xref: /linux/fs/nfs/write.c (revision 7ff836f064e2c814a7504c91a4464eea45d475bd)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * linux/fs/nfs/write.c
4  *
5  * Write file data over NFS.
6  *
7  * Copyright (C) 1996, 1997, Olaf Kirch <okir@monad.swb.de>
8  */
9 
10 #include <linux/types.h>
11 #include <linux/slab.h>
12 #include <linux/mm.h>
13 #include <linux/pagemap.h>
14 #include <linux/file.h>
15 #include <linux/writeback.h>
16 #include <linux/swap.h>
17 #include <linux/migrate.h>
18 
19 #include <linux/sunrpc/clnt.h>
20 #include <linux/nfs_fs.h>
21 #include <linux/nfs_mount.h>
22 #include <linux/nfs_page.h>
23 #include <linux/backing-dev.h>
24 #include <linux/export.h>
25 #include <linux/freezer.h>
26 #include <linux/wait.h>
27 #include <linux/iversion.h>
28 
29 #include <linux/uaccess.h>
30 #include <linux/sched/mm.h>
31 
32 #include "delegation.h"
33 #include "internal.h"
34 #include "iostat.h"
35 #include "nfs4_fs.h"
36 #include "fscache.h"
37 #include "pnfs.h"
38 
39 #include "nfstrace.h"
40 
41 #define NFSDBG_FACILITY		NFSDBG_PAGECACHE
42 
43 #define MIN_POOL_WRITE		(32)
44 #define MIN_POOL_COMMIT		(4)
45 
46 struct nfs_io_completion {
47 	void (*complete)(void *data);
48 	void *data;
49 	struct kref refcount;
50 };
51 
52 /*
53  * Local function declarations
54  */
55 static void nfs_redirty_request(struct nfs_page *req);
56 static const struct rpc_call_ops nfs_commit_ops;
57 static const struct nfs_pgio_completion_ops nfs_async_write_completion_ops;
58 static const struct nfs_commit_completion_ops nfs_commit_completion_ops;
59 static const struct nfs_rw_ops nfs_rw_write_ops;
60 static void nfs_clear_request_commit(struct nfs_page *req);
61 static void nfs_init_cinfo_from_inode(struct nfs_commit_info *cinfo,
62 				      struct inode *inode);
63 static struct nfs_page *
64 nfs_page_search_commits_for_head_request_locked(struct nfs_inode *nfsi,
65 						struct page *page);
66 
67 static struct kmem_cache *nfs_wdata_cachep;
68 static mempool_t *nfs_wdata_mempool;
69 static struct kmem_cache *nfs_cdata_cachep;
70 static mempool_t *nfs_commit_mempool;
71 
72 struct nfs_commit_data *nfs_commitdata_alloc(bool never_fail)
73 {
74 	struct nfs_commit_data *p;
75 
76 	if (never_fail)
77 		p = mempool_alloc(nfs_commit_mempool, GFP_NOIO);
78 	else {
79 		/* It is OK to do some reclaim, not no safe to wait
80 		 * for anything to be returned to the pool.
81 		 * mempool_alloc() cannot handle that particular combination,
82 		 * so we need two separate attempts.
83 		 */
84 		p = mempool_alloc(nfs_commit_mempool, GFP_NOWAIT);
85 		if (!p)
86 			p = kmem_cache_alloc(nfs_cdata_cachep, GFP_NOIO |
87 					     __GFP_NOWARN | __GFP_NORETRY);
88 		if (!p)
89 			return NULL;
90 	}
91 
92 	memset(p, 0, sizeof(*p));
93 	INIT_LIST_HEAD(&p->pages);
94 	return p;
95 }
96 EXPORT_SYMBOL_GPL(nfs_commitdata_alloc);
97 
98 void nfs_commit_free(struct nfs_commit_data *p)
99 {
100 	mempool_free(p, nfs_commit_mempool);
101 }
102 EXPORT_SYMBOL_GPL(nfs_commit_free);
103 
104 static struct nfs_pgio_header *nfs_writehdr_alloc(void)
105 {
106 	struct nfs_pgio_header *p = mempool_alloc(nfs_wdata_mempool, GFP_NOIO);
107 
108 	memset(p, 0, sizeof(*p));
109 	p->rw_mode = FMODE_WRITE;
110 	return p;
111 }
112 
113 static void nfs_writehdr_free(struct nfs_pgio_header *hdr)
114 {
115 	mempool_free(hdr, nfs_wdata_mempool);
116 }
117 
118 static struct nfs_io_completion *nfs_io_completion_alloc(gfp_t gfp_flags)
119 {
120 	return kmalloc(sizeof(struct nfs_io_completion), gfp_flags);
121 }
122 
123 static void nfs_io_completion_init(struct nfs_io_completion *ioc,
124 		void (*complete)(void *), void *data)
125 {
126 	ioc->complete = complete;
127 	ioc->data = data;
128 	kref_init(&ioc->refcount);
129 }
130 
131 static void nfs_io_completion_release(struct kref *kref)
132 {
133 	struct nfs_io_completion *ioc = container_of(kref,
134 			struct nfs_io_completion, refcount);
135 	ioc->complete(ioc->data);
136 	kfree(ioc);
137 }
138 
139 static void nfs_io_completion_get(struct nfs_io_completion *ioc)
140 {
141 	if (ioc != NULL)
142 		kref_get(&ioc->refcount);
143 }
144 
145 static void nfs_io_completion_put(struct nfs_io_completion *ioc)
146 {
147 	if (ioc != NULL)
148 		kref_put(&ioc->refcount, nfs_io_completion_release);
149 }
150 
151 static struct nfs_page *
152 nfs_page_private_request(struct page *page)
153 {
154 	if (!PagePrivate(page))
155 		return NULL;
156 	return (struct nfs_page *)page_private(page);
157 }
158 
159 /*
160  * nfs_page_find_head_request_locked - find head request associated with @page
161  *
162  * must be called while holding the inode lock.
163  *
164  * returns matching head request with reference held, or NULL if not found.
165  */
166 static struct nfs_page *
167 nfs_page_find_private_request(struct page *page)
168 {
169 	struct address_space *mapping = page_file_mapping(page);
170 	struct nfs_page *req;
171 
172 	if (!PagePrivate(page))
173 		return NULL;
174 	spin_lock(&mapping->private_lock);
175 	req = nfs_page_private_request(page);
176 	if (req) {
177 		WARN_ON_ONCE(req->wb_head != req);
178 		kref_get(&req->wb_kref);
179 	}
180 	spin_unlock(&mapping->private_lock);
181 	return req;
182 }
183 
184 static struct nfs_page *
185 nfs_page_find_swap_request(struct page *page)
186 {
187 	struct inode *inode = page_file_mapping(page)->host;
188 	struct nfs_inode *nfsi = NFS_I(inode);
189 	struct nfs_page *req = NULL;
190 	if (!PageSwapCache(page))
191 		return NULL;
192 	mutex_lock(&nfsi->commit_mutex);
193 	if (PageSwapCache(page)) {
194 		req = nfs_page_search_commits_for_head_request_locked(nfsi,
195 			page);
196 		if (req) {
197 			WARN_ON_ONCE(req->wb_head != req);
198 			kref_get(&req->wb_kref);
199 		}
200 	}
201 	mutex_unlock(&nfsi->commit_mutex);
202 	return req;
203 }
204 
205 /*
206  * nfs_page_find_head_request - find head request associated with @page
207  *
208  * returns matching head request with reference held, or NULL if not found.
209  */
210 static struct nfs_page *nfs_page_find_head_request(struct page *page)
211 {
212 	struct nfs_page *req;
213 
214 	req = nfs_page_find_private_request(page);
215 	if (!req)
216 		req = nfs_page_find_swap_request(page);
217 	return req;
218 }
219 
220 /* Adjust the file length if we're writing beyond the end */
221 static void nfs_grow_file(struct page *page, unsigned int offset, unsigned int count)
222 {
223 	struct inode *inode = page_file_mapping(page)->host;
224 	loff_t end, i_size;
225 	pgoff_t end_index;
226 
227 	spin_lock(&inode->i_lock);
228 	i_size = i_size_read(inode);
229 	end_index = (i_size - 1) >> PAGE_SHIFT;
230 	if (i_size > 0 && page_index(page) < end_index)
231 		goto out;
232 	end = page_file_offset(page) + ((loff_t)offset+count);
233 	if (i_size >= end)
234 		goto out;
235 	i_size_write(inode, end);
236 	NFS_I(inode)->cache_validity &= ~NFS_INO_INVALID_SIZE;
237 	nfs_inc_stats(inode, NFSIOS_EXTENDWRITE);
238 out:
239 	spin_unlock(&inode->i_lock);
240 }
241 
242 /* A writeback failed: mark the page as bad, and invalidate the page cache */
243 static void nfs_set_pageerror(struct address_space *mapping)
244 {
245 	nfs_zap_mapping(mapping->host, mapping);
246 }
247 
248 static void nfs_mapping_set_error(struct page *page, int error)
249 {
250 	SetPageError(page);
251 	mapping_set_error(page_file_mapping(page), error);
252 }
253 
254 /*
255  * nfs_page_group_search_locked
256  * @head - head request of page group
257  * @page_offset - offset into page
258  *
259  * Search page group with head @head to find a request that contains the
260  * page offset @page_offset.
261  *
262  * Returns a pointer to the first matching nfs request, or NULL if no
263  * match is found.
264  *
265  * Must be called with the page group lock held
266  */
267 static struct nfs_page *
268 nfs_page_group_search_locked(struct nfs_page *head, unsigned int page_offset)
269 {
270 	struct nfs_page *req;
271 
272 	req = head;
273 	do {
274 		if (page_offset >= req->wb_pgbase &&
275 		    page_offset < (req->wb_pgbase + req->wb_bytes))
276 			return req;
277 
278 		req = req->wb_this_page;
279 	} while (req != head);
280 
281 	return NULL;
282 }
283 
284 /*
285  * nfs_page_group_covers_page
286  * @head - head request of page group
287  *
288  * Return true if the page group with head @head covers the whole page,
289  * returns false otherwise
290  */
291 static bool nfs_page_group_covers_page(struct nfs_page *req)
292 {
293 	struct nfs_page *tmp;
294 	unsigned int pos = 0;
295 	unsigned int len = nfs_page_length(req->wb_page);
296 
297 	nfs_page_group_lock(req);
298 
299 	for (;;) {
300 		tmp = nfs_page_group_search_locked(req->wb_head, pos);
301 		if (!tmp)
302 			break;
303 		pos = tmp->wb_pgbase + tmp->wb_bytes;
304 	}
305 
306 	nfs_page_group_unlock(req);
307 	return pos >= len;
308 }
309 
310 /* We can set the PG_uptodate flag if we see that a write request
311  * covers the full page.
