1 /* 2 * linux/fs/nfs/write.c 3 * 4 * Write file data over NFS. 5 * 6 * Copyright (C) 1996, 1997, Olaf Kirch <okir@monad.swb.de> 7 */ 8 9 #include <linux/types.h> 10 #include <linux/slab.h> 11 #include <linux/mm.h> 12 #include <linux/pagemap.h> 13 #include <linux/file.h> 14 #include <linux/writeback.h> 15 #include <linux/swap.h> 16 #include <linux/migrate.h> 17 18 #include <linux/sunrpc/clnt.h> 19 #include <linux/nfs_fs.h> 20 #include <linux/nfs_mount.h> 21 #include <linux/nfs_page.h> 22 #include <linux/backing-dev.h> 23 24 #include <asm/uaccess.h> 25 26 #include "delegation.h" 27 #include "internal.h" 28 #include "iostat.h" 29 #include "nfs4_fs.h" 30 #include "fscache.h" 31 #include "pnfs.h" 32 33 #define NFSDBG_FACILITY NFSDBG_PAGECACHE 34 35 #define MIN_POOL_WRITE (32) 36 #define MIN_POOL_COMMIT (4) 37 38 /* 39 * Local function declarations 40 */ 41 static void nfs_pageio_init_write(struct nfs_pageio_descriptor *desc, 42 struct inode *inode, int ioflags); 43 static void nfs_redirty_request(struct nfs_page *req); 44 static const struct rpc_call_ops nfs_write_partial_ops; 45 static const struct rpc_call_ops nfs_write_full_ops; 46 static const struct rpc_call_ops nfs_commit_ops; 47 48 static struct kmem_cache *nfs_wdata_cachep; 49 static mempool_t *nfs_wdata_mempool; 50 static mempool_t *nfs_commit_mempool; 51 52 struct nfs_write_data *nfs_commitdata_alloc(void) 53 { 54 struct nfs_write_data *p = mempool_alloc(nfs_commit_mempool, GFP_NOFS); 55 56 if (p) { 57 memset(p, 0, sizeof(*p)); 58 INIT_LIST_HEAD(&p->pages); 59 } 60 return p; 61 } 62 EXPORT_SYMBOL_GPL(nfs_commitdata_alloc); 63 64 void nfs_commit_free(struct nfs_write_data *p) 65 { 66 if (p && (p->pagevec != &p->page_array[0])) 67 kfree(p->pagevec); 68 mempool_free(p, nfs_commit_mempool); 69 } 70 EXPORT_SYMBOL_GPL(nfs_commit_free); 71 72 struct nfs_write_data *nfs_writedata_alloc(unsigned int pagecount) 73 { 74 struct nfs_write_data *p = mempool_alloc(nfs_wdata_mempool, GFP_NOFS); 75 76 if (p) { 77 memset(p, 0, sizeof(*p)); 78 INIT_LIST_HEAD(&p->pages); 79 p->npages = pagecount; 80 if (pagecount <= ARRAY_SIZE(p->page_array)) 81 p->pagevec = p->page_array; 82 else { 83 p->pagevec = kcalloc(pagecount, sizeof(struct page *), GFP_NOFS); 84 if (!p->pagevec) { 85 mempool_free(p, nfs_wdata_mempool); 86 p = NULL; 87 } 88 } 89 } 90 return p; 91 } 92 93 void nfs_writedata_free(struct nfs_write_data *p) 94 { 95 if (p && (p->pagevec != &p->page_array[0])) 96 kfree(p->pagevec); 97 mempool_free(p, nfs_wdata_mempool); 98 } 99 100 static void nfs_writedata_release(struct nfs_write_data *wdata) 101 { 102 put_lseg(wdata->lseg); 103 put_nfs_open_context(wdata->args.context); 104 nfs_writedata_free(wdata); 105 } 106 107 static void nfs_context_set_write_error(struct nfs_open_context *ctx, int error) 108 { 109 ctx->error = error; 110 smp_wmb(); 111 set_bit(NFS_CONTEXT_ERROR_WRITE, &ctx->flags); 112 } 113 114 static struct nfs_page *nfs_page_find_request_locked(struct page *page) 115 { 116 struct nfs_page *req = NULL; 117 118 if (PagePrivate(page)) { 119 req = (struct nfs_page *)page_private(page); 120 if (req != NULL) 121 kref_get(&req->wb_kref); 122 } 123 return req; 124 } 125 126 static struct nfs_page *nfs_page_find_request(struct page *page) 127 { 128 struct inode *inode = page->mapping->host; 129 struct nfs_page *req = NULL; 130 131 spin_lock(&inode->i_lock); 132 req = nfs_page_find_request_locked(page); 133 spin_unlock(&inode->i_lock); 134 return req; 135 } 136 137 /* Adjust the file length if we're writing beyond the end */ 138 static void nfs_grow_file(struct page *page, unsigned int offset, unsigned int count) 139 { 140 struct inode *inode = page->mapping->host; 141 loff_t end, i_size; 142 pgoff_t end_index; 143 144 spin_lock(&inode->i_lock); 145 i_size = i_size_read(inode); 146 end_index = (i_size - 1) >> PAGE_CACHE_SHIFT; 147 if (i_size > 0 && page->index < end_index) 148 goto out; 149 end = ((loff_t)page->index << PAGE_CACHE_SHIFT) + ((loff_t)offset+count); 150 if (i_size >= end) 151 goto out; 152 i_size_write(inode, end); 153 nfs_inc_stats(inode, NFSIOS_EXTENDWRITE); 154 out: 155 spin_unlock(&inode->i_lock); 156 } 157 158 /* A writeback failed: mark the page as bad, and invalidate the page cache */ 159 static void nfs_set_pageerror(struct page *page) 160 { 161 SetPageError(page); 162 nfs_zap_mapping(page->mapping->host, page->mapping); 163 } 164 165 /* We can set the PG_uptodate flag if we see that a write request 166 * covers the full page. 167 */ 168 static void nfs_mark_uptodate(struct page *page, unsigned int base, unsigned int count) 169 { 170 if (PageUptodate(page)) 171 return; 172 if (base != 0) 173 return; 174 if (count != nfs_page_length(page)) 175 return; 176 SetPageUptodate(page); 177 } 178 179 static int wb_priority(struct writeback_control *wbc) 180 { 181 if (wbc->for_reclaim) 182 return FLUSH_HIGHPRI | FLUSH_STABLE; 183 if (wbc->for_kupdate || wbc->for_background) 184 return FLUSH_LOWPRI | FLUSH_COND_STABLE; 185 return FLUSH_COND_STABLE; 186 } 187 188 /* 189 * NFS congestion control 190 */ 191 192 int nfs_congestion_kb; 193 194 #define NFS_CONGESTION_ON_THRESH (nfs_congestion_kb >> (PAGE_SHIFT-10)) 195 #define NFS_CONGESTION_OFF_THRESH \ 196 (NFS_CONGESTION_ON_THRESH - (NFS_CONGESTION_ON_THRESH >> 2)) 197 198 static int nfs_set_page_writeback(struct page *page) 199 { 200 int ret = test_set_page_writeback(page); 201 202 if (!ret) { 203 struct inode *inode = page->mapping->host; 204 struct nfs_server *nfss = NFS_SERVER(inode); 205 206 page_cache_get(page); 207 if (atomic_long_inc_return(&nfss->writeback) > 208 NFS_CONGESTION_ON_THRESH) { 209 set_bdi_congested(&nfss->backing_dev_info, 210 BLK_RW_ASYNC); 211 } 212 } 213 return ret; 214 } 215 216 static void nfs_end_page_writeback(struct page *page) 217 { 218 struct inode *inode = page->mapping->host; 219 struct nfs_server *nfss = NFS_SERVER(inode); 220 221 end_page_writeback(page); 222 page_cache_release(page); 223 if (atomic_long_dec_return(&nfss->writeback) < NFS_CONGESTION_OFF_THRESH) 224 clear_bdi_congested(&nfss->backing_dev_info, BLK_RW_ASYNC); 225 } 226 227 static struct nfs_page *nfs_find_and_lock_request(struct page *page, bool nonblock) 228 { 229 struct inode *inode = page->mapping->host; 230 struct nfs_page *req; 231 int ret; 232 233 spin_lock(&inode->i_lock); 234 for (;;) { 235 req = nfs_page_find_request_locked(page); 236 if (req == NULL) 237 break; 238 if (nfs_set_page_tag_locked(req)) 239 break; 240 /* Note: If we hold the page lock, as is the case in nfs_writepage, 241 * then the call to nfs_set_page_tag_locked() will always 242 * succeed provided that someone hasn't already marked the 243 * request as dirty (in which case we don't care). 