297 } 298 299 nfs_page_group_unlock(req); 300 return pos >= len; 301 } 302 303 /* We can set the PG_uptodate flag if we see that a write request 304 * covers the full page. 305 */ 306 static void nfs_mark_uptodate(struct nfs_page *req) 307 { 308 if (PageUptodate(req->wb_page)) 309 return; 310 if (!nfs_page_group_covers_page(req)) 311 return; 312 SetPageUptodate(req->wb_page); 313 } 314 315 static int wb_priority(struct writeback_control *wbc) 316 { 317 int ret = 0; 318 319 if (wbc->sync_mode == WB_SYNC_ALL) 320 ret = FLUSH_COND_STABLE; 321 return ret; 322 } 323 324 /* 325 * NFS congestion control 326 */ 327 328 int nfs_congestion_kb; 329 330 #define NFS_CONGESTION_ON_THRESH (nfs_congestion_kb >> (PAGE_SHIFT-10)) 331 #define NFS_CONGESTION_OFF_THRESH \ 332 (NFS_CONGESTION_ON_THRESH - (NFS_CONGESTION_ON_THRESH >> 2)) 333 334 static void nfs_set_page_writeback(struct page *page) 335 { 336 struct inode *inode = page_file_mapping(page)->host; 337 struct nfs_server *nfss = NFS_SERVER(inode); 338 int ret = test_set_page_writeback(page); 339 340 WARN_ON_ONCE(ret != 0); 341 342 if (atomic_long_inc_return(&nfss->writeback) > 343 NFS_CONGESTION_ON_THRESH) 344 set_bdi_congested(inode_to_bdi(inode), BLK_RW_ASYNC); 345 } 346 347 static void nfs_end_page_writeback(struct nfs_page *req) 348 { 349 struct inode *inode = page_file_mapping(req->wb_page)->host; 350 struct nfs_server *nfss = NFS_SERVER(inode); 351 bool is_done; 352 353 is_done = nfs_page_group_sync_on_bit(req, PG_WB_END); 354 nfs_unlock_request(req); 355 if (!is_done) 356 return; 357 358 end_page_writeback(req->wb_page); 359 if (atomic_long_dec_return(&nfss->writeback) < NFS_CONGESTION_OFF_THRESH) 360 clear_bdi_congested(inode_to_bdi(inode), BLK_RW_ASYNC); 361 } 362 363 /* 364 * nfs_unroll_locks_and_wait - unlock all newly locked reqs and wait on @req 365 * 366 * this is a helper function for nfs_lock_and_join_requests 367 * 368 * @inode - inode associated with request page group, must be holding inode lock 369 * @head - head request of page group, must be holding head lock 370 * @req - request that couldn't lock and needs to wait on the req bit lock 371 * 372 * NOTE: this must be called holding page_group bit lock 373 * which will be released before returning. 374 * 375 * returns 0 on success, < 0 on error. 376 */ 377 static void 378 nfs_unroll_locks(struct inode *inode, struct nfs_page *head, 379 struct nfs_page *req) 380 { 381 struct nfs_page *tmp; 382 383 /* relinquish all the locks successfully grabbed this run */ 384 for (tmp = head->wb_this_page ; tmp != req; tmp = tmp->wb_this_page) { 385 if (!kref_read(&tmp->wb_kref)) 386 continue; 387 nfs_unlock_and_release_request(tmp); 388 } 389 } 390 391 /* 392 * nfs_destroy_unlinked_subrequests - destroy recently unlinked subrequests 393 * 394 * @destroy_list - request list (using wb_this_page) terminated by @old_head 395 * @old_head - the old head of the list 396 * 397 * All subrequests must be locked and removed from all lists, so at this point 398 * they are only "active" in this function, and possibly in nfs_wait_on_request 399 * with a reference held by some other context. 400 */ 401 static void 402 nfs_destroy_unlinked_subrequests(struct nfs_page *destroy_list, 403 struct nfs_page *old_head, 404 struct inode *inode) 405 { 406 while (destroy_list) { 407 struct nfs_page *subreq = destroy_list; 408 409 destroy_list = (subreq->wb_this_page == old_head) ? 410 NULL : subreq->wb_this_page; 411 412 WARN_ON_ONCE(old_head != subreq->wb_head); 413 414 /* make sure old group is not used */ 415 subreq->wb_this_page = subreq; 416 417 clear_bit(PG_REMOVE, &subreq->wb_flags); 418 419 /* Note: races with nfs_page_group_destroy() */ 420 if (!kref_read(&subreq->wb_kref)) { 421 /* Check if we raced with nfs_page_group_destroy() */ 422 if (test_and_clear_bit(PG_TEARDOWN, &subreq->wb_flags)) 423 nfs_free_request(subreq); 424 continue; 425 } 426 427 subreq->wb_head = subreq; 428 429 if (test_and_clear_bit(PG_INODE_REF, &subreq->wb_flags)) { 430 nfs_release_request(subreq); 431 atomic_long_dec(&NFS_I(inode)->nrequests); 432 } 433 434 /* subreq is now totally disconnected from page group or any 435 * write / commit lists. last chance to wake any waiters */ 436 nfs_unlock_and_release_request(subreq); 437 } 438 } 439 440 /* 441 * nfs_lock_and_join_requests - join all subreqs to the head req and return 442 * a locked reference, cancelling any pending 443 * operations for this page. 444 * 445 * @page - the page used to lookup the "page group" of nfs_page structures 446 * 447 * This function joins all sub requests to the head request by first 448 * locking all requests in the group, cancelling any pending operations 449 * and finally updating the head request to cover the whole range covered by 450 * the (former) group. All subrequests are removed from any write or commit 451 * lists, unlinked from the group and destroyed. 452 * 453 * Returns a locked, referenced pointer to the head request - which after 454 * this call is guaranteed to be the only request associated with the page. 455 * Returns NULL if no requests are found for @page, or a ERR_PTR if an 456 * error was encountered. 457 */ 458 static struct nfs_page * 459 nfs_lock_and_join_requests(struct page *page) 460 { 461 struct inode *inode = page_file_mapping(page)->host; 462 struct nfs_page *head, *subreq; 463 struct nfs_page *destroy_list = NULL; 464 unsigned int total_bytes; 465 int ret; 466 467 try_again: 468 /* 469 * A reference is taken only on the head request which acts as a 470 * reference to the whole page group - the group will not be destroyed 471 * until the head reference is released. 472 */ 473 head = nfs_page_find_head_request(page); 474 if (!head) 475 return NULL; 476 477 /* lock the page head first in order to avoid an ABBA inefficiency */ 478 if (!nfs_lock_request(head)) { 479 ret = nfs_wait_on_request(head); 480 nfs_release_request(head); 481 if (ret < 0) 482 return ERR_PTR(ret); 483 goto try_again; 484 } 485 486 /* Ensure that nobody removed the request before we locked it */ 487 if (head != nfs_page_private_request(page) && !PageSwapCache(page)) { 488 nfs_unlock_and_release_request(head); 489 goto try_again; 490 } 491 492 ret = nfs_page_group_lock(head); 493 if (ret < 0) 494 goto release_request; 495 496 /* lock each request in the page group */ 497 total_bytes = head->wb_bytes; 498 for (subreq = head->wb_this_page; subreq != head; 499 subreq = subreq->wb_this_page) { 500 501 if (!kref_get_unless_zero(&subreq->wb_kref)) { 502 if (subreq->wb_offset == head->wb_offset + total_bytes) 503 total_bytes += subreq->wb_bytes; 504 continue; 505 } 506 507 while (!nfs_lock_request(subreq)) { 508 /* 509 * Unlock page to allow nfs_page_group_sync_on_bit() 510 * to succeed 511 */ 512 nfs_page_group_unlock(head); 513 ret = nfs_wait_on_request(subreq); 514 if (!ret) 515 ret = nfs_page_group_lock(head); 516 if (ret < 0) { 517 nfs_unroll_locks(inode, head, subreq); 518 nfs_release_request(subreq); 519 goto release_request; 520 } 521 } 522 /* 523 * Subrequests are always contiguous, non overlapping 524 * and in order - but may be repeated (mirrored writes). 