xref: /linux/fs/nfs/write.c (revision 8c749ce93ee69e789e46b3be98de9e0cbfcf8ed8)
1 /*
2  * linux/fs/nfs/write.c
3  *
4  * Write file data over NFS.
5  *
6  * Copyright (C) 1996, 1997, Olaf Kirch <okir@monad.swb.de>
7  */
8 
9 #include <linux/types.h>
10 #include <linux/slab.h>
11 #include <linux/mm.h>
12 #include <linux/pagemap.h>
13 #include <linux/file.h>
14 #include <linux/writeback.h>
15 #include <linux/swap.h>
16 #include <linux/migrate.h>
17 
18 #include <linux/sunrpc/clnt.h>
19 #include <linux/nfs_fs.h>
20 #include <linux/nfs_mount.h>
21 #include <linux/nfs_page.h>
22 #include <linux/backing-dev.h>
23 #include <linux/export.h>
24 #include <linux/freezer.h>
25 #include <linux/wait.h>
26 
27 #include <asm/uaccess.h>
28 
29 #include "delegation.h"
30 #include "internal.h"
31 #include "iostat.h"
32 #include "nfs4_fs.h"
33 #include "fscache.h"
34 #include "pnfs.h"
35 
36 #include "nfstrace.h"
37 
38 #define NFSDBG_FACILITY		NFSDBG_PAGECACHE
39 
40 #define MIN_POOL_WRITE		(32)
41 #define MIN_POOL_COMMIT		(4)
42 
43 /*
44  * Local function declarations
45  */
46 static void nfs_redirty_request(struct nfs_page *req);
47 static const struct rpc_call_ops nfs_commit_ops;
48 static const struct nfs_pgio_completion_ops nfs_async_write_completion_ops;
49 static const struct nfs_commit_completion_ops nfs_commit_completion_ops;
50 static const struct nfs_rw_ops nfs_rw_write_ops;
51 static void nfs_clear_request_commit(struct nfs_page *req);
52 static void nfs_init_cinfo_from_inode(struct nfs_commit_info *cinfo,
53 				      struct inode *inode);
54 static struct nfs_page *
55 nfs_page_search_commits_for_head_request_locked(struct nfs_inode *nfsi,
56 						struct page *page);
57 
58 static struct kmem_cache *nfs_wdata_cachep;
59 static mempool_t *nfs_wdata_mempool;
60 static struct kmem_cache *nfs_cdata_cachep;
61 static mempool_t *nfs_commit_mempool;
62 
63 struct nfs_commit_data *nfs_commitdata_alloc(void)
64 {
65 	struct nfs_commit_data *p = mempool_alloc(nfs_commit_mempool, GFP_NOIO);
66 
67 	if (p) {
68 		memset(p, 0, sizeof(*p));
69 		INIT_LIST_HEAD(&p->pages);
70 	}
71 	return p;
72 }
73 EXPORT_SYMBOL_GPL(nfs_commitdata_alloc);
74 
75 void nfs_commit_free(struct nfs_commit_data *p)
76 {
77 	mempool_free(p, nfs_commit_mempool);
78 }
79 EXPORT_SYMBOL_GPL(nfs_commit_free);
80 
81 static struct nfs_pgio_header *nfs_writehdr_alloc(void)
82 {
83 	struct nfs_pgio_header *p = mempool_alloc(nfs_wdata_mempool, GFP_NOIO);
84 
85 	if (p)
86 		memset(p, 0, sizeof(*p));
87 	return p;
88 }
89 
90 static void nfs_writehdr_free(struct nfs_pgio_header *hdr)
91 {
92 	mempool_free(hdr, nfs_wdata_mempool);
93 }
94 
95 static void nfs_context_set_write_error(struct nfs_open_context *ctx, int error)
96 {
97 	ctx->error = error;
98 	smp_wmb();
99 	set_bit(NFS_CONTEXT_ERROR_WRITE, &ctx->flags);
100 }
101 
102 /*
103  * nfs_page_find_head_request_locked - find head request associated with @page
104  *
105  * must be called while holding the inode lock.
106  *
107  * returns matching head request with reference held, or NULL if not found.
108  */
109 static struct nfs_page *
110 nfs_page_find_head_request_locked(struct nfs_inode *nfsi, struct page *page)
111 {
112 	struct nfs_page *req = NULL;
113 
114 	if (PagePrivate(page))
115 		req = (struct nfs_page *)page_private(page);
116 	else if (unlikely(PageSwapCache(page)))
117 		req = nfs_page_search_commits_for_head_request_locked(nfsi,
118 			page);
119 
120 	if (req) {
121 		WARN_ON_ONCE(req->wb_head != req);
122 		kref_get(&req->wb_kref);
123 	}
124 
125 	return req;
126 }
127 
128 /*
129  * nfs_page_find_head_request - find head request associated with @page
130  *
131  * returns matching head request with reference held, or NULL if not found.
132  */
133 static struct nfs_page *nfs_page_find_head_request(struct page *page)
134 {
135 	struct inode *inode = page_file_mapping(page)->host;
136 	struct nfs_page *req = NULL;
137 
138 	spin_lock(&inode->i_lock);
139 	req = nfs_page_find_head_request_locked(NFS_I(inode), page);
140 	spin_unlock(&inode->i_lock);
141 	return req;
142 }
143 
144 /* Adjust the file length if we're writing beyond the end */
145 static void nfs_grow_file(struct page *page, unsigned int offset, unsigned int count)
146 {
147 	struct inode *inode = page_file_mapping(page)->host;
148 	loff_t end, i_size;
149 	pgoff_t end_index;
150 
151 	spin_lock(&inode->i_lock);
152 	i_size = i_size_read(inode);
153 	end_index = (i_size - 1) >> PAGE_CACHE_SHIFT;
154 	if (i_size > 0 && page_file_index(page) < end_index)
155 		goto out;
156 	end = page_file_offset(page) + ((loff_t)offset+count);
157 	if (i_size >= end)
158 		goto out;
159 	i_size_write(inode, end);
160 	nfs_inc_stats(inode, NFSIOS_EXTENDWRITE);
161 out:
162 	spin_unlock(&inode->i_lock);
163 }
164 
165 /* A writeback failed: mark the page as bad, and invalidate the page cache */
166 static void nfs_set_pageerror(struct page *page)
167 {
168 	nfs_zap_mapping(page_file_mapping(page)->host, page_file_mapping(page));
169 }
170 
171 /*
172  * nfs_page_group_search_locked
173  * @head - head request of page group
174  * @page_offset - offset into page
175  *
176  * Search page group with head @head to find a request that contains the
177  * page offset @page_offset.
178  *
179  * Returns a pointer to the first matching nfs request, or NULL if no
180  * match is found.
181  *
182  * Must be called with the page group lock held
183  */
184 static struct nfs_page *
185 nfs_page_group_search_locked(struct nfs_page *head, unsigned int page_offset)
186 {
187 	struct nfs_page *req;
188 
189 	WARN_ON_ONCE(head != head->wb_head);
190 	WARN_ON_ONCE(!test_bit(PG_HEADLOCK, &head->wb_head->wb_flags));
191 
192 	req = head;
193 	do {
194 		if (page_offset >= req->wb_pgbase &&
195 		    page_offset < (req->wb_pgbase + req->wb_bytes))
196 			return req;
197 
198 		req = req->wb_this_page;
199 	} while (req != head);
200 
201 	return NULL;
202 }
203 
204 /*
205  * nfs_page_group_covers_page
206  * @head - head request of page group
207  *
208  * Return true if the page group with head @head covers the whole page,
209  * returns false otherwise
210  */
211 static bool nfs_page_group_covers_page(struct nfs_page *req)
212 {
213 	struct nfs_page *tmp;
214 	unsigned int pos = 0;
215 	unsigned int len = nfs_page_length(req->wb_page);
216 
217 	nfs_page_group_lock(req, false);
218 
219 	do {
220 		tmp = nfs_page_group_search_locked(req->wb_head, pos);
221 		if (tmp) {
222 			/* no way this should happen */
223 			WARN_ON_ONCE(tmp->wb_pgbase != pos);
224 			pos += tmp->wb_bytes - (pos - tmp->wb_pgbase);
225 		}
226 	} while (tmp && pos < len);
227 
228 	nfs_page_group_unlock(req);
229 	WARN_ON_ONCE(pos > len);
230 	return pos == len;
231 }
232 
233 /* We can set the PG_uptodate flag if we see that a write request
234  * covers the full page.
