xref: /linux/fs/nfs/write.c (revision 6faadbbb7f9da70ce484f98f72223c20125a1009)
1 /*
2  * linux/fs/nfs/write.c
3  *
4  * Write file data over NFS.
5  *
6  * Copyright (C) 1996, 1997, Olaf Kirch <okir@monad.swb.de>
7  */
8 
9 #include <linux/types.h>
10 #include <linux/slab.h>
11 #include <linux/mm.h>
12 #include <linux/pagemap.h>
13 #include <linux/file.h>
14 #include <linux/writeback.h>
15 #include <linux/swap.h>
16 #include <linux/migrate.h>
17 
18 #include <linux/sunrpc/clnt.h>
19 #include <linux/nfs_fs.h>
20 #include <linux/nfs_mount.h>
21 #include <linux/nfs_page.h>
22 #include <linux/backing-dev.h>
23 #include <linux/export.h>
24 #include <linux/freezer.h>
25 #include <linux/wait.h>
26 
27 #include <linux/uaccess.h>
28 
29 #include "delegation.h"
30 #include "internal.h"
31 #include "iostat.h"
32 #include "nfs4_fs.h"
33 #include "fscache.h"
34 #include "pnfs.h"
35 
36 #include "nfstrace.h"
37 
38 #define NFSDBG_FACILITY		NFSDBG_PAGECACHE
39 
40 #define MIN_POOL_WRITE		(32)
41 #define MIN_POOL_COMMIT		(4)
42 
43 struct nfs_io_completion {
44 	void (*complete)(void *data);
45 	void *data;
46 	struct kref refcount;
47 };
48 
49 /*
50  * Local function declarations
51  */
52 static void nfs_redirty_request(struct nfs_page *req);
53 static const struct rpc_call_ops nfs_commit_ops;
54 static const struct nfs_pgio_completion_ops nfs_async_write_completion_ops;
55 static const struct nfs_commit_completion_ops nfs_commit_completion_ops;
56 static const struct nfs_rw_ops nfs_rw_write_ops;
57 static void nfs_clear_request_commit(struct nfs_page *req);
58 static void nfs_init_cinfo_from_inode(struct nfs_commit_info *cinfo,
59 				      struct inode *inode);
60 static struct nfs_page *
61 nfs_page_search_commits_for_head_request_locked(struct nfs_inode *nfsi,
62 						struct page *page);
63 
64 static struct kmem_cache *nfs_wdata_cachep;
65 static mempool_t *nfs_wdata_mempool;
66 static struct kmem_cache *nfs_cdata_cachep;
67 static mempool_t *nfs_commit_mempool;
68 
69 struct nfs_commit_data *nfs_commitdata_alloc(bool never_fail)
70 {
71 	struct nfs_commit_data *p;
72 
73 	if (never_fail)
74 		p = mempool_alloc(nfs_commit_mempool, GFP_NOIO);
75 	else {
76 		/* It is OK to do some reclaim, not no safe to wait
77 		 * for anything to be returned to the pool.
78 		 * mempool_alloc() cannot handle that particular combination,
79 		 * so we need two separate attempts.