525 */ 526 if (subreq->wb_offset == (head->wb_offset + total_bytes)) { 527 /* keep track of how many bytes this group covers */ 528 total_bytes += subreq->wb_bytes; 529 } else if (WARN_ON_ONCE(subreq->wb_offset < head->wb_offset || 530 ((subreq->wb_offset + subreq->wb_bytes) > 531 (head->wb_offset + total_bytes)))) { 532 nfs_page_group_unlock(head); 533 nfs_unroll_locks(inode, head, subreq); 534 nfs_unlock_and_release_request(subreq); 535 ret = -EIO; 536 goto release_request; 537 } 538 } 539 540 /* Now that all requests are locked, make sure they aren't on any list. 541 * Commit list removal accounting is done after locks are dropped */ 542 subreq = head; 543 do { 544 nfs_clear_request_commit(subreq); 545 subreq = subreq->wb_this_page; 546 } while (subreq != head); 547 548 /* unlink subrequests from head, destroy them later */ 549 if (head->wb_this_page != head) { 550 /* destroy list will be terminated by head */ 551 destroy_list = head->wb_this_page; 552 head->wb_this_page = head; 553 554 /* change head request to cover whole range that 555 * the former page group covered */ 556 head->wb_bytes = total_bytes; 557 } 558 559 /* Postpone destruction of this request */ 560 if (test_and_clear_bit(PG_REMOVE, &head->wb_flags)) { 561 set_bit(PG_INODE_REF, &head->wb_flags); 562 kref_get(&head->wb_kref); 563 atomic_long_inc(&NFS_I(inode)->nrequests); 564 } 565 566 nfs_page_group_unlock(head); 567 568 nfs_destroy_unlinked_subrequests(destroy_list, head, inode); 569 570 /* Did we lose a race with nfs_inode_remove_request()? */ 571 if (!(PagePrivate(page) || PageSwapCache(page))) { 572 nfs_unlock_and_release_request(head); 573 return NULL; 574 } 575 576 /* still holds ref on head from nfs_page_find_head_request 577 * and still has lock on head from lock loop */ 578 return head; 579 580 release_request: 581 nfs_unlock_and_release_request(head); 582 return ERR_PTR(ret); 583 } 584 585 static void nfs_write_error_remove_page(struct nfs_page *req) 586 { 587 nfs_end_page_writeback(req); 588 generic_error_remove_page(page_file_mapping(req->wb_page), 589 req->wb_page); 590 nfs_release_request(req); 591 } 592 593 static bool 594 nfs_error_is_fatal_on_server(int err) 595 { 596 switch (err) { 597 case 0: 598 case -ERESTARTSYS: 599 case -EINTR: 600 return false; 601 } 602 return nfs_error_is_fatal(err); 603 } 604 605 /* 606 * Find an associated nfs write request, and prepare to flush it out 607 * May return an error if the user signalled nfs_wait_on_request(). 608 */ 609 static int nfs_page_async_flush(struct nfs_pageio_descriptor *pgio, 610 struct page *page) 611 { 612 struct nfs_page *req; 613 int ret = 0; 614 615 req = nfs_lock_and_join_requests(page); 616 if (!req) 617 goto out; 618 ret = PTR_ERR(req); 619 if (IS_ERR(req)) 620 goto out; 621 622 nfs_set_page_writeback(page); 623 WARN_ON_ONCE(test_bit(PG_CLEAN, &req->wb_flags)); 624 625 ret = req->wb_context->error; 626 /* If there is a fatal error that covers this write, just exit */ 627 if (nfs_error_is_fatal_on_server(ret)) 628 goto out_launder; 629 630 ret = 0; 631 if (!nfs_pageio_add_request(pgio, req)) { 632 ret = pgio->pg_error; 633 /* 634 * Remove the problematic req upon fatal errors on the server 635 */ 636 if (nfs_error_is_fatal(ret)) { 637 nfs_context_set_write_error(req->wb_context, ret); 638 if (nfs_error_is_fatal_on_server(ret)) 639 goto out_launder; 640 } else 641 ret = -EAGAIN; 642 nfs_redirty_request(req); 643 } else 644 nfs_add_stats(page_file_mapping(page)->host, 645 NFSIOS_WRITEPAGES, 1); 646 out: 647 return ret; 648 out_launder: 649 nfs_write_error_remove_page(req); 650 return ret; 651 } 652 653 static int nfs_do_writepage(struct page *page, struct writeback_control *wbc, 654 struct nfs_pageio_descriptor *pgio) 655 { 656 int ret; 657 658 nfs_pageio_cond_complete(pgio, page_index(page)); 659 ret = nfs_page_async_flush(pgio, page); 660 if (ret == -EAGAIN) { 661 redirty_page_for_writepage(wbc, page); 662 ret = 0; 663 } 664 return ret; 665 } 666 667 /* 668 * Write an mmapped page to the server. 669 */ 670 static int nfs_writepage_locked(struct page *page, 671 struct writeback_control *wbc) 672 { 673 struct nfs_pageio_descriptor pgio; 674 struct inode *inode = page_file_mapping(page)->host; 675 int err; 676 677 nfs_inc_stats(inode, NFSIOS_VFSWRITEPAGE); 678 nfs_pageio_init_write(&pgio, inode, 0, 679 false, &nfs_async_write_completion_ops); 680 err = nfs_do_writepage(page, wbc, &pgio); 681 nfs_pageio_complete(&pgio); 682 if (err < 0) 683 return err; 684 if (pgio.pg_error < 0) 685 return pgio.pg_error; 686 return 0; 687 } 688 689 int nfs_writepage(struct page *page, struct writeback_control *wbc) 690 { 691 int ret; 692 693 ret = nfs_writepage_locked(page, wbc); 694 unlock_page(page); 695 return ret; 696 } 697 698 static int nfs_writepages_callback(struct page *page, struct writeback_control *wbc, void *data) 699 { 700 int ret; 701 702 ret = nfs_do_writepage(page, wbc, data); 703 unlock_page(page); 704 return ret; 705 } 706 707 static void nfs_io_completion_commit(void *inode) 708 { 709 nfs_commit_inode(inode, 0); 710 } 711 712 int nfs_writepages(struct address_space *mapping, struct writeback_control *wbc) 713 { 714 struct inode *inode = mapping->host; 715 struct nfs_pageio_descriptor pgio; 716 struct nfs_io_completion *ioc; 717 unsigned int pflags = memalloc_nofs_save(); 718 int err; 719 720 nfs_inc_stats(inode, NFSIOS_VFSWRITEPAGES); 721 722 ioc = nfs_io_completion_alloc(GFP_NOFS); 723 if (ioc) 724 nfs_io_completion_init(ioc, nfs_io_completion_commit, inode); 725 726 nfs_pageio_init_write(&pgio, inode, wb_priority(wbc), false, 727 &nfs_async_write_completion_ops); 728 pgio.pg_io_completion = ioc; 729 err = write_cache_pages(mapping, wbc, nfs_writepages_callback, &pgio); 730 nfs_pageio_complete(&pgio); 731 nfs_io_completion_put(ioc); 732 733 memalloc_nofs_restore(pflags); 734 735 if (err < 0) 736 goto out_err; 737 err = pgio.pg_error; 738 if (err < 0) 739 goto out_err; 740 return 0; 741 out_err: 742 return err; 743 } 744 745 /* 746 * Insert a write request into an inode 747 */ 748 static void nfs_inode_add_request(struct inode *inode, struct nfs_page *req) 749 { 750 struct address_space *mapping = page_file_mapping(req->wb_page); 751 struct nfs_inode *nfsi = NFS_I(inode); 752 753 WARN_ON_ONCE(req->wb_this_page != req); 754 755 /* Lock the request! */ 756 nfs_lock_request(req); 757 758 /* 759 * Swap-space should not get truncated. Hence no need to plug the race 760 * with invalidate/truncate. 