235  */
236 static void nfs_mark_uptodate(struct nfs_page *req)
237 {
238 	if (PageUptodate(req->wb_page))
239 		return;
240 	if (!nfs_page_group_covers_page(req))
241 		return;
242 	SetPageUptodate(req->wb_page);
243 }
244 
245 static int wb_priority(struct writeback_control *wbc)
246 {
247 	int ret = 0;
248 	if (wbc->for_reclaim)
249 		return FLUSH_HIGHPRI | FLUSH_COND_STABLE;
250 	if (wbc->sync_mode == WB_SYNC_ALL)
251 		ret = FLUSH_COND_STABLE;
252 	return ret;
253 }
254 
255 /*
256  * NFS congestion control
257  */
258 
259 int nfs_congestion_kb;
260 
261 #define NFS_CONGESTION_ON_THRESH 	(nfs_congestion_kb >> (PAGE_SHIFT-10))
262 #define NFS_CONGESTION_OFF_THRESH	\
263 	(NFS_CONGESTION_ON_THRESH - (NFS_CONGESTION_ON_THRESH >> 2))
264 
265 static void nfs_set_page_writeback(struct page *page)
266 {
267 	struct nfs_server *nfss = NFS_SERVER(page_file_mapping(page)->host);
268 	int ret = test_set_page_writeback(page);
269 
270 	WARN_ON_ONCE(ret != 0);
271 
272 	if (atomic_long_inc_return(&nfss->writeback) >
273 			NFS_CONGESTION_ON_THRESH) {
274 		set_bdi_congested(&nfss->backing_dev_info,
275 					BLK_RW_ASYNC);
276 	}
277 }
278 
279 static void nfs_end_page_writeback(struct nfs_page *req)
280 {
281 	struct inode *inode = page_file_mapping(req->wb_page)->host;
282 	struct nfs_server *nfss = NFS_SERVER(inode);
283 
284 	if (!nfs_page_group_sync_on_bit(req, PG_WB_END))
285 		return;
286 
287 	end_page_writeback(req->wb_page);
288 	if (atomic_long_dec_return(&nfss->writeback) < NFS_CONGESTION_OFF_THRESH)
289 		clear_bdi_congested(&nfss->backing_dev_info, BLK_RW_ASYNC);
290 }
291 
292 
293 /* nfs_page_group_clear_bits
294  *   @req - an nfs request
295  * clears all page group related bits from @req
296  */
297 static void
298 nfs_page_group_clear_bits(struct nfs_page *req)
299 {
300 	clear_bit(PG_TEARDOWN, &req->wb_flags);
301 	clear_bit(PG_UNLOCKPAGE, &req->wb_flags);
302 	clear_bit(PG_UPTODATE, &req->wb_flags);
303 	clear_bit(PG_WB_END, &req->wb_flags);
304 	clear_bit(PG_REMOVE, &req->wb_flags);
305 }
306 
307 
308 /*
309  * nfs_unroll_locks_and_wait -  unlock all newly locked reqs and wait on @req
310  *
311  * this is a helper function for nfs_lock_and_join_requests
312  *
313  * @inode - inode associated with request page group, must be holding inode lock
314  * @head  - head request of page group, must be holding head lock
315  * @req   - request that couldn't lock and needs to wait on the req bit lock
316  * @nonblock - if true, don't actually wait
317  *
318  * NOTE: this must be called holding page_group bit lock and inode spin lock
319  *       and BOTH will be released before returning.
320  *
321  * returns 0 on success, < 0 on error.
322  */
323 static int
324 nfs_unroll_locks_and_wait(struct inode *inode, struct nfs_page *head,
325 			  struct nfs_page *req, bool nonblock)
326 	__releases(&inode->i_lock)
327 {
328 	struct nfs_page *tmp;
329 	int ret;
330 
331 	/* relinquish all the locks successfully grabbed this run */
332 	for (tmp = head ; tmp != req; tmp = tmp->wb_this_page)
333 		nfs_unlock_request(tmp);
334 
335 	WARN_ON_ONCE(test_bit(PG_TEARDOWN, &req->wb_flags));
336 
337 	/* grab a ref on the request that will be waited on */
338 	kref_get(&req->wb_kref);
339 
340 	nfs_page_group_unlock(head);
341 	spin_unlock(&inode->i_lock);
342 
343 	/* release ref from nfs_page_find_head_request_locked */
344 	nfs_release_request(head);
345 
346 	if (!nonblock)
347 		ret = nfs_wait_on_request(req);
348 	else
349 		ret = -EAGAIN;
350 	nfs_release_request(req);
351 
352 	return ret;
353 }
354 
355 /*
356  * nfs_destroy_unlinked_subrequests - destroy recently unlinked subrequests
357  *
358  * @destroy_list - request list (using wb_this_page) terminated by @old_head
359  * @old_head - the old head of the list
360  *
361  * All subrequests must be locked and removed from all lists, so at this point
362  * they are only "active" in this function, and possibly in nfs_wait_on_request
363  * with a reference held by some other context.
364  */
365 static void
366 nfs_destroy_unlinked_subrequests(struct nfs_page *destroy_list,
367 				 struct nfs_page *old_head)
368 {
369 	while (destroy_list) {
370 		struct nfs_page *subreq = destroy_list;
371 
372 		destroy_list = (subreq->wb_this_page == old_head) ?
373 				   NULL : subreq->wb_this_page;
374 
375 		WARN_ON_ONCE(old_head != subreq->wb_head);
376 
377 		/* make sure old group is not used */
378 		subreq->wb_head = subreq;
379 		subreq->wb_this_page = subreq;
380 
381 		/* subreq is now totally disconnected from page group or any
382 		 * write / commit lists. last chance to wake any waiters */
383 		nfs_unlock_request(subreq);
384 
385 		if (!test_bit(PG_TEARDOWN, &subreq->wb_flags)) {
386 			/* release ref on old head request */
387 			nfs_release_request(old_head);
388 
389 			nfs_page_group_clear_bits(subreq);
390 
391 			/* release the PG_INODE_REF reference */
392 			if (test_and_clear_bit(PG_INODE_REF, &subreq->wb_flags))
393 				nfs_release_request(subreq);
394 			else
395 				WARN_ON_ONCE(1);
396 		} else {
397 			WARN_ON_ONCE(test_bit(PG_CLEAN, &subreq->wb_flags));
398 			/* zombie requests have already released the last
399 			 * reference and were waiting on the rest of the
400 			 * group to complete. Since it's no longer part of a
401 			 * group, simply free the request */
402 			nfs_page_group_clear_bits(subreq);
403 			nfs_free_request(subreq);
404 		}
405 	}
406 }
407 
408 /*
409  * nfs_lock_and_join_requests - join all subreqs to the head req and return
410  *                              a locked reference, cancelling any pending
411  *                              operations for this page.
412  *
413  * @page - the page used to lookup the "page group" of nfs_page structures
414  * @nonblock - if true, don't block waiting for request locks
415  *
416  * This function joins all sub requests to the head request by first
417  * locking all requests in the group, cancelling any pending operations
418  * and finally updating the head request to cover the whole range covered by
419  * the (former) group.  All subrequests are removed from any write or commit
420  * lists, unlinked from the group and destroyed.
421  *
422  * Returns a locked, referenced pointer to the head request - which after
423  * this call is guaranteed to be the only request associated with the page.
424  * Returns NULL if no requests are found for @page, or a ERR_PTR if an
425  * error was encountered.
426  */
427 static struct nfs_page *
428 nfs_lock_and_join_requests(struct page *page, bool nonblock)
429 {
430 	struct inode *inode = page_file_mapping(page)->host;
431 	struct nfs_page *head, *subreq;
432 	struct nfs_page *destroy_list = NULL;
433 	unsigned int total_bytes;
434 	int ret;
435 
436 try_again:
437 	total_bytes = 0;
438 
439 	WARN_ON_ONCE(destroy_list);
440 
441 	spin_lock(&inode->i_lock);
442 
443 	/*
444 	 * A reference is taken only on the head request which acts as a
445 	 * reference to the whole page group - the group will not be destroyed
446 	 * until the head reference is released.
447 	 */
448 	head = nfs_page_find_head_request_locked(NFS_I(inode), page);
449 
450 	if (!head) {
451 		spin_unlock(&inode->i_lock);
452 		return NULL;
453 	}
454 
455 	/* holding inode lock, so always make a non-blocking call to try the
456 	 * page group lock */
457 	ret = nfs_page_group_lock(head, true);
458 	if (ret < 0) {
459 		spin_unlock(&inode->i_lock);
460 
461 		if (!nonblock && ret == -EAGAIN) {
462 			nfs_page_group_lock_wait(head);
463 			nfs_release_request(head);
464 			goto try_again;
465 		}
466 
467 		nfs_release_request(head);
468 		return ERR_PTR(ret);
469 	}
470 
471 	/* lock each request in the page group */
472 	subreq = head;
473 	do {
474 		/*
475 		 * Subrequests are always contiguous, non overlapping
476 		 * and in order - but may be repeated (mirrored writes).
477 		 */
478 		if (subreq->wb_offset == (head->wb_offset + total_bytes)) {
479 			/* keep track of how many bytes this group covers */
480 			total_bytes += subreq->wb_bytes;
481 		} else if (WARN_ON_ONCE(subreq->wb_offset < head->wb_offset ||
482 			    ((subreq->wb_offset + subreq->wb_bytes) >
483 			     (head->wb_offset + total_bytes)))) {
484 			nfs_page_group_unlock(head);
485 			spin_unlock(&inode->i_lock);
486 			return ERR_PTR(-EIO);
487 		}
488 
489 		if (!nfs_lock_request(subreq)) {
490 			/* releases page group bit lock and
491 			 * inode spin lock and all references */
492 			ret = nfs_unroll_locks_and_wait(inode, head,
493 				subreq, nonblock);
494 
495 			if (ret == 0)
496 				goto try_again;
497 
498 			return ERR_PTR(ret);
499 		}
500 
501 		subreq = subreq->wb_this_page;
502 	} while (subreq != head);
503 
504 	/* Now that all requests are locked, make sure they aren't on any list.
505 	 * Commit list removal accounting is done after locks are dropped */
506 	subreq = head;
507 	do {
508 		nfs_clear_request_commit(subreq);
509 		subreq = subreq->wb_this_page;
510 	} while (subreq != head);
511 
512 	/* unlink subrequests from head, destroy them later */
513 	if (head->wb_this_page != head) {
514 		/* destroy list will be terminated by head */
515 		destroy_list = head->wb_this_page;
516 		head->wb_this_page = head;
517 
518 		/* change head request to cover whole range that
519 		 * the former page group covered */
520 		head->wb_bytes = total_bytes;
521 	}
522 
523 	/*
524 	 * prepare head request to be added to new pgio descriptor
525 	 */
526 	nfs_page_group_clear_bits(head);
527 
528 	/*
529 	 * some part of the group was still on the inode list - otherwise
530 	 * the group wouldn't be involved in async write.
531 	 * grab a reference for the head request, iff it needs one.
532 	 */
533 	if (!test_and_set_bit(PG_INODE_REF, &head->wb_flags))
534 		kref_get(&head->wb_kref);
535 
536 	nfs_page_group_unlock(head);
537 
538 	/* drop lock to clean uprequests on destroy list */
539 	spin_unlock(&inode->i_lock);
540 
541 	nfs_destroy_unlinked_subrequests(destroy_list, head);
542 
543 	/* still holds ref on head from nfs_page_find_head_request_locked
544 	 * and still has lock on head from lock loop */
545 	return head;
546 }
547 
548 static void nfs_write_error_remove_page(struct nfs_page *req)
549 {
550 	nfs_unlock_request(req);
551 	nfs_end_page_writeback(req);
552 	nfs_release_request(req);
553 	generic_error_remove_page(page_file_mapping(req->wb_page),
554 				  req->wb_page);
555 }
556 
557 /*
558  * Find an associated nfs write request, and prepare to flush it out
559  * May return an error if the user signalled nfs_wait_on_request().