244 */ 245 spin_unlock(&inode->i_lock); 246 if (!nonblock) 247 ret = nfs_wait_on_request(req); 248 else 249 ret = -EAGAIN; 250 nfs_release_request(req); 251 if (ret != 0) 252 return ERR_PTR(ret); 253 spin_lock(&inode->i_lock); 254 } 255 spin_unlock(&inode->i_lock); 256 return req; 257 } 258 259 /* 260 * Find an associated nfs write request, and prepare to flush it out 261 * May return an error if the user signalled nfs_wait_on_request(). 262 */ 263 static int nfs_page_async_flush(struct nfs_pageio_descriptor *pgio, 264 struct page *page, bool nonblock) 265 { 266 struct nfs_page *req; 267 int ret = 0; 268 269 req = nfs_find_and_lock_request(page, nonblock); 270 if (!req) 271 goto out; 272 ret = PTR_ERR(req); 273 if (IS_ERR(req)) 274 goto out; 275 276 ret = nfs_set_page_writeback(page); 277 BUG_ON(ret != 0); 278 BUG_ON(test_bit(PG_CLEAN, &req->wb_flags)); 279 280 if (!nfs_pageio_add_request(pgio, req)) { 281 nfs_redirty_request(req); 282 ret = pgio->pg_error; 283 } 284 out: 285 return ret; 286 } 287 288 static int nfs_do_writepage(struct page *page, struct writeback_control *wbc, struct nfs_pageio_descriptor *pgio) 289 { 290 struct inode *inode = page->mapping->host; 291 int ret; 292 293 nfs_inc_stats(inode, NFSIOS_VFSWRITEPAGE); 294 nfs_add_stats(inode, NFSIOS_WRITEPAGES, 1); 295 296 nfs_pageio_cond_complete(pgio, page->index); 297 ret = nfs_page_async_flush(pgio, page, wbc->sync_mode == WB_SYNC_NONE); 298 if (ret == -EAGAIN) { 299 redirty_page_for_writepage(wbc, page); 300 ret = 0; 301 } 302 return ret; 303 } 304 305 /* 306 * Write an mmapped page to the server. 307 */ 308 static int nfs_writepage_locked(struct page *page, struct writeback_control *wbc) 309 { 310 struct nfs_pageio_descriptor pgio; 311 int err; 312 313 nfs_pageio_init_write(&pgio, page->mapping->host, wb_priority(wbc)); 314 err = nfs_do_writepage(page, wbc, &pgio); 315 nfs_pageio_complete(&pgio); 316 if (err < 0) 317 return err; 318 if (pgio.pg_error < 0) 319 return pgio.pg_error; 320 return 0; 321 } 322 323 int nfs_writepage(struct page *page, struct writeback_control *wbc) 324 { 325 int ret; 326 327 ret = nfs_writepage_locked(page, wbc); 328 unlock_page(page); 329 return ret; 330 } 331 332 static int nfs_writepages_callback(struct page *page, struct writeback_control *wbc, void *data) 333 { 334 int ret; 335 336 ret = nfs_do_writepage(page, wbc, data); 337 unlock_page(page); 338 return ret; 339 } 340 341 int nfs_writepages(struct address_space *mapping, struct writeback_control *wbc) 342 { 343 struct inode *inode = mapping->host; 344 unsigned long *bitlock = &NFS_I(inode)->flags; 345 struct nfs_pageio_descriptor pgio; 346 int err; 347 348 /* Stop dirtying of new pages while we sync */ 349 err = wait_on_bit_lock(bitlock, NFS_INO_FLUSHING, 350 nfs_wait_bit_killable, TASK_KILLABLE); 351 if (err) 352 goto out_err; 353 354 nfs_inc_stats(inode, NFSIOS_VFSWRITEPAGES); 355 356 nfs_pageio_init_write(&pgio, inode, wb_priority(wbc)); 357 err = write_cache_pages(mapping, wbc, nfs_writepages_callback, &pgio); 358 nfs_pageio_complete(&pgio); 359 360 clear_bit_unlock(NFS_INO_FLUSHING, bitlock); 361 smp_mb__after_clear_bit(); 362 wake_up_bit(bitlock, NFS_INO_FLUSHING); 363 364 if (err < 0) 365 goto out_err; 366 err = pgio.pg_error; 367 if (err < 0) 368 goto out_err; 369 return 0; 370 out_err: 371 return err; 372 } 373 374 /* 375 * Insert a write request into an inode 376 */ 377 static int nfs_inode_add_request(struct inode *inode, struct nfs_page *req) 378 { 379 struct nfs_inode *nfsi = NFS_I(inode); 380 int error; 381 382 error = radix_tree_preload(GFP_NOFS); 383 if (error != 0) 384 goto out; 385 386 /* Lock the request! */ 387 nfs_lock_request_dontget(req); 388 389 spin_lock(&inode->i_lock); 390 error = radix_tree_insert(&nfsi->nfs_page_tree, req->wb_index, req); 391 BUG_ON(error); 392 if (!nfsi->npages && nfs_have_delegation(inode, FMODE_WRITE)) 393 nfsi->change_attr++; 394 set_bit(PG_MAPPED, &req->wb_flags); 395 SetPagePrivate(req->wb_page); 396 set_page_private(req->wb_page, (unsigned long)req); 397 nfsi->npages++; 398 kref_get(&req->wb_kref); 399 radix_tree_tag_set(&nfsi->nfs_page_tree, req->wb_index, 400 NFS_PAGE_TAG_LOCKED); 401 spin_unlock(&inode->i_lock); 402 radix_tree_preload_end(); 403 out: 404 return error; 405 } 406 407 /* 408 * Remove a write request from an inode 409 */ 410 static void nfs_inode_remove_request(struct nfs_page *req) 411 { 412 struct inode *inode = req->wb_context->path.dentry->d_inode; 413 struct nfs_inode *nfsi = NFS_I(inode); 414 415 BUG_ON (!NFS_WBACK_BUSY(req)); 416 417 spin_lock(&inode->i_lock); 418 set_page_private(req->wb_page, 0); 419 ClearPagePrivate(req->wb_page); 420 clear_bit(PG_MAPPED, &req->wb_flags); 421 radix_tree_delete(&nfsi->nfs_page_tree, req->wb_index); 422 nfsi->npages--; 423 spin_unlock(&inode->i_lock); 424 nfs_release_request(req); 425 } 426 427 static void 428 nfs_mark_request_dirty(struct nfs_page *req) 429 { 430 __set_page_dirty_nobuffers(req->wb_page); 431 __mark_inode_dirty(req->wb_page->mapping->host, I_DIRTY_DATASYNC); 432 } 433 434 #if defined(CONFIG_NFS_V3) || defined(CONFIG_NFS_V4) 435 /* 436 * Add a request to the inode's commit list. 437 */ 438 static void 439 nfs_mark_request_commit(struct nfs_page *req, struct pnfs_layout_segment *lseg) 440 { 441 struct inode *inode = req->wb_context->path.dentry->d_inode; 442 struct nfs_inode *nfsi = NFS_I(inode); 443 444 spin_lock(&inode->i_lock); 445 set_bit(PG_CLEAN, &(req)->wb_flags); 446 radix_tree_tag_set(&nfsi->nfs_page_tree, 447 req->wb_index, 448 NFS_PAGE_TAG_COMMIT); 449 nfsi->ncommit++; 450 spin_unlock(&inode->i_lock); 451 pnfs_mark_request_commit(req, lseg); 452 inc_zone_page_state(req->wb_page, NR_UNSTABLE_NFS); 453 inc_bdi_stat(req->wb_page->mapping->backing_dev_info, BDI_RECLAIMABLE); 454 __mark_inode_dirty(inode, I_DIRTY_DATASYNC); 