761 */ 762 spin_lock(&mapping->private_lock); 763 if (!nfs_have_writebacks(inode) && 764 NFS_PROTO(inode)->have_delegation(inode, FMODE_WRITE)) 765 inode_inc_iversion_raw(inode); 766 if (likely(!PageSwapCache(req->wb_page))) { 767 set_bit(PG_MAPPED, &req->wb_flags); 768 SetPagePrivate(req->wb_page); 769 set_page_private(req->wb_page, (unsigned long)req); 770 } 771 spin_unlock(&mapping->private_lock); 772 atomic_long_inc(&nfsi->nrequests); 773 /* this a head request for a page group - mark it as having an 774 * extra reference so sub groups can follow suit. 775 * This flag also informs pgio layer when to bump nrequests when 776 * adding subrequests. */ 777 WARN_ON(test_and_set_bit(PG_INODE_REF, &req->wb_flags)); 778 kref_get(&req->wb_kref); 779 } 780 781 /* 782 * Remove a write request from an inode 783 */ 784 static void nfs_inode_remove_request(struct nfs_page *req) 785 { 786 struct address_space *mapping = page_file_mapping(req->wb_page); 787 struct inode *inode = mapping->host; 788 struct nfs_inode *nfsi = NFS_I(inode); 789 struct nfs_page *head; 790 791 atomic_long_dec(&nfsi->nrequests); 792 if (nfs_page_group_sync_on_bit(req, PG_REMOVE)) { 793 head = req->wb_head; 794 795 spin_lock(&mapping->private_lock); 796 if (likely(head->wb_page && !PageSwapCache(head->wb_page))) { 797 set_page_private(head->wb_page, 0); 798 ClearPagePrivate(head->wb_page); 799 clear_bit(PG_MAPPED, &head->wb_flags); 800 } 801 spin_unlock(&mapping->private_lock); 802 } 803 804 if (test_and_clear_bit(PG_INODE_REF, &req->wb_flags)) 805 nfs_release_request(req); 806 } 807 808 static void 809 nfs_mark_request_dirty(struct nfs_page *req) 810 { 811 if (req->wb_page) 812 __set_page_dirty_nobuffers(req->wb_page); 813 } 814 815 /* 816 * nfs_page_search_commits_for_head_request_locked 817 * 818 * Search through commit lists on @inode for the head request for @page. 819 * Must be called while holding the inode (which is cinfo) lock. 820 * 821 * Returns the head request if found, or NULL if not found. 822 */ 823 static struct nfs_page * 824 nfs_page_search_commits_for_head_request_locked(struct nfs_inode *nfsi, 825 struct page *page) 826 { 827 struct nfs_page *freq, *t; 828 struct nfs_commit_info cinfo; 829 struct inode *inode = &nfsi->vfs_inode; 830 831 nfs_init_cinfo_from_inode(&cinfo, inode); 832 833 /* search through pnfs commit lists */ 834 freq = pnfs_search_commit_reqs(inode, &cinfo, page); 835 if (freq) 836 return freq->wb_head; 837 838 /* Linearly search the commit list for the correct request */ 839 list_for_each_entry_safe(freq, t, &cinfo.mds->list, wb_list) { 840 if (freq->wb_page == page) 841 return freq->wb_head; 842 } 843 844 return NULL; 845 } 846 847 /** 848 * nfs_request_add_commit_list_locked - add request to a commit list 849 * @req: pointer to a struct nfs_page 850 * @dst: commit list head 851 * @cinfo: holds list lock and accounting info 852 * 853 * This sets the PG_CLEAN bit, updates the cinfo count of 854 * number of outstanding requests requiring a commit as well as 855 * the MM page stats. 856 * 857 * The caller must hold NFS_I(cinfo->inode)->commit_mutex, and the 858 * nfs_page lock. 859 */ 860 void 861 nfs_request_add_commit_list_locked(struct nfs_page *req, struct list_head *dst, 862 struct nfs_commit_info *cinfo) 863 { 864 set_bit(PG_CLEAN, &req->wb_flags); 865 nfs_list_add_request(req, dst); 866 atomic_long_inc(&cinfo->mds->ncommit); 867 } 868 EXPORT_SYMBOL_GPL(nfs_request_add_commit_list_locked); 869 870 /** 871 * nfs_request_add_commit_list - add request to a commit list 872 * @req: pointer to a struct nfs_page 873 * @cinfo: holds list lock and accounting info 874 * 875 * This sets the PG_CLEAN bit, updates the cinfo count of 876 * number of outstanding requests requiring a commit as well as 877 * the MM page stats. 878 * 879 * The caller must _not_ hold the cinfo->lock, but must be 880 * holding the nfs_page lock. 881 */ 882 void 883 nfs_request_add_commit_list(struct nfs_page *req, struct nfs_commit_info *cinfo) 884 { 885 mutex_lock(&NFS_I(cinfo->inode)->commit_mutex); 886 nfs_request_add_commit_list_locked(req, &cinfo->mds->list, cinfo); 887 mutex_unlock(&NFS_I(cinfo->inode)->commit_mutex); 888 if (req->wb_page) 889 nfs_mark_page_unstable(req->wb_page, cinfo); 890 } 891 EXPORT_SYMBOL_GPL(nfs_request_add_commit_list); 892 893 /** 894 * nfs_request_remove_commit_list - Remove request from a commit list 895 * @req: pointer to a nfs_page 896 * @cinfo: holds list lock and accounting info 897 * 898 * This clears the PG_CLEAN bit, and updates the cinfo's count of 899 * number of outstanding requests requiring a commit 900 * It does not update the MM page stats. 901 * 902 * The caller _must_ hold the cinfo->lock and the nfs_page lock. 903 */ 904 void 905 nfs_request_remove_commit_list(struct nfs_page *req, 906 struct nfs_commit_info *cinfo) 907 { 908 if (!test_and_clear_bit(PG_CLEAN, &(req)->wb_flags)) 909 return; 910 nfs_list_remove_request(req); 911 atomic_long_dec(&cinfo->mds->ncommit); 912 } 913 EXPORT_SYMBOL_GPL(nfs_request_remove_commit_list); 914 915 static void nfs_init_cinfo_from_inode(struct nfs_commit_info *cinfo, 916 struct inode *inode) 917 { 918 cinfo->inode = inode; 919 cinfo->mds = &NFS_I(inode)->commit_info; 920 cinfo->ds = pnfs_get_ds_info(inode); 921 cinfo->dreq = NULL; 922 cinfo->completion_ops = &nfs_commit_completion_ops; 923 } 924 925 void nfs_init_cinfo(struct nfs_commit_info *cinfo, 926 struct inode *inode, 927 struct nfs_direct_req *dreq) 928 { 929 if (dreq) 930 nfs_init_cinfo_from_dreq(cinfo, dreq); 931 else 932 nfs_init_cinfo_from_inode(cinfo, inode); 933 } 934 EXPORT_SYMBOL_GPL(nfs_init_cinfo); 935 936 /* 937 * Add a request to the inode's commit list. 938 */ 939 void 940 nfs_mark_request_commit(struct nfs_page *req, struct pnfs_layout_segment *lseg, 941 struct nfs_commit_info *cinfo, u32 ds_commit_idx) 942 { 943 if (pnfs_mark_request_commit(req, lseg, cinfo, ds_commit_idx)) 944 return; 945 nfs_request_add_commit_list(req, cinfo); 946 } 947 948 static void 949 nfs_clear_page_commit(struct page *page) 950 { 951 dec_node_page_state(page, NR_UNSTABLE_NFS); 952 dec_wb_stat(&inode_to_bdi(page_file_mapping(page)->host)->wb, 953 WB_RECLAIMABLE); 954 } 955 956 /* Called holding the request lock on @req */ 957 static void 958 nfs_clear_request_commit(struct nfs_page *req) 959 { 960 if (test_bit(PG_CLEAN, &req->wb_flags)) { 961 struct inode *inode = d_inode(req->wb_context->dentry); 962 struct nfs_commit_info cinfo; 963 964 nfs_init_cinfo_from_inode(&cinfo, inode); 965 mutex_lock(&NFS_I(inode)->commit_mutex); 966 if (!pnfs_clear_request_commit(req, &cinfo)) { 967 nfs_request_remove_commit_list(req, &cinfo); 968 } 969 mutex_unlock(&NFS_I(inode)->commit_mutex); 970 nfs_clear_page_commit(req->wb_page); 971 } 972 } 973 974 int nfs_write_need_commit(struct nfs_pgio_header *hdr) 975 { 976 if (hdr->verf.committed == NFS_DATA_SYNC) 977 return hdr->lseg == NULL; 978 return hdr->verf.committed != NFS_FILE_SYNC; 979 } 980 981 static void nfs_async_write_init(struct nfs_pgio_header *hdr) 982 { 983 nfs_io_completion_get(hdr->io_completion); 984 } 985 986 static void nfs_write_completion(struct nfs_pgio_header *hdr) 987 { 988 struct nfs_commit_info cinfo; 989 unsigned long bytes = 0; 990 991 if (test_bit(NFS_IOHDR_REDO, &hdr->flags)) 992 goto out; 993 nfs_init_cinfo_from_inode(&cinfo, hdr->inode); 994 while (!list_empty(&hdr->pages)) { 995 struct nfs_page *req = nfs_list_entry(hdr->pages.next); 996 997 bytes += req->wb_bytes; 998 nfs_list_remove_request(req); 999 if (test_bit(NFS_IOHDR_ERROR, &hdr->flags) && 1000 (hdr->good_bytes < bytes)) { 1001 nfs_set_pageerror(page_file_mapping(req->wb_page)); 1002 nfs_context_set_write_error(req->wb_context, hdr->error); 1003 goto remove_req; 1004 } 1005 if (nfs_write_need_commit(hdr)) { 1006 memcpy(&req->wb_verf, &hdr->verf.verifier, sizeof(req->wb_verf)); 