560  */
561 static int nfs_page_async_flush(struct nfs_pageio_descriptor *pgio,
562 				struct page *page, bool nonblock,
563 				bool launder)
564 {
565 	struct nfs_page *req;
566 	int ret = 0;
567 
568 	req = nfs_lock_and_join_requests(page, nonblock);
569 	if (!req)
570 		goto out;
571 	ret = PTR_ERR(req);
572 	if (IS_ERR(req))
573 		goto out;
574 
575 	nfs_set_page_writeback(page);
576 	WARN_ON_ONCE(test_bit(PG_CLEAN, &req->wb_flags));
577 
578 	ret = 0;
579 	if (!nfs_pageio_add_request(pgio, req)) {
580 		ret = pgio->pg_error;
581 		/*
582 		 * Remove the problematic req upon fatal errors
583 		 * in launder case, while other dirty pages can
584 		 * still be around until they get flushed.
585 		 */
586 		if (nfs_error_is_fatal(ret)) {
587 			nfs_context_set_write_error(req->wb_context, ret);
588 			if (launder) {
589 				nfs_write_error_remove_page(req);
590 				goto out;
591 			}
592 		}
593 		nfs_redirty_request(req);
594 		ret = -EAGAIN;
595 	} else
596 		nfs_add_stats(page_file_mapping(page)->host,
597 				NFSIOS_WRITEPAGES, 1);
598 out:
599 	return ret;
600 }
601 
602 static int nfs_do_writepage(struct page *page, struct writeback_control *wbc,
603 			    struct nfs_pageio_descriptor *pgio, bool launder)
604 {
605 	int ret;
606 
607 	nfs_pageio_cond_complete(pgio, page_file_index(page));
608 	ret = nfs_page_async_flush(pgio, page, wbc->sync_mode == WB_SYNC_NONE,
609 				   launder);
610 	if (ret == -EAGAIN) {
611 		redirty_page_for_writepage(wbc, page);
612 		ret = 0;
613 	}
614 	return ret;
615 }
616 
617 /*
618  * Write an mmapped page to the server.
619  */
620 static int nfs_writepage_locked(struct page *page,
621 				struct writeback_control *wbc,
622 				bool launder)
623 {
624 	struct nfs_pageio_descriptor pgio;
625 	struct inode *inode = page_file_mapping(page)->host;
626 	int err;
627 
628 	nfs_inc_stats(inode, NFSIOS_VFSWRITEPAGE);
629 	nfs_pageio_init_write(&pgio, inode, wb_priority(wbc),
630 				false, &nfs_async_write_completion_ops);
631 	err = nfs_do_writepage(page, wbc, &pgio, launder);
632 	nfs_pageio_complete(&pgio);
633 	if (err < 0)
634 		return err;
635 	if (pgio.pg_error < 0)
636 		return pgio.pg_error;
637 	return 0;
638 }
639 
640 int nfs_writepage(struct page *page, struct writeback_control *wbc)
641 {
642 	int ret;
643 
644 	ret = nfs_writepage_locked(page, wbc, false);
645 	unlock_page(page);
646 	return ret;
647 }
648 
649 static int nfs_writepages_callback(struct page *page, struct writeback_control *wbc, void *data)
650 {
651 	int ret;
652 
653 	ret = nfs_do_writepage(page, wbc, data, false);
654 	unlock_page(page);
655 	return ret;
656 }
657 
658 int nfs_writepages(struct address_space *mapping, struct writeback_control *wbc)
659 {
660 	struct inode *inode = mapping->host;
661 	unsigned long *bitlock = &NFS_I(inode)->flags;
662 	struct nfs_pageio_descriptor pgio;
663 	int err;
664 
665 	/* Stop dirtying of new pages while we sync */
666 	err = wait_on_bit_lock_action(bitlock, NFS_INO_FLUSHING,
667 			nfs_wait_bit_killable, TASK_KILLABLE);
668 	if (err)
669 		goto out_err;
670 
671 	nfs_inc_stats(inode, NFSIOS_VFSWRITEPAGES);
672 
673 	nfs_pageio_init_write(&pgio, inode, wb_priority(wbc), false,
674 				&nfs_async_write_completion_ops);
675 	err = write_cache_pages(mapping, wbc, nfs_writepages_callback, &pgio);
676 	nfs_pageio_complete(&pgio);
677 
678 	clear_bit_unlock(NFS_INO_FLUSHING, bitlock);
679 	smp_mb__after_atomic();
680 	wake_up_bit(bitlock, NFS_INO_FLUSHING);
681 
682 	if (err < 0)
683 		goto out_err;
684 	err = pgio.pg_error;
685 	if (err < 0)
686 		goto out_err;
687 	return 0;
688 out_err:
689 	return err;
690 }
691 
692 /*
693  * Insert a write request into an inode
694  */
695 static void nfs_inode_add_request(struct inode *inode, struct nfs_page *req)
696 {
697 	struct nfs_inode *nfsi = NFS_I(inode);
698 
699 	WARN_ON_ONCE(req->wb_this_page != req);
700 
701 	/* Lock the request! */
702 	nfs_lock_request(req);
703 
704 	spin_lock(&inode->i_lock);
705 	if (!nfsi->nrequests &&
706 	    NFS_PROTO(inode)->have_delegation(inode, FMODE_WRITE))
707 		inode->i_version++;
708 	/*
709 	 * Swap-space should not get truncated. Hence no need to plug the race
710 	 * with invalidate/truncate.
711 	 */
712 	if (likely(!PageSwapCache(req->wb_page))) {
713 		set_bit(PG_MAPPED, &req->wb_flags);
714 		SetPagePrivate(req->wb_page);
715 		set_page_private(req->wb_page, (unsigned long)req);
716 	}
717 	nfsi->nrequests++;
718 	/* this a head request for a page group - mark it as having an
719 	 * extra reference so sub groups can follow suit.
720 	 * This flag also informs pgio layer when to bump nrequests when
721 	 * adding subrequests. */
722 	WARN_ON(test_and_set_bit(PG_INODE_REF, &req->wb_flags));
723 	kref_get(&req->wb_kref);
724 	spin_unlock(&inode->i_lock);
725 }
726 
727 /*
728  * Remove a write request from an inode
729  */
730 static void nfs_inode_remove_request(struct nfs_page *req)
731 {
732 	struct inode *inode = d_inode(req->wb_context->dentry);
733 	struct nfs_inode *nfsi = NFS_I(inode);
734 	struct nfs_page *head;
735 
736 	if (nfs_page_group_sync_on_bit(req, PG_REMOVE)) {
737 		head = req->wb_head;
738 
739 		spin_lock(&inode->i_lock);
740 		if (likely(!PageSwapCache(head->wb_page))) {
741 			set_page_private(head->wb_page, 0);
742 			ClearPagePrivate(head->wb_page);
743 			smp_mb__after_atomic();
744 			wake_up_page(head->wb_page, PG_private);
745 			clear_bit(PG_MAPPED, &head->wb_flags);
746 		}
747 		nfsi->nrequests--;
748 		spin_unlock(&inode->i_lock);
749 	} else {
750 		spin_lock(&inode->i_lock);
751 		nfsi->nrequests--;
752 		spin_unlock(&inode->i_lock);
753 	}
754 
755 	if (test_and_clear_bit(PG_INODE_REF, &req->wb_flags))
756 		nfs_release_request(req);
757 }
758 
759 static void
760 nfs_mark_request_dirty(struct nfs_page *req)
761 {
762 	__set_page_dirty_nobuffers(req->wb_page);
763 }
764 
765 /*
766  * nfs_page_search_commits_for_head_request_locked
767  *
768  * Search through commit lists on @inode for the head request for @page.
769  * Must be called while holding the inode (which is cinfo) lock.
770  *
771  * Returns the head request if found, or NULL if not found.
772  */
773 static struct nfs_page *
774 nfs_page_search_commits_for_head_request_locked(struct nfs_inode *nfsi,
775 						struct page *page)
776 {
777 	struct nfs_page *freq, *t;
778 	struct nfs_commit_info cinfo;
779 	struct inode *inode = &nfsi->vfs_inode;
780 
781 	nfs_init_cinfo_from_inode(&cinfo, inode);
782 
783 	/* search through pnfs commit lists */
784 	freq = pnfs_search_commit_reqs(inode, &cinfo, page);
785 	if (freq)
786 		return freq->wb_head;
787 
788 	/* Linearly search the commit list for the correct request */
789 	list_for_each_entry_safe(freq, t, &cinfo.mds->list, wb_list) {
790 		if (freq->wb_page == page)
791 			return freq->wb_head;
792 	}
793 
794 	return NULL;
795 }
796 
797 /**
798  * nfs_request_add_commit_list_locked - add request to a commit list
799  * @req: pointer to a struct nfs_page
800  * @dst: commit list head
801  * @cinfo: holds list lock and accounting info
802  *
803  * This sets the PG_CLEAN bit, updates the cinfo count of
804  * number of outstanding requests requiring a commit as well as
805  * the MM page stats.
806  *
807  * The caller must hold the cinfo->lock, and the nfs_page lock.
808  */
809 void
810 nfs_request_add_commit_list_locked(struct nfs_page *req, struct list_head *dst,
811 			    struct nfs_commit_info *cinfo)
812 {
813 	set_bit(PG_CLEAN, &req->wb_flags);
814 	nfs_list_add_request(req, dst);
815 	cinfo->mds->ncommit++;
816 }
817 EXPORT_SYMBOL_GPL(nfs_request_add_commit_list_locked);
818 
819 /**
820  * nfs_request_add_commit_list - add request to a commit list
821  * @req: pointer to a struct nfs_page
822  * @dst: commit list head
823  * @cinfo: holds list lock and accounting info
824  *
825  * This sets the PG_CLEAN bit, updates the cinfo count of
826  * number of outstanding requests requiring a commit as well as
827  * the MM page stats.