80 		 */
81 		p = mempool_alloc(nfs_commit_mempool, GFP_NOWAIT);
82 		if (!p)
83 			p = kmem_cache_alloc(nfs_cdata_cachep, GFP_NOIO |
84 					     __GFP_NOWARN | __GFP_NORETRY);
85 		if (!p)
86 			return NULL;
87 	}
88 
89 	memset(p, 0, sizeof(*p));
90 	INIT_LIST_HEAD(&p->pages);
91 	return p;
92 }
93 EXPORT_SYMBOL_GPL(nfs_commitdata_alloc);
94 
95 void nfs_commit_free(struct nfs_commit_data *p)
96 {
97 	mempool_free(p, nfs_commit_mempool);
98 }
99 EXPORT_SYMBOL_GPL(nfs_commit_free);
100 
101 static struct nfs_pgio_header *nfs_writehdr_alloc(void)
102 {
103 	struct nfs_pgio_header *p = mempool_alloc(nfs_wdata_mempool, GFP_NOIO);
104 
105 	memset(p, 0, sizeof(*p));
106 	p->rw_mode = FMODE_WRITE;
107 	return p;
108 }
109 
110 static void nfs_writehdr_free(struct nfs_pgio_header *hdr)
111 {
112 	mempool_free(hdr, nfs_wdata_mempool);
113 }
114 
115 static struct nfs_io_completion *nfs_io_completion_alloc(gfp_t gfp_flags)
116 {
117 	return kmalloc(sizeof(struct nfs_io_completion), gfp_flags);
118 }
119 
120 static void nfs_io_completion_init(struct nfs_io_completion *ioc,
121 		void (*complete)(void *), void *data)
122 {
123 	ioc->complete = complete;
124 	ioc->data = data;
125 	kref_init(&ioc->refcount);
126 }
127 
128 static void nfs_io_completion_release(struct kref *kref)
129 {
130 	struct nfs_io_completion *ioc = container_of(kref,
131 			struct nfs_io_completion, refcount);
132 	ioc->complete(ioc->data);
133 	kfree(ioc);
134 }
135 
136 static void nfs_io_completion_get(struct nfs_io_completion *ioc)
137 {
138 	if (ioc != NULL)
139 		kref_get(&ioc->refcount);
140 }
141 
142 static void nfs_io_completion_put(struct nfs_io_completion *ioc)
143 {
144 	if (ioc != NULL)
145 		kref_put(&ioc->refcount, nfs_io_completion_release);
146 }
147 
148 static void nfs_context_set_write_error(struct nfs_open_context *ctx, int error)
149 {
150 	ctx->error = error;
151 	smp_wmb();
152 	set_bit(NFS_CONTEXT_ERROR_WRITE, &ctx->flags);
153 }
154 
155 static struct nfs_page *
156 nfs_page_private_request(struct page *page)
157 {
158 	if (!PagePrivate(page))
159 		return NULL;
160 	return (struct nfs_page *)page_private(page);
161 }
162 
163 /*
164  * nfs_page_find_head_request_locked - find head request associated with @page
165  *
166  * must be called while holding the inode lock.
167  *
168  * returns matching head request with reference held, or NULL if not found.
169  */
170 static struct nfs_page *
171 nfs_page_find_private_request(struct page *page)
172 {
173 	struct address_space *mapping = page_file_mapping(page);
174 	struct nfs_page *req;
175 
176 	if (!PagePrivate(page))
177 		return NULL;
178 	spin_lock(&mapping->private_lock);
179 	req = nfs_page_private_request(page);
180 	if (req) {
181 		WARN_ON_ONCE(req->wb_head != req);
182 		kref_get(&req->wb_kref);
183 	}
184 	spin_unlock(&mapping->private_lock);
185 	return req;
186 }
187 
188 static struct nfs_page *
189 nfs_page_find_swap_request(struct page *page)
190 {
191 	struct inode *inode = page_file_mapping(page)->host;
192 	struct nfs_inode *nfsi = NFS_I(inode);
193 	struct nfs_page *req = NULL;
194 	if (!PageSwapCache(page))
195 		return NULL;
196 	mutex_lock(&nfsi->commit_mutex);
197 	if (PageSwapCache(page)) {
198 		req = nfs_page_search_commits_for_head_request_locked(nfsi,
199 			page);
200 		if (req) {
201 			WARN_ON_ONCE(req->wb_head != req);
202 			kref_get(&req->wb_kref);
203 		}
204 	}
205 	mutex_unlock(&nfsi->commit_mutex);
206 	return req;
207 }
208 
209 /*
210  * nfs_page_find_head_request - find head request associated with @page
211  *
212  * returns matching head request with reference held, or NULL if not found.
213  */
214 static struct nfs_page *nfs_page_find_head_request(struct page *page)
215 {
216 	struct nfs_page *req;
217 
218 	req = nfs_page_find_private_request(page);
219 	if (!req)
220 		req = nfs_page_find_swap_request(page);
221 	return req;
222 }
223 
224 /* Adjust the file length if we're writing beyond the end */
225 static void nfs_grow_file(struct page *page, unsigned int offset, unsigned int count)
226 {
227 	struct inode *inode = page_file_mapping(page)->host;
228 	loff_t end, i_size;
229 	pgoff_t end_index;
230 
231 	spin_lock(&inode->i_lock);
232 	i_size = i_size_read(inode);
233 	end_index = (i_size - 1) >> PAGE_SHIFT;
234 	if (i_size > 0 && page_index(page) < end_index)
235 		goto out;
236 	end = page_file_offset(page) + ((loff_t)offset+count);
237 	if (i_size >= end)
238 		goto out;
239 	i_size_write(inode, end);
240 	nfs_inc_stats(inode, NFSIOS_EXTENDWRITE);
241 out:
242 	spin_unlock(&inode->i_lock);
243 }
244 
245 /* A writeback failed: mark the page as bad, and invalidate the page cache */
246 static void nfs_set_pageerror(struct page *page)
247 {
248 	nfs_zap_mapping(page_file_mapping(page)->host, page_file_mapping(page));
249 }
250 
251 /*
252  * nfs_page_group_search_locked
253  * @head - head request of page group
254  * @page_offset - offset into page
255  *
256  * Search page group with head @head to find a request that contains the
257  * page offset @page_offset.