1007 nfs_mark_request_commit(req, hdr->lseg, &cinfo, 1008 hdr->pgio_mirror_idx); 1009 goto next; 1010 } 1011 remove_req: 1012 nfs_inode_remove_request(req); 1013 next: 1014 nfs_end_page_writeback(req); 1015 nfs_release_request(req); 1016 } 1017 out: 1018 nfs_io_completion_put(hdr->io_completion); 1019 hdr->release(hdr); 1020 } 1021 1022 unsigned long 1023 nfs_reqs_to_commit(struct nfs_commit_info *cinfo) 1024 { 1025 return atomic_long_read(&cinfo->mds->ncommit); 1026 } 1027 1028 /* NFS_I(cinfo->inode)->commit_mutex held by caller */ 1029 int 1030 nfs_scan_commit_list(struct list_head *src, struct list_head *dst, 1031 struct nfs_commit_info *cinfo, int max) 1032 { 1033 struct nfs_page *req, *tmp; 1034 int ret = 0; 1035 1036 restart: 1037 list_for_each_entry_safe(req, tmp, src, wb_list) { 1038 kref_get(&req->wb_kref); 1039 if (!nfs_lock_request(req)) { 1040 int status; 1041 1042 /* Prevent deadlock with nfs_lock_and_join_requests */ 1043 if (!list_empty(dst)) { 1044 nfs_release_request(req); 1045 continue; 1046 } 1047 /* Ensure we make progress to prevent livelock */ 1048 mutex_unlock(&NFS_I(cinfo->inode)->commit_mutex); 1049 status = nfs_wait_on_request(req); 1050 nfs_release_request(req); 1051 mutex_lock(&NFS_I(cinfo->inode)->commit_mutex); 1052 if (status < 0) 1053 break; 1054 goto restart; 1055 } 1056 nfs_request_remove_commit_list(req, cinfo); 1057 clear_bit(PG_COMMIT_TO_DS, &req->wb_flags); 1058 nfs_list_add_request(req, dst); 1059 ret++; 1060 if ((ret == max) && !cinfo->dreq) 1061 break; 1062 cond_resched(); 1063 } 1064 return ret; 1065 } 1066 EXPORT_SYMBOL_GPL(nfs_scan_commit_list); 1067 1068 /* 1069 * nfs_scan_commit - Scan an inode for commit requests 1070 * @inode: NFS inode to scan 1071 * @dst: mds destination list 1072 * @cinfo: mds and ds lists of reqs ready to commit 1073 * 1074 * Moves requests from the inode's 'commit' request list. 1075 * The requests are *not* checked to ensure that they form a contiguous set. 1076 */ 1077 int 1078 nfs_scan_commit(struct inode *inode, struct list_head *dst, 1079 struct nfs_commit_info *cinfo) 1080 { 1081 int ret = 0; 1082 1083 if (!atomic_long_read(&cinfo->mds->ncommit)) 1084 return 0; 1085 mutex_lock(&NFS_I(cinfo->inode)->commit_mutex); 1086 if (atomic_long_read(&cinfo->mds->ncommit) > 0) { 1087 const int max = INT_MAX; 1088 1089 ret = nfs_scan_commit_list(&cinfo->mds->list, dst, 1090 cinfo, max); 1091 ret += pnfs_scan_commit_lists(inode, cinfo, max - ret); 1092 } 1093 mutex_unlock(&NFS_I(cinfo->inode)->commit_mutex); 1094 return ret; 1095 } 1096 1097 /* 1098 * Search for an existing write request, and attempt to update 1099 * it to reflect a new dirty region on a given page. 1100 * 1101 * If the attempt fails, then the existing request is flushed out 1102 * to disk. 1103 */ 1104 static struct nfs_page *nfs_try_to_update_request(struct inode *inode, 1105 struct page *page, 1106 unsigned int offset, 1107 unsigned int bytes) 1108 { 1109 struct nfs_page *req; 1110 unsigned int rqend; 1111 unsigned int end; 1112 int error; 1113 1114 end = offset + bytes; 1115 1116 req = nfs_lock_and_join_requests(page); 1117 if (IS_ERR_OR_NULL(req)) 1118 return req; 1119 1120 rqend = req->wb_offset + req->wb_bytes; 1121 /* 1122 * Tell the caller to flush out the request if 1123 * the offsets are non-contiguous. 1124 * Note: nfs_flush_incompatible() will already 1125 * have flushed out requests having wrong owners. 1126 */ 1127 if (offset > rqend || end < req->wb_offset) 1128 goto out_flushme; 1129 1130 /* Okay, the request matches. Update the region */ 1131 if (offset < req->wb_offset) { 1132 req->wb_offset = offset; 1133 req->wb_pgbase = offset; 1134 } 1135 if (end > rqend) 1136 req->wb_bytes = end - req->wb_offset; 1137 else 1138 req->wb_bytes = rqend - req->wb_offset; 1139 return req; 1140 out_flushme: 1141 /* 1142 * Note: we mark the request dirty here because 1143 * nfs_lock_and_join_requests() cannot preserve 1144 * commit flags, so we have to replay the write. 1145 */ 1146 nfs_mark_request_dirty(req); 1147 nfs_unlock_and_release_request(req); 1148 error = nfs_wb_page(inode, page); 1149 return (error < 0) ? ERR_PTR(error) : NULL; 1150 } 1151 1152 /* 1153 * Try to update an existing write request, or create one if there is none. 1154 * 1155 * Note: Should always be called with the Page Lock held to prevent races 1156 * if we have to add a new request. Also assumes that the caller has 1157 * already called nfs_flush_incompatible() if necessary. 1158 */ 1159 static struct nfs_page * nfs_setup_write_request(struct nfs_open_context* ctx, 1160 struct page *page, unsigned int offset, unsigned int bytes) 1161 { 1162 struct inode *inode = page_file_mapping(page)->host; 1163 struct nfs_page *req; 1164 1165 req = nfs_try_to_update_request(inode, page, offset, bytes); 1166 if (req != NULL) 1167 goto out; 1168 req = nfs_create_request(ctx, page, NULL, offset, bytes); 1169 if (IS_ERR(req)) 1170 goto out; 1171 nfs_inode_add_request(inode, req); 1172 out: 1173 return req; 1174 } 1175 1176 static int nfs_writepage_setup(struct nfs_open_context *ctx, struct page *page, 1177 unsigned int offset, unsigned int count) 1178 { 1179 struct nfs_page *req; 1180 1181 req = nfs_setup_write_request(ctx, page, offset, count); 1182 if (IS_ERR(req)) 1183 return PTR_ERR(req); 1184 /* Update file length */ 1185 nfs_grow_file(page, offset, count); 1186 nfs_mark_uptodate(req); 1187 nfs_mark_request_dirty(req); 1188 nfs_unlock_and_release_request(req); 1189 return 0; 1190 } 1191 1192 int nfs_flush_incompatible(struct file *file, struct page *page) 1193 { 1194 struct nfs_open_context *ctx = nfs_file_open_context(file); 1195 struct nfs_lock_context *l_ctx; 1196 struct file_lock_context *flctx = file_inode(file)->i_flctx; 1197 struct nfs_page *req; 1198 int do_flush, status; 1199 /* 1200 * Look for a request corresponding to this page. If there 1201 * is one, and it belongs to another file, we flush it out 1202 * before we try to copy anything into the page. Do this 1203 * due to the lack of an ACCESS-type call in NFSv2. 1204 * Also do the same if we find a request from an existing 1205 * dropped page. 1206 */ 1207 do { 1208 req = nfs_page_find_head_request(page); 1209 if (req == NULL) 1210 return 0; 1211 l_ctx = req->wb_lock_context; 1212 do_flush = req->wb_page != page || 1213 !nfs_match_open_context(req->wb_context, ctx); 1214 if (l_ctx && flctx && 1215 !(list_empty_careful(&flctx->flc_posix) && 1216 list_empty_careful(&flctx->flc_flock))) { 1217 do_flush |= l_ctx->lockowner != current->files; 1218 } 1219 nfs_release_request(req); 1220 if (!do_flush) 1221 return 0; 1222 status = nfs_wb_page(page_file_mapping(page)->host, page); 1223 } while (status == 0); 1224 return status; 1225 } 1226 1227 /* 1228 * Avoid buffered writes when a open context credential's key would 1229 * expire soon. 1230 * 1231 * Returns -EACCES if the key will expire within RPC_KEY_EXPIRE_FAIL. 1232 * 1233 * Return 0 and set a credential flag which triggers the inode to flush 1234 * and performs NFS_FILE_SYNC writes if the key will expired within 1235 * RPC_KEY_EXPIRE_TIMEO. 