828  *
829  * The caller must _not_ hold the cinfo->lock, but must be
830  * holding the nfs_page lock.
831  */
832 void
833 nfs_request_add_commit_list(struct nfs_page *req, struct nfs_commit_info *cinfo)
834 {
835 	spin_lock(cinfo->lock);
836 	nfs_request_add_commit_list_locked(req, &cinfo->mds->list, cinfo);
837 	spin_unlock(cinfo->lock);
838 	nfs_mark_page_unstable(req->wb_page, cinfo);
839 }
840 EXPORT_SYMBOL_GPL(nfs_request_add_commit_list);
841 
842 /**
843  * nfs_request_remove_commit_list - Remove request from a commit list
844  * @req: pointer to a nfs_page
845  * @cinfo: holds list lock and accounting info
846  *
847  * This clears the PG_CLEAN bit, and updates the cinfo's count of
848  * number of outstanding requests requiring a commit
849  * It does not update the MM page stats.
850  *
851  * The caller _must_ hold the cinfo->lock and the nfs_page lock.
852  */
853 void
854 nfs_request_remove_commit_list(struct nfs_page *req,
855 			       struct nfs_commit_info *cinfo)
856 {
857 	if (!test_and_clear_bit(PG_CLEAN, &(req)->wb_flags))
858 		return;
859 	nfs_list_remove_request(req);
860 	cinfo->mds->ncommit--;
861 }
862 EXPORT_SYMBOL_GPL(nfs_request_remove_commit_list);
863 
864 static void nfs_init_cinfo_from_inode(struct nfs_commit_info *cinfo,
865 				      struct inode *inode)
866 {
867 	cinfo->lock = &inode->i_lock;
868 	cinfo->mds = &NFS_I(inode)->commit_info;
869 	cinfo->ds = pnfs_get_ds_info(inode);
870 	cinfo->dreq = NULL;
871 	cinfo->completion_ops = &nfs_commit_completion_ops;
872 }
873 
874 void nfs_init_cinfo(struct nfs_commit_info *cinfo,
875 		    struct inode *inode,
876 		    struct nfs_direct_req *dreq)
877 {
878 	if (dreq)
879 		nfs_init_cinfo_from_dreq(cinfo, dreq);
880 	else
881 		nfs_init_cinfo_from_inode(cinfo, inode);
882 }
883 EXPORT_SYMBOL_GPL(nfs_init_cinfo);
884 
885 /*
886  * Add a request to the inode's commit list.
887  */
888 void
889 nfs_mark_request_commit(struct nfs_page *req, struct pnfs_layout_segment *lseg,
890 			struct nfs_commit_info *cinfo, u32 ds_commit_idx)
891 {
892 	if (pnfs_mark_request_commit(req, lseg, cinfo, ds_commit_idx))
893 		return;
894 	nfs_request_add_commit_list(req, cinfo);
895 }
896 
897 static void
898 nfs_clear_page_commit(struct page *page)
899 {
900 	dec_zone_page_state(page, NR_UNSTABLE_NFS);
901 	dec_wb_stat(&inode_to_bdi(page_file_mapping(page)->host)->wb,
902 		    WB_RECLAIMABLE);
903 }
904 
905 /* Called holding inode (/cinfo) lock */
906 static void
907 nfs_clear_request_commit(struct nfs_page *req)
908 {
909 	if (test_bit(PG_CLEAN, &req->wb_flags)) {
910 		struct inode *inode = d_inode(req->wb_context->dentry);
911 		struct nfs_commit_info cinfo;
912 
913 		nfs_init_cinfo_from_inode(&cinfo, inode);
914 		if (!pnfs_clear_request_commit(req, &cinfo)) {
915 			nfs_request_remove_commit_list(req, &cinfo);
916 		}
917 		nfs_clear_page_commit(req->wb_page);
918 	}
919 }
920 
921 int nfs_write_need_commit(struct nfs_pgio_header *hdr)
922 {
923 	if (hdr->verf.committed == NFS_DATA_SYNC)
924 		return hdr->lseg == NULL;
925 	return hdr->verf.committed != NFS_FILE_SYNC;
926 }
927 
928 static void nfs_write_completion(struct nfs_pgio_header *hdr)
929 {
930 	struct nfs_commit_info cinfo;
931 	unsigned long bytes = 0;
932 
933 	if (test_bit(NFS_IOHDR_REDO, &hdr->flags))
934 		goto out;
935 	nfs_init_cinfo_from_inode(&cinfo, hdr->inode);
936 	while (!list_empty(&hdr->pages)) {
937 		struct nfs_page *req = nfs_list_entry(hdr->pages.next);
938 
939 		bytes += req->wb_bytes;
940 		nfs_list_remove_request(req);
941 		if (test_bit(NFS_IOHDR_ERROR, &hdr->flags) &&
942 		    (hdr->good_bytes < bytes)) {
943 			nfs_set_pageerror(req->wb_page);
944 			nfs_context_set_write_error(req->wb_context, hdr->error);
945 			goto remove_req;
946 		}
947 		if (nfs_write_need_commit(hdr)) {
948 			memcpy(&req->wb_verf, &hdr->verf.verifier, sizeof(req->wb_verf));
949 			nfs_mark_request_commit(req, hdr->lseg, &cinfo,
950 				hdr->pgio_mirror_idx);
951 			goto next;
952 		}
953 remove_req:
954 		nfs_inode_remove_request(req);
955 next:
956 		nfs_unlock_request(req);
957 		nfs_end_page_writeback(req);
958 		nfs_release_request(req);
959 	}
960 out:
961 	hdr->release(hdr);
962 }
963 
964 unsigned long
965 nfs_reqs_to_commit(struct nfs_commit_info *cinfo)
966 {
967 	return cinfo->mds->ncommit;
968 }
969 
970 /* cinfo->lock held by caller */
971 int
972 nfs_scan_commit_list(struct list_head *src, struct list_head *dst,
973 		     struct nfs_commit_info *cinfo, int max)
974 {
975 	struct nfs_page *req, *tmp;
976 	int ret = 0;
977 
978 	list_for_each_entry_safe(req, tmp, src, wb_list) {
979 		if (!nfs_lock_request(req))
980 			continue;
981 		kref_get(&req->wb_kref);
982 		if (cond_resched_lock(cinfo->lock))
983 			list_safe_reset_next(req, tmp, wb_list);
984 		nfs_request_remove_commit_list(req, cinfo);
985 		nfs_list_add_request(req, dst);
986 		ret++;
987 		if ((ret == max) && !cinfo->dreq)
988 			break;
989 	}
990 	return ret;
991 }
992 
993 /*
994  * nfs_scan_commit - Scan an inode for commit requests
995  * @inode: NFS inode to scan
996  * @dst: mds destination list
997  * @cinfo: mds and ds lists of reqs ready to commit
998  *
999  * Moves requests from the inode's 'commit' request list.
1000  * The requests are *not* checked to ensure that they form a contiguous set.
1001  */
1002 int
1003 nfs_scan_commit(struct inode *inode, struct list_head *dst,
1004 		struct nfs_commit_info *cinfo)
1005 {
1006 	int ret = 0;
1007 
1008 	spin_lock(cinfo->lock);
1009 	if (cinfo->mds->ncommit > 0) {
1010 		const int max = INT_MAX;
1011 
1012 		ret = nfs_scan_commit_list(&cinfo->mds->list, dst,
1013 					   cinfo, max);
1014 		ret += pnfs_scan_commit_lists(inode, cinfo, max - ret);
1015 	}
1016 	spin_unlock(cinfo->lock);
1017 	return ret;
1018 }
1019 
1020 /*
1021  * Search for an existing write request, and attempt to update
1022  * it to reflect a new dirty region on a given page.
1023  *
1024  * If the attempt fails, then the existing request is flushed out
1025  * to disk.
1026  */
1027 static struct nfs_page *nfs_try_to_update_request(struct inode *inode,
1028 		struct page *page,
1029 		unsigned int offset,
1030 		unsigned int bytes)
1031 {
1032 	struct nfs_page *req;
1033 	unsigned int rqend;
1034 	unsigned int end;
1035 	int error;
1036 
1037 	if (!PagePrivate(page))
1038 		return NULL;
1039 
1040 	end = offset + bytes;
1041 	spin_lock(&inode->i_lock);
1042 
1043 	for (;;) {
1044 		req = nfs_page_find_head_request_locked(NFS_I(inode), page);
1045 		if (req == NULL)
1046 			goto out_unlock;
1047 
1048 		/* should be handled by nfs_flush_incompatible */
1049 		WARN_ON_ONCE(req->wb_head != req);
1050 		WARN_ON_ONCE(req->wb_this_page != req);
1051 
1052 		rqend = req->wb_offset + req->wb_bytes;
1053 		/*
1054 		 * Tell the caller to flush out the request if
1055 		 * the offsets are non-contiguous.
1056 		 * Note: nfs_flush_incompatible() will already
1057 		 * have flushed out requests having wrong owners.
1058 		 */
1059 		if (offset > rqend
1060 		    || end < req->wb_offset)
1061 			goto out_flushme;
1062 
1063 		if (nfs_lock_request(req))
1064 			break;
1065 
1066 		/* The request is locked, so wait and then retry */
1067 		spin_unlock(&inode->i_lock);
1068 		error = nfs_wait_on_request(req);
1069 		nfs_release_request(req);
1070 		if (error != 0)
1071 			goto out_err;
1072 		spin_lock(&inode->i_lock);
1073 	}
1074 
1075 	/* Okay, the request matches. Update the region */
1076 	if (offset < req->wb_offset) {
1077 		req->wb_offset = offset;
1078 		req->wb_pgbase = offset;
1079 	}
1080 	if (end > rqend)
1081 		req->wb_bytes = end - req->wb_offset;
1082 	else
1083 		req->wb_bytes = rqend - req->wb_offset;
1084 out_unlock:
1085 	if (req)
1086 		nfs_clear_request_commit(req);
1087 	spin_unlock(&inode->i_lock);
1088 	return req;
1089 out_flushme:
1090 	spin_unlock(&inode->i_lock);
1091 	nfs_release_request(req);
1092 	error = nfs_wb_page(inode, page);
1093 out_err:
1094 	return ERR_PTR(error);
1095 }
1096 
1097 /*
1098  * Try to update an existing write request, or create one if there is none.