312  */
313 static void nfs_mark_uptodate(struct nfs_page *req)
314 {
315 	if (PageUptodate(req->wb_page))
316 		return;
317 	if (!nfs_page_group_covers_page(req))
318 		return;
319 	SetPageUptodate(req->wb_page);
320 }
321 
322 static int wb_priority(struct writeback_control *wbc)
323 {
324 	int ret = 0;
325 
326 	if (wbc->sync_mode == WB_SYNC_ALL)
327 		ret = FLUSH_COND_STABLE;
328 	return ret;
329 }
330 
331 /*
332  * NFS congestion control
333  */
334 
335 int nfs_congestion_kb;
336 
337 #define NFS_CONGESTION_ON_THRESH 	(nfs_congestion_kb >> (PAGE_SHIFT-10))
338 #define NFS_CONGESTION_OFF_THRESH	\
339 	(NFS_CONGESTION_ON_THRESH - (NFS_CONGESTION_ON_THRESH >> 2))
340 
341 static void nfs_set_page_writeback(struct page *page)
342 {
343 	struct inode *inode = page_file_mapping(page)->host;
344 	struct nfs_server *nfss = NFS_SERVER(inode);
345 	int ret = test_set_page_writeback(page);
346 
347 	WARN_ON_ONCE(ret != 0);
348 
349 	if (atomic_long_inc_return(&nfss->writeback) >
350 			NFS_CONGESTION_ON_THRESH)
351 		set_bdi_congested(inode_to_bdi(inode), BLK_RW_ASYNC);
352 }
353 
354 static void nfs_end_page_writeback(struct nfs_page *req)
355 {
356 	struct inode *inode = page_file_mapping(req->wb_page)->host;
357 	struct nfs_server *nfss = NFS_SERVER(inode);
358 	bool is_done;
359 
360 	is_done = nfs_page_group_sync_on_bit(req, PG_WB_END);
361 	nfs_unlock_request(req);
362 	if (!is_done)
363 		return;
364 
365 	end_page_writeback(req->wb_page);
366 	if (atomic_long_dec_return(&nfss->writeback) < NFS_CONGESTION_OFF_THRESH)
367 		clear_bdi_congested(inode_to_bdi(inode), BLK_RW_ASYNC);
368 }
369 
370 /*
371  * nfs_unroll_locks_and_wait -  unlock all newly locked reqs and wait on @req
372  *
373  * this is a helper function for nfs_lock_and_join_requests
374  *
375  * @inode - inode associated with request page group, must be holding inode lock
376  * @head  - head request of page group, must be holding head lock
377  * @req   - request that couldn't lock and needs to wait on the req bit lock
378  *
379  * NOTE: this must be called holding page_group bit lock
380  *       which will be released before returning.
381  *
382  * returns 0 on success, < 0 on error.
383  */
384 static void
385 nfs_unroll_locks(struct inode *inode, struct nfs_page *head,
386 			  struct nfs_page *req)
387 {
388 	struct nfs_page *tmp;
389 
390 	/* relinquish all the locks successfully grabbed this run */
391 	for (tmp = head->wb_this_page ; tmp != req; tmp = tmp->wb_this_page) {
392 		if (!kref_read(&tmp->wb_kref))
393 			continue;
394 		nfs_unlock_and_release_request(tmp);
395 	}
396 }
397 
398 /*
399  * nfs_destroy_unlinked_subrequests - destroy recently unlinked subrequests
400  *
401  * @destroy_list - request list (using wb_this_page) terminated by @old_head
402  * @old_head - the old head of the list
403  *
404  * All subrequests must be locked and removed from all lists, so at this point
405  * they are only "active" in this function, and possibly in nfs_wait_on_request
406  * with a reference held by some other context.
407  */
408 static void
409 nfs_destroy_unlinked_subrequests(struct nfs_page *destroy_list,
410 				 struct nfs_page *old_head,
411 				 struct inode *inode)
412 {
413 	while (destroy_list) {
414 		struct nfs_page *subreq = destroy_list;
415 
416 		destroy_list = (subreq->wb_this_page == old_head) ?
417 				   NULL : subreq->wb_this_page;
418 
419 		WARN_ON_ONCE(old_head != subreq->wb_head);
420 
421 		/* make sure old group is not used */
422 		subreq->wb_this_page = subreq;
423 
424 		clear_bit(PG_REMOVE, &subreq->wb_flags);
425 
426 		/* Note: races with nfs_page_group_destroy() */
427 		if (!kref_read(&subreq->wb_kref)) {
428 			/* Check if we raced with nfs_page_group_destroy() */
429 			if (test_and_clear_bit(PG_TEARDOWN, &subreq->wb_flags))
430 				nfs_free_request(subreq);
431 			continue;
432 		}
433 
434 		subreq->wb_head = subreq;
435 
436 		if (test_and_clear_bit(PG_INODE_REF, &subreq->wb_flags)) {
437 			nfs_release_request(subreq);
438 			atomic_long_dec(&NFS_I(inode)->nrequests);
439 		}
440 
441 		/* subreq is now totally disconnected from page group or any
442 		 * write / commit lists. last chance to wake any waiters */
443 		nfs_unlock_and_release_request(subreq);
444 	}
445 }
446 
447 /*
448  * nfs_lock_and_join_requests - join all subreqs to the head req and return
449  *                              a locked reference, cancelling any pending
450  *                              operations for this page.
451  *
452  * @page - the page used to lookup the "page group" of nfs_page structures
453  *
454  * This function joins all sub requests to the head request by first
455  * locking all requests in the group, cancelling any pending operations
456  * and finally updating the head request to cover the whole range covered by
457  * the (former) group.  All subrequests are removed from any write or commit
458  * lists, unlinked from the group and destroyed.
459  *
460  * Returns a locked, referenced pointer to the head request - which after
461  * this call is guaranteed to be the only request associated with the page.
462  * Returns NULL if no requests are found for @page, or a ERR_PTR if an
463  * error was encountered.
464  */
465 static struct nfs_page *
466 nfs_lock_and_join_requests(struct page *page)
467 {
468 	struct inode *inode = page_file_mapping(page)->host;
469 	struct nfs_page *head, *subreq;
470 	struct nfs_page *destroy_list = NULL;
471 	unsigned int total_bytes;
472 	int ret;
473 
474 try_again:
475 	/*
476 	 * A reference is taken only on the head request which acts as a
477 	 * reference to the whole page group - the group will not be destroyed
478 	 * until the head reference is released.
479 	 */
480 	head = nfs_page_find_head_request(page);
481 	if (!head)
482 		return NULL;
483 
484 	/* lock the page head first in order to avoid an ABBA inefficiency */
485 	if (!nfs_lock_request(head)) {
486 		ret = nfs_wait_on_request(head);
487 		nfs_release_request(head);
488 		if (ret < 0)
489 			return ERR_PTR(ret);
490 		goto try_again;
491 	}
492 
493 	/* Ensure that nobody removed the request before we locked it */
494 	if (head != nfs_page_private_request(page) && !PageSwapCache(page)) {
495 		nfs_unlock_and_release_request(head);
496 		goto try_again;
497 	}
498 
499 	ret = nfs_page_group_lock(head);
500 	if (ret < 0)
501 		goto release_request;
502 
503 	/* lock each request in the page group */
504 	total_bytes = head->wb_bytes;
505 	for (subreq = head->wb_this_page; subreq != head;
506 			subreq = subreq->wb_this_page) {
507 
508 		if (!kref_get_unless_zero(&subreq->wb_kref)) {
509 			if (subreq->wb_offset == head->wb_offset + total_bytes)
510 				total_bytes += subreq->wb_bytes;
511 			continue;
512 		}
513 
514 		while (!nfs_lock_request(subreq)) {
515 			/*
516 			 * Unlock page to allow nfs_page_group_sync_on_bit()
517 			 * to succeed
518 			 */
519 			nfs_page_group_unlock(head);
520 			ret = nfs_wait_on_request(subreq);
521 			if (!ret)
522 				ret = nfs_page_group_lock(head);
523 			if (ret < 0) {
524 				nfs_unroll_locks(inode, head, subreq);
525 				nfs_release_request(subreq);
526 				goto release_request;
527 			}
528 		}
529 		/*
530 		 * Subrequests are always contiguous, non overlapping
531 		 * and in order - but may be repeated (mirrored writes).
532 		 */
533 		if (subreq->wb_offset == (head->wb_offset + total_bytes)) {
534 			/* keep track of how many bytes this group covers */
535 			total_bytes += subreq->wb_bytes;
536 		} else if (WARN_ON_ONCE(subreq->wb_offset < head->wb_offset ||
537 			    ((subreq->wb_offset + subreq->wb_bytes) >
538 			     (head->wb_offset + total_bytes)))) {
539 			nfs_page_group_unlock(head);
540 			nfs_unroll_locks(inode, head, subreq);
541 			nfs_unlock_and_release_request(subreq);
542 			ret = -EIO;
543 			goto release_request;
544 		}
545 	}
546 
547 	/* Now that all requests are locked, make sure they aren't on any list.
548 	 * Commit list removal accounting is done after locks are dropped */
549 	subreq = head;
550 	do {
551 		nfs_clear_request_commit(subreq);
552 		subreq = subreq->wb_this_page;
553 	} while (subreq != head);
554 
555 	/* unlink subrequests from head, destroy them later */
556 	if (head->wb_this_page != head) {
557 		/* destroy list will be terminated by head */
558 		destroy_list = head->wb_this_page;
559 		head->wb_this_page = head;
560 
561 		/* change head request to cover whole range that
562 		 * the former page group covered */
563 		head->wb_bytes = total_bytes;
564 	}
565 
566 	/* Postpone destruction of this request */
567 	if (test_and_clear_bit(PG_REMOVE, &head->wb_flags)) {
568 		set_bit(PG_INODE_REF, &head->wb_flags);
569 		kref_get(&head->wb_kref);
570 		atomic_long_inc(&NFS_I(inode)->nrequests);
571 	}
572 
573 	nfs_page_group_unlock(head);
574 
575 	nfs_destroy_unlinked_subrequests(destroy_list, head, inode);
576 
577 	/* Did we lose a race with nfs_inode_remove_request()? */
578 	if (!(PagePrivate(page) || PageSwapCache(page))) {
579 		nfs_unlock_and_release_request(head);
580 		return NULL;
581 	}
582 
583 	/* still holds ref on head from nfs_page_find_head_request
584 	 * and still has lock on head from lock loop */
585 	return head;
586 
587 release_request:
588 	nfs_unlock_and_release_request(head);
589 	return ERR_PTR(ret);
590 }
591 
592 static void nfs_write_error(struct nfs_page *req, int error)
593 {
594 	nfs_mapping_set_error(req->wb_page, error);
595 	nfs_end_page_writeback(req);
596 	nfs_release_request(req);
597 }
598 
599 static bool
600 nfs_error_is_fatal_on_server(int err)
601 {
602 	switch (err) {
603 	case 0:
604 	case -ERESTARTSYS:
605 	case -EINTR:
606 		return false;
607 	}
608 	return nfs_error_is_fatal(err);
609 }
610 
611 /*
612  * Find an associated nfs write request, and prepare to flush it out
613  * May return an error if the user signalled nfs_wait_on_request().