1236 */ 1237 int 1238 nfs_key_timeout_notify(struct file *filp, struct inode *inode) 1239 { 1240 struct nfs_open_context *ctx = nfs_file_open_context(filp); 1241 1242 if (nfs_ctx_key_to_expire(ctx, inode) && 1243 !ctx->ll_cred) 1244 /* Already expired! */ 1245 return -EACCES; 1246 return 0; 1247 } 1248 1249 /* 1250 * Test if the open context credential key is marked to expire soon. 1251 */ 1252 bool nfs_ctx_key_to_expire(struct nfs_open_context *ctx, struct inode *inode) 1253 { 1254 struct rpc_auth *auth = NFS_SERVER(inode)->client->cl_auth; 1255 struct rpc_cred *cred = ctx->ll_cred; 1256 struct auth_cred acred = { 1257 .cred = ctx->cred, 1258 }; 1259 1260 if (cred && !cred->cr_ops->crmatch(&acred, cred, 0)) { 1261 put_rpccred(cred); 1262 ctx->ll_cred = NULL; 1263 cred = NULL; 1264 } 1265 if (!cred) 1266 cred = auth->au_ops->lookup_cred(auth, &acred, 0); 1267 if (!cred || IS_ERR(cred)) 1268 return true; 1269 ctx->ll_cred = cred; 1270 return !!(cred->cr_ops->crkey_timeout && 1271 cred->cr_ops->crkey_timeout(cred)); 1272 } 1273 1274 /* 1275 * If the page cache is marked as unsafe or invalid, then we can't rely on 1276 * the PageUptodate() flag. In this case, we will need to turn off 1277 * write optimisations that depend on the page contents being correct. 1278 */ 1279 static bool nfs_write_pageuptodate(struct page *page, struct inode *inode) 1280 { 1281 struct nfs_inode *nfsi = NFS_I(inode); 1282 1283 if (nfs_have_delegated_attributes(inode)) 1284 goto out; 1285 if (nfsi->cache_validity & NFS_INO_REVAL_PAGECACHE) 1286 return false; 1287 smp_rmb(); 1288 if (test_bit(NFS_INO_INVALIDATING, &nfsi->flags)) 1289 return false; 1290 out: 1291 if (nfsi->cache_validity & NFS_INO_INVALID_DATA) 1292 return false; 1293 return PageUptodate(page) != 0; 1294 } 1295 1296 static bool 1297 is_whole_file_wrlock(struct file_lock *fl) 1298 { 1299 return fl->fl_start == 0 && fl->fl_end == OFFSET_MAX && 1300 fl->fl_type == F_WRLCK; 1301 } 1302 1303 /* If we know the page is up to date, and we're not using byte range locks (or 1304 * if we have the whole file locked for writing), it may be more efficient to 1305 * extend the write to cover the entire page in order to avoid fragmentation 1306 * inefficiencies. 1307 * 1308 * If the file is opened for synchronous writes then we can just skip the rest 1309 * of the checks. 1310 */ 1311 static int nfs_can_extend_write(struct file *file, struct page *page, struct inode *inode) 1312 { 1313 int ret; 1314 struct file_lock_context *flctx = inode->i_flctx; 1315 struct file_lock *fl; 1316 1317 if (file->f_flags & O_DSYNC) 1318 return 0; 1319 if (!nfs_write_pageuptodate(page, inode)) 1320 return 0; 1321 if (NFS_PROTO(inode)->have_delegation(inode, FMODE_WRITE)) 1322 return 1; 1323 if (!flctx || (list_empty_careful(&flctx->flc_flock) && 1324 list_empty_careful(&flctx->flc_posix))) 1325 return 1; 1326 1327 /* Check to see if there are whole file write locks */ 1328 ret = 0; 1329 spin_lock(&flctx->flc_lock); 1330 if (!list_empty(&flctx->flc_posix)) { 1331 fl = list_first_entry(&flctx->flc_posix, struct file_lock, 1332 fl_list); 1333 if (is_whole_file_wrlock(fl)) 1334 ret = 1; 1335 } else if (!list_empty(&flctx->flc_flock)) { 1336 fl = list_first_entry(&flctx->flc_flock, struct file_lock, 1337 fl_list); 1338 if (fl->fl_type == F_WRLCK) 1339 ret = 1; 1340 } 1341 spin_unlock(&flctx->flc_lock); 1342 return ret; 1343 } 1344 1345 /* 1346 * Update and possibly write a cached page of an NFS file. 1347 * 1348 * XXX: Keep an eye on generic_file_read to make sure it doesn't do bad 1349 * things with a page scheduled for an RPC call (e.g. invalidate it). 1350 */ 1351 int nfs_updatepage(struct file *file, struct page *page, 1352 unsigned int offset, unsigned int count) 1353 { 1354 struct nfs_open_context *ctx = nfs_file_open_context(file); 1355 struct address_space *mapping = page_file_mapping(page); 1356 struct inode *inode = mapping->host; 1357 int status = 0; 1358 1359 nfs_inc_stats(inode, NFSIOS_VFSUPDATEPAGE); 1360 1361 dprintk("NFS: nfs_updatepage(%pD2 %d@%lld)\n", 1362 file, count, (long long)(page_file_offset(page) + offset)); 1363 1364 if (!count) 1365 goto out; 1366 1367 if (nfs_can_extend_write(file, page, inode)) { 1368 count = max(count + offset, nfs_page_length(page)); 1369 offset = 0; 1370 } 1371 1372 status = nfs_writepage_setup(ctx, page, offset, count); 1373 if (status < 0) 1374 nfs_set_pageerror(mapping); 1375 else 1376 __set_page_dirty_nobuffers(page); 1377 out: 1378 dprintk("NFS: nfs_updatepage returns %d (isize %lld)\n", 1379 status, (long long)i_size_read(inode)); 1380 return status; 1381 } 1382 1383 static int flush_task_priority(int how) 1384 { 1385 switch (how & (FLUSH_HIGHPRI|FLUSH_LOWPRI)) { 1386 case FLUSH_HIGHPRI: 1387 return RPC_PRIORITY_HIGH; 1388 case FLUSH_LOWPRI: 1389 return RPC_PRIORITY_LOW; 1390 } 1391 return RPC_PRIORITY_NORMAL; 1392 } 1393 1394 static void nfs_initiate_write(struct nfs_pgio_header *hdr, 1395 struct rpc_message *msg, 1396 const struct nfs_rpc_ops *rpc_ops, 1397 struct rpc_task_setup *task_setup_data, int how) 1398 { 1399 int priority = flush_task_priority(how); 1400 1401 task_setup_data->priority = priority; 1402 rpc_ops->write_setup(hdr, msg, &task_setup_data->rpc_client); 1403 trace_nfs_initiate_write(hdr->inode, hdr->io_start, hdr->good_bytes, 1404 hdr->args.stable); 1405 } 1406 1407 /* If a nfs_flush_* function fails, it should remove reqs from @head and 1408 * call this on each, which will prepare them to be retried on next 1409 * writeback using standard nfs. 1410 */ 1411 static void nfs_redirty_request(struct nfs_page *req) 1412 { 1413 nfs_mark_request_dirty(req); 1414 set_bit(NFS_CONTEXT_RESEND_WRITES, &req->wb_context->flags); 1415 nfs_end_page_writeback(req); 1416 nfs_release_request(req); 1417 } 1418 1419 static void nfs_async_write_error(struct list_head *head, int error) 1420 { 1421 struct nfs_page *req; 1422 1423 while (!list_empty(head)) { 1424 req = nfs_list_entry(head->next); 1425 nfs_list_remove_request(req); 1426 if (nfs_error_is_fatal(error)) { 1427 nfs_context_set_write_error(req->wb_context, error); 1428 if (nfs_error_is_fatal_on_server(error)) { 1429 nfs_write_error_remove_page(req); 1430 continue; 1431 } 1432 } 1433 nfs_redirty_request(req); 1434 } 1435 } 1436 1437 static void nfs_async_write_reschedule_io(struct nfs_pgio_header *hdr) 1438 { 1439 nfs_async_write_error(&hdr->pages, 0); 1440 filemap_fdatawrite_range(hdr->inode->i_mapping, hdr->args.offset, 1441 hdr->args.offset + hdr->args.count - 1); 1442 } 1443 1444 static const struct nfs_pgio_completion_ops nfs_async_write_completion_ops = { 1445 .init_hdr = nfs_async_write_init, 1446 .error_cleanup = nfs_async_write_error, 1447 .completion = nfs_write_completion, 1448 .reschedule_io = nfs_async_write_reschedule_io, 1449 }; 1450 1451 void nfs_pageio_init_write(struct nfs_pageio_descriptor *pgio, 1452 struct inode *inode, int ioflags, bool force_mds, 1453 const struct nfs_pgio_completion_ops *compl_ops) 1454 { 1455 struct nfs_server *server = NFS_SERVER(inode); 1456 const struct nfs_pageio_ops *pg_ops = &nfs_pgio_rw_ops; 1457 1458 #ifdef CONFIG_NFS_V4_1 1459 if (server->pnfs_curr_ld && !force_mds) 1460 pg_ops = server->pnfs_curr_ld->pg_write_ops; 1461 #endif 1462 nfs_pageio_init(pgio, inode, pg_ops, compl_ops, &nfs_rw_write_ops, 1463 server->wsize, ioflags); 1464 } 1465 EXPORT_SYMBOL_GPL(nfs_pageio_init_write); 1466 1467 void nfs_pageio_reset_write_mds(struct nfs_pageio_descriptor *pgio) 1468 { 1469 struct nfs_pgio_mirror *mirror; 1470 1471 if (pgio->pg_ops && pgio->pg_ops->pg_cleanup) 1472 pgio->pg_ops->pg_cleanup(pgio); 1473 1474 pgio->pg_ops = &nfs_pgio_rw_ops; 1475 1476 nfs_pageio_stop_mirroring(pgio); 1477 1478 mirror = &pgio->pg_mirrors[0]; 1479 mirror->pg_bsize = NFS_SERVER(pgio->pg_inode)->wsize; 1480 } 1481 EXPORT_SYMBOL_GPL(nfs_pageio_reset_write_mds); 1482 1483 1484 void nfs_commit_prepare(struct rpc_task *task, void *calldata) 1485 { 1486 struct nfs_commit_data *data = calldata; 1487 1488 NFS_PROTO(data->inode)->commit_rpc_prepare(task, data); 1489 } 1490 1491 /* 1492 * Special version of should_remove_suid() that ignores capabilities. 