1099  *
1100  * Note: Should always be called with the Page Lock held to prevent races
1101  * if we have to add a new request. Also assumes that the caller has
1102  * already called nfs_flush_incompatible() if necessary.
1103  */
1104 static struct nfs_page * nfs_setup_write_request(struct nfs_open_context* ctx,
1105 		struct page *page, unsigned int offset, unsigned int bytes)
1106 {
1107 	struct inode *inode = page_file_mapping(page)->host;
1108 	struct nfs_page	*req;
1109 
1110 	req = nfs_try_to_update_request(inode, page, offset, bytes);
1111 	if (req != NULL)
1112 		goto out;
1113 	req = nfs_create_request(ctx, page, NULL, offset, bytes);
1114 	if (IS_ERR(req))
1115 		goto out;
1116 	nfs_inode_add_request(inode, req);
1117 out:
1118 	return req;
1119 }
1120 
1121 static int nfs_writepage_setup(struct nfs_open_context *ctx, struct page *page,
1122 		unsigned int offset, unsigned int count)
1123 {
1124 	struct nfs_page	*req;
1125 
1126 	req = nfs_setup_write_request(ctx, page, offset, count);
1127 	if (IS_ERR(req))
1128 		return PTR_ERR(req);
1129 	/* Update file length */
1130 	nfs_grow_file(page, offset, count);
1131 	nfs_mark_uptodate(req);
1132 	nfs_mark_request_dirty(req);
1133 	nfs_unlock_and_release_request(req);
1134 	return 0;
1135 }
1136 
1137 int nfs_flush_incompatible(struct file *file, struct page *page)
1138 {
1139 	struct nfs_open_context *ctx = nfs_file_open_context(file);
1140 	struct nfs_lock_context *l_ctx;
1141 	struct file_lock_context *flctx = file_inode(file)->i_flctx;
1142 	struct nfs_page	*req;
1143 	int do_flush, status;
1144 	/*
1145 	 * Look for a request corresponding to this page. If there
1146 	 * is one, and it belongs to another file, we flush it out
1147 	 * before we try to copy anything into the page. Do this
1148 	 * due to the lack of an ACCESS-type call in NFSv2.
1149 	 * Also do the same if we find a request from an existing
1150 	 * dropped page.
1151 	 */
1152 	do {
1153 		req = nfs_page_find_head_request(page);
1154 		if (req == NULL)
1155 			return 0;
1156 		l_ctx = req->wb_lock_context;
1157 		do_flush = req->wb_page != page ||
1158 			!nfs_match_open_context(req->wb_context, ctx);
1159 		/* for now, flush if more than 1 request in page_group */
1160 		do_flush |= req->wb_this_page != req;
1161 		if (l_ctx && flctx &&
1162 		    !(list_empty_careful(&flctx->flc_posix) &&
1163 		      list_empty_careful(&flctx->flc_flock))) {
1164 			do_flush |= l_ctx->lockowner.l_owner != current->files
1165 				|| l_ctx->lockowner.l_pid != current->tgid;
1166 		}
1167 		nfs_release_request(req);
1168 		if (!do_flush)
1169 			return 0;
1170 		status = nfs_wb_page(page_file_mapping(page)->host, page);
1171 	} while (status == 0);
1172 	return status;
1173 }
1174 
1175 /*
1176  * Avoid buffered writes when a open context credential's key would
1177  * expire soon.
1178  *
1179  * Returns -EACCES if the key will expire within RPC_KEY_EXPIRE_FAIL.
1180  *
1181  * Return 0 and set a credential flag which triggers the inode to flush
1182  * and performs  NFS_FILE_SYNC writes if the key will expired within
1183  * RPC_KEY_EXPIRE_TIMEO.
1184  */
1185 int
1186 nfs_key_timeout_notify(struct file *filp, struct inode *inode)
1187 {
1188 	struct nfs_open_context *ctx = nfs_file_open_context(filp);
1189 	struct rpc_auth *auth = NFS_SERVER(inode)->client->cl_auth;
1190 
1191 	return rpcauth_key_timeout_notify(auth, ctx->cred);
1192 }
1193 
1194 /*
1195  * Test if the open context credential key is marked to expire soon.
1196  */
1197 bool nfs_ctx_key_to_expire(struct nfs_open_context *ctx)
1198 {
1199 	return rpcauth_cred_key_to_expire(ctx->cred);
1200 }
1201 
1202 /*
1203  * If the page cache is marked as unsafe or invalid, then we can't rely on
1204  * the PageUptodate() flag. In this case, we will need to turn off
1205  * write optimisations that depend on the page contents being correct.
1206  */
1207 static bool nfs_write_pageuptodate(struct page *page, struct inode *inode)
1208 {
1209 	struct nfs_inode *nfsi = NFS_I(inode);
1210 
1211 	if (nfs_have_delegated_attributes(inode))
1212 		goto out;
1213 	if (nfsi->cache_validity & NFS_INO_REVAL_PAGECACHE)
1214 		return false;
1215 	smp_rmb();
1216 	if (test_bit(NFS_INO_INVALIDATING, &nfsi->flags))
1217 		return false;
1218 out:
1219 	if (nfsi->cache_validity & NFS_INO_INVALID_DATA)
1220 		return false;
1221 	return PageUptodate(page) != 0;
1222 }
1223 
1224 static bool
1225 is_whole_file_wrlock(struct file_lock *fl)
1226 {
1227 	return fl->fl_start == 0 && fl->fl_end == OFFSET_MAX &&
1228 			fl->fl_type == F_WRLCK;
1229 }
1230 
1231 /* If we know the page is up to date, and we're not using byte range locks (or
1232  * if we have the whole file locked for writing), it may be more efficient to
1233  * extend the write to cover the entire page in order to avoid fragmentation
1234  * inefficiencies.
1235  *
1236  * If the file is opened for synchronous writes then we can just skip the rest
1237  * of the checks.
1238  */
1239 static int nfs_can_extend_write(struct file *file, struct page *page, struct inode *inode)
1240 {
1241 	int ret;
1242 	struct file_lock_context *flctx = inode->i_flctx;
1243 	struct file_lock *fl;
1244 
1245 	if (file->f_flags & O_DSYNC)
1246 		return 0;
1247 	if (!nfs_write_pageuptodate(page, inode))
1248 		return 0;
1249 	if (NFS_PROTO(inode)->have_delegation(inode, FMODE_WRITE))
1250 		return 1;
1251 	if (!flctx || (list_empty_careful(&flctx->flc_flock) &&
1252 		       list_empty_careful(&flctx->flc_posix)))
1253 		return 1;
1254 
1255 	/* Check to see if there are whole file write locks */
1256 	ret = 0;
1257 	spin_lock(&flctx->flc_lock);
1258 	if (!list_empty(&flctx->flc_posix)) {
1259 		fl = list_first_entry(&flctx->flc_posix, struct file_lock,
1260 					fl_list);
1261 		if (is_whole_file_wrlock(fl))
1262 			ret = 1;
1263 	} else if (!list_empty(&flctx->flc_flock)) {
1264 		fl = list_first_entry(&flctx->flc_flock, struct file_lock,
1265 					fl_list);
1266 		if (fl->fl_type == F_WRLCK)
1267 			ret = 1;
1268 	}
1269 	spin_unlock(&flctx->flc_lock);
1270 	return ret;
1271 }
1272 
1273 /*
1274  * Update and possibly write a cached page of an NFS file.
1275  *
1276  * XXX: Keep an eye on generic_file_read to make sure it doesn't do bad
1277  * things with a page scheduled for an RPC call (e.g. invalidate it).
1278  */
1279 int nfs_updatepage(struct file *file, struct page *page,
1280 		unsigned int offset, unsigned int count)
1281 {
1282 	struct nfs_open_context *ctx = nfs_file_open_context(file);
1283 	struct inode	*inode = page_file_mapping(page)->host;
1284 	int		status = 0;
1285 
1286 	nfs_inc_stats(inode, NFSIOS_VFSUPDATEPAGE);
1287 
1288 	dprintk("NFS:       nfs_updatepage(%pD2 %d@%lld)\n",
1289 		file, count, (long long)(page_file_offset(page) + offset));
1290 
1291 	if (nfs_can_extend_write(file, page, inode)) {
1292 		count = max(count + offset, nfs_page_length(page));
1293 		offset = 0;
1294 	}
1295 
1296 	status = nfs_writepage_setup(ctx, page, offset, count);
1297 	if (status < 0)
1298 		nfs_set_pageerror(page);
1299 	else
1300 		__set_page_dirty_nobuffers(page);
1301 
1302 	dprintk("NFS:       nfs_updatepage returns %d (isize %lld)\n",
1303 			status, (long long)i_size_read(inode));
1304 	return status;
1305 }
1306 
1307 static int flush_task_priority(int how)
1308 {
1309 	switch (how & (FLUSH_HIGHPRI|FLUSH_LOWPRI)) {
1310 		case FLUSH_HIGHPRI:
1311 			return RPC_PRIORITY_HIGH;
1312 		case FLUSH_LOWPRI:
1313 			return RPC_PRIORITY_LOW;
1314 	}
1315 	return RPC_PRIORITY_NORMAL;
1316 }
1317 
1318 static void nfs_initiate_write(struct nfs_pgio_header *hdr,
1319 			       struct rpc_message *msg,
1320 			       const struct nfs_rpc_ops *rpc_ops,
1321 			       struct rpc_task_setup *task_setup_data, int how)
1322 {
1323 	int priority = flush_task_priority(how);
1324 
1325 	task_setup_data->priority = priority;
1326 	rpc_ops->write_setup(hdr, msg);
1327 
1328 	nfs4_state_protect_write(NFS_SERVER(hdr->inode)->nfs_client,
1329 				 &task_setup_data->rpc_client, msg, hdr);
1330 }
1331 
1332 /* If a nfs_flush_* function fails, it should remove reqs from @head and
1333  * call this on each, which will prepare them to be retried on next
1334  * writeback using standard nfs.