614  */
615 static int nfs_page_async_flush(struct nfs_pageio_descriptor *pgio,
616 				struct page *page)
617 {
618 	struct address_space *mapping;
619 	struct nfs_page *req;
620 	int ret = 0;
621 
622 	req = nfs_lock_and_join_requests(page);
623 	if (!req)
624 		goto out;
625 	ret = PTR_ERR(req);
626 	if (IS_ERR(req))
627 		goto out;
628 
629 	nfs_set_page_writeback(page);
630 	WARN_ON_ONCE(test_bit(PG_CLEAN, &req->wb_flags));
631 
632 	/* If there is a fatal error that covers this write, just exit */
633 	ret = 0;
634 	mapping = page_file_mapping(page);
635 	if (test_bit(AS_ENOSPC, &mapping->flags) ||
636 	    test_bit(AS_EIO, &mapping->flags))
637 		goto out_launder;
638 
639 	if (!nfs_pageio_add_request(pgio, req)) {
640 		ret = pgio->pg_error;
641 		/*
642 		 * Remove the problematic req upon fatal errors on the server
643 		 */
644 		if (nfs_error_is_fatal(ret)) {
645 			if (nfs_error_is_fatal_on_server(ret))
646 				goto out_launder;
647 		} else
648 			ret = -EAGAIN;
649 		nfs_redirty_request(req);
650 	} else
651 		nfs_add_stats(page_file_mapping(page)->host,
652 				NFSIOS_WRITEPAGES, 1);
653 out:
654 	return ret;
655 out_launder:
656 	nfs_write_error(req, ret);
657 	return 0;
658 }
659 
660 static int nfs_do_writepage(struct page *page, struct writeback_control *wbc,
661 			    struct nfs_pageio_descriptor *pgio)
662 {
663 	int ret;
664 
665 	nfs_pageio_cond_complete(pgio, page_index(page));
666 	ret = nfs_page_async_flush(pgio, page);
667 	if (ret == -EAGAIN) {
668 		redirty_page_for_writepage(wbc, page);
669 		ret = 0;
670 	}
671 	return ret;
672 }
673 
674 /*
675  * Write an mmapped page to the server.
676  */
677 static int nfs_writepage_locked(struct page *page,
678 				struct writeback_control *wbc)
679 {
680 	struct nfs_pageio_descriptor pgio;
681 	struct inode *inode = page_file_mapping(page)->host;
682 	int err;
683 
684 	nfs_inc_stats(inode, NFSIOS_VFSWRITEPAGE);
685 	nfs_pageio_init_write(&pgio, inode, 0,
686 				false, &nfs_async_write_completion_ops);
687 	err = nfs_do_writepage(page, wbc, &pgio);
688 	nfs_pageio_complete(&pgio);
689 	if (err < 0)
690 		return err;
691 	if (pgio.pg_error < 0)
692 		return pgio.pg_error;
693 	return 0;
694 }
695 
696 int nfs_writepage(struct page *page, struct writeback_control *wbc)
697 {
698 	int ret;
699 
700 	ret = nfs_writepage_locked(page, wbc);
701 	unlock_page(page);
702 	return ret;
703 }
704 
705 static int nfs_writepages_callback(struct page *page, struct writeback_control *wbc, void *data)
706 {
707 	int ret;
708 
709 	ret = nfs_do_writepage(page, wbc, data);
710 	unlock_page(page);
711 	return ret;
712 }
713 
714 static void nfs_io_completion_commit(void *inode)
715 {
716 	nfs_commit_inode(inode, 0);
717 }
718 
719 int nfs_writepages(struct address_space *mapping, struct writeback_control *wbc)
720 {
721 	struct inode *inode = mapping->host;
722 	struct nfs_pageio_descriptor pgio;
723 	struct nfs_io_completion *ioc;
724 	unsigned int pflags = memalloc_nofs_save();
725 	int err;
726 
727 	nfs_inc_stats(inode, NFSIOS_VFSWRITEPAGES);
728 
729 	ioc = nfs_io_completion_alloc(GFP_NOFS);
730 	if (ioc)
731 		nfs_io_completion_init(ioc, nfs_io_completion_commit, inode);
732 
733 	nfs_pageio_init_write(&pgio, inode, wb_priority(wbc), false,
734 				&nfs_async_write_completion_ops);
735 	pgio.pg_io_completion = ioc;
736 	err = write_cache_pages(mapping, wbc, nfs_writepages_callback, &pgio);
737 	nfs_pageio_complete(&pgio);
738 	nfs_io_completion_put(ioc);
739 
740 	memalloc_nofs_restore(pflags);
741 
742 	if (err < 0)
743 		goto out_err;
744 	err = pgio.pg_error;
745 	if (err < 0)
746 		goto out_err;
747 	return 0;
748 out_err:
749 	return err;
750 }
751 
752 /*
753  * Insert a write request into an inode
754  */
755 static void nfs_inode_add_request(struct inode *inode, struct nfs_page *req)
756 {
757 	struct address_space *mapping = page_file_mapping(req->wb_page);
758 	struct nfs_inode *nfsi = NFS_I(inode);
759 
760 	WARN_ON_ONCE(req->wb_this_page != req);
761 
762 	/* Lock the request! */
763 	nfs_lock_request(req);
764 
765 	/*
766 	 * Swap-space should not get truncated. Hence no need to plug the race
767 	 * with invalidate/truncate.
768 	 */
769 	spin_lock(&mapping->private_lock);
770 	if (!nfs_have_writebacks(inode) &&
771 	    NFS_PROTO(inode)->have_delegation(inode, FMODE_WRITE))
772 		inode_inc_iversion_raw(inode);
773 	if (likely(!PageSwapCache(req->wb_page))) {
774 		set_bit(PG_MAPPED, &req->wb_flags);
775 		SetPagePrivate(req->wb_page);
776 		set_page_private(req->wb_page, (unsigned long)req);
777 	}
778 	spin_unlock(&mapping->private_lock);
779 	atomic_long_inc(&nfsi->nrequests);
780 	/* this a head request for a page group - mark it as having an
781 	 * extra reference so sub groups can follow suit.
782 	 * This flag also informs pgio layer when to bump nrequests when
783 	 * adding subrequests. */
784 	WARN_ON(test_and_set_bit(PG_INODE_REF, &req->wb_flags));
785 	kref_get(&req->wb_kref);
786 }
787 
788 /*
789  * Remove a write request from an inode
790  */
791 static void nfs_inode_remove_request(struct nfs_page *req)
792 {
793 	struct address_space *mapping = page_file_mapping(req->wb_page);
794 	struct inode *inode = mapping->host;
795 	struct nfs_inode *nfsi = NFS_I(inode);
796 	struct nfs_page *head;
797 
798 	atomic_long_dec(&nfsi->nrequests);
799 	if (nfs_page_group_sync_on_bit(req, PG_REMOVE)) {
800 		head = req->wb_head;
801 
802 		spin_lock(&mapping->private_lock);
803 		if (likely(head->wb_page && !PageSwapCache(head->wb_page))) {
804 			set_page_private(head->wb_page, 0);
805 			ClearPagePrivate(head->wb_page);
806 			clear_bit(PG_MAPPED, &head->wb_flags);
807 		}
808 		spin_unlock(&mapping->private_lock);
809 	}
810 
811 	if (test_and_clear_bit(PG_INODE_REF, &req->wb_flags))
812 		nfs_release_request(req);
813 }
814 
815 static void
816 nfs_mark_request_dirty(struct nfs_page *req)
817 {
818 	if (req->wb_page)
819 		__set_page_dirty_nobuffers(req->wb_page);
820 }
821 
822 /*
823  * nfs_page_search_commits_for_head_request_locked
824  *
825  * Search through commit lists on @inode for the head request for @page.
826  * Must be called while holding the inode (which is cinfo) lock.
827  *
828  * Returns the head request if found, or NULL if not found.
829  */
830 static struct nfs_page *
831 nfs_page_search_commits_for_head_request_locked(struct nfs_inode *nfsi,
832 						struct page *page)
833 {
834 	struct nfs_page *freq, *t;
835 	struct nfs_commit_info cinfo;
836 	struct inode *inode = &nfsi->vfs_inode;
837 
838 	nfs_init_cinfo_from_inode(&cinfo, inode);
839 
840 	/* search through pnfs commit lists */
841 	freq = pnfs_search_commit_reqs(inode, &cinfo, page);
842 	if (freq)
843 		return freq->wb_head;
844 
845 	/* Linearly search the commit list for the correct request */
846 	list_for_each_entry_safe(freq, t, &cinfo.mds->list, wb_list) {
847 		if (freq->wb_page == page)
848 			return freq->wb_head;
849 	}
850 
851 	return NULL;
852 }
853 
854 /**
855  * nfs_request_add_commit_list_locked - add request to a commit list
856  * @req: pointer to a struct nfs_page
857  * @dst: commit list head
858  * @cinfo: holds list lock and accounting info
859  *
860  * This sets the PG_CLEAN bit, updates the cinfo count of
861  * number of outstanding requests requiring a commit as well as
862  * the MM page stats.
863  *
864  * The caller must hold NFS_I(cinfo->inode)->commit_mutex, and the
865  * nfs_page lock.
866  */
867 void
868 nfs_request_add_commit_list_locked(struct nfs_page *req, struct list_head *dst,
869 			    struct nfs_commit_info *cinfo)
870 {
871 	set_bit(PG_CLEAN, &req->wb_flags);
872 	nfs_list_add_request(req, dst);
873 	atomic_long_inc(&cinfo->mds->ncommit);
874 }
875 EXPORT_SYMBOL_GPL(nfs_request_add_commit_list_locked);
876 
877 /**
878  * nfs_request_add_commit_list - add request to a commit list
879  * @req: pointer to a struct nfs_page
880  * @cinfo: holds list lock and accounting info
881  *
882  * This sets the PG_CLEAN bit, updates the cinfo count of
883  * number of outstanding requests requiring a commit as well as
884  * the MM page stats.
885  *
886  * The caller must _not_ hold the cinfo->lock, but must be
887  * holding the nfs_page lock.