455 } 456 457 static int 458 nfs_clear_request_commit(struct nfs_page *req) 459 { 460 struct page *page = req->wb_page; 461 462 if (test_and_clear_bit(PG_CLEAN, &(req)->wb_flags)) { 463 dec_zone_page_state(page, NR_UNSTABLE_NFS); 464 dec_bdi_stat(page->mapping->backing_dev_info, BDI_RECLAIMABLE); 465 return 1; 466 } 467 return 0; 468 } 469 470 static inline 471 int nfs_write_need_commit(struct nfs_write_data *data) 472 { 473 if (data->verf.committed == NFS_DATA_SYNC) 474 return data->lseg == NULL; 475 else 476 return data->verf.committed != NFS_FILE_SYNC; 477 } 478 479 static inline 480 int nfs_reschedule_unstable_write(struct nfs_page *req, 481 struct nfs_write_data *data) 482 { 483 if (test_and_clear_bit(PG_NEED_COMMIT, &req->wb_flags)) { 484 nfs_mark_request_commit(req, data->lseg); 485 return 1; 486 } 487 if (test_and_clear_bit(PG_NEED_RESCHED, &req->wb_flags)) { 488 nfs_mark_request_dirty(req); 489 return 1; 490 } 491 return 0; 492 } 493 #else 494 static inline void 495 nfs_mark_request_commit(struct nfs_page *req, struct pnfs_layout_segment *lseg) 496 { 497 } 498 499 static inline int 500 nfs_clear_request_commit(struct nfs_page *req) 501 { 502 return 0; 503 } 504 505 static inline 506 int nfs_write_need_commit(struct nfs_write_data *data) 507 { 508 return 0; 509 } 510 511 static inline 512 int nfs_reschedule_unstable_write(struct nfs_page *req, 513 struct nfs_write_data *data) 514 { 515 return 0; 516 } 517 #endif 518 519 #if defined(CONFIG_NFS_V3) || defined(CONFIG_NFS_V4) 520 static int 521 nfs_need_commit(struct nfs_inode *nfsi) 522 { 523 return radix_tree_tagged(&nfsi->nfs_page_tree, NFS_PAGE_TAG_COMMIT); 524 } 525 526 /* 527 * nfs_scan_commit - Scan an inode for commit requests 528 * @inode: NFS inode to scan 529 * @dst: destination list 530 * @idx_start: lower bound of page->index to scan. 531 * @npages: idx_start + npages sets the upper bound to scan. 532 * 533 * Moves requests from the inode's 'commit' request list. 534 * The requests are *not* checked to ensure that they form a contiguous set. 535 */ 536 static int 537 nfs_scan_commit(struct inode *inode, struct list_head *dst, pgoff_t idx_start, unsigned int npages) 538 { 539 struct nfs_inode *nfsi = NFS_I(inode); 540 int ret; 541 542 if (!nfs_need_commit(nfsi)) 543 return 0; 544 545 spin_lock(&inode->i_lock); 546 ret = nfs_scan_list(nfsi, dst, idx_start, npages, NFS_PAGE_TAG_COMMIT); 547 if (ret > 0) 548 nfsi->ncommit -= ret; 549 spin_unlock(&inode->i_lock); 550 551 if (nfs_need_commit(NFS_I(inode))) 552 __mark_inode_dirty(inode, I_DIRTY_DATASYNC); 553 554 return ret; 555 } 556 #else 557 static inline int nfs_need_commit(struct nfs_inode *nfsi) 558 { 559 return 0; 560 } 561 562 static inline int nfs_scan_commit(struct inode *inode, struct list_head *dst, pgoff_t idx_start, unsigned int npages) 563 { 564 return 0; 565 } 566 #endif 567 568 /* 569 * Search for an existing write request, and attempt to update 570 * it to reflect a new dirty region on a given page. 571 * 572 * If the attempt fails, then the existing request is flushed out 573 * to disk. 574 */ 575 static struct nfs_page *nfs_try_to_update_request(struct inode *inode, 576 struct page *page, 577 unsigned int offset, 578 unsigned int bytes) 579 { 580 struct nfs_page *req; 581 unsigned int rqend; 582 unsigned int end; 583 int error; 584 585 if (!PagePrivate(page)) 586 return NULL; 587 588 end = offset + bytes; 589 spin_lock(&inode->i_lock); 590 591 for (;;) { 592 req = nfs_page_find_request_locked(page); 593 if (req == NULL) 594 goto out_unlock; 595 596 rqend = req->wb_offset + req->wb_bytes; 597 /* 598 * Tell the caller to flush out the request if 599 * the offsets are non-contiguous. 600 * Note: nfs_flush_incompatible() will already 601 * have flushed out requests having wrong owners. 602 */ 603 if (offset > rqend 604 || end < req->wb_offset) 605 goto out_flushme; 606 607 if (nfs_set_page_tag_locked(req)) 608 break; 609 610 /* The request is locked, so wait and then retry */ 611 spin_unlock(&inode->i_lock); 612 error = nfs_wait_on_request(req); 613 nfs_release_request(req); 614 if (error != 0) 615 goto out_err; 616 spin_lock(&inode->i_lock); 617 } 618 619 if (nfs_clear_request_commit(req) && 620 radix_tree_tag_clear(&NFS_I(inode)->nfs_page_tree, 621 req->wb_index, NFS_PAGE_TAG_COMMIT) != NULL) { 622 NFS_I(inode)->ncommit--; 623 pnfs_clear_request_commit(req); 624 } 625 626 /* Okay, the request matches. Update the region */ 627 if (offset < req->wb_offset) { 628 req->wb_offset = offset; 629 req->wb_pgbase = offset; 630 } 631 if (end > rqend) 632 req->wb_bytes = end - req->wb_offset; 633 else 634 req->wb_bytes = rqend - req->wb_offset; 635 out_unlock: 636 spin_unlock(&inode->i_lock); 637 return req; 638 out_flushme: 639 spin_unlock(&inode->i_lock); 640 nfs_release_request(req); 641 error = nfs_wb_page(inode, page); 642 out_err: 643 return ERR_PTR(error); 644 } 645 646 /* 647 * Try to update an existing write request, or create one if there is none. 648 * 649 * Note: Should always be called with the Page Lock held to prevent races 650 * if we have to add a new request. Also assumes that the caller has 651 * already called nfs_flush_incompatible() if necessary. 652 */ 653 static struct nfs_page * nfs_setup_write_request(struct nfs_open_context* ctx, 654 struct page *page, unsigned int offset, unsigned int bytes) 655 { 656 struct inode *inode = page->mapping->host; 657 struct nfs_page *req; 658 int error; 659 660 req = nfs_try_to_update_request(inode, page, offset, bytes); 661 if (req != NULL) 662 goto out; 663 req = nfs_create_request(ctx, inode, page, offset, bytes); 664 if (IS_ERR(req)) 665 goto out; 666 error = nfs_inode_add_request(inode, req); 667 if (error != 0) { 668 nfs_release_request(req); 669 req = ERR_PTR(error); 670 } 671 out: 672 return req; 673 } 674 675 static int nfs_writepage_setup(struct nfs_open_context *ctx, struct page *page, 676 unsigned int offset, unsigned int count) 677 { 678 struct nfs_page *req; 679 680 req = nfs_setup_write_request(ctx, page, offset, count); 681 if (IS_ERR(req)) 682 return PTR_ERR(req); 683 nfs_mark_request_dirty(req); 684 /* Update file length */ 685 nfs_grow_file(page, offset, count); 686 nfs_mark_uptodate(page, req->wb_pgbase, req->wb_bytes); 687 nfs_mark_request_dirty(req); 688 nfs_clear_page_tag_locked(req); 689 return 0; 690 } 691 692 int nfs_flush_incompatible(struct file *file, struct page *page) 693 { 694 struct nfs_open_context *ctx = nfs_file_open_context(file); 695 struct nfs_page *req; 696 int do_flush, status; 697 /* 698 * Look for a request corresponding to this page. If there 699 * is one, and it belongs to another file, we flush it out 700 * before we try to copy anything into the page. Do this 701 * due to the lack of an ACCESS-type call in NFSv2. 