1335  */
1336 static void nfs_redirty_request(struct nfs_page *req)
1337 {
1338 	nfs_mark_request_dirty(req);
1339 	set_bit(NFS_CONTEXT_RESEND_WRITES, &req->wb_context->flags);
1340 	nfs_unlock_request(req);
1341 	nfs_end_page_writeback(req);
1342 	nfs_release_request(req);
1343 }
1344 
1345 static void nfs_async_write_error(struct list_head *head)
1346 {
1347 	struct nfs_page	*req;
1348 
1349 	while (!list_empty(head)) {
1350 		req = nfs_list_entry(head->next);
1351 		nfs_list_remove_request(req);
1352 		nfs_redirty_request(req);
1353 	}
1354 }
1355 
1356 static void nfs_async_write_reschedule_io(struct nfs_pgio_header *hdr)
1357 {
1358 	nfs_async_write_error(&hdr->pages);
1359 }
1360 
1361 static const struct nfs_pgio_completion_ops nfs_async_write_completion_ops = {
1362 	.error_cleanup = nfs_async_write_error,
1363 	.completion = nfs_write_completion,
1364 	.reschedule_io = nfs_async_write_reschedule_io,
1365 };
1366 
1367 void nfs_pageio_init_write(struct nfs_pageio_descriptor *pgio,
1368 			       struct inode *inode, int ioflags, bool force_mds,
1369 			       const struct nfs_pgio_completion_ops *compl_ops)
1370 {
1371 	struct nfs_server *server = NFS_SERVER(inode);
1372 	const struct nfs_pageio_ops *pg_ops = &nfs_pgio_rw_ops;
1373 
1374 #ifdef CONFIG_NFS_V4_1
1375 	if (server->pnfs_curr_ld && !force_mds)
1376 		pg_ops = server->pnfs_curr_ld->pg_write_ops;
1377 #endif
1378 	nfs_pageio_init(pgio, inode, pg_ops, compl_ops, &nfs_rw_write_ops,
1379 			server->wsize, ioflags);
1380 }
1381 EXPORT_SYMBOL_GPL(nfs_pageio_init_write);
1382 
1383 void nfs_pageio_reset_write_mds(struct nfs_pageio_descriptor *pgio)
1384 {
1385 	struct nfs_pgio_mirror *mirror;
1386 
1387 	if (pgio->pg_ops && pgio->pg_ops->pg_cleanup)
1388 		pgio->pg_ops->pg_cleanup(pgio);
1389 
1390 	pgio->pg_ops = &nfs_pgio_rw_ops;
1391 
1392 	nfs_pageio_stop_mirroring(pgio);
1393 
1394 	mirror = &pgio->pg_mirrors[0];
1395 	mirror->pg_bsize = NFS_SERVER(pgio->pg_inode)->wsize;
1396 }
1397 EXPORT_SYMBOL_GPL(nfs_pageio_reset_write_mds);
1398 
1399 
1400 void nfs_commit_prepare(struct rpc_task *task, void *calldata)
1401 {
1402 	struct nfs_commit_data *data = calldata;
1403 
1404 	NFS_PROTO(data->inode)->commit_rpc_prepare(task, data);
1405 }
1406 
1407 /*
1408  * Special version of should_remove_suid() that ignores capabilities.
1409  */
1410 static int nfs_should_remove_suid(const struct inode *inode)
1411 {
1412 	umode_t mode = inode->i_mode;
1413 	int kill = 0;
1414 
1415 	/* suid always must be killed */
1416 	if (unlikely(mode & S_ISUID))
1417 		kill = ATTR_KILL_SUID;
1418 
1419 	/*
1420 	 * sgid without any exec bits is just a mandatory locking mark; leave
1421 	 * it alone.  If some exec bits are set, it's a real sgid; kill it.
1422 	 */
1423 	if (unlikely((mode & S_ISGID) && (mode & S_IXGRP)))
1424 		kill |= ATTR_KILL_SGID;
1425 
1426 	if (unlikely(kill && S_ISREG(mode)))
1427 		return kill;
1428 
1429 	return 0;
1430 }
1431 
1432 static void nfs_writeback_check_extend(struct nfs_pgio_header *hdr,
1433 		struct nfs_fattr *fattr)
1434 {
1435 	struct nfs_pgio_args *argp = &hdr->args;
1436 	struct nfs_pgio_res *resp = &hdr->res;
1437 	u64 size = argp->offset + resp->count;
1438 
1439 	if (!(fattr->valid & NFS_ATTR_FATTR_SIZE))
1440 		fattr->size = size;
1441 	if (nfs_size_to_loff_t(fattr->size) < i_size_read(hdr->inode)) {
1442 		fattr->valid &= ~NFS_ATTR_FATTR_SIZE;
1443 		return;
1444 	}
1445 	if (size != fattr->size)
1446 		return;
1447 	/* Set attribute barrier */
1448 	nfs_fattr_set_barrier(fattr);
1449 	/* ...and update size */
1450 	fattr->valid |= NFS_ATTR_FATTR_SIZE;
1451 }
1452 
1453 void nfs_writeback_update_inode(struct nfs_pgio_header *hdr)
1454 {
1455 	struct nfs_fattr *fattr = &hdr->fattr;
1456 	struct inode *inode = hdr->inode;
1457 
1458 	spin_lock(&inode->i_lock);
1459 	nfs_writeback_check_extend(hdr, fattr);
1460 	nfs_post_op_update_inode_force_wcc_locked(inode, fattr);
1461 	spin_unlock(&inode->i_lock);
1462 }
1463 EXPORT_SYMBOL_GPL(nfs_writeback_update_inode);
1464 
1465 /*
1466  * This function is called when the WRITE call is complete.
1467  */
1468 static int nfs_writeback_done(struct rpc_task *task,
1469 			      struct nfs_pgio_header *hdr,
1470 			      struct inode *inode)
1471 {
1472 	int status;
1473 
1474 	/*
1475 	 * ->write_done will attempt to use post-op attributes to detect
1476 	 * conflicting writes by other clients.  A strict interpretation
1477 	 * of close-to-open would allow us to continue caching even if
1478 	 * another writer had changed the file, but some applications
1479 	 * depend on tighter cache coherency when writing.
1480 	 */
1481 	status = NFS_PROTO(inode)->write_done(task, hdr);
1482 	if (status != 0)
1483 		return status;
1484 	nfs_add_stats(inode, NFSIOS_SERVERWRITTENBYTES, hdr->res.count);
1485 
1486 	if (hdr->res.verf->committed < hdr->args.stable &&
1487 	    task->tk_status >= 0) {
1488 		/* We tried a write call, but the server did not
1489 		 * commit data to stable storage even though we
1490 		 * requested it.
1491 		 * Note: There is a known bug in Tru64 < 5.0 in which
1492 		 *	 the server reports NFS_DATA_SYNC, but performs
1493 		 *	 NFS_FILE_SYNC. We therefore implement this checking
1494 		 *	 as a dprintk() in order to avoid filling syslog.
1495 		 */
1496 		static unsigned long    complain;
1497 
1498 		/* Note this will print the MDS for a DS write */
1499 		if (time_before(complain, jiffies)) {
1500 			dprintk("NFS:       faulty NFS server %s:"
1501 				" (committed = %d) != (stable = %d)\n",
1502 				NFS_SERVER(inode)->nfs_client->cl_hostname,
1503 				hdr->res.verf->committed, hdr->args.stable);
1504 			complain = jiffies + 300 * HZ;
1505 		}
1506 	}
1507 
1508 	/* Deal with the suid/sgid bit corner case */
1509 	if (nfs_should_remove_suid(inode))
1510 		nfs_mark_for_revalidate(inode);
1511 	return 0;
1512 }
1513 
1514 /*
1515  * This function is called when the WRITE call is complete.
1516  */
1517 static void nfs_writeback_result(struct rpc_task *task,
1518 				 struct nfs_pgio_header *hdr)
1519 {
1520 	struct nfs_pgio_args	*argp = &hdr->args;
1521 	struct nfs_pgio_res	*resp = &hdr->res;
1522 
1523 	if (resp->count < argp->count) {
1524 		static unsigned long    complain;
1525 
1526 		/* This a short write! */
1527 		nfs_inc_stats(hdr->inode, NFSIOS_SHORTWRITE);
1528 
1529 		/* Has the server at least made some progress? */
1530 		if (resp->count == 0) {
1531 			if (time_before(complain, jiffies)) {
1532 				printk(KERN_WARNING
1533 				       "NFS: Server wrote zero bytes, expected %u.\n",
1534 				       argp->count);
1535 				complain = jiffies + 300 * HZ;
1536 			}
1537 			nfs_set_pgio_error(hdr, -EIO, argp->offset);
1538 			task->tk_status = -EIO;
1539 			return;
1540 		}
1541 
1542 		/* For non rpc-based layout drivers, retry-through-MDS */
1543 		if (!task->tk_ops) {
1544 			hdr->pnfs_error = -EAGAIN;
1545 			return;
1546 		}
1547 
1548 		/* Was this an NFSv2 write or an NFSv3 stable write? */
1549 		if (resp->verf->committed != NFS_UNSTABLE) {
1550 			/* Resend from where the server left off */
1551 			hdr->mds_offset += resp->count;
1552 			argp->offset += resp->count;
1553 			argp->pgbase += resp->count;
1554 			argp->count -= resp->count;
1555 		} else {
1556 			/* Resend as a stable write in order to avoid
1557 			 * headaches in the case of a server crash.