888  */
889 void
890 nfs_request_add_commit_list(struct nfs_page *req, struct nfs_commit_info *cinfo)
891 {
892 	mutex_lock(&NFS_I(cinfo->inode)->commit_mutex);
893 	nfs_request_add_commit_list_locked(req, &cinfo->mds->list, cinfo);
894 	mutex_unlock(&NFS_I(cinfo->inode)->commit_mutex);
895 	if (req->wb_page)
896 		nfs_mark_page_unstable(req->wb_page, cinfo);
897 }
898 EXPORT_SYMBOL_GPL(nfs_request_add_commit_list);
899 
900 /**
901  * nfs_request_remove_commit_list - Remove request from a commit list
902  * @req: pointer to a nfs_page
903  * @cinfo: holds list lock and accounting info
904  *
905  * This clears the PG_CLEAN bit, and updates the cinfo's count of
906  * number of outstanding requests requiring a commit
907  * It does not update the MM page stats.
908  *
909  * The caller _must_ hold the cinfo->lock and the nfs_page lock.
910  */
911 void
912 nfs_request_remove_commit_list(struct nfs_page *req,
913 			       struct nfs_commit_info *cinfo)
914 {
915 	if (!test_and_clear_bit(PG_CLEAN, &(req)->wb_flags))
916 		return;
917 	nfs_list_remove_request(req);
918 	atomic_long_dec(&cinfo->mds->ncommit);
919 }
920 EXPORT_SYMBOL_GPL(nfs_request_remove_commit_list);
921 
922 static void nfs_init_cinfo_from_inode(struct nfs_commit_info *cinfo,
923 				      struct inode *inode)
924 {
925 	cinfo->inode = inode;
926 	cinfo->mds = &NFS_I(inode)->commit_info;
927 	cinfo->ds = pnfs_get_ds_info(inode);
928 	cinfo->dreq = NULL;
929 	cinfo->completion_ops = &nfs_commit_completion_ops;
930 }
931 
932 void nfs_init_cinfo(struct nfs_commit_info *cinfo,
933 		    struct inode *inode,
934 		    struct nfs_direct_req *dreq)
935 {
936 	if (dreq)
937 		nfs_init_cinfo_from_dreq(cinfo, dreq);
938 	else
939 		nfs_init_cinfo_from_inode(cinfo, inode);
940 }
941 EXPORT_SYMBOL_GPL(nfs_init_cinfo);
942 
943 /*
944  * Add a request to the inode's commit list.
945  */
946 void
947 nfs_mark_request_commit(struct nfs_page *req, struct pnfs_layout_segment *lseg,
948 			struct nfs_commit_info *cinfo, u32 ds_commit_idx)
949 {
950 	if (pnfs_mark_request_commit(req, lseg, cinfo, ds_commit_idx))
951 		return;
952 	nfs_request_add_commit_list(req, cinfo);
953 }
954 
955 static void
956 nfs_clear_page_commit(struct page *page)
957 {
958 	dec_node_page_state(page, NR_UNSTABLE_NFS);
959 	dec_wb_stat(&inode_to_bdi(page_file_mapping(page)->host)->wb,
960 		    WB_RECLAIMABLE);
961 }
962 
963 /* Called holding the request lock on @req */
964 static void
965 nfs_clear_request_commit(struct nfs_page *req)
966 {
967 	if (test_bit(PG_CLEAN, &req->wb_flags)) {
968 		struct nfs_open_context *ctx = nfs_req_openctx(req);
969 		struct inode *inode = d_inode(ctx->dentry);
970 		struct nfs_commit_info cinfo;
971 
972 		nfs_init_cinfo_from_inode(&cinfo, inode);
973 		mutex_lock(&NFS_I(inode)->commit_mutex);
974 		if (!pnfs_clear_request_commit(req, &cinfo)) {
975 			nfs_request_remove_commit_list(req, &cinfo);
976 		}
977 		mutex_unlock(&NFS_I(inode)->commit_mutex);
978 		nfs_clear_page_commit(req->wb_page);
979 	}
980 }
981 
982 int nfs_write_need_commit(struct nfs_pgio_header *hdr)
983 {
984 	if (hdr->verf.committed == NFS_DATA_SYNC)
985 		return hdr->lseg == NULL;
986 	return hdr->verf.committed != NFS_FILE_SYNC;
987 }
988 
989 static void nfs_async_write_init(struct nfs_pgio_header *hdr)
990 {
991 	nfs_io_completion_get(hdr->io_completion);
992 }
993 
994 static void nfs_write_completion(struct nfs_pgio_header *hdr)
995 {
996 	struct nfs_commit_info cinfo;
997 	unsigned long bytes = 0;
998 
999 	if (test_bit(NFS_IOHDR_REDO, &hdr->flags))
1000 		goto out;
1001 	nfs_init_cinfo_from_inode(&cinfo, hdr->inode);
1002 	while (!list_empty(&hdr->pages)) {
1003 		struct nfs_page *req = nfs_list_entry(hdr->pages.next);
1004 
1005 		bytes += req->wb_bytes;
1006 		nfs_list_remove_request(req);
1007 		if (test_bit(NFS_IOHDR_ERROR, &hdr->flags) &&
1008 		    (hdr->good_bytes < bytes)) {
1009 			nfs_set_pageerror(page_file_mapping(req->wb_page));
1010 			nfs_mapping_set_error(req->wb_page, hdr->error);
1011 			goto remove_req;
1012 		}
1013 		if (nfs_write_need_commit(hdr)) {
1014 			/* Reset wb_nio, since the write was successful. */
1015 			req->wb_nio = 0;
1016 			memcpy(&req->wb_verf, &hdr->verf.verifier, sizeof(req->wb_verf));
1017 			nfs_mark_request_commit(req, hdr->lseg, &cinfo,
1018 				hdr->pgio_mirror_idx);
1019 			goto next;
1020 		}
1021 remove_req:
1022 		nfs_inode_remove_request(req);
1023 next:
1024 		nfs_end_page_writeback(req);
1025 		nfs_release_request(req);
1026 	}
1027 out:
1028 	nfs_io_completion_put(hdr->io_completion);
1029 	hdr->release(hdr);
1030 }
1031 
1032 unsigned long
1033 nfs_reqs_to_commit(struct nfs_commit_info *cinfo)
1034 {
1035 	return atomic_long_read(&cinfo->mds->ncommit);
1036 }
1037 
1038 /* NFS_I(cinfo->inode)->commit_mutex held by caller */
1039 int
1040 nfs_scan_commit_list(struct list_head *src, struct list_head *dst,
1041 		     struct nfs_commit_info *cinfo, int max)
1042 {
1043 	struct nfs_page *req, *tmp;
1044 	int ret = 0;
1045 
1046 restart:
1047 	list_for_each_entry_safe(req, tmp, src, wb_list) {
1048 		kref_get(&req->wb_kref);
1049 		if (!nfs_lock_request(req)) {
1050 			int status;
1051 
1052 			/* Prevent deadlock with nfs_lock_and_join_requests */
1053 			if (!list_empty(dst)) {
1054 				nfs_release_request(req);
1055 				continue;
1056 			}
1057 			/* Ensure we make progress to prevent livelock */
1058 			mutex_unlock(&NFS_I(cinfo->inode)->commit_mutex);
1059 			status = nfs_wait_on_request(req);
1060 			nfs_release_request(req);
1061 			mutex_lock(&NFS_I(cinfo->inode)->commit_mutex);
1062 			if (status < 0)
1063 				break;
1064 			goto restart;
1065 		}
1066 		nfs_request_remove_commit_list(req, cinfo);
1067 		clear_bit(PG_COMMIT_TO_DS, &req->wb_flags);
1068 		nfs_list_add_request(req, dst);
1069 		ret++;
1070 		if ((ret == max) && !cinfo->dreq)
1071 			break;
1072 		cond_resched();
1073 	}
1074 	return ret;
1075 }
1076 EXPORT_SYMBOL_GPL(nfs_scan_commit_list);
1077 
1078 /*
1079  * nfs_scan_commit - Scan an inode for commit requests
1080  * @inode: NFS inode to scan
1081  * @dst: mds destination list
1082  * @cinfo: mds and ds lists of reqs ready to commit
1083  *
1084  * Moves requests from the inode's 'commit' request list.
1085  * The requests are *not* checked to ensure that they form a contiguous set.
1086  */
1087 int
1088 nfs_scan_commit(struct inode *inode, struct list_head *dst,
1089 		struct nfs_commit_info *cinfo)
1090 {
1091 	int ret = 0;
1092 
1093 	if (!atomic_long_read(&cinfo->mds->ncommit))
1094 		return 0;
1095 	mutex_lock(&NFS_I(cinfo->inode)->commit_mutex);
1096 	if (atomic_long_read(&cinfo->mds->ncommit) > 0) {
1097 		const int max = INT_MAX;
1098 
1099 		ret = nfs_scan_commit_list(&cinfo->mds->list, dst,
1100 					   cinfo, max);
1101 		ret += pnfs_scan_commit_lists(inode, cinfo, max - ret);
1102 	}
1103 	mutex_unlock(&NFS_I(cinfo->inode)->commit_mutex);
1104 	return ret;
1105 }
1106 
1107 /*
1108  * Search for an existing write request, and attempt to update
1109  * it to reflect a new dirty region on a given page.
1110  *
1111  * If the attempt fails, then the existing request is flushed out
1112  * to disk.
1113  */
1114 static struct nfs_page *nfs_try_to_update_request(struct inode *inode,
1115 		struct page *page,
1116 		unsigned int offset,
1117 		unsigned int bytes)
1118 {
1119 	struct nfs_page *req;
1120 	unsigned int rqend;
1121 	unsigned int end;
1122 	int error;
1123 
1124 	end = offset + bytes;
1125 
1126 	req = nfs_lock_and_join_requests(page);
1127 	if (IS_ERR_OR_NULL(req))
1128 		return req;
1129 
1130 	rqend = req->wb_offset + req->wb_bytes;
1131 	/*
1132 	 * Tell the caller to flush out the request if
1133 	 * the offsets are non-contiguous.
1134 	 * Note: nfs_flush_incompatible() will already
1135 	 * have flushed out requests having wrong owners.
1136 	 */
1137 	if (offset > rqend || end < req->wb_offset)
1138 		goto out_flushme;
1139 
1140 	/* Okay, the request matches. Update the region */
1141 	if (offset < req->wb_offset) {
1142 		req->wb_offset = offset;
1143 		req->wb_pgbase = offset;
1144 	}
1145 	if (end > rqend)
1146 		req->wb_bytes = end - req->wb_offset;
1147 	else
1148 		req->wb_bytes = rqend - req->wb_offset;
1149 	req->wb_nio = 0;
1150 	return req;
1151 out_flushme:
1152 	/*
1153 	 * Note: we mark the request dirty here because
1154 	 * nfs_lock_and_join_requests() cannot preserve
1155 	 * commit flags, so we have to replay the write.