702 * Also do the same if we find a request from an existing 703 * dropped page. 704 */ 705 do { 706 req = nfs_page_find_request(page); 707 if (req == NULL) 708 return 0; 709 do_flush = req->wb_page != page || req->wb_context != ctx || 710 req->wb_lock_context->lockowner != current->files || 711 req->wb_lock_context->pid != current->tgid; 712 nfs_release_request(req); 713 if (!do_flush) 714 return 0; 715 status = nfs_wb_page(page->mapping->host, page); 716 } while (status == 0); 717 return status; 718 } 719 720 /* 721 * If the page cache is marked as unsafe or invalid, then we can't rely on 722 * the PageUptodate() flag. In this case, we will need to turn off 723 * write optimisations that depend on the page contents being correct. 724 */ 725 static int nfs_write_pageuptodate(struct page *page, struct inode *inode) 726 { 727 return PageUptodate(page) && 728 !(NFS_I(inode)->cache_validity & (NFS_INO_REVAL_PAGECACHE|NFS_INO_INVALID_DATA)); 729 } 730 731 /* 732 * Update and possibly write a cached page of an NFS file. 733 * 734 * XXX: Keep an eye on generic_file_read to make sure it doesn't do bad 735 * things with a page scheduled for an RPC call (e.g. invalidate it). 736 */ 737 int nfs_updatepage(struct file *file, struct page *page, 738 unsigned int offset, unsigned int count) 739 { 740 struct nfs_open_context *ctx = nfs_file_open_context(file); 741 struct inode *inode = page->mapping->host; 742 int status = 0; 743 744 nfs_inc_stats(inode, NFSIOS_VFSUPDATEPAGE); 745 746 dprintk("NFS: nfs_updatepage(%s/%s %d@%lld)\n", 747 file->f_path.dentry->d_parent->d_name.name, 748 file->f_path.dentry->d_name.name, count, 749 (long long)(page_offset(page) + offset)); 750 751 /* If we're not using byte range locks, and we know the page 752 * is up to date, it may be more efficient to extend the write 753 * to cover the entire page in order to avoid fragmentation 754 * inefficiencies. 755 */ 756 if (nfs_write_pageuptodate(page, inode) && 757 inode->i_flock == NULL && 758 !(file->f_flags & O_DSYNC)) { 759 count = max(count + offset, nfs_page_length(page)); 760 offset = 0; 761 } 762 763 status = nfs_writepage_setup(ctx, page, offset, count); 764 if (status < 0) 765 nfs_set_pageerror(page); 766 767 dprintk("NFS: nfs_updatepage returns %d (isize %lld)\n", 768 status, (long long)i_size_read(inode)); 769 return status; 770 } 771 772 static void nfs_writepage_release(struct nfs_page *req, 773 struct nfs_write_data *data) 774 { 775 struct page *page = req->wb_page; 776 777 if (PageError(req->wb_page) || !nfs_reschedule_unstable_write(req, data)) 778 nfs_inode_remove_request(req); 779 nfs_clear_page_tag_locked(req); 780 nfs_end_page_writeback(page); 781 } 782 783 static int flush_task_priority(int how) 784 { 785 switch (how & (FLUSH_HIGHPRI|FLUSH_LOWPRI)) { 786 case FLUSH_HIGHPRI: 787 return RPC_PRIORITY_HIGH; 788 case FLUSH_LOWPRI: 789 return RPC_PRIORITY_LOW; 790 } 791 return RPC_PRIORITY_NORMAL; 792 } 793 794 int nfs_initiate_write(struct nfs_write_data *data, 795 struct rpc_clnt *clnt, 796 const struct rpc_call_ops *call_ops, 797 int how) 798 { 799 struct inode *inode = data->inode; 800 int priority = flush_task_priority(how); 801 struct rpc_task *task; 802 struct rpc_message msg = { 803 .rpc_argp = &data->args, 804 .rpc_resp = &data->res, 805 .rpc_cred = data->cred, 806 }; 807 struct rpc_task_setup task_setup_data = { 808 .rpc_client = clnt, 809 .task = &data->task, 810 .rpc_message = &msg, 811 .callback_ops = call_ops, 812 .callback_data = data, 813 .workqueue = nfsiod_workqueue, 814 .flags = RPC_TASK_ASYNC, 815 .priority = priority, 816 }; 817 int ret = 0; 818 819 /* Set up the initial task struct. */ 820 NFS_PROTO(inode)->write_setup(data, &msg); 821 822 dprintk("NFS: %5u initiated write call " 823 "(req %s/%lld, %u bytes @ offset %llu)\n", 824 data->task.tk_pid, 825 inode->i_sb->s_id, 826 (long long)NFS_FILEID(inode), 827 data->args.count, 828 (unsigned long long)data->args.offset); 829 830 task = rpc_run_task(&task_setup_data); 831 if (IS_ERR(task)) { 832 ret = PTR_ERR(task); 833 goto out; 834 } 835 if (how & FLUSH_SYNC) { 836 ret = rpc_wait_for_completion_task(task); 837 if (ret == 0) 838 ret = task->tk_status; 839 } 840 rpc_put_task(task); 841 out: 842 return ret; 843 } 844 EXPORT_SYMBOL_GPL(nfs_initiate_write); 845 846 /* 847 * Set up the argument/result storage required for the RPC call. 848 */ 849 static int nfs_write_rpcsetup(struct nfs_page *req, 850 struct nfs_write_data *data, 851 const struct rpc_call_ops *call_ops, 852 unsigned int count, unsigned int offset, 853 struct pnfs_layout_segment *lseg, 854 int how) 855 { 856 struct inode *inode = req->wb_context->path.dentry->d_inode; 857 858 /* Set up the RPC argument and reply structs 859 * NB: take care not to mess about with data->commit et al. */ 860 861 data->req = req; 862 data->inode = inode = req->wb_context->path.dentry->d_inode; 863 data->cred = req->wb_context->cred; 864 data->lseg = get_lseg(lseg); 865 866 data->args.fh = NFS_FH(inode); 867 data->args.offset = req_offset(req) + offset; 868 data->args.pgbase = req->wb_pgbase + offset; 869 data->args.pages = data->pagevec; 870 data->args.count = count; 871 data->args.context = get_nfs_open_context(req->wb_context); 872 data->args.lock_context = req->wb_lock_context; 873 data->args.stable = NFS_UNSTABLE; 874 if (how & (FLUSH_STABLE | FLUSH_COND_STABLE)) { 875 data->args.stable = NFS_DATA_SYNC; 876 if (!nfs_need_commit(NFS_I(inode))) 877 data->args.stable = NFS_FILE_SYNC; 878 } 879 880 data->res.fattr = &data->fattr; 881 data->res.count = count; 882 data->res.verf = &data->verf; 883 nfs_fattr_init(&data->fattr); 884 885 if (data->lseg && 886 (pnfs_try_to_write_data(data, call_ops, how) == PNFS_ATTEMPTED)) 887 return 0; 888 