1558 			 */
1559 			argp->stable = NFS_FILE_SYNC;
1560 		}
1561 		rpc_restart_call_prepare(task);
1562 	}
1563 }
1564 
1565 static int wait_on_commit(struct nfs_mds_commit_info *cinfo)
1566 {
1567 	return wait_on_atomic_t(&cinfo->rpcs_out,
1568 			nfs_wait_atomic_killable, TASK_KILLABLE);
1569 }
1570 
1571 static void nfs_commit_begin(struct nfs_mds_commit_info *cinfo)
1572 {
1573 	atomic_inc(&cinfo->rpcs_out);
1574 }
1575 
1576 static void nfs_commit_end(struct nfs_mds_commit_info *cinfo)
1577 {
1578 	if (atomic_dec_and_test(&cinfo->rpcs_out))
1579 		wake_up_atomic_t(&cinfo->rpcs_out);
1580 }
1581 
1582 void nfs_commitdata_release(struct nfs_commit_data *data)
1583 {
1584 	put_nfs_open_context(data->context);
1585 	nfs_commit_free(data);
1586 }
1587 EXPORT_SYMBOL_GPL(nfs_commitdata_release);
1588 
1589 int nfs_initiate_commit(struct rpc_clnt *clnt, struct nfs_commit_data *data,
1590 			const struct nfs_rpc_ops *nfs_ops,
1591 			const struct rpc_call_ops *call_ops,
1592 			int how, int flags)
1593 {
1594 	struct rpc_task *task;
1595 	int priority = flush_task_priority(how);
1596 	struct rpc_message msg = {
1597 		.rpc_argp = &data->args,
1598 		.rpc_resp = &data->res,
1599 		.rpc_cred = data->cred,
1600 	};
1601 	struct rpc_task_setup task_setup_data = {
1602 		.task = &data->task,
1603 		.rpc_client = clnt,
1604 		.rpc_message = &msg,
1605 		.callback_ops = call_ops,
1606 		.callback_data = data,
1607 		.workqueue = nfsiod_workqueue,
1608 		.flags = RPC_TASK_ASYNC | flags,
1609 		.priority = priority,
1610 	};
1611 	/* Set up the initial task struct.  */
1612 	nfs_ops->commit_setup(data, &msg);
1613 
1614 	dprintk("NFS: initiated commit call\n");
1615 
1616 	nfs4_state_protect(NFS_SERVER(data->inode)->nfs_client,
1617 		NFS_SP4_MACH_CRED_COMMIT, &task_setup_data.rpc_client, &msg);
1618 
1619 	task = rpc_run_task(&task_setup_data);
1620 	if (IS_ERR(task))
1621 		return PTR_ERR(task);
1622 	if (how & FLUSH_SYNC)
1623 		rpc_wait_for_completion_task(task);
1624 	rpc_put_task(task);
1625 	return 0;
1626 }
1627 EXPORT_SYMBOL_GPL(nfs_initiate_commit);
1628 
1629 static loff_t nfs_get_lwb(struct list_head *head)
1630 {
1631 	loff_t lwb = 0;
1632 	struct nfs_page *req;
1633 
1634 	list_for_each_entry(req, head, wb_list)
1635 		if (lwb < (req_offset(req) + req->wb_bytes))
1636 			lwb = req_offset(req) + req->wb_bytes;
1637 
1638 	return lwb;
1639 }
1640 
1641 /*
1642  * Set up the argument/result storage required for the RPC call.
1643  */
1644 void nfs_init_commit(struct nfs_commit_data *data,
1645 		     struct list_head *head,
1646 		     struct pnfs_layout_segment *lseg,
1647 		     struct nfs_commit_info *cinfo)
1648 {
1649 	struct nfs_page *first = nfs_list_entry(head->next);
1650 	struct inode *inode = d_inode(first->wb_context->dentry);
1651 
1652 	/* Set up the RPC argument and reply structs
1653 	 * NB: take care not to mess about with data->commit et al. */
1654 
1655 	list_splice_init(head, &data->pages);
1656 
1657 	data->inode	  = inode;
1658 	data->cred	  = first->wb_context->cred;
1659 	data->lseg	  = lseg; /* reference transferred */
1660 	/* only set lwb for pnfs commit */
1661 	if (lseg)
1662 		data->lwb = nfs_get_lwb(&data->pages);
1663 	data->mds_ops     = &nfs_commit_ops;
1664 	data->completion_ops = cinfo->completion_ops;
1665 	data->dreq	  = cinfo->dreq;
1666 
1667 	data->args.fh     = NFS_FH(data->inode);
1668 	/* Note: we always request a commit of the entire inode */
1669 	data->args.offset = 0;
1670 	data->args.count  = 0;
1671 	data->context     = get_nfs_open_context(first->wb_context);
1672 	data->res.fattr   = &data->fattr;
1673 	data->res.verf    = &data->verf;
1674 	nfs_fattr_init(&data->fattr);
1675 }
1676 EXPORT_SYMBOL_GPL(nfs_init_commit);
1677 
1678 void nfs_retry_commit(struct list_head *page_list,
1679 		      struct pnfs_layout_segment *lseg,
1680 		      struct nfs_commit_info *cinfo,
1681 		      u32 ds_commit_idx)
1682 {
1683 	struct nfs_page *req;
1684 
1685 	while (!list_empty(page_list)) {
1686 		req = nfs_list_entry(page_list->next);
1687 		nfs_list_remove_request(req);
1688 		nfs_mark_request_commit(req, lseg, cinfo, ds_commit_idx);
1689 		if (!cinfo->dreq)
1690 			nfs_clear_page_commit(req->wb_page);
1691 		nfs_unlock_and_release_request(req);
1692 	}
1693 }
1694 EXPORT_SYMBOL_GPL(nfs_retry_commit);
1695 
1696 static void
1697 nfs_commit_resched_write(struct nfs_commit_info *cinfo,
1698 		struct nfs_page *req)
1699 {
1700 	__set_page_dirty_nobuffers(req->wb_page);
1701 }
1702 
1703 /*
1704  * Commit dirty pages
1705  */
1706 static int
1707 nfs_commit_list(struct inode *inode, struct list_head *head, int how,
1708 		struct nfs_commit_info *cinfo)
1709 {
1710 	struct nfs_commit_data	*data;
1711 
1712 	data = nfs_commitdata_alloc();
1713 
1714 	if (!data)
1715 		goto out_bad;
1716 
1717 	/* Set up the argument struct */
1718 	nfs_init_commit(data, head, NULL, cinfo);
1719 	atomic_inc(&cinfo->mds->rpcs_out);
1720 	return nfs_initiate_commit(NFS_CLIENT(inode), data, NFS_PROTO(inode),
1721 				   data->mds_ops, how, 0);
1722  out_bad:
1723 	nfs_retry_commit(head, NULL, cinfo, 0);
1724 	return -ENOMEM;
1725 }
1726 
1727 /*
1728  * COMMIT call returned
1729  */
1730 static void nfs_commit_done(struct rpc_task *task, void *calldata)
1731 {
1732 	struct nfs_commit_data	*data = calldata;
1733 
1734         dprintk("NFS: %5u nfs_commit_done (status %d)\n",
1735                                 task->tk_pid, task->tk_status);
1736 
1737 	/* Call the NFS version-specific code */
1738 	NFS_PROTO(data->inode)->commit_done(task, data);
1739 }
1740 
1741 static void nfs_commit_release_pages(struct nfs_commit_data *data)
1742 {
1743 	struct nfs_page	*req;
1744 	int status = data->task.tk_status;
1745 	struct nfs_commit_info cinfo;
1746 	struct nfs_server *nfss;
1747 
1748 	while (!list_empty(&data->pages)) {
1749 		req = nfs_list_entry(data->pages.next);
1750 		nfs_list_remove_request(req);
1751 		nfs_clear_page_commit(req->wb_page);
1752 
1753 		dprintk("NFS:       commit (%s/%llu %d@%lld)",
1754 			req->wb_context->dentry->d_sb->s_id,
1755 			(unsigned long long)NFS_FILEID(d_inode(req->wb_context->dentry)),
1756 			req->wb_bytes,
1757 			(long long)req_offset(req));
1758 		if (status < 0) {
1759 			nfs_context_set_write_error(req->wb_context, status);
1760 			nfs_inode_remove_request(req);
1761 			dprintk(", error = %d\n", status);
1762 			goto next;
1763 		}
1764 
1765 		/* Okay, COMMIT succeeded, apparently. Check the verifier
1766 		 * returned by the server against all stored verfs. */
1767 		if (!memcmp(&req->wb_verf, &data->verf.verifier, sizeof(req->wb_verf))) {
1768 			/* We have a match */
1769 			nfs_inode_remove_request(req);
1770 			dprintk(" OK\n");
1771 			goto next;
1772 		}
1773 		/* We have a mismatch. Write the page again */
1774 		dprintk(" mismatch\n");
1775 		nfs_mark_request_dirty(req);
1776 		set_bit(NFS_CONTEXT_RESEND_WRITES, &req->wb_context->flags);
1777 	next:
1778 		nfs_unlock_and_release_request(req);
1779 	}
1780 	nfss = NFS_SERVER(data->inode);
1781 	if (atomic_long_read(&nfss->writeback) < NFS_CONGESTION_OFF_THRESH)
1782 		clear_bdi_congested(&nfss->backing_dev_info, BLK_RW_ASYNC);
1783 
1784 	nfs_init_cinfo(&cinfo, data->inode, data->dreq);
1785 	nfs_commit_end(cinfo.mds);
1786 }
1787 
1788 static void nfs_commit_release(void *calldata)
1789 {
1790 	struct nfs_commit_data *data = calldata;
1791 
1792 	data->completion_ops->completion(data);
1793 	nfs_commitdata_release(calldata);
1794 }
1795 
1796 static const struct rpc_call_ops nfs_commit_ops = {
1797 	.rpc_call_prepare = nfs_commit_prepare,
1798 	.rpc_call_done = nfs_commit_done,
1799 	.rpc_release = nfs_commit_release,
1800 };
1801 
1802 static const struct nfs_commit_completion_ops nfs_commit_completion_ops = {
1803 	.completion = nfs_commit_release_pages,
1804 	.resched_write = nfs_commit_resched_write,
1805 };
1806 
1807 int nfs_generic_commit_list(struct inode *inode, struct list_head *head,
1808 			    int how, struct nfs_commit_info *cinfo)
1809 {
1810 	int status;
1811 
1812 	status = pnfs_commit_list(inode, head, how, cinfo);
1813 	if (status == PNFS_NOT_ATTEMPTED)
1814 		status = nfs_commit_list(inode, head, how, cinfo);
1815 	return status;
1816 }
1817 
1818 int nfs_commit_inode(struct inode *inode, int how)
1819 {
1820 	LIST_HEAD(head);
1821 	struct nfs_commit_info cinfo;
1822 	int may_wait = how & FLUSH_SYNC;
1823 	int error = 0;
1824 	int res;
1825 
1826 	nfs_init_cinfo_from_inode(&cinfo, inode);
1827 	nfs_commit_begin(cinfo.mds);
1828 	res = nfs_scan_commit(inode, &head, &cinfo);
1829 	if (res)
1830 		error = nfs_generic_commit_list(inode, &head, how, &cinfo);
1831 	nfs_commit_end(cinfo.mds);
1832 	if (error < 0)
1833 		goto out_error;
1834 	if (!may_wait)
1835 		goto out_mark_dirty;
1836 	error = wait_on_commit(cinfo.mds);
1837 	if (error < 0)
1838 		return error;
1839 	return res;
1840 out_error:
1841 	res = error;
1842 	/* Note: If we exit without ensuring that the commit is complete,
1843 	 * we must mark the inode as dirty. Otherwise, future calls to
1844 	 * sync_inode() with the WB_SYNC_ALL flag set will fail to ensure
1845 	 * that the data is on the disk.