1156 	 */
1157 	nfs_mark_request_dirty(req);
1158 	nfs_unlock_and_release_request(req);
1159 	error = nfs_wb_page(inode, page);
1160 	return (error < 0) ? ERR_PTR(error) : NULL;
1161 }
1162 
1163 /*
1164  * Try to update an existing write request, or create one if there is none.
1165  *
1166  * Note: Should always be called with the Page Lock held to prevent races
1167  * if we have to add a new request. Also assumes that the caller has
1168  * already called nfs_flush_incompatible() if necessary.
1169  */
1170 static struct nfs_page * nfs_setup_write_request(struct nfs_open_context* ctx,
1171 		struct page *page, unsigned int offset, unsigned int bytes)
1172 {
1173 	struct inode *inode = page_file_mapping(page)->host;
1174 	struct nfs_page	*req;
1175 
1176 	req = nfs_try_to_update_request(inode, page, offset, bytes);
1177 	if (req != NULL)
1178 		goto out;
1179 	req = nfs_create_request(ctx, page, offset, bytes);
1180 	if (IS_ERR(req))
1181 		goto out;
1182 	nfs_inode_add_request(inode, req);
1183 out:
1184 	return req;
1185 }
1186 
1187 static int nfs_writepage_setup(struct nfs_open_context *ctx, struct page *page,
1188 		unsigned int offset, unsigned int count)
1189 {
1190 	struct nfs_page	*req;
1191 
1192 	req = nfs_setup_write_request(ctx, page, offset, count);
1193 	if (IS_ERR(req))
1194 		return PTR_ERR(req);
1195 	/* Update file length */
1196 	nfs_grow_file(page, offset, count);
1197 	nfs_mark_uptodate(req);
1198 	nfs_mark_request_dirty(req);
1199 	nfs_unlock_and_release_request(req);
1200 	return 0;
1201 }
1202 
1203 int nfs_flush_incompatible(struct file *file, struct page *page)
1204 {
1205 	struct nfs_open_context *ctx = nfs_file_open_context(file);
1206 	struct nfs_lock_context *l_ctx;
1207 	struct file_lock_context *flctx = file_inode(file)->i_flctx;
1208 	struct nfs_page	*req;
1209 	int do_flush, status;
1210 	/*
1211 	 * Look for a request corresponding to this page. If there
1212 	 * is one, and it belongs to another file, we flush it out
1213 	 * before we try to copy anything into the page. Do this
1214 	 * due to the lack of an ACCESS-type call in NFSv2.
1215 	 * Also do the same if we find a request from an existing
1216 	 * dropped page.
1217 	 */
1218 	do {
1219 		req = nfs_page_find_head_request(page);
1220 		if (req == NULL)
1221 			return 0;
1222 		l_ctx = req->wb_lock_context;
1223 		do_flush = req->wb_page != page ||
1224 			!nfs_match_open_context(nfs_req_openctx(req), ctx);
1225 		if (l_ctx && flctx &&
1226 		    !(list_empty_careful(&flctx->flc_posix) &&
1227 		      list_empty_careful(&flctx->flc_flock))) {
1228 			do_flush |= l_ctx->lockowner != current->files;
1229 		}
1230 		nfs_release_request(req);
1231 		if (!do_flush)
1232 			return 0;
1233 		status = nfs_wb_page(page_file_mapping(page)->host, page);
1234 	} while (status == 0);
1235 	return status;
1236 }
1237 
1238 /*
1239  * Avoid buffered writes when a open context credential's key would
1240  * expire soon.
1241  *
1242  * Returns -EACCES if the key will expire within RPC_KEY_EXPIRE_FAIL.
1243  *
1244  * Return 0 and set a credential flag which triggers the inode to flush
1245  * and performs  NFS_FILE_SYNC writes if the key will expired within
1246  * RPC_KEY_EXPIRE_TIMEO.
1247  */
1248 int
1249 nfs_key_timeout_notify(struct file *filp, struct inode *inode)
1250 {
1251 	struct nfs_open_context *ctx = nfs_file_open_context(filp);
1252 
1253 	if (nfs_ctx_key_to_expire(ctx, inode) &&
1254 	    !ctx->ll_cred)
1255 		/* Already expired! */
1256 		return -EACCES;
1257 	return 0;
1258 }
1259 
1260 /*
1261  * Test if the open context credential key is marked to expire soon.
1262  */
1263 bool nfs_ctx_key_to_expire(struct nfs_open_context *ctx, struct inode *inode)
1264 {
1265 	struct rpc_auth *auth = NFS_SERVER(inode)->client->cl_auth;
1266 	struct rpc_cred *cred = ctx->ll_cred;
1267 	struct auth_cred acred = {
1268 		.cred = ctx->cred,
1269 	};
1270 
1271 	if (cred && !cred->cr_ops->crmatch(&acred, cred, 0)) {
1272 		put_rpccred(cred);
1273 		ctx->ll_cred = NULL;
1274 		cred = NULL;
1275 	}
1276 	if (!cred)
1277 		cred = auth->au_ops->lookup_cred(auth, &acred, 0);
1278 	if (!cred || IS_ERR(cred))
1279 		return true;
1280 	ctx->ll_cred = cred;
1281 	return !!(cred->cr_ops->crkey_timeout &&
1282 		  cred->cr_ops->crkey_timeout(cred));
1283 }
1284 
1285 /*
1286  * If the page cache is marked as unsafe or invalid, then we can't rely on
1287  * the PageUptodate() flag. In this case, we will need to turn off
1288  * write optimisations that depend on the page contents being correct.
1289  */
1290 static bool nfs_write_pageuptodate(struct page *page, struct inode *inode)
1291 {
1292 	struct nfs_inode *nfsi = NFS_I(inode);
1293 
1294 	if (nfs_have_delegated_attributes(inode))
1295 		goto out;
1296 	if (nfsi->cache_validity & NFS_INO_REVAL_PAGECACHE)
1297 		return false;
1298 	smp_rmb();
1299 	if (test_bit(NFS_INO_INVALIDATING, &nfsi->flags))
1300 		return false;
1301 out:
1302 	if (nfsi->cache_validity & NFS_INO_INVALID_DATA)
1303 		return false;
1304 	return PageUptodate(page) != 0;
1305 }
1306 
1307 static bool
1308 is_whole_file_wrlock(struct file_lock *fl)
1309 {
1310 	return fl->fl_start == 0 && fl->fl_end == OFFSET_MAX &&
1311 			fl->fl_type == F_WRLCK;
1312 }
1313 
1314 /* If we know the page is up to date, and we're not using byte range locks (or
1315  * if we have the whole file locked for writing), it may be more efficient to
1316  * extend the write to cover the entire page in order to avoid fragmentation
1317  * inefficiencies.
1318  *
1319  * If the file is opened for synchronous writes then we can just skip the rest
1320  * of the checks.
1321  */
1322 static int nfs_can_extend_write(struct file *file, struct page *page, struct inode *inode)
1323 {
1324 	int ret;
1325 	struct file_lock_context *flctx = inode->i_flctx;
1326 	struct file_lock *fl;
1327 
1328 	if (file->f_flags & O_DSYNC)
1329 		return 0;
1330 	if (!nfs_write_pageuptodate(page, inode))
1331 		return 0;
1332 	if (NFS_PROTO(inode)->have_delegation(inode, FMODE_WRITE))
1333 		return 1;
1334 	if (!flctx || (list_empty_careful(&flctx->flc_flock) &&
1335 		       list_empty_careful(&flctx->flc_posix)))
1336 		return 1;
1337 
1338 	/* Check to see if there are whole file write locks */
1339 	ret = 0;
1340 	spin_lock(&flctx->flc_lock);
1341 	if (!list_empty(&flctx->flc_posix)) {
1342 		fl = list_first_entry(&flctx->flc_posix, struct file_lock,
1343 					fl_list);
1344 		if (is_whole_file_wrlock(fl))
1345 			ret = 1;
1346 	} else if (!list_empty(&flctx->flc_flock)) {
1347 		fl = list_first_entry(&flctx->flc_flock, struct file_lock,
1348 					fl_list);
1349 		if (fl->fl_type == F_WRLCK)
1350 			ret = 1;
1351 	}
1352 	spin_unlock(&flctx->flc_lock);
1353 	return ret;
1354 }
1355 
1356 /*
1357  * Update and possibly write a cached page of an NFS file.
1358  *
1359  * XXX: Keep an eye on generic_file_read to make sure it doesn't do bad
1360  * things with a page scheduled for an RPC call (e.g. invalidate it).
1361  */
1362 int nfs_updatepage(struct file *file, struct page *page,
1363 		unsigned int offset, unsigned int count)
1364 {
1365 	struct nfs_open_context *ctx = nfs_file_open_context(file);
1366 	struct address_space *mapping = page_file_mapping(page);
1367 	struct inode	*inode = mapping->host;
1368 	int		status = 0;
1369 
1370 	nfs_inc_stats(inode, NFSIOS_VFSUPDATEPAGE);
1371 
1372 	dprintk("NFS:       nfs_updatepage(%pD2 %d@%lld)\n",
1373 		file, count, (long long)(page_file_offset(page) + offset));
1374 
1375 	if (!count)
1376 		goto out;
1377 
1378 	if (nfs_can_extend_write(file, page, inode)) {
1379 		count = max(count + offset, nfs_page_length(page));
1380 		offset = 0;
1381 	}
1382 
1383 	status = nfs_writepage_setup(ctx, page, offset, count);
1384 	if (status < 0)
1385 		nfs_set_pageerror(mapping);
1386 	else
1387 		__set_page_dirty_nobuffers(page);
1388 out:
1389 	dprintk("NFS:       nfs_updatepage returns %d (isize %lld)\n",
1390 			status, (long long)i_size_read(inode));
1391 	return status;
1392 }
1393 
1394 static int flush_task_priority(int how)
1395 {
1396 	switch (how & (FLUSH_HIGHPRI|FLUSH_LOWPRI)) {
1397 		case FLUSH_HIGHPRI:
1398 			return RPC_PRIORITY_HIGH;
1399 		case FLUSH_LOWPRI:
1400 			return RPC_PRIORITY_LOW;
1401 	}
1402 	return RPC_PRIORITY_NORMAL;
1403 }
1404 
1405 static void nfs_initiate_write(struct nfs_pgio_header *hdr,
1406 			       struct rpc_message *msg,
1407 			       const struct nfs_rpc_ops *rpc_ops,
1408 			       struct rpc_task_setup *task_setup_data, int how)
1409 {
1410 	int priority = flush_task_priority(how);
1411 
1412 	task_setup_data->priority = priority;
1413 	rpc_ops->write_setup(hdr, msg, &task_setup_data->rpc_client);
1414 	trace_nfs_initiate_write(hdr->inode, hdr->io_start, hdr->good_bytes,
1415 				 hdr->args.stable);
1416 }
1417 
1418 /* If a nfs_flush_* function fails, it should remove reqs from @head and
1419  * call this on each, which will prepare them to be retried on next
1420  * writeback using standard nfs.