258  *
259  * Returns a pointer to the first matching nfs request, or NULL if no
260  * match is found.
261  *
262  * Must be called with the page group lock held
263  */
264 static struct nfs_page *
265 nfs_page_group_search_locked(struct nfs_page *head, unsigned int page_offset)
266 {
267 	struct nfs_page *req;
268 
269 	req = head;
270 	do {
271 		if (page_offset >= req->wb_pgbase &&
272 		    page_offset < (req->wb_pgbase + req->wb_bytes))
273 			return req;
274 
275 		req = req->wb_this_page;
276 	} while (req != head);
277 
278 	return NULL;
279 }
280 
281 /*
282  * nfs_page_group_covers_page
283  * @head - head request of page group
284  *
285  * Return true if the page group with head @head covers the whole page,
286  * returns false otherwise
287  */
288 static bool nfs_page_group_covers_page(struct nfs_page *req)
289 {
290 	struct nfs_page *tmp;
291 	unsigned int pos = 0;
292 	unsigned int len = nfs_page_length(req->wb_page);
293 
294 	nfs_page_group_lock(req);
295 
296 	for (;;) {
297 		tmp = nfs_page_group_search_locked(req->wb_head, pos);
298 		if (!tmp)
299 			break;
300 		pos = tmp->wb_pgbase + tmp->wb_bytes;
301 	}
302 
303 	nfs_page_group_unlock(req);
304 	return pos >= len;
305 }
306 
307 /* We can set the PG_uptodate flag if we see that a write request
308  * covers the full page.
309  */
310 static void nfs_mark_uptodate(struct nfs_page *req)
311 {
312 	if (PageUptodate(req->wb_page))
313 		return;
314 	if (!nfs_page_group_covers_page(req))
315 		return;
316 	SetPageUptodate(req->wb_page);
317 }
318 
319 static int wb_priority(struct writeback_control *wbc)
320 {
321 	int ret = 0;
322 
323 	if (wbc->sync_mode == WB_SYNC_ALL)
324 		ret = FLUSH_COND_STABLE;
325 	return ret;
326 }
327 
328 /*
329  * NFS congestion control
330  */
331 
332 int nfs_congestion_kb;
333 
334 #define NFS_CONGESTION_ON_THRESH 	(nfs_congestion_kb >> (PAGE_SHIFT-10))
335 #define NFS_CONGESTION_OFF_THRESH	\
336 	(NFS_CONGESTION_ON_THRESH - (NFS_CONGESTION_ON_THRESH >> 2))
337 
338 static void nfs_set_page_writeback(struct page *page)
339 {
340 	struct inode *inode = page_file_mapping(page)->host;
341 	struct nfs_server *nfss = NFS_SERVER(inode);
342 	int ret = test_set_page_writeback(page);
343 
344 	WARN_ON_ONCE(ret != 0);
345 
346 	if (atomic_long_inc_return(&nfss->writeback) >
347 			NFS_CONGESTION_ON_THRESH)
348 		set_bdi_congested(inode_to_bdi(inode), BLK_RW_ASYNC);
349 }
350 
351 static void nfs_end_page_writeback(struct nfs_page *req)
352 {
353 	struct inode *inode = page_file_mapping(req->wb_page)->host;
354 	struct nfs_server *nfss = NFS_SERVER(inode);
355 	bool is_done;
356 
357 	is_done = nfs_page_group_sync_on_bit(req, PG_WB_END);
358 	nfs_unlock_request(req);
359 	if (!is_done)
360 		return;
361 
362 	end_page_writeback(req->wb_page);
363 	if (atomic_long_dec_return(&nfss->writeback) < NFS_CONGESTION_OFF_THRESH)
364 		clear_bdi_congested(inode_to_bdi(inode), BLK_RW_ASYNC);
365 }
366 
367 /*
368  * nfs_unroll_locks_and_wait -  unlock all newly locked reqs and wait on @req
369  *
370  * this is a helper function for nfs_lock_and_join_requests
371  *
372  * @inode - inode associated with request page group, must be holding inode lock
373  * @head  - head request of page group, must be holding head lock
374  * @req   - request that couldn't lock and needs to wait on the req bit lock
375  *
376  * NOTE: this must be called holding page_group bit lock
377  *       which will be released before returning.