1846 	 */
1847 out_mark_dirty:
1848 	__mark_inode_dirty(inode, I_DIRTY_DATASYNC);
1849 	return res;
1850 }
1851 EXPORT_SYMBOL_GPL(nfs_commit_inode);
1852 
1853 int nfs_write_inode(struct inode *inode, struct writeback_control *wbc)
1854 {
1855 	struct nfs_inode *nfsi = NFS_I(inode);
1856 	int flags = FLUSH_SYNC;
1857 	int ret = 0;
1858 
1859 	/* no commits means nothing needs to be done */
1860 	if (!nfsi->commit_info.ncommit)
1861 		return ret;
1862 
1863 	if (wbc->sync_mode == WB_SYNC_NONE) {
1864 		/* Don't commit yet if this is a non-blocking flush and there
1865 		 * are a lot of outstanding writes for this mapping.
1866 		 */
1867 		if (nfsi->commit_info.ncommit <= (nfsi->nrequests >> 1))
1868 			goto out_mark_dirty;
1869 
1870 		/* don't wait for the COMMIT response */
1871 		flags = 0;
1872 	}
1873 
1874 	ret = nfs_commit_inode(inode, flags);
1875 	if (ret >= 0) {
1876 		if (wbc->sync_mode == WB_SYNC_NONE) {
1877 			if (ret < wbc->nr_to_write)
1878 				wbc->nr_to_write -= ret;
1879 			else
1880 				wbc->nr_to_write = 0;
1881 		}
1882 		return 0;
1883 	}
1884 out_mark_dirty:
1885 	__mark_inode_dirty(inode, I_DIRTY_DATASYNC);
1886 	return ret;
1887 }
1888 EXPORT_SYMBOL_GPL(nfs_write_inode);
1889 
1890 /*
1891  * flush the inode to disk.
1892  */
1893 int nfs_wb_all(struct inode *inode)
1894 {
1895 	int ret;
1896 
1897 	trace_nfs_writeback_inode_enter(inode);
1898 
1899 	ret = filemap_write_and_wait(inode->i_mapping);
1900 	if (ret)
1901 		goto out;
1902 	ret = nfs_commit_inode(inode, FLUSH_SYNC);
1903 	if (ret < 0)
1904 		goto out;
1905 	pnfs_sync_inode(inode, true);
1906 	ret = 0;
1907 
1908 out:
1909 	trace_nfs_writeback_inode_exit(inode, ret);
1910 	return ret;
1911 }
1912 EXPORT_SYMBOL_GPL(nfs_wb_all);
1913 
1914 int nfs_wb_page_cancel(struct inode *inode, struct page *page)
1915 {
1916 	struct nfs_page *req;
1917 	int ret = 0;
1918 
1919 	wait_on_page_writeback(page);
1920 
1921 	/* blocking call to cancel all requests and join to a single (head)
1922 	 * request */
1923 	req = nfs_lock_and_join_requests(page, false);
1924 
1925 	if (IS_ERR(req)) {
1926 		ret = PTR_ERR(req);
1927 	} else if (req) {
1928 		/* all requests from this page have been cancelled by
1929 		 * nfs_lock_and_join_requests, so just remove the head
1930 		 * request from the inode / page_private pointer and
1931 		 * release it */
1932 		nfs_inode_remove_request(req);
1933 		nfs_unlock_and_release_request(req);
1934 	}
1935 
1936 	return ret;
1937 }
1938 
1939 /*
1940  * Write back all requests on one page - we do this before reading it.
1941  */
1942 int nfs_wb_single_page(struct inode *inode, struct page *page, bool launder)
1943 {
1944 	loff_t range_start = page_file_offset(page);
1945 	loff_t range_end = range_start + (loff_t)(PAGE_CACHE_SIZE - 1);
1946 	struct writeback_control wbc = {
1947 		.sync_mode = WB_SYNC_ALL,
1948 		.nr_to_write = 0,
1949 		.range_start = range_start,
1950 		.range_end = range_end,
1951 	};
1952 	int ret;
1953 
1954 	trace_nfs_writeback_page_enter(inode);
1955 
1956 	for (;;) {
1957 		wait_on_page_writeback(page);
1958 		if (clear_page_dirty_for_io(page)) {
1959 			ret = nfs_writepage_locked(page, &wbc, launder);
1960 			if (ret < 0)
1961 				goto out_error;
1962 			continue;
1963 		}
1964 		ret = 0;
1965 		if (!PagePrivate(page))
1966 			break;
1967 		ret = nfs_commit_inode(inode, FLUSH_SYNC);
1968 		if (ret < 0)
1969 			goto out_error;
1970 	}
1971 out_error:
1972 	trace_nfs_writeback_page_exit(inode, ret);
1973 	return ret;
1974 }
1975 
1976 #ifdef CONFIG_MIGRATION
1977 int nfs_migrate_page(struct address_space *mapping, struct page *newpage,
1978 		struct page *page, enum migrate_mode mode)
1979 {
1980 	/*
1981 	 * If PagePrivate is set, then the page is currently associated with
1982 	 * an in-progress read or write request. Don't try to migrate it.
1983 	 *
1984 	 * FIXME: we could do this in principle, but we'll need a way to ensure
1985 	 *        that we can safely release the inode reference while holding
1986 	 *        the page lock.
1987 	 */
1988 	if (PagePrivate(page))
1989 		return -EBUSY;
1990 
1991 	if (!nfs_fscache_release_page(page, GFP_KERNEL))
1992 		return -EBUSY;
1993 
1994 	return migrate_page(mapping, newpage, page, mode);
1995 }
1996 #endif
1997 
1998 int __init nfs_init_writepagecache(void)
1999 {
2000 	nfs_wdata_cachep = kmem_cache_create("nfs_write_data",
2001 					     sizeof(struct nfs_pgio_header),
2002 					     0, SLAB_HWCACHE_ALIGN,
2003 					     NULL);
2004 	if (nfs_wdata_cachep == NULL)
2005 		return -ENOMEM;
2006 
2007 	nfs_wdata_mempool = mempool_create_slab_pool(MIN_POOL_WRITE,
2008 						     nfs_wdata_cachep);
2009 	if (nfs_wdata_mempool == NULL)
2010 		goto out_destroy_write_cache;
2011 
2012 	nfs_cdata_cachep = kmem_cache_create("nfs_commit_data",
2013 					     sizeof(struct nfs_commit_data),
2014 					     0, SLAB_HWCACHE_ALIGN,
2015 					     NULL);
2016 	if (nfs_cdata_cachep == NULL)
2017 		goto out_destroy_write_mempool;
2018 
2019 	nfs_commit_mempool = mempool_create_slab_pool(MIN_POOL_COMMIT,
2020 						      nfs_cdata_cachep);
2021 	if (nfs_commit_mempool == NULL)
2022 		goto out_destroy_commit_cache;
2023 
2024 	/*
2025 	 * NFS congestion size, scale with available memory.
2026 	 *
2027 	 *  64MB:    8192k
2028 	 * 128MB:   11585k
2029 	 * 256MB:   16384k
2030 	 * 512MB:   23170k
2031 	 *   1GB:   32768k
2032 	 *   2GB:   46340k
2033 	 *   4GB:   65536k
2034 	 *   8GB:   92681k
2035 	 *  16GB:  131072k
2036 	 *
2037 	 * This allows larger machines to have larger/more transfers.
2038 	 * Limit the default to 256M
2039 	 */
2040 	nfs_congestion_kb = (16*int_sqrt(totalram_pages)) << (PAGE_SHIFT-10);
2041 	if (nfs_congestion_kb > 256*1024)
2042 		nfs_congestion_kb = 256*1024;
2043 
2044 	return 0;
2045 
2046 out_destroy_commit_cache:
2047 	kmem_cache_destroy(nfs_cdata_cachep);
2048 out_destroy_write_mempool:
2049 	mempool_destroy(nfs_wdata_mempool);
2050 out_destroy_write_cache:
2051 	kmem_cache_destroy(nfs_wdata_cachep);
2052 	return -ENOMEM;
2053 }
2054 
2055 void nfs_destroy_writepagecache(void)
2056 {
2057 	mempool_destroy(nfs_commit_mempool);
2058 	kmem_cache_destroy(nfs_cdata_cachep);
2059 	mempool_destroy(nfs_wdata_mempool);
2060 	kmem_cache_destroy(nfs_wdata_cachep);
2061 }
2062 
2063 static const struct nfs_rw_ops nfs_rw_write_ops = {
2064 	.rw_mode		= FMODE_WRITE,
2065 	.rw_alloc_header	= nfs_writehdr_alloc,
2066 	.rw_free_header		= nfs_writehdr_free,
2067 	.rw_done		= nfs_writeback_done,
2068 	.rw_result		= nfs_writeback_result,
2069 	.rw_initiate		= nfs_initiate_write,
2070 };
2071