1421  */
1422 static void nfs_redirty_request(struct nfs_page *req)
1423 {
1424 	/* Bump the transmission count */
1425 	req->wb_nio++;
1426 	nfs_mark_request_dirty(req);
1427 	set_bit(NFS_CONTEXT_RESEND_WRITES, &nfs_req_openctx(req)->flags);
1428 	nfs_end_page_writeback(req);
1429 	nfs_release_request(req);
1430 }
1431 
1432 static void nfs_async_write_error(struct list_head *head, int error)
1433 {
1434 	struct nfs_page	*req;
1435 
1436 	while (!list_empty(head)) {
1437 		req = nfs_list_entry(head->next);
1438 		nfs_list_remove_request(req);
1439 		if (nfs_error_is_fatal(error))
1440 			nfs_write_error(req, error);
1441 		else
1442 			nfs_redirty_request(req);
1443 	}
1444 }
1445 
1446 static void nfs_async_write_reschedule_io(struct nfs_pgio_header *hdr)
1447 {
1448 	nfs_async_write_error(&hdr->pages, 0);
1449 	filemap_fdatawrite_range(hdr->inode->i_mapping, hdr->args.offset,
1450 			hdr->args.offset + hdr->args.count - 1);
1451 }
1452 
1453 static const struct nfs_pgio_completion_ops nfs_async_write_completion_ops = {
1454 	.init_hdr = nfs_async_write_init,
1455 	.error_cleanup = nfs_async_write_error,
1456 	.completion = nfs_write_completion,
1457 	.reschedule_io = nfs_async_write_reschedule_io,
1458 };
1459 
1460 void nfs_pageio_init_write(struct nfs_pageio_descriptor *pgio,
1461 			       struct inode *inode, int ioflags, bool force_mds,
1462 			       const struct nfs_pgio_completion_ops *compl_ops)
1463 {
1464 	struct nfs_server *server = NFS_SERVER(inode);
1465 	const struct nfs_pageio_ops *pg_ops = &nfs_pgio_rw_ops;
1466 
1467 #ifdef CONFIG_NFS_V4_1
1468 	if (server->pnfs_curr_ld && !force_mds)
1469 		pg_ops = server->pnfs_curr_ld->pg_write_ops;
1470 #endif
1471 	nfs_pageio_init(pgio, inode, pg_ops, compl_ops, &nfs_rw_write_ops,
1472 			server->wsize, ioflags);
1473 }
1474 EXPORT_SYMBOL_GPL(nfs_pageio_init_write);
1475 
1476 void nfs_pageio_reset_write_mds(struct nfs_pageio_descriptor *pgio)
1477 {
1478 	struct nfs_pgio_mirror *mirror;
1479 
1480 	if (pgio->pg_ops && pgio->pg_ops->pg_cleanup)
1481 		pgio->pg_ops->pg_cleanup(pgio);
1482 
1483 	pgio->pg_ops = &nfs_pgio_rw_ops;
1484 
1485 	nfs_pageio_stop_mirroring(pgio);
1486 
1487 	mirror = &pgio->pg_mirrors[0];
1488 	mirror->pg_bsize = NFS_SERVER(pgio->pg_inode)->wsize;
1489 }
1490 EXPORT_SYMBOL_GPL(nfs_pageio_reset_write_mds);
1491 
1492 
1493 void nfs_commit_prepare(struct rpc_task *task, void *calldata)
1494 {
1495 	struct nfs_commit_data *data = calldata;
1496 
1497 	NFS_PROTO(data->inode)->commit_rpc_prepare(task, data);
1498 }
1499 
1500 /*
1501  * Special version of should_remove_suid() that ignores capabilities.
1502  */
1503 static int nfs_should_remove_suid(const struct inode *inode)
1504 {
1505 	umode_t mode = inode->i_mode;
1506 	int kill = 0;
1507 
1508 	/* suid always must be killed */
1509 	if (unlikely(mode & S_ISUID))
1510 		kill = ATTR_KILL_SUID;
1511 
1512 	/*
1513 	 * sgid without any exec bits is just a mandatory locking mark; leave
1514 	 * it alone.  If some exec bits are set, it's a real sgid; kill it.
1515 	 */
1516 	if (unlikely((mode & S_ISGID) && (mode & S_IXGRP)))
1517 		kill |= ATTR_KILL_SGID;
1518 
1519 	if (unlikely(kill && S_ISREG(mode)))
1520 		return kill;
1521 
1522 	return 0;
1523 }
1524 
1525 static void nfs_writeback_check_extend(struct nfs_pgio_header *hdr,
1526 		struct nfs_fattr *fattr)
1527 {
1528 	struct nfs_pgio_args *argp = &hdr->args;
1529 	struct nfs_pgio_res *resp = &hdr->res;
1530 	u64 size = argp->offset + resp->count;
1531 
1532 	if (!(fattr->valid & NFS_ATTR_FATTR_SIZE))
1533 		fattr->size = size;
1534 	if (nfs_size_to_loff_t(fattr->size) < i_size_read(hdr->inode)) {
1535 		fattr->valid &= ~NFS_ATTR_FATTR_SIZE;
1536 		return;
1537 	}
1538 	if (size != fattr->size)
1539 		return;
1540 	/* Set attribute barrier */
1541 	nfs_fattr_set_barrier(fattr);
1542 	/* ...and update size */
1543 	fattr->valid |= NFS_ATTR_FATTR_SIZE;
1544 }
1545 
1546 void nfs_writeback_update_inode(struct nfs_pgio_header *hdr)
1547 {
1548 	struct nfs_fattr *fattr = &hdr->fattr;
1549 	struct inode *inode = hdr->inode;
1550 
1551 	spin_lock(&inode->i_lock);
1552 	nfs_writeback_check_extend(hdr, fattr);
1553 	nfs_post_op_update_inode_force_wcc_locked(inode, fattr);
1554 	spin_unlock(&inode->i_lock);
1555 }
1556 EXPORT_SYMBOL_GPL(nfs_writeback_update_inode);
1557 
1558 /*
1559  * This function is called when the WRITE call is complete.
1560  */
1561 static int nfs_writeback_done(struct rpc_task *task,
1562 			      struct nfs_pgio_header *hdr,
1563 			      struct inode *inode)
1564 {
1565 	int status;
1566 
1567 	/*
1568 	 * ->write_done will attempt to use post-op attributes to detect
1569 	 * conflicting writes by other clients.  A strict interpretation
1570 	 * of close-to-open would allow us to continue caching even if
1571 	 * another writer had changed the file, but some applications
1572 	 * depend on tighter cache coherency when writing.
1573 	 */
1574 	status = NFS_PROTO(inode)->write_done(task, hdr);
1575 	if (status != 0)
1576 		return status;
1577 
1578 	nfs_add_stats(inode, NFSIOS_SERVERWRITTENBYTES, hdr->res.count);
1579 	trace_nfs_writeback_done(inode, task->tk_status,
1580 				 hdr->args.offset, hdr->res.verf);
1581 
1582 	if (hdr->res.verf->committed < hdr->args.stable &&
1583 	    task->tk_status >= 0) {
1584 		/* We tried a write call, but the server did not
1585 		 * commit data to stable storage even though we
1586 		 * requested it.
1587 		 * Note: There is a known bug in Tru64 < 5.0 in which
1588 		 *	 the server reports NFS_DATA_SYNC, but performs
1589 		 *	 NFS_FILE_SYNC. We therefore implement this checking
1590 		 *	 as a dprintk() in order to avoid filling syslog.
1591 		 */
1592 		static unsigned long    complain;
1593 
1594 		/* Note this will print the MDS for a DS write */
1595 		if (time_before(complain, jiffies)) {
1596 			dprintk("NFS:       faulty NFS server %s:"
1597 				" (committed = %d) != (stable = %d)\n",
1598 				NFS_SERVER(inode)->nfs_client->cl_hostname,
1599 				hdr->res.verf->committed, hdr->args.stable);
1600 			complain = jiffies + 300 * HZ;
1601 		}
1602 	}
1603 
1604 	/* Deal with the suid/sgid bit corner case */
1605 	if (nfs_should_remove_suid(inode)) {
1606 		spin_lock(&inode->i_lock);
1607 		NFS_I(inode)->cache_validity |= NFS_INO_INVALID_OTHER;
1608 		spin_unlock(&inode->i_lock);
1609 	}
1610 	return 0;
1611 }
1612 
1613 /*
1614  * This function is called when the WRITE call is complete.
1615  */
1616 static void nfs_writeback_result(struct rpc_task *task,
1617 				 struct nfs_pgio_header *hdr)
1618 {
1619 	struct nfs_pgio_args	*argp = &hdr->args;
1620 	struct nfs_pgio_res	*resp = &hdr->res;
1621 
1622 	if (resp->count < argp->count) {
1623 		static unsigned long    complain;
1624 
1625 		/* This a short write! */
1626 		nfs_inc_stats(hdr->inode, NFSIOS_SHORTWRITE);
1627 
1628 		/* Has the server at least made some progress? */
1629 		if (resp->count == 0) {
1630 			if (time_before(complain, jiffies)) {
1631 				printk(KERN_WARNING
1632 				       "NFS: Server wrote zero bytes, expected %u.\n",
1633 				       argp->count);
1634 				complain = jiffies + 300 * HZ;
1635 			}
1636 			nfs_set_pgio_error(hdr, -EIO, argp->offset);
1637 			task->tk_status = -EIO;
1638 			return;
1639 		}
1640 
1641 		/* For non rpc-based layout drivers, retry-through-MDS */
1642 		if (!task->tk_ops) {
1643 			hdr->pnfs_error = -EAGAIN;
1644 			return;
1645 		}
1646 
1647 		/* Was this an NFSv2 write or an NFSv3 stable write? */
1648 		if (resp->verf->committed != NFS_UNSTABLE) {
1649 			/* Resend from where the server left off */
1650 			hdr->mds_offset += resp->count;
1651 			argp->offset += resp->count;
1652 			argp->pgbase += resp->count;
1653 			argp->count -= resp->count;
1654 		} else {
1655 			/* Resend as a stable write in order to avoid
1656 			 * headaches in the case of a server crash.