378  *
379  * returns 0 on success, < 0 on error.
380  */
381 static void
382 nfs_unroll_locks(struct inode *inode, struct nfs_page *head,
383 			  struct nfs_page *req)
384 {
385 	struct nfs_page *tmp;
386 
387 	/* relinquish all the locks successfully grabbed this run */
388 	for (tmp = head->wb_this_page ; tmp != req; tmp = tmp->wb_this_page) {
389 		if (!kref_read(&tmp->wb_kref))
390 			continue;
391 		nfs_unlock_and_release_request(tmp);
392 	}
393 }
394 
395 /*
396  * nfs_destroy_unlinked_subrequests - destroy recently unlinked subrequests
397  *
398  * @destroy_list - request list (using wb_this_page) terminated by @old_head
399  * @old_head - the old head of the list
400  *
401  * All subrequests must be locked and removed from all lists, so at this point
402  * they are only "active" in this function, and possibly in nfs_wait_on_request
403  * with a reference held by some other context.
404  */
405 static void
406 nfs_destroy_unlinked_subrequests(struct nfs_page *destroy_list,
407 				 struct nfs_page *old_head,
408 				 struct inode *inode)
409 {
410 	while (destroy_list) {
411 		struct nfs_page *subreq = destroy_list;
412 
413 		destroy_list = (subreq->wb_this_page == old_head) ?
414 				   NULL : subreq->wb_this_page;
415 
416 		WARN_ON_ONCE(old_head != subreq->wb_head);
417 
418 		/* make sure old group is not used */
419 		subreq->wb_this_page = subreq;
420 
421 		clear_bit(PG_REMOVE, &subreq->wb_flags);
422 
423 		/* Note: races with nfs_page_group_destroy() */
424 		if (!kref_read(&subreq->wb_kref)) {
425 			/* Check if we raced with nfs_page_group_destroy() */
426 			if (test_and_clear_bit(PG_TEARDOWN, &subreq->wb_flags))
427 				nfs_free_request(subreq);
428 			continue;
429 		}
430 
431 		subreq->wb_head = subreq;
432 
433 		if (test_and_clear_bit(PG_INODE_REF, &subreq->wb_flags)) {
434 			nfs_release_request(subreq);
435 			atomic_long_dec(&NFS_I(inode)->nrequests);
436 		}
437 
438 		/* subreq is now totally disconnected from page group or any
439 		 * write / commit lists. last chance to wake any waiters */
440 		nfs_unlock_and_release_request(subreq);
441 	}
442 }
443 
444 /*
445  * nfs_lock_and_join_requests - join all subreqs to the head req and return
446  *                              a locked reference, cancelling any pending
447  *                              operations for this page.
448  *
449  * @page - the page used to lookup the "page group" of nfs_page structures
450  *
451  * This function joins all sub requests to the head request by first
452  * locking all requests in the group, cancelling any pending operations
453  * and finally updating the head request to cover the whole range covered by
454  * the (former) group.  All subrequests are removed from any write or commit
455  * lists, unlinked from the group and destroyed.
456  *
457  * Returns a locked, referenced pointer to the head request - which after
458  * this call is guaranteed to be the only request associated with the page.
459  * Returns NULL if no requests are found for @page, or a ERR_PTR if an
460  * error was encountered.
461  */
462 static struct nfs_page *
463 nfs_lock_and_join_requests(struct page *page)
464 {
465 	struct inode *inode = page_file_mapping(page)->host;
466 	struct nfs_page *head, *subreq;
467 	struct nfs_page *destroy_list = NULL;
468 	unsigned int total_bytes;
469 	int ret;
470 
471 try_again:
472 	/*
473 	 * A reference is taken only on the head request which acts as a
474 	 * reference to the whole page group - the group will not be destroyed
475 	 * until the head reference is released.