889 return nfs_initiate_write(data, NFS_CLIENT(inode), call_ops, how); 890 } 891 892 /* If a nfs_flush_* function fails, it should remove reqs from @head and 893 * call this on each, which will prepare them to be retried on next 894 * writeback using standard nfs. 895 */ 896 static void nfs_redirty_request(struct nfs_page *req) 897 { 898 struct page *page = req->wb_page; 899 900 nfs_mark_request_dirty(req); 901 nfs_clear_page_tag_locked(req); 902 nfs_end_page_writeback(page); 903 } 904 905 /* 906 * Generate multiple small requests to write out a single 907 * contiguous dirty area on one page. 908 */ 909 static int nfs_flush_multi(struct nfs_pageio_descriptor *desc) 910 { 911 struct nfs_page *req = nfs_list_entry(desc->pg_list.next); 912 struct page *page = req->wb_page; 913 struct nfs_write_data *data; 914 size_t wsize = NFS_SERVER(desc->pg_inode)->wsize, nbytes; 915 unsigned int offset; 916 int requests = 0; 917 int ret = 0; 918 struct pnfs_layout_segment *lseg; 919 LIST_HEAD(list); 920 921 nfs_list_remove_request(req); 922 923 if ((desc->pg_ioflags & FLUSH_COND_STABLE) && 924 (desc->pg_moreio || NFS_I(desc->pg_inode)->ncommit || 925 desc->pg_count > wsize)) 926 desc->pg_ioflags &= ~FLUSH_COND_STABLE; 927 928 929 nbytes = desc->pg_count; 930 do { 931 size_t len = min(nbytes, wsize); 932 933 data = nfs_writedata_alloc(1); 934 if (!data) 935 goto out_bad; 936 list_add(&data->pages, &list); 937 requests++; 938 nbytes -= len; 939 } while (nbytes != 0); 940 atomic_set(&req->wb_complete, requests); 941 942 BUG_ON(desc->pg_lseg); 943 lseg = pnfs_update_layout(desc->pg_inode, req->wb_context, IOMODE_RW); 944 ClearPageError(page); 945 offset = 0; 946 nbytes = desc->pg_count; 947 do { 948 int ret2; 949 950 data = list_entry(list.next, struct nfs_write_data, pages); 951 list_del_init(&data->pages); 952 953 data->pagevec[0] = page; 954 955 if (nbytes < wsize) 956 wsize = nbytes; 957 ret2 = nfs_write_rpcsetup(req, data, &nfs_write_partial_ops, 958 wsize, offset, lseg, desc->pg_ioflags); 959 if (ret == 0) 960 ret = ret2; 961 offset += wsize; 962 nbytes -= wsize; 963 } while (nbytes != 0); 964 965 put_lseg(lseg); 966 desc->pg_lseg = NULL; 967 return ret; 968 969 out_bad: 970 while (!list_empty(&list)) { 971 data = list_entry(list.next, struct nfs_write_data, pages); 972 list_del(&data->pages); 973 nfs_writedata_free(data); 974 } 975 nfs_redirty_request(req); 976 return -ENOMEM; 977 } 978 979 /* 980 * Create an RPC task for the given write request and kick it. 981 * The page must have been locked by the caller. 982 * 983 * It may happen that the page we're passed is not marked dirty. 984 * This is the case if nfs_updatepage detects a conflicting request 985 * that has been written but not committed. 986 */ 987 static int nfs_flush_one(struct nfs_pageio_descriptor *desc) 988 { 989 struct nfs_page *req; 990 struct page **pages; 991 struct nfs_write_data *data; 992 struct list_head *head = &desc->pg_list; 993 struct pnfs_layout_segment *lseg = desc->pg_lseg; 994 int ret; 995 996 data = nfs_writedata_alloc(nfs_page_array_len(desc->pg_base, 997 desc->pg_count)); 998 if (!data) { 999 while (!list_empty(head)) { 1000 req = nfs_list_entry(head->next); 1001 nfs_list_remove_request(req); 1002 nfs_redirty_request(req); 1003 } 1004 ret = -ENOMEM; 1005 goto out; 1006 } 1007 pages = data->pagevec; 1008 while (!list_empty(head)) { 1009 req = nfs_list_entry(head->next); 1010 nfs_list_remove_request(req); 1011 nfs_list_add_request(req, &data->pages); 1012 ClearPageError(req->wb_page); 1013 *pages++ = req->wb_page; 1014 } 1015 req = nfs_list_entry(data->pages.next); 1016 if ((!lseg) && list_is_singular(&data->pages)) 1017 lseg = pnfs_update_layout(desc->pg_inode, req->wb_context, IOMODE_RW); 1018 1019 if ((desc->pg_ioflags & FLUSH_COND_STABLE) && 1020 (desc->pg_moreio || NFS_I(desc->pg_inode)->ncommit)) 1021 desc->pg_ioflags &= ~FLUSH_COND_STABLE; 1022 1023 /* Set up the argument struct */ 1024 ret = nfs_write_rpcsetup(req, data, &nfs_write_full_ops, desc->pg_count, 0, lseg, desc->pg_ioflags); 1025 out: 1026 put_lseg(lseg); /* Cleans any gotten in ->pg_test */ 1027 desc->pg_lseg = NULL; 1028 return ret; 1029 } 1030 1031 static void nfs_pageio_init_write(struct nfs_pageio_descriptor *pgio, 1032 struct inode *inode, int ioflags) 1033 { 1034 size_t wsize = NFS_SERVER(inode)->wsize; 1035 1036 pnfs_pageio_init_write(pgio, inode); 1037 1038 if (wsize < PAGE_CACHE_SIZE) 1039 nfs_pageio_init(pgio, inode, nfs_flush_multi, wsize, ioflags); 1040 else 1041 nfs_pageio_init(pgio, inode, nfs_flush_one, wsize, ioflags); 1042 } 1043 1044 /* 1045 * Handle a write reply that flushed part of a page. 1046 */ 1047 static void nfs_writeback_done_partial(struct rpc_task *task, void *calldata) 1048 { 1049 struct nfs_write_data *data = calldata; 1050 1051 dprintk("NFS: %5u write(%s/%lld %d@%lld)", 1052 task->tk_pid, 1053 data->req->wb_context->path.dentry->d_inode->i_sb->s_id, 1054 (long long) 1055 NFS_FILEID(data->req->wb_context->path.dentry->d_inode), 1056 data->req->wb_bytes, (long long)req_offset(data->req)); 1057 1058 nfs_writeback_done(task, data); 1059 } 1060 1061 static void nfs_writeback_release_partial(void *calldata) 1062 { 1063 struct nfs_write_data *data = calldata; 1064 struct nfs_page *req = data->req; 1065 struct page *page = req->wb_page; 1066 int status = data->task.tk_status; 1067 1068 if (status < 0) { 1069 nfs_set_pageerror(page); 1070 nfs_context_set_write_error(req->wb_context, status); 1071 dprintk(", error = %d\n", status); 1072 goto out; 1073 } 1074 1075 if (nfs_write_need_commit(data)) { 1076 struct inode *inode = page->mapping->host; 1077 1078 spin_lock(&inode->i_lock); 1079 if (test_bit(PG_NEED_RESCHED, &req->wb_flags)) { 1080 /* Do nothing we need to resend the writes */ 1081 } else if (!test_and_set_bit(PG_NEED_COMMIT, &req->wb_flags)) { 1082 memcpy(&req->wb_verf, &data->verf, sizeof(req->wb_verf)); 1083 dprintk(" defer commit\n"); 1084 } else if (memcmp(&req->wb_verf, &data->verf, sizeof(req->wb_verf))) { 1085 set_bit(PG_NEED_RESCHED, &req->wb_flags); 1086 clear_bit(PG_NEED_COMMIT, &req->wb_flags); 1087 dprintk(" server reboot detected\n"); 1088 } 1089 spin_unlock(&inode->i_lock); 1090 } else 1091 dprintk(" OK\n"); 1092 1093 out: 1094 if (atomic_dec_and_test(&req->wb_complete)) 1095 nfs_writepage_release(req, data); 1096 nfs_writedata_release(calldata); 1097 } 1098 1099 #if defined(CONFIG_NFS_V4_1) 1100 void nfs_write_prepare(struct rpc_task *task, void *calldata) 1101 { 1102 struct nfs_write_data *data = calldata; 1103 1104 if (nfs4_setup_sequence(NFS_SERVER(data->inode), 1105 &data->args.seq_args, 1106 &data->res.seq_res, 1, task)) 1107 return; 1108 rpc_call_start(task); 1109 } 1110 #endif /* CONFIG_NFS_V4_1 */ 1111 1112 static const struct rpc_call_ops nfs_write_partial_ops = { 1113 #if defined(CONFIG_NFS_V4_1) 1114 .rpc_call_prepare = nfs_write_prepare, 1115 #endif /* CONFIG_NFS_V4_1 */ 1116 .rpc_call_done = nfs_writeback_done_partial, 1117 .rpc_release = nfs_writeback_release_partial, 1118 }; 1119 1120 /* 1121 * Handle a write reply that flushes a whole page. 1122 * 1123 * FIXME: There is an inherent race with invalidate_inode_pages and 1124 * writebacks since the page->count is kept > 1 for as long 1125 * as the page has a write request pending. 1126 */ 1127 static void nfs_writeback_done_full(struct rpc_task *task, void *calldata) 1128 { 1129 struct nfs_write_data *data = calldata; 1130 1131 nfs_writeback_done(task, data); 1132 } 1133 1134 static void nfs_writeback_release_full(void *calldata) 1135 { 1136 struct nfs_write_data *data = calldata; 1137 int status = data->task.tk_status; 1138 1139 /* Update attributes as result of writeback. */ 1140 while (!list_empty(&data->pages)) { 1141 struct nfs_page *req = nfs_list_entry(data->pages.next); 1142 struct page *page = req->wb_page; 1143 1144 nfs_list_remove_request(req); 1145 1146 dprintk("NFS: %5u write (%s/%lld %d@%lld)", 1147 data->task.tk_pid, 1148 req->wb_context->path.dentry->d_inode->i_sb->s_id, 1149 (long long)NFS_FILEID(req->wb_context->path.dentry->d_inode), 1150 req->wb_bytes, 1151 (long long)req_offset(req)); 1152 1153 if (status < 0) { 1154 nfs_set_pageerror(page); 1155 nfs_context_set_write_error(req->wb_context, status); 1156 dprintk(", error = %d\n", status); 1157 goto remove_request; 1158 } 1159 1160 if (nfs_write_need_commit(data)) { 1161 memcpy(&req->wb_verf, &data->verf, sizeof(req->wb_verf)); 1162 nfs_mark_request_commit(req, data->lseg); 1163 dprintk(" marked for commit\n"); 1164 goto next; 1165 } 1166 dprintk(" OK\n"); 1167 remove_request: 1168 nfs_inode_remove_request(req); 1169 next: 1170 nfs_clear_page_tag_locked(req); 1171 nfs_end_page_writeback(page); 1172 } 1173 nfs_writedata_release(calldata); 1174 } 1175 1176 static const struct rpc_call_ops nfs_write_full_ops = { 1177 #if defined(CONFIG_NFS_V4_1) 1178 .rpc_call_prepare = nfs_write_prepare, 1179 #endif /* CONFIG_NFS_V4_1 */ 1180 .rpc_call_done = nfs_writeback_done_full, 1181 .rpc_release = nfs_writeback_release_full, 1182 }; 1183 1184 1185 /* 1186 * This function is called when the WRITE call is complete. 1187 */ 1188 void nfs_writeback_done(struct rpc_task *task, struct nfs_write_data *data) 1189 { 1190 struct nfs_writeargs *argp = &data->args; 1191 struct nfs_writeres *resp = &data->res; 1192 struct nfs_server *server = NFS_SERVER(data->inode); 1193 int status; 1194 1195 dprintk("NFS: %5u nfs_writeback_done (status %d)\n", 1196 task->tk_pid, task->tk_status); 1197 1198 /* 1199 * ->write_done will attempt to use post-op attributes to detect 1200 * conflicting writes by other clients. A strict interpretation 1201 * of close-to-open would allow us to continue caching even if 1202 * another writer had changed the file, but some applications 1203 * depend on tighter cache coherency when writing. 1204 */ 1205 status = NFS_PROTO(data->inode)->write_done(task, data); 1206 if (status != 0) 1207 return; 1208 nfs_add_stats(data->inode, NFSIOS_SERVERWRITTENBYTES, resp->count); 1209 1210 #if defined(CONFIG_NFS_V3) || defined(CONFIG_NFS_V4) 1211 if (resp->verf->committed < argp->stable && task->tk_status >= 0) { 1212 /* We tried a write call, but the server did not 1213 * commit data to stable storage even though we 1214 * requested it. 1215 * Note: There is a known bug in Tru64 < 5.0 in which 1216 * the server reports NFS_DATA_SYNC, but performs 1217 * NFS_FILE_SYNC. We therefore implement this checking 1218 * as a dprintk() in order to avoid filling syslog. 1219 */ 1220 static unsigned long complain; 1221 1222 /* Note this will print the MDS for a DS write */ 1223 if (time_before(complain, jiffies)) { 1224 dprintk("NFS: faulty NFS server %s:" 1225 " (committed = %d) != (stable = %d)\n", 1226 server->nfs_client->cl_hostname, 1227 resp->verf->committed, argp->stable); 1228 complain = jiffies + 300 * HZ; 1229 } 1230 } 1231 #endif 1232 /* Is this a short write? */ 1233 if (task->tk_status >= 0 && resp->count < argp->count) { 1234 static unsigned long complain; 1235 1236 nfs_inc_stats(data->inode, NFSIOS_SHORTWRITE); 1237 1238 /* Has the server at least made some progress? */ 1239 if (resp->count != 0) { 1240 /* Was this an NFSv2 write or an NFSv3 stable write? */ 1241 if (resp->verf->committed != NFS_UNSTABLE) { 1242 /* Resend from where the server left off */ 1243 data->mds_offset += resp->count; 1244 argp->offset += resp->count; 1245 argp->pgbase += resp->count; 1246 argp->count -= resp->count; 1247 } else { 1248 /* Resend as a stable write in order to avoid 1249 * headaches in the case of a server crash. 1250 */ 1251 argp->stable = NFS_FILE_SYNC; 1252 } 1253 nfs_restart_rpc(task, server->nfs_client); 1254 return; 1255 } 1256 if (time_before(complain, jiffies)) { 1257 printk(KERN_WARNING 1258 "NFS: Server wrote zero bytes, expected %u.