1657 			 */
1658 			argp->stable = NFS_FILE_SYNC;
1659 		}
1660 		rpc_restart_call_prepare(task);
1661 	}
1662 }
1663 
1664 static int wait_on_commit(struct nfs_mds_commit_info *cinfo)
1665 {
1666 	return wait_var_event_killable(&cinfo->rpcs_out,
1667 				       !atomic_read(&cinfo->rpcs_out));
1668 }
1669 
1670 static void nfs_commit_begin(struct nfs_mds_commit_info *cinfo)
1671 {
1672 	atomic_inc(&cinfo->rpcs_out);
1673 }
1674 
1675 static void nfs_commit_end(struct nfs_mds_commit_info *cinfo)
1676 {
1677 	if (atomic_dec_and_test(&cinfo->rpcs_out))
1678 		wake_up_var(&cinfo->rpcs_out);
1679 }
1680 
1681 void nfs_commitdata_release(struct nfs_commit_data *data)
1682 {
1683 	put_nfs_open_context(data->context);
1684 	nfs_commit_free(data);
1685 }
1686 EXPORT_SYMBOL_GPL(nfs_commitdata_release);
1687 
1688 int nfs_initiate_commit(struct rpc_clnt *clnt, struct nfs_commit_data *data,
1689 			const struct nfs_rpc_ops *nfs_ops,
1690 			const struct rpc_call_ops *call_ops,
1691 			int how, int flags)
1692 {
1693 	struct rpc_task *task;
1694 	int priority = flush_task_priority(how);
1695 	struct rpc_message msg = {
1696 		.rpc_argp = &data->args,
1697 		.rpc_resp = &data->res,
1698 		.rpc_cred = data->cred,
1699 	};
1700 	struct rpc_task_setup task_setup_data = {
1701 		.task = &data->task,
1702 		.rpc_client = clnt,
1703 		.rpc_message = &msg,
1704 		.callback_ops = call_ops,
1705 		.callback_data = data,
1706 		.workqueue = nfsiod_workqueue,
1707 		.flags = RPC_TASK_ASYNC | flags,
1708 		.priority = priority,
1709 	};
1710 	/* Set up the initial task struct.  */
1711 	nfs_ops->commit_setup(data, &msg, &task_setup_data.rpc_client);
1712 	trace_nfs_initiate_commit(data);
1713 
1714 	dprintk("NFS: initiated commit call\n");
1715 
1716 	task = rpc_run_task(&task_setup_data);
1717 	if (IS_ERR(task))
1718 		return PTR_ERR(task);
1719 	if (how & FLUSH_SYNC)
1720 		rpc_wait_for_completion_task(task);
1721 	rpc_put_task(task);
1722 	return 0;
1723 }
1724 EXPORT_SYMBOL_GPL(nfs_initiate_commit);
1725 
1726 static loff_t nfs_get_lwb(struct list_head *head)
1727 {
1728 	loff_t lwb = 0;
1729 	struct nfs_page *req;
1730 
1731 	list_for_each_entry(req, head, wb_list)
1732 		if (lwb < (req_offset(req) + req->wb_bytes))
1733 			lwb = req_offset(req) + req->wb_bytes;
1734 
1735 	return lwb;
1736 }
1737 
1738 /*
1739  * Set up the argument/result storage required for the RPC call.
1740  */
1741 void nfs_init_commit(struct nfs_commit_data *data,
1742 		     struct list_head *head,
1743 		     struct pnfs_layout_segment *lseg,
1744 		     struct nfs_commit_info *cinfo)
1745 {
1746 	struct nfs_page *first = nfs_list_entry(head->next);
1747 	struct nfs_open_context *ctx = nfs_req_openctx(first);
1748 	struct inode *inode = d_inode(ctx->dentry);
1749 
1750 	/* Set up the RPC argument and reply structs
1751 	 * NB: take care not to mess about with data->commit et al. */
1752 
1753 	list_splice_init(head, &data->pages);
1754 
1755 	data->inode	  = inode;
1756 	data->cred	  = ctx->cred;
1757 	data->lseg	  = lseg; /* reference transferred */
1758 	/* only set lwb for pnfs commit */
1759 	if (lseg)
1760 		data->lwb = nfs_get_lwb(&data->pages);
1761 	data->mds_ops     = &nfs_commit_ops;
1762 	data->completion_ops = cinfo->completion_ops;
1763 	data->dreq	  = cinfo->dreq;
1764 
1765 	data->args.fh     = NFS_FH(data->inode);
1766 	/* Note: we always request a commit of the entire inode */
1767 	data->args.offset = 0;
1768 	data->args.count  = 0;
1769 	data->context     = get_nfs_open_context(ctx);
1770 	data->res.fattr   = &data->fattr;
1771 	data->res.verf    = &data->verf;
1772 	nfs_fattr_init(&data->fattr);
1773 }
1774 EXPORT_SYMBOL_GPL(nfs_init_commit);
1775 
1776 void nfs_retry_commit(struct list_head *page_list,
1777 		      struct pnfs_layout_segment *lseg,
1778 		      struct nfs_commit_info *cinfo,
1779 		      u32 ds_commit_idx)
1780 {
1781 	struct nfs_page *req;
1782 
1783 	while (!list_empty(page_list)) {
1784 		req = nfs_list_entry(page_list->next);
1785 		nfs_list_remove_request(req);
1786 		nfs_mark_request_commit(req, lseg, cinfo, ds_commit_idx);
1787 		if (!cinfo->dreq)
1788 			nfs_clear_page_commit(req->wb_page);
1789 		nfs_unlock_and_release_request(req);
1790 	}
1791 }
1792 EXPORT_SYMBOL_GPL(nfs_retry_commit);
1793 
1794 static void
1795 nfs_commit_resched_write(struct nfs_commit_info *cinfo,
1796 		struct nfs_page *req)
1797 {
1798 	__set_page_dirty_nobuffers(req->wb_page);
1799 }
1800 
1801 /*
1802  * Commit dirty pages
1803  */
1804 static int
1805 nfs_commit_list(struct inode *inode, struct list_head *head, int how,
1806 		struct nfs_commit_info *cinfo)
1807 {
1808 	struct nfs_commit_data	*data;
1809 
1810 	/* another commit raced with us */
1811 	if (list_empty(head))
1812 		return 0;
1813 
1814 	data = nfs_commitdata_alloc(true);
1815 
1816 	/* Set up the argument struct */
1817 	nfs_init_commit(data, head, NULL, cinfo);
1818 	atomic_inc(&cinfo->mds->rpcs_out);
1819 	return nfs_initiate_commit(NFS_CLIENT(inode), data, NFS_PROTO(inode),
1820 				   data->mds_ops, how, 0);
1821 }
1822 
1823 /*
1824  * COMMIT call returned
1825  */
1826 static void nfs_commit_done(struct rpc_task *task, void *calldata)
1827 {
1828 	struct nfs_commit_data	*data = calldata;
1829 
1830         dprintk("NFS: %5u nfs_commit_done (status %d)\n",
1831                                 task->tk_pid, task->tk_status);
1832 
1833 	/* Call the NFS version-specific code */
1834 	NFS_PROTO(data->inode)->commit_done(task, data);
1835 	trace_nfs_commit_done(data);
1836 }
1837 
1838 static void nfs_commit_release_pages(struct nfs_commit_data *data)
1839 {
1840 	struct nfs_page	*req;
1841 	int status = data->task.tk_status;
1842 	struct nfs_commit_info cinfo;
1843 	struct nfs_server *nfss;
1844 
1845 	while (!list_empty(&data->pages)) {
1846 		req = nfs_list_entry(data->pages.next);
1847 		nfs_list_remove_request(req);
1848 		if (req->wb_page)
1849 			nfs_clear_page_commit(req->wb_page);
1850 
1851 		dprintk("NFS:       commit (%s/%llu %d@%lld)",
1852 			nfs_req_openctx(req)->dentry->d_sb->s_id,
1853 			(unsigned long long)NFS_FILEID(d_inode(nfs_req_openctx(req)->dentry)),
1854 			req->wb_bytes,
1855 			(long long)req_offset(req));
1856 		if (status < 0) {
1857 			if (req->wb_page) {
1858 				nfs_mapping_set_error(req->wb_page, status);
1859 				nfs_inode_remove_request(req);
1860 			}
1861 			dprintk_cont(", error = %d\n", status);
1862 			goto next;
1863 		}
1864 
1865 		/* Okay, COMMIT succeeded, apparently. Check the verifier
1866 		 * returned by the server against all stored verfs. */
1867 		if (!nfs_write_verifier_cmp(&req->wb_verf, &data->verf.verifier)) {
1868 			/* We have a match */
1869 			if (req->wb_page)
1870 				nfs_inode_remove_request(req);
1871 			dprintk_cont(" OK\n");
1872 			goto next;
1873 		}
1874 		/* We have a mismatch. Write the page again */
1875 		dprintk_cont(" mismatch\n");
1876 		nfs_mark_request_dirty(req);
1877 		set_bit(NFS_CONTEXT_RESEND_WRITES, &nfs_req_openctx(req)->flags);
1878 	next:
1879 		nfs_unlock_and_release_request(req);
1880 		/* Latency breaker */
1881 		cond_resched();
1882 	}
1883 	nfss = NFS_SERVER(data->inode);
1884 	if (atomic_long_read(&nfss->writeback) < NFS_CONGESTION_OFF_THRESH)
1885 		clear_bdi_congested(inode_to_bdi(data->inode), BLK_RW_ASYNC);
1886 
1887 	nfs_init_cinfo(&cinfo, data->inode, data->dreq);
1888 	nfs_commit_end(cinfo.mds);
1889 }
1890 
1891 static void nfs_commit_release(void *calldata)
1892 {
1893 	struct nfs_commit_data *data = calldata;
1894 
1895 	data->completion_ops->completion(data);
1896 	nfs_commitdata_release(calldata);
1897 }
1898 
1899 static const struct rpc_call_ops nfs_commit_ops = {
1900 	.rpc_call_prepare = nfs_commit_prepare,
1901 	.rpc_call_done = nfs_commit_done,
1902 	.rpc_release = nfs_commit_release,
1903 };
1904 
1905 static const struct nfs_commit_completion_ops nfs_commit_completion_ops = {
1906 	.completion = nfs_commit_release_pages,
1907 	.resched_write = nfs_commit_resched_write,
1908 };
1909 
1910 int nfs_generic_commit_list(struct inode *inode, struct list_head *head,
1911 			    int how, struct nfs_commit_info *cinfo)
1912 {
1913 	int status;
1914 
1915 	status = pnfs_commit_list(inode, head, how, cinfo);
1916 	if (status == PNFS_NOT_ATTEMPTED)
1917 		status = nfs_commit_list(inode, head, how, cinfo);
1918 	return status;
1919 }
1920 
1921 static int __nfs_commit_inode(struct inode *inode, int how,
1922 		struct writeback_control *wbc)
1923 {
1924 	LIST_HEAD(head);
1925 	struct nfs_commit_info cinfo;
1926 	int may_wait = how & FLUSH_SYNC;
1927 	int ret, nscan;
1928 
1929 	nfs_init_cinfo_from_inode(&cinfo, inode);
1930 	nfs_commit_begin(cinfo.mds);
1931 	for (;;) {
1932 		ret = nscan = nfs_scan_commit(inode, &head, &cinfo);
1933 		if (ret <= 0)
1934 			break;
1935 		ret = nfs_generic_commit_list(inode, &head, how, &cinfo);
1936 		if (ret < 0)
1937 			break;
1938 		ret = 0;
1939 		if (wbc && wbc->sync_mode == WB_SYNC_NONE) {
1940 			if (nscan < wbc->nr_to_write)
1941 				wbc->nr_to_write -= nscan;
1942 			else
1943 				wbc->nr_to_write = 0;
1944 		}
1945 		if (nscan < INT_MAX)
1946 			break;
1947 		cond_resched();
1948 	}
1949 	nfs_commit_end(cinfo.mds);
1950 	if (ret || !may_wait)
1951 		return ret;
1952 	return wait_on_commit(cinfo.mds);
1953 }
1954 
1955 int nfs_commit_inode(struct inode *inode, int how)
1956 {
1957 	return __nfs_commit_inode(inode, how, NULL);
1958 }
1959 EXPORT_SYMBOL_GPL(nfs_commit_inode);
1960 
1961 int nfs_write_inode(struct inode *inode, struct writeback_control *wbc)
1962 {
1963 	struct nfs_inode *nfsi = NFS_I(inode);
1964 	int flags = FLUSH_SYNC;
1965 	int ret = 0;
1966 
1967 	if (wbc->sync_mode == WB_SYNC_NONE) {
1968 		/* no commits means nothing needs to be done */
1969 		if (!atomic_long_read(&nfsi->commit_info.ncommit))
1970 			goto check_requests_outstanding;
1971 
1972 		/* Don't commit yet if this is a non-blocking flush and there
1973 		 * are a lot of outstanding writes for this mapping.