1493 */ 1494 static int nfs_should_remove_suid(const struct inode *inode) 1495 { 1496 umode_t mode = inode->i_mode; 1497 int kill = 0; 1498 1499 /* suid always must be killed */ 1500 if (unlikely(mode & S_ISUID)) 1501 kill = ATTR_KILL_SUID; 1502 1503 /* 1504 * sgid without any exec bits is just a mandatory locking mark; leave 1505 * it alone. If some exec bits are set, it's a real sgid; kill it. 1506 */ 1507 if (unlikely((mode & S_ISGID) && (mode & S_IXGRP))) 1508 kill |= ATTR_KILL_SGID; 1509 1510 if (unlikely(kill && S_ISREG(mode))) 1511 return kill; 1512 1513 return 0; 1514 } 1515 1516 static void nfs_writeback_check_extend(struct nfs_pgio_header *hdr, 1517 struct nfs_fattr *fattr) 1518 { 1519 struct nfs_pgio_args *argp = &hdr->args; 1520 struct nfs_pgio_res *resp = &hdr->res; 1521 u64 size = argp->offset + resp->count; 1522 1523 if (!(fattr->valid & NFS_ATTR_FATTR_SIZE)) 1524 fattr->size = size; 1525 if (nfs_size_to_loff_t(fattr->size) < i_size_read(hdr->inode)) { 1526 fattr->valid &= ~NFS_ATTR_FATTR_SIZE; 1527 return; 1528 } 1529 if (size != fattr->size) 1530 return; 1531 /* Set attribute barrier */ 1532 nfs_fattr_set_barrier(fattr); 1533 /* ...and update size */ 1534 fattr->valid |= NFS_ATTR_FATTR_SIZE; 1535 } 1536 1537 void nfs_writeback_update_inode(struct nfs_pgio_header *hdr) 1538 { 1539 struct nfs_fattr *fattr = &hdr->fattr; 1540 struct inode *inode = hdr->inode; 1541 1542 spin_lock(&inode->i_lock); 1543 nfs_writeback_check_extend(hdr, fattr); 1544 nfs_post_op_update_inode_force_wcc_locked(inode, fattr); 1545 spin_unlock(&inode->i_lock); 1546 } 1547 EXPORT_SYMBOL_GPL(nfs_writeback_update_inode); 1548 1549 /* 1550 * This function is called when the WRITE call is complete. 1551 */ 1552 static int nfs_writeback_done(struct rpc_task *task, 1553 struct nfs_pgio_header *hdr, 1554 struct inode *inode) 1555 { 1556 int status; 1557 1558 /* 1559 * ->write_done will attempt to use post-op attributes to detect 1560 * conflicting writes by other clients. A strict interpretation 1561 * of close-to-open would allow us to continue caching even if 1562 * another writer had changed the file, but some applications 1563 * depend on tighter cache coherency when writing. 1564 */ 1565 status = NFS_PROTO(inode)->write_done(task, hdr); 1566 if (status != 0) 1567 return status; 1568 1569 nfs_add_stats(inode, NFSIOS_SERVERWRITTENBYTES, hdr->res.count); 1570 trace_nfs_writeback_done(inode, task->tk_status, 1571 hdr->args.offset, hdr->res.verf); 1572 1573 if (hdr->res.verf->committed < hdr->args.stable && 1574 task->tk_status >= 0) { 1575 /* We tried a write call, but the server did not 1576 * commit data to stable storage even though we 1577 * requested it. 1578 * Note: There is a known bug in Tru64 < 5.0 in which 1579 * the server reports NFS_DATA_SYNC, but performs 1580 * NFS_FILE_SYNC. We therefore implement this checking 1581 * as a dprintk() in order to avoid filling syslog. 1582 */ 1583 static unsigned long complain; 1584 1585 /* Note this will print the MDS for a DS write */ 1586 if (time_before(complain, jiffies)) { 1587 dprintk("NFS: faulty NFS server %s:" 1588 " (committed = %d) != (stable = %d)\n", 1589 NFS_SERVER(inode)->nfs_client->cl_hostname, 1590 hdr->res.verf->committed, hdr->args.stable); 1591 complain = jiffies + 300 * HZ; 1592 } 1593 } 1594 1595 /* Deal with the suid/sgid bit corner case */ 1596 if (nfs_should_remove_suid(inode)) { 1597 spin_lock(&inode->i_lock); 1598 NFS_I(inode)->cache_validity |= NFS_INO_INVALID_OTHER; 1599 spin_unlock(&inode->i_lock); 1600 } 1601 return 0; 1602 } 1603 1604 /* 1605 * This function is called when the WRITE call is complete. 1606 */ 1607 static void nfs_writeback_result(struct rpc_task *task, 1608 struct nfs_pgio_header *hdr) 1609 { 1610 struct nfs_pgio_args *argp = &hdr->args; 1611 struct nfs_pgio_res *resp = &hdr->res; 1612 1613 if (resp->count < argp->count) { 1614 static unsigned long complain; 1615 1616 /* This a short write! */ 1617 nfs_inc_stats(hdr->inode, NFSIOS_SHORTWRITE); 1618 1619 /* Has the server at least made some progress? */ 1620 if (resp->count == 0) { 1621 if (time_before(complain, jiffies)) { 1622 printk(KERN_WARNING 1623 "NFS: Server wrote zero bytes, expected %u.\n", 1624 argp->count); 1625 complain = jiffies + 300 * HZ; 1626 } 1627 nfs_set_pgio_error(hdr, -EIO, argp->offset); 1628 task->tk_status = -EIO; 1629 return; 1630 } 1631 1632 /* For non rpc-based layout drivers, retry-through-MDS */ 1633 if (!task->tk_ops) { 1634 hdr->pnfs_error = -EAGAIN; 1635 return; 1636 } 1637 1638 /* Was this an NFSv2 write or an NFSv3 stable write? */ 1639 if (resp->verf->committed != NFS_UNSTABLE) { 1640 /* Resend from where the server left off */ 1641 hdr->mds_offset += resp->count; 1642 argp->offset += resp->count; 1643 argp->pgbase += resp->count; 1644 argp->count -= resp->count; 1645 } else { 1646 /* Resend as a stable write in order to avoid 1647 * headaches in the case of a server crash. 1648 */ 1649 argp->stable = NFS_FILE_SYNC; 1650 } 1651 rpc_restart_call_prepare(task); 1652 } 1653 } 1654 1655 static int wait_on_commit(struct nfs_mds_commit_info *cinfo) 1656 { 1657 return wait_var_event_killable(&cinfo->rpcs_out, 1658 !atomic_read(&cinfo->rpcs_out)); 1659 } 1660 1661 static void nfs_commit_begin(struct nfs_mds_commit_info *cinfo) 1662 { 1663 atomic_inc(&cinfo->rpcs_out); 1664 } 1665 1666 static void nfs_commit_end(struct nfs_mds_commit_info *cinfo) 1667 { 1668 if (atomic_dec_and_test(&cinfo->rpcs_out)) 1669 wake_up_var(&cinfo->rpcs_out); 1670 } 1671 1672 void nfs_commitdata_release(struct nfs_commit_data *data) 1673 { 1674 put_nfs_open_context(data->context); 1675 nfs_commit_free(data); 1676 } 1677 EXPORT_SYMBOL_GPL(nfs_commitdata_release); 1678 1679 int nfs_initiate_commit(struct rpc_clnt *clnt, struct nfs_commit_data *data, 1680 const struct nfs_rpc_ops *nfs_ops, 1681 const struct rpc_call_ops *call_ops, 1682 int how, int flags) 1683 { 1684 struct rpc_task *task; 1685 int priority = flush_task_priority(how); 1686 struct rpc_message msg = { 1687 .rpc_argp = &data->args, 1688 .rpc_resp = &data->res, 1689 .rpc_cred = data->cred, 1690 }; 1691 struct rpc_task_setup task_setup_data = { 1692 .task = &data->task, 1693 .rpc_client = clnt, 1694 .rpc_message = &msg, 1695 .callback_ops = call_ops, 1696 .callback_data = data, 1697 .workqueue = nfsiod_workqueue, 1698 .flags = RPC_TASK_ASYNC | flags, 1699 .priority = priority, 1700 }; 1701 /* Set up the initial task struct. */ 1702 nfs_ops->commit_setup(data, &msg, &task_setup_data.rpc_client); 1703 trace_nfs_initiate_commit(data); 1704 1705 dprintk("NFS: initiated commit call\n"); 1706 1707 task = rpc_run_task(&task_setup_data); 1708 if (IS_ERR(task)) 1709 return PTR_ERR(task); 1710 if (how & FLUSH_SYNC) 1711 rpc_wait_for_completion_task(task); 1712 rpc_put_task(task); 1713 return 0; 1714 } 1715 EXPORT_SYMBOL_GPL(nfs_initiate_commit); 1716 1717 static loff_t nfs_get_lwb(struct list_head *head) 1718 { 1719 loff_t lwb = 0; 1720 struct nfs_page *req; 1721 1722 list_for_each_entry(req, head, wb_list) 1723 if (lwb < (req_offset(req) + req->wb_bytes)) 1724 lwb = req_offset(req) + req->wb_bytes; 1725 1726 return lwb; 1727 } 1728 1729 /* 1730 * Set up the argument/result storage required for the RPC call. 1731 */ 1732 void nfs_init_commit(struct nfs_commit_data *data, 1733 struct list_head *head, 1734 struct pnfs_layout_segment *lseg, 1735 struct nfs_commit_info *cinfo) 1736 { 1737 struct nfs_page *first = nfs_list_entry(head->next); 1738 struct inode *inode = d_inode(first->wb_context->dentry); 1739 1740 /* Set up the RPC argument and reply structs 1741 * NB: take care not to mess about with data->commit et al. */ 1742 1743 list_splice_init(head, &data->pages); 1744 1745 data->inode = inode; 1746 data->cred = first->wb_context->cred; 1747 data->lseg = lseg; /* reference transferred */ 1748 /* only set lwb for pnfs commit */ 1749 if (lseg) 1750 data->lwb = nfs_get_lwb(&data->pages); 1751 data->mds_ops = &nfs_commit_ops; 1752 data->completion_ops = cinfo->completion_ops; 1753 data->dreq = cinfo->dreq; 1754 1755 data->args.fh = NFS_FH(data->inode); 1756 /* Note: we always request a commit of the entire inode */ 1757 data->args.offset = 0; 1758 data->args.count = 0; 1759 data->context = get_nfs_open_context(first->wb_context); 1760 data->res.fattr = &data->fattr; 1761 data->res.verf = &data->verf; 1762 nfs_fattr_init(&data->fattr); 1763 } 1764 EXPORT_SYMBOL_GPL(nfs_init_commit); 1765 1766 void nfs_retry_commit(struct list_head *page_list, 1767 struct pnfs_layout_segment *lseg, 1768 struct nfs_commit_info *cinfo, 1769 u32 ds_commit_idx) 1770 { 1771 struct nfs_page *req; 1772 1773 while (!list_empty(page_list)) { 1774 req = nfs_list_entry(page_list->next); 1775 nfs_list_remove_request(req); 1776 nfs_mark_request_commit(req, lseg, cinfo, ds_commit_idx); 1777 if (!cinfo->dreq) 1778 nfs_clear_page_commit(req->wb_page); 1779 nfs_unlock_and_release_request(req); 1780 } 1781 } 1782 EXPORT_SYMBOL_GPL(nfs_retry_commit); 1783 1784 static void 1785 nfs_commit_resched_write(struct nfs_commit_info *cinfo, 1786 struct nfs_page *req) 1787 { 1788 __set_page_dirty_nobuffers(req->wb_page); 1789 } 1790 1791 /* 1792 * Commit dirty pages 1793 */ 1794 static int 1795 nfs_commit_list(struct inode *inode, struct list_head *head, int how, 1796 struct nfs_commit_info *cinfo) 1797 { 1798 struct nfs_commit_data *data; 1799 1800 /* another commit raced with us */ 1801 if (list_empty(head)) 1802 return 0; 1803 1804 data = nfs_commitdata_alloc(true); 1805 1806 /* Set up the argument struct */ 1807 nfs_init_commit(data, head, NULL, cinfo); 1808 atomic_inc(&cinfo->mds->rpcs_out); 1809 return nfs_initiate_commit(NFS_CLIENT(inode), data, NFS_PROTO(inode), 1810 data->mds_ops, how, 0); 1811 } 1812 1813 /* 1814 * COMMIT call returned 1815 */ 1816 static void nfs_commit_done(struct rpc_task *task, void *calldata) 1817 { 1818 struct nfs_commit_data *data = calldata; 1819 1820 dprintk("NFS: %5u nfs_commit_done (status %d)\n", 1821 task->tk_pid, task->tk_status); 1822 1823 /* Call the NFS version-specific code */ 1824 NFS_PROTO(data->inode)->commit_done(task, data); 1825 trace_nfs_commit_done(data); 1826 } 1827 1828 static void nfs_commit_release_pages(struct nfs_commit_data *data) 1829 { 1830 struct nfs_page *req; 1831 int status = data->task.tk_status; 1832 struct nfs_commit_info cinfo; 1833 struct nfs_server *nfss; 1834 1835 while (!list_empty(&data->pages)) { 1836 req = nfs_list_entry(data->pages.next); 1837 nfs_list_remove_request(req); 1838 if (req->wb_page) 1839 nfs_clear_page_commit(req->wb_page); 1840 1841 dprintk("NFS: commit (%s/%llu %d@%lld)", 1842 req->wb_context->dentry->d_sb->s_id, 1843 (unsigned long long)NFS_FILEID(d_inode(req->wb_context->dentry)), 1844 req->wb_bytes, 1845 (long long)req_offset(req)); 1846 if (status < 0) { 1847 nfs_context_set_write_error(req->wb_context, status); 1848 if (req->wb_page) 1849 nfs_inode_remove_request(req); 1850 dprintk_cont(", error = %d\n", status); 1851 goto next; 1852 } 1853 1854 /* Okay, COMMIT succeeded, apparently. Check the verifier 1855 * returned by the server against all stored verfs. */ 1856 if (!nfs_write_verifier_cmp(&req->wb_verf, &data->verf.verifier)) { 1857 /* We have a match */ 1858 if (req->wb_page) 1859 nfs_inode_remove_request(req); 1860 dprintk_cont(" OK\n"); 1861 goto next; 1862 } 1863 /* We have a mismatch. Write the page again */ 1864 dprintk_cont(" mismatch\n"); 1865 nfs_mark_request_dirty(req); 1866 set_bit(NFS_CONTEXT_RESEND_WRITES, &req->wb_context->flags); 1867 next: 1868 nfs_unlock_and_release_request(req); 1869 /* Latency breaker */ 1870 cond_resched(); 1871 } 1872 nfss = NFS_SERVER(data->inode); 1873 if (atomic_long_read(&nfss->writeback) < NFS_CONGESTION_OFF_THRESH) 1874 clear_bdi_congested(inode_to_bdi(data->inode), BLK_RW_ASYNC); 1875 1876 nfs_init_cinfo(&cinfo, data->inode, data->dreq); 1877 nfs_commit_end(cinfo.mds); 1878 } 1879 1880 static void nfs_commit_release(void *calldata) 1881 { 1882 struct nfs_commit_data *data = calldata; 1883 1884 data->completion_ops->completion(data); 1885 nfs_commitdata_release(calldata); 1886 } 1887 1888 static const struct rpc_call_ops nfs_commit_ops = { 1889 .rpc_call_prepare = nfs_commit_prepare, 1890 .rpc_call_done = nfs_commit_done, 1891 .rpc_release = nfs_commit_release, 1892 }; 1893 1894 static const struct nfs_commit_completion_ops nfs_commit_completion_ops = { 1895 .completion = nfs_commit_release_pages, 1896 .resched_write = nfs_commit_resched_write, 1897 }; 1898 1899 int nfs_generic_commit_list(struct inode *inode, struct list_head *head, 1900 int how, struct nfs_commit_info *cinfo) 1901 { 1902 int status; 1903 1904 status = pnfs_commit_list(inode, head, how, cinfo); 1905 if (status == PNFS_NOT_ATTEMPTED) 1906 status = nfs_commit_list(inode, head, how, cinfo); 1907 return status; 1908 } 1909 1910 static int __nfs_commit_inode(struct inode *inode, int how, 1911 struct writeback_control *wbc) 1912 { 1913 LIST_HEAD(head); 1914 struct nfs_commit_info cinfo; 1915 int may_wait = how & FLUSH_SYNC; 1916 int ret, nscan; 1917 1918 nfs_init_cinfo_from_inode(&cinfo, inode); 1919 nfs_commit_begin(cinfo.mds); 1920 for (;;) { 1921 ret = nscan = nfs_scan_commit(inode, &head, &cinfo); 1922 if (ret <= 0) 1923 break; 1924 ret = nfs_generic_commit_list(inode, &head, how, &cinfo); 1925 if (ret < 0) 1926 break; 1927 ret = 0; 1928 if (wbc && wbc->sync_mode == WB_SYNC_NONE) { 1929 if (nscan < wbc->nr_to_write) 1930 wbc->nr_to_write -= nscan; 1931 else 1932 wbc->nr_to_write = 0; 1933 } 1934 if (nscan < INT_MAX) 1935 break; 1936 cond_resched(); 1937 } 1938 nfs_commit_end(cinfo.mds); 1939 if (ret || !may_wait) 1940 return ret; 1941 return wait_on_commit(cinfo.mds); 1942 } 1943 1944 int nfs_commit_inode(struct inode *inode, int how) 1945 { 1946 return __nfs_commit_inode(inode, how, NULL); 1947 } 1948 EXPORT_SYMBOL_GPL(nfs_commit_inode); 1949 1950 int nfs_write_inode(struct inode *inode, struct writeback_control *wbc) 1951 { 1952 struct nfs_inode *nfsi = NFS_I(inode); 1953 int flags = FLUSH_SYNC; 1954 int ret = 0; 1955 1956 if (wbc->sync_mode == WB_SYNC_NONE) { 1957 /* no commits means nothing needs to be done */ 1958 if (!atomic_long_read(&nfsi->commit_info.ncommit)) 1959 goto check_requests_outstanding; 1960 1961 /* Don't commit yet if this is a non-blocking flush and there 1962 * are a lot of outstanding writes for this mapping. 