\n", 1259 argp->count); 1260 complain = jiffies + 300 * HZ; 1261 } 1262 /* Can't do anything about it except throw an error. */ 1263 task->tk_status = -EIO; 1264 } 1265 return; 1266 } 1267 1268 1269 #if defined(CONFIG_NFS_V3) || defined(CONFIG_NFS_V4) 1270 static int nfs_commit_set_lock(struct nfs_inode *nfsi, int may_wait) 1271 { 1272 int ret; 1273 1274 if (!test_and_set_bit(NFS_INO_COMMIT, &nfsi->flags)) 1275 return 1; 1276 if (!may_wait) 1277 return 0; 1278 ret = out_of_line_wait_on_bit_lock(&nfsi->flags, 1279 NFS_INO_COMMIT, 1280 nfs_wait_bit_killable, 1281 TASK_KILLABLE); 1282 return (ret < 0) ? ret : 1; 1283 } 1284 1285 void nfs_commit_clear_lock(struct nfs_inode *nfsi) 1286 { 1287 clear_bit(NFS_INO_COMMIT, &nfsi->flags); 1288 smp_mb__after_clear_bit(); 1289 wake_up_bit(&nfsi->flags, NFS_INO_COMMIT); 1290 } 1291 EXPORT_SYMBOL_GPL(nfs_commit_clear_lock); 1292 1293 void nfs_commitdata_release(void *data) 1294 { 1295 struct nfs_write_data *wdata = data; 1296 1297 put_lseg(wdata->lseg); 1298 put_nfs_open_context(wdata->args.context); 1299 nfs_commit_free(wdata); 1300 } 1301 EXPORT_SYMBOL_GPL(nfs_commitdata_release); 1302 1303 int nfs_initiate_commit(struct nfs_write_data *data, struct rpc_clnt *clnt, 1304 const struct rpc_call_ops *call_ops, 1305 int how) 1306 { 1307 struct rpc_task *task; 1308 int priority = flush_task_priority(how); 1309 struct rpc_message msg = { 1310 .rpc_argp = &data->args, 1311 .rpc_resp = &data->res, 1312 .rpc_cred = data->cred, 1313 }; 1314 struct rpc_task_setup task_setup_data = { 1315 .task = &data->task, 1316 .rpc_client = clnt, 1317 .rpc_message = &msg, 1318 .callback_ops = call_ops, 1319 .callback_data = data, 1320 .workqueue = nfsiod_workqueue, 1321 .flags = RPC_TASK_ASYNC, 1322 .priority = priority, 1323 }; 1324 /* Set up the initial task struct. */ 1325 NFS_PROTO(data->inode)->commit_setup(data, &msg); 1326 1327 dprintk("NFS: %5u initiated commit call\n", data->task.tk_pid); 1328 1329 task = rpc_run_task(&task_setup_data); 1330 if (IS_ERR(task)) 1331 return PTR_ERR(task); 1332 if (how & FLUSH_SYNC) 1333 rpc_wait_for_completion_task(task); 1334 rpc_put_task(task); 1335 return 0; 1336 } 1337 EXPORT_SYMBOL_GPL(nfs_initiate_commit); 1338 1339 /* 1340 * Set up the argument/result storage required for the RPC call. 1341 */ 1342 void nfs_init_commit(struct nfs_write_data *data, 1343 struct list_head *head, 1344 struct pnfs_layout_segment *lseg) 1345 { 1346 struct nfs_page *first = nfs_list_entry(head->next); 1347 struct inode *inode = first->wb_context->path.dentry->d_inode; 1348 1349 /* Set up the RPC argument and reply structs 1350 * NB: take care not to mess about with data->commit et al. */ 1351 1352 list_splice_init(head, &data->pages); 1353 1354 data->inode = inode; 1355 data->cred = first->wb_context->cred; 1356 data->lseg = lseg; /* reference transferred */ 1357 data->mds_ops = &nfs_commit_ops; 1358 1359 data->args.fh = NFS_FH(data->inode); 1360 /* Note: we always request a commit of the entire inode */ 1361 data->args.offset = 0; 1362 data->args.count = 0; 1363 data->args.context = get_nfs_open_context(first->wb_context); 1364 data->res.count = 0; 1365 data->res.fattr = &data->fattr; 1366 data->res.verf = &data->verf; 1367 nfs_fattr_init(&data->fattr); 1368 } 1369 EXPORT_SYMBOL_GPL(nfs_init_commit); 1370 1371 void nfs_retry_commit(struct list_head *page_list, 1372 struct pnfs_layout_segment *lseg) 1373 { 1374 struct nfs_page *req; 1375 1376 while (!list_empty(page_list)) { 1377 req = nfs_list_entry(page_list->next); 1378 nfs_list_remove_request(req); 1379 nfs_mark_request_commit(req, lseg); 1380 dec_zone_page_state(req->wb_page, NR_UNSTABLE_NFS); 1381 dec_bdi_stat(req->wb_page->mapping->backing_dev_info, 1382 BDI_RECLAIMABLE); 1383 nfs_clear_page_tag_locked(req); 1384 } 1385 } 1386 EXPORT_SYMBOL_GPL(nfs_retry_commit); 1387 1388 /* 1389 * Commit dirty pages 1390 */ 1391 static int 1392 nfs_commit_list(struct inode *inode, struct list_head *head, int how) 1393 { 1394 struct nfs_write_data *data; 1395 1396 data = nfs_commitdata_alloc(); 1397 1398 if (!data) 1399 goto out_bad; 1400 1401 /* Set up the argument struct */ 1402 nfs_init_commit(data, head, NULL); 1403 return nfs_initiate_commit(data, NFS_CLIENT(inode), data->mds_ops, how); 1404 out_bad: 1405 nfs_retry_commit(head, NULL); 1406 nfs_commit_clear_lock(NFS_I(inode)); 1407 return -ENOMEM; 1408 } 1409 1410 /* 1411 * COMMIT call returned 1412 */ 1413 static void nfs_commit_done(struct rpc_task *task, void *calldata) 1414 { 1415 struct nfs_write_data *data = calldata; 1416 1417 dprintk("NFS: %5u nfs_commit_done (status %d)\n", 1418 task->tk_pid, task->tk_status); 1419 1420 /* Call the NFS version-specific code */ 1421 if (NFS_PROTO(data->inode)->commit_done(task, data) != 0) 1422 return; 1423 } 1424 1425 void nfs_commit_release_pages(struct nfs_write_data *data) 1426 { 1427 struct nfs_page *req; 1428 int status = data->task.tk_status; 1429 1430 while (!list_empty(&data->pages)) { 1431 req = nfs_list_entry(data->pages.next); 1432 nfs_list_remove_request(req); 1433 nfs_clear_request_commit(req); 1434 1435 dprintk("NFS: commit (%s/%lld %d@%lld)", 1436 req->wb_context->path.dentry->d_inode->i_sb->s_id, 1437 (long long)NFS_FILEID(req->wb_context->path.dentry->d_inode), 1438 req->wb_bytes, 1439 (long long)req_offset(req)); 1440 if (status < 0) { 1441 nfs_context_set_write_error(req->wb_context, status); 1442 nfs_inode_remove_request(req); 1443 dprintk(", error = %d\n", status); 1444 goto next; 1445 } 1446 1447 /* Okay, COMMIT succeeded, apparently. Check the verifier 1448 * returned by the server against all stored verfs. */ 1449 if (!memcmp(req->wb_verf.verifier, data->verf.verifier, sizeof(data->verf.verifier))) { 1450 /* We have a match */ 1451 nfs_inode_remove_request(req); 1452 dprintk(" OK\n"); 1453 goto next; 1454 } 1455 /* We have a mismatch. Write the page again */ 1456 dprintk(" mismatch\n"); 1457 nfs_mark_request_dirty(req); 1458 next: 1459 nfs_clear_page_tag_locked(req); 1460 } 1461 } 1462 EXPORT_SYMBOL_GPL(nfs_commit_release_pages); 1463 1464 static void nfs_commit_release(void *calldata) 1465 { 1466 struct nfs_write_data *data = calldata; 1467 1468 nfs_commit_release_pages(data); 1469 nfs_commit_clear_lock(NFS_I(data->inode)); 1470 nfs_commitdata_release(calldata); 1471 } 1472 1473 static const struct rpc_call_ops nfs_commit_ops = { 1474 #if defined(CONFIG_NFS_V4_1) 1475 .rpc_call_prepare = nfs_write_prepare, 1476 #endif /* CONFIG_NFS_V4_1 */ 1477 .rpc_call_done = nfs_commit_done, 1478 .rpc_release = nfs_commit_release, 1479 }; 1480 1481 int nfs_commit_inode(struct inode *inode, int how) 1482 { 1483 LIST_HEAD(head); 1484 int may_wait = how & FLUSH_SYNC; 1485 int res; 1486 1487 res = nfs_commit_set_lock(NFS_I(inode), may_wait); 1488 if (res <= 0) 1489 goto out_mark_dirty; 1490 res = nfs_scan_commit(inode, &head, 0, 0); 1491 if (res) { 1492 int error; 1493 1494 error = pnfs_commit_list(inode, &head, how); 1495 if (error == PNFS_NOT_ATTEMPTED) 1496 error = nfs_commit_list(inode, &head, how); 1497 if (error < 0) 1498 return error; 1499 if (!may_wait) 1500 goto out_mark_dirty; 1501 error = wait_on_bit(&NFS_I(inode)->flags, 1502 NFS_INO_COMMIT, 1503 nfs_wait_bit_killable, 1504 TASK_KILLABLE); 1505 if (error < 0) 1506 return error; 1507 } else 1508 nfs_commit_clear_lock(NFS_I(inode)); 1509 return res; 1510 /* Note: If we exit without ensuring that the commit is complete, 1511 * we must mark the inode as dirty. Otherwise, future calls to 1512 * sync_inode() with the WB_SYNC_ALL flag set will fail to ensure 1513 * that the data is on the disk. 1514 */ 1515 out_mark_dirty: 1516 __mark_inode_dirty(inode, I_DIRTY_DATASYNC); 1517 return res; 1518 } 1519 1520 static int nfs_commit_unstable_pages(struct inode *inode, struct writeback_control *wbc) 1521 { 1522 struct nfs_inode *nfsi = NFS_I(inode); 1523 int flags = FLUSH_SYNC; 1524 int ret = 0; 1525 1526 if (wbc->sync_mode == WB_SYNC_NONE) { 1527 /* Don't commit yet if this is a non-blocking flush and there 1528 * are a lot of outstanding writes for this mapping. 1529 */ 1530 if (nfsi->ncommit <= (nfsi->npages >> 1)) 1531 goto out_mark_dirty; 1532 1533 /* don't wait for the COMMIT response */ 1534 flags = 0; 1535 } 1536 1537 ret = nfs_commit_inode(inode, flags); 1538 if (ret >= 0) { 1539 if (wbc->sync_mode == WB_SYNC_NONE) { 1540 if (ret < wbc->nr_to_write) 1541 wbc->nr_to_write -= ret; 1542 else 1543 wbc->nr_to_write = 0; 1544 } 1545 return 0; 1546 } 1547 out_mark_dirty: 1548 __mark_inode_dirty(inode, I_DIRTY_DATASYNC); 1549 return ret; 1550 } 1551 #else 1552 static int nfs_commit_unstable_pages(struct inode *inode, struct writeback_control *wbc) 1553 { 1554 return 0; 1555 } 1556 #endif 1557 1558 int nfs_write_inode(struct inode *inode, struct writeback_control *wbc) 1559 { 1560 int ret; 1561 1562 ret = nfs_commit_unstable_pages(inode, wbc); 1563 if (ret >= 0 && test_bit(NFS_INO_LAYOUTCOMMIT, &NFS_I(inode)->flags)) { 1564 int status; 1565 bool sync = true; 1566 1567 if (wbc->sync_mode == WB_SYNC_NONE || wbc->nonblocking || 1568 wbc->for_background) 1569 sync = false; 1570 1571 status = pnfs_layoutcommit_inode(inode, sync); 1572 if (status < 0) 1573 return status; 1574 } 1575 return ret; 1576 } 1577 1578 /* 1579 * flush the inode to disk. 1580 */ 1581 int nfs_wb_all(struct inode *inode) 1582 { 1583 struct writeback_control wbc = { 1584 .sync_mode = WB_SYNC_ALL, 1585 .nr_to_write = LONG_MAX, 1586 .range_start = 0, 1587 .range_end = LLONG_MAX, 1588 }; 1589 1590 return sync_inode(inode, &wbc); 1591 } 1592 1593 int nfs_wb_page_cancel(struct inode *inode, struct page *page) 1594 { 1595 struct nfs_page *req; 1596 int ret = 0; 1597 1598 BUG_ON(!PageLocked(page)); 1599 for (;;) { 1600 wait_on_page_writeback(page); 1601 req = nfs_page_find_request(page); 1602 if (req == NULL) 1603 break; 1604 if (nfs_lock_request_dontget(req)) { 1605 nfs_inode_remove_request(req); 1606 /* 1607 * In case nfs_inode_remove_request has marked the 1608 * page as being dirty 1609 */ 1610 cancel_dirty_page(page, PAGE_CACHE_SIZE); 1611 nfs_unlock_request(req); 1612 break; 1613 } 1614 ret = nfs_wait_on_request(req); 1615 nfs_release_request(req); 1616 if (ret < 0) 1617 break; 1618 } 1619 return ret; 1620 } 1621 1622 /* 1623 * Write back all requests on one page - we do this before reading it. 1624 */ 1625 int nfs_wb_page(struct inode *inode, struct page *page) 1626 { 1627 loff_t range_start = page_offset(page); 1628 loff_t range_end = range_start + (loff_t)(PAGE_CACHE_SIZE - 1); 1629 struct writeback_control wbc = { 1630 .sync_mode = WB_SYNC_ALL, 1631 .nr_to_write = 0, 1632 .range_start = range_start, 1633 .range_end = range_end, 1634 }; 1635 int ret; 1636 1637 for (;;) { 1638 wait_on_page_writeback(page); 1639 if (clear_page_dirty_for_io(page)) { 1640 ret = nfs_writepage_locked(page, &wbc); 1641 if (ret < 0) 1642 goto out_error; 1643 continue; 1644 } 1645 if (!PagePrivate(page)) 1646 break; 1647 ret = nfs_commit_inode(inode, FLUSH_SYNC); 1648 if (ret < 0) 1649 goto out_error; 1650 } 1651 return 0; 1652 out_error: 1653 return ret; 1654 } 1655 1656 #ifdef CONFIG_MIGRATION 1657 int nfs_migrate_page(struct address_space *mapping, struct page *newpage, 1658 struct page *page) 1659 { 1660 struct nfs_page *req; 1661 int ret; 1662 1663 nfs_fscache_release_page(page, GFP_KERNEL); 1664 1665 req = nfs_find_and_lock_request(page, false); 1666 ret = PTR_ERR(req); 1667 if (IS_ERR(req)) 1668 goto out; 1669 1670 ret = migrate_page(mapping, newpage, page); 1671 if (!req) 1672 goto out; 1673 if (ret) 1674 goto out_unlock; 1675 page_cache_get(newpage); 1676 spin_lock(&mapping->host->i_lock); 1677 req->wb_page = newpage; 1678 SetPagePrivate(newpage); 1679 set_page_private(newpage, (unsigned long)req); 1680 ClearPagePrivate(page); 1681 set_page_private(page, 0); 1682 spin_unlock(&mapping->host->i_lock); 1683 page_cache_release(page); 1684 out_unlock: 1685 nfs_clear_page_tag_locked(req); 1686 out: 1687 return ret; 1688 } 1689 #endif 1690 1691 int __init nfs_init_writepagecache(void) 1692 { 1693 nfs_wdata_cachep = kmem_cache_create("nfs_write_data", 1694 sizeof(struct nfs_write_data), 1695 0, SLAB_HWCACHE_ALIGN, 1696 NULL); 1697 if (nfs_wdata_cachep == NULL) 1698 return -ENOMEM; 1699 1700 nfs_wdata_mempool = mempool_create_slab_pool(MIN_POOL_WRITE, 1701 nfs_wdata_cachep); 1702 if (nfs_wdata_mempool == NULL) 1703 return -ENOMEM; 1704 1705 nfs_commit_mempool = mempool_create_slab_pool(MIN_POOL_COMMIT, 1706 nfs_wdata_cachep); 1707 if (nfs_commit_mempool == NULL) 1708 return -ENOMEM; 1709 1710 /* 1711 * NFS congestion size, scale with available memory. 1712 * 1713 * 64MB: 8192k 1714 * 128MB: 11585k 1715 * 256MB: 16384k 1716 * 512MB: 23170k 1717 * 1GB: 32768k 1718 * 2GB: 46340k 1719 * 4GB: 65536k 1720 * 8GB: 92681k 1721 * 16GB: 131072k 1722 * 1723 * This allows larger machines to have larger/more transfers. 1724 * Limit the default to 256M 1725 */ 1726 nfs_congestion_kb = (16*int_sqrt(totalram_pages)) << (PAGE_SHIFT-10); 1727 if (nfs_congestion_kb > 256*1024) 1728 nfs_congestion_kb = 256*1024; 1729 1730 return 0; 1731 } 1732 1733 void nfs_destroy_writepagecache(void) 1734 { 1735 mempool_destroy(nfs_commit_mempool); 1736 mempool_destroy(nfs_wdata_mempool); 1737 kmem_cache_destroy(nfs_wdata_cachep); 1738 } 1739 1740