1974 		 */
1975 		if (mapping_tagged(inode->i_mapping, PAGECACHE_TAG_WRITEBACK))
1976 			goto out_mark_dirty;
1977 
1978 		/* don't wait for the COMMIT response */
1979 		flags = 0;
1980 	}
1981 
1982 	ret = __nfs_commit_inode(inode, flags, wbc);
1983 	if (!ret) {
1984 		if (flags & FLUSH_SYNC)
1985 			return 0;
1986 	} else if (atomic_long_read(&nfsi->commit_info.ncommit))
1987 		goto out_mark_dirty;
1988 
1989 check_requests_outstanding:
1990 	if (!atomic_read(&nfsi->commit_info.rpcs_out))
1991 		return ret;
1992 out_mark_dirty:
1993 	__mark_inode_dirty(inode, I_DIRTY_DATASYNC);
1994 	return ret;
1995 }
1996 EXPORT_SYMBOL_GPL(nfs_write_inode);
1997 
1998 /*
1999  * Wrapper for filemap_write_and_wait_range()
2000  *
2001  * Needed for pNFS in order to ensure data becomes visible to the
2002  * client.
2003  */
2004 int nfs_filemap_write_and_wait_range(struct address_space *mapping,
2005 		loff_t lstart, loff_t lend)
2006 {
2007 	int ret;
2008 
2009 	ret = filemap_write_and_wait_range(mapping, lstart, lend);
2010 	if (ret == 0)
2011 		ret = pnfs_sync_inode(mapping->host, true);
2012 	return ret;
2013 }
2014 EXPORT_SYMBOL_GPL(nfs_filemap_write_and_wait_range);
2015 
2016 /*
2017  * flush the inode to disk.
2018  */
2019 int nfs_wb_all(struct inode *inode)
2020 {
2021 	int ret;
2022 
2023 	trace_nfs_writeback_inode_enter(inode);
2024 
2025 	ret = filemap_write_and_wait(inode->i_mapping);
2026 	if (ret)
2027 		goto out;
2028 	ret = nfs_commit_inode(inode, FLUSH_SYNC);
2029 	if (ret < 0)
2030 		goto out;
2031 	pnfs_sync_inode(inode, true);
2032 	ret = 0;
2033 
2034 out:
2035 	trace_nfs_writeback_inode_exit(inode, ret);
2036 	return ret;
2037 }
2038 EXPORT_SYMBOL_GPL(nfs_wb_all);
2039 
2040 int nfs_wb_page_cancel(struct inode *inode, struct page *page)
2041 {
2042 	struct nfs_page *req;
2043 	int ret = 0;
2044 
2045 	wait_on_page_writeback(page);
2046 
2047 	/* blocking call to cancel all requests and join to a single (head)
2048 	 * request */
2049 	req = nfs_lock_and_join_requests(page);
2050 
2051 	if (IS_ERR(req)) {
2052 		ret = PTR_ERR(req);
2053 	} else if (req) {
2054 		/* all requests from this page have been cancelled by
2055 		 * nfs_lock_and_join_requests, so just remove the head
2056 		 * request from the inode / page_private pointer and
2057 		 * release it */
2058 		nfs_inode_remove_request(req);
2059 		nfs_unlock_and_release_request(req);
2060 	}
2061 
2062 	return ret;
2063 }
2064 
2065 /*
2066  * Write back all requests on one page - we do this before reading it.
2067  */
2068 int nfs_wb_page(struct inode *inode, struct page *page)
2069 {
2070 	loff_t range_start = page_file_offset(page);
2071 	loff_t range_end = range_start + (loff_t)(PAGE_SIZE - 1);
2072 	struct writeback_control wbc = {
2073 		.sync_mode = WB_SYNC_ALL,
2074 		.nr_to_write = 0,
2075 		.range_start = range_start,
2076 		.range_end = range_end,
2077 	};
2078 	int ret;
2079 
2080 	trace_nfs_writeback_page_enter(inode);
2081 
2082 	for (;;) {
2083 		wait_on_page_writeback(page);
2084 		if (clear_page_dirty_for_io(page)) {
2085 			ret = nfs_writepage_locked(page, &wbc);
2086 			if (ret < 0)
2087 				goto out_error;
2088 			continue;
2089 		}
2090 		ret = 0;
2091 		if (!PagePrivate(page))
2092 			break;
2093 		ret = nfs_commit_inode(inode, FLUSH_SYNC);
2094 		if (ret < 0)
2095 			goto out_error;
2096 	}
2097 out_error:
2098 	trace_nfs_writeback_page_exit(inode, ret);
2099 	return ret;
2100 }
2101 
2102 #ifdef CONFIG_MIGRATION
2103 int nfs_migrate_page(struct address_space *mapping, struct page *newpage,
2104 		struct page *page, enum migrate_mode mode)
2105 {
2106 	/*
2107 	 * If PagePrivate is set, then the page is currently associated with
2108 	 * an in-progress read or write request. Don't try to migrate it.
2109 	 *
2110 	 * FIXME: we could do this in principle, but we'll need a way to ensure
2111 	 *        that we can safely release the inode reference while holding
2112 	 *        the page lock.
2113 	 */
2114 	if (PagePrivate(page))
2115 		return -EBUSY;
2116 
2117 	if (!nfs_fscache_release_page(page, GFP_KERNEL))
2118 		return -EBUSY;
2119 
2120 	return migrate_page(mapping, newpage, page, mode);
2121 }
2122 #endif
2123 
2124 int __init nfs_init_writepagecache(void)
2125 {
2126 	nfs_wdata_cachep = kmem_cache_create("nfs_write_data",
2127 					     sizeof(struct nfs_pgio_header),
2128 					     0, SLAB_HWCACHE_ALIGN,
2129 					     NULL);
2130 	if (nfs_wdata_cachep == NULL)
2131 		return -ENOMEM;
2132 
2133 	nfs_wdata_mempool = mempool_create_slab_pool(MIN_POOL_WRITE,
2134 						     nfs_wdata_cachep);
2135 	if (nfs_wdata_mempool == NULL)
2136 		goto out_destroy_write_cache;
2137 
2138 	nfs_cdata_cachep = kmem_cache_create("nfs_commit_data",
2139 					     sizeof(struct nfs_commit_data),
2140 					     0, SLAB_HWCACHE_ALIGN,
2141 					     NULL);
2142 	if (nfs_cdata_cachep == NULL)
2143 		goto out_destroy_write_mempool;
2144 
2145 	nfs_commit_mempool = mempool_create_slab_pool(MIN_POOL_COMMIT,
2146 						      nfs_cdata_cachep);
2147 	if (nfs_commit_mempool == NULL)
2148 		goto out_destroy_commit_cache;
2149 
2150 	/*
2151 	 * NFS congestion size, scale with available memory.
2152 	 *
2153 	 *  64MB:    8192k
2154 	 * 128MB:   11585k
2155 	 * 256MB:   16384k
2156 	 * 512MB:   23170k
2157 	 *   1GB:   32768k
2158 	 *   2GB:   46340k
2159 	 *   4GB:   65536k
2160 	 *   8GB:   92681k
2161 	 *  16GB:  131072k
2162 	 *
2163 	 * This allows larger machines to have larger/more transfers.
2164 	 * Limit the default to 256M
2165 	 */
2166 	nfs_congestion_kb = (16*int_sqrt(totalram_pages())) << (PAGE_SHIFT-10);
2167 	if (nfs_congestion_kb > 256*1024)
2168 		nfs_congestion_kb = 256*1024;
2169 
2170 	return 0;
2171 
2172 out_destroy_commit_cache:
2173 	kmem_cache_destroy(nfs_cdata_cachep);
2174 out_destroy_write_mempool:
2175 	mempool_destroy(nfs_wdata_mempool);
2176 out_destroy_write_cache:
2177 	kmem_cache_destroy(nfs_wdata_cachep);
2178 	return -ENOMEM;
2179 }
2180 
2181 void nfs_destroy_writepagecache(void)
2182 {
2183 	mempool_destroy(nfs_commit_mempool);
2184 	kmem_cache_destroy(nfs_cdata_cachep);
2185 	mempool_destroy(nfs_wdata_mempool);
2186 	kmem_cache_destroy(nfs_wdata_cachep);
2187 }
2188 
2189 static const struct nfs_rw_ops nfs_rw_write_ops = {
2190 	.rw_alloc_header	= nfs_writehdr_alloc,
2191 	.rw_free_header		= nfs_writehdr_free,
2192 	.rw_done		= nfs_writeback_done,
2193 	.rw_result		= nfs_writeback_result,
2194 	.rw_initiate		= nfs_initiate_write,
2195 };
2196