1963 */ 1964 if (mapping_tagged(inode->i_mapping, PAGECACHE_TAG_WRITEBACK)) 1965 goto out_mark_dirty; 1966 1967 /* don't wait for the COMMIT response */ 1968 flags = 0; 1969 } 1970 1971 ret = __nfs_commit_inode(inode, flags, wbc); 1972 if (!ret) { 1973 if (flags & FLUSH_SYNC) 1974 return 0; 1975 } else if (atomic_long_read(&nfsi->commit_info.ncommit)) 1976 goto out_mark_dirty; 1977 1978 check_requests_outstanding: 1979 if (!atomic_read(&nfsi->commit_info.rpcs_out)) 1980 return ret; 1981 out_mark_dirty: 1982 __mark_inode_dirty(inode, I_DIRTY_DATASYNC); 1983 return ret; 1984 } 1985 EXPORT_SYMBOL_GPL(nfs_write_inode); 1986 1987 /* 1988 * Wrapper for filemap_write_and_wait_range() 1989 * 1990 * Needed for pNFS in order to ensure data becomes visible to the 1991 * client. 1992 */ 1993 int nfs_filemap_write_and_wait_range(struct address_space *mapping, 1994 loff_t lstart, loff_t lend) 1995 { 1996 int ret; 1997 1998 ret = filemap_write_and_wait_range(mapping, lstart, lend); 1999 if (ret == 0) 2000 ret = pnfs_sync_inode(mapping->host, true); 2001 return ret; 2002 } 2003 EXPORT_SYMBOL_GPL(nfs_filemap_write_and_wait_range); 2004 2005 /* 2006 * flush the inode to disk. 2007 */ 2008 int nfs_wb_all(struct inode *inode) 2009 { 2010 int ret; 2011 2012 trace_nfs_writeback_inode_enter(inode); 2013 2014 ret = filemap_write_and_wait(inode->i_mapping); 2015 if (ret) 2016 goto out; 2017 ret = nfs_commit_inode(inode, FLUSH_SYNC); 2018 if (ret < 0) 2019 goto out; 2020 pnfs_sync_inode(inode, true); 2021 ret = 0; 2022 2023 out: 2024 trace_nfs_writeback_inode_exit(inode, ret); 2025 return ret; 2026 } 2027 EXPORT_SYMBOL_GPL(nfs_wb_all); 2028 2029 int nfs_wb_page_cancel(struct inode *inode, struct page *page) 2030 { 2031 struct nfs_page *req; 2032 int ret = 0; 2033 2034 wait_on_page_writeback(page); 2035 2036 /* blocking call to cancel all requests and join to a single (head) 2037 * request */ 2038 req = nfs_lock_and_join_requests(page); 2039 2040 if (IS_ERR(req)) { 2041 ret = PTR_ERR(req); 2042 } else if (req) { 2043 /* all requests from this page have been cancelled by 2044 * nfs_lock_and_join_requests, so just remove the head 2045 * request from the inode / page_private pointer and 2046 * release it */ 2047 nfs_inode_remove_request(req); 2048 nfs_unlock_and_release_request(req); 2049 } 2050 2051 return ret; 2052 } 2053 2054 /* 2055 * Write back all requests on one page - we do this before reading it. 2056 */ 2057 int nfs_wb_page(struct inode *inode, struct page *page) 2058 { 2059 loff_t range_start = page_file_offset(page); 2060 loff_t range_end = range_start + (loff_t)(PAGE_SIZE - 1); 2061 struct writeback_control wbc = { 2062 .sync_mode = WB_SYNC_ALL, 2063 .nr_to_write = 0, 2064 .range_start = range_start, 2065 .range_end = range_end, 2066 }; 2067 int ret; 2068 2069 trace_nfs_writeback_page_enter(inode); 2070 2071 for (;;) { 2072 wait_on_page_writeback(page); 2073 if (clear_page_dirty_for_io(page)) { 2074 ret = nfs_writepage_locked(page, &wbc); 2075 if (ret < 0) 2076 goto out_error; 2077 continue; 2078 } 2079 ret = 0; 2080 if (!PagePrivate(page)) 2081 break; 2082 ret = nfs_commit_inode(inode, FLUSH_SYNC); 2083 if (ret < 0) 2084 goto out_error; 2085 } 2086 out_error: 2087 trace_nfs_writeback_page_exit(inode, ret); 2088 return ret; 2089 } 2090 2091 #ifdef CONFIG_MIGRATION 2092 int nfs_migrate_page(struct address_space *mapping, struct page *newpage, 2093 struct page *page, enum migrate_mode mode) 2094 { 2095 /* 2096 * If PagePrivate is set, then the page is currently associated with 2097 * an in-progress read or write request. Don't try to migrate it. 2098 * 2099 * FIXME: we could do this in principle, but we'll need a way to ensure 2100 * that we can safely release the inode reference while holding 2101 * the page lock. 2102 */ 2103 if (PagePrivate(page)) 2104 return -EBUSY; 2105 2106 if (!nfs_fscache_release_page(page, GFP_KERNEL)) 2107 return -EBUSY; 2108 2109 return migrate_page(mapping, newpage, page, mode); 2110 } 2111 #endif 2112 2113 int __init nfs_init_writepagecache(void) 2114 { 2115 nfs_wdata_cachep = kmem_cache_create("nfs_write_data", 2116 sizeof(struct nfs_pgio_header), 2117 0, SLAB_HWCACHE_ALIGN, 2118 NULL); 2119 if (nfs_wdata_cachep == NULL) 2120 return -ENOMEM; 2121 2122 nfs_wdata_mempool = mempool_create_slab_pool(MIN_POOL_WRITE, 2123 nfs_wdata_cachep); 2124 if (nfs_wdata_mempool == NULL) 2125 goto out_destroy_write_cache; 2126 2127 nfs_cdata_cachep = kmem_cache_create("nfs_commit_data", 2128 sizeof(struct nfs_commit_data), 2129 0, SLAB_HWCACHE_ALIGN, 2130 NULL); 2131 if (nfs_cdata_cachep == NULL) 2132 goto out_destroy_write_mempool; 2133 2134 nfs_commit_mempool = mempool_create_slab_pool(MIN_POOL_COMMIT, 2135 nfs_cdata_cachep); 2136 if (nfs_commit_mempool == NULL) 2137 goto out_destroy_commit_cache; 2138 2139 /* 2140 * NFS congestion size, scale with available memory. 2141 * 2142 * 64MB: 8192k 2143 * 128MB: 11585k 2144 * 256MB: 16384k 2145 * 512MB: 23170k 2146 * 1GB: 32768k 2147 * 2GB: 46340k 2148 * 4GB: 65536k 2149 * 8GB: 92681k 2150 * 16GB: 131072k 2151 * 2152 * This allows larger machines to have larger/more transfers. 2153 * Limit the default to 256M 2154 */ 2155 nfs_congestion_kb = (16*int_sqrt(totalram_pages())) << (PAGE_SHIFT-10); 2156 if (nfs_congestion_kb > 256*1024) 2157 nfs_congestion_kb = 256*1024; 2158 2159 return 0; 2160 2161 out_destroy_commit_cache: 2162 kmem_cache_destroy(nfs_cdata_cachep); 2163 out_destroy_write_mempool: 2164 mempool_destroy(nfs_wdata_mempool); 2165 out_destroy_write_cache: 2166 kmem_cache_destroy(nfs_wdata_cachep); 2167 return -ENOMEM; 2168 } 2169 2170 void nfs_destroy_writepagecache(void) 2171 { 2172 mempool_destroy(nfs_commit_mempool); 2173 kmem_cache_destroy(nfs_cdata_cachep); 2174 mempool_destroy(nfs_wdata_mempool); 2175 kmem_cache_destroy(nfs_wdata_cachep); 2176 } 2177 2178 static const struct nfs_rw_ops nfs_rw_write_ops = { 2179 .rw_alloc_header = nfs_writehdr_alloc, 2180 .rw_free_header = nfs_writehdr_free, 2181 .rw_done = nfs_writeback_done, 2182 .rw_result = nfs_writeback_result, 2183 .rw_initiate = nfs_initiate_write, 2184 }; 2185