476 	 */
477 	head = nfs_page_find_head_request(page);
478 	if (!head)
479 		return NULL;
480 
481 	/* lock the page head first in order to avoid an ABBA inefficiency */
482 	if (!nfs_lock_request(head)) {
483 		ret = nfs_wait_on_request(head);
484 		nfs_release_request(head);
485 		if (ret < 0)
486 			return ERR_PTR(ret);
487 		goto try_again;
488 	}
489 
490 	/* Ensure that nobody removed the request before we locked it */
491 	if (head != nfs_page_private_request(page) && !PageSwapCache(page)) {
492 		nfs_unlock_and_release_request(head);
493 		goto try_again;
494 	}
495 
496 	ret = nfs_page_group_lock(head);
497 	if (ret < 0) {
498 		nfs_unlock_and_release_request(head);
499 		return ERR_PTR(ret);
500 	}
501 
502 	/* lock each request in the page group */
503 	total_bytes = head->wb_bytes;
504 	for (subreq = head->wb_this_page; subreq != head;
505 			subreq = subreq->wb_this_page) {
506 
507 		if (!kref_get_unless_zero(&subreq->wb_kref)) {
508 			if (subreq->wb_offset == head->wb_offset + total_bytes)
509 				total_bytes += subreq->wb_bytes;
510 			continue;
511 		}
512 
513 		while (!nfs_lock_request(subreq)) {
514 			/*
515 			 * Unlock page to allow nfs_page_group_sync_on_bit()
516 			 * to succeed
517 			 */
518 			nfs_page_group_unlock(head);
519 			ret = nfs_wait_on_request(subreq);
520 			if (!ret)
521 				ret = nfs_page_group_lock(head);
522 			if (ret < 0) {
523 				nfs_unroll_locks(inode, head, subreq);
524 				nfs_release_request(subreq);
525 				nfs_unlock_and_release_request(head);
526 				return ERR_PTR(ret);
527 			}
528 		}
529 		/*
530 		 * Subrequests are always contiguous, non overlapping
531 		 * and in order - but may be repeated (mirrored writes).
532 		 */
533 		if (subreq->wb_offset == (head->wb_offset + total_bytes)) {
534 			/* keep track of how many bytes this group covers */
535 			total_bytes += subreq->wb_bytes;
536 		} else if (WARN_ON_ONCE(subreq->wb_offset < head->wb_offset ||
537 			    ((subreq->wb_offset + subreq->wb_bytes) >
538 			     (head->wb_offset + total_bytes)))) {
539 			nfs_page_group_unlock(head);
540 			nfs_unroll_locks(inode, head, subreq);
541 			nfs_unlock_and_release_request(subreq);
542 			nfs_unlock_and_release_request(head);
543 			return ERR_PTR(-EIO);
544 		}
545 	}
546 
547 	/* Now that all requests are locked, make sure they aren't on any list.
548 	 * Commit list removal accounting is done after locks are dropped */
549 	subreq = head;
550 	do {
551 		nfs_clear_request_commit(subreq);
552 		subreq = subreq->wb_this_page;
553 	} while (subreq != head);
554 
555 	/* unlink subrequests from head, destroy them later */
556 	if (head->wb_this_page != head) {
557 		/* destroy list will be terminated by head */
558 		destroy_list = head->wb_this_page;
559 		head->wb_this_page = head;
560 
561 		/* change head request to cover whole range that
562 		 * the former page group covered */
563 		head->wb_bytes = total_bytes;
564 	}
565 
566 	/* Postpone destruction of this request */
567 	if (test_and_clear_bit(PG_REMOVE, &head->wb_flags)) {
568 		set_bit(PG_INODE_REF, &head->wb_flags);
569 		kref_get(&head->wb_kref);
570 		atomic_long_inc(&NFS_I(inode)->nrequests);
571 	}
572 
573 	nfs_page_group_unlock(head);
574 
575 	nfs_destroy_unlinked_subrequests(destroy_list, head, inode);
576 
577 	/* Did we lose a race with nfs_inode_remove_request()? */
578 	if (!(PagePrivate(page) || PageSwapCache(page))) {
579 		nfs_unlock_and_release_request(head);
580 		return NULL;
581 	}
582 
583 	/* still holds ref on head from nfs_page_find_head_request
584 	 * and still has lock on head from lock loop */
585 	return head;
586 }
587 
588 static void nfs_write_error_remove_page(struct nfs_page *req)
589 {
590 	nfs_end_page_writeback(req);
591 	generic_error_remove_page(page_file_mapping(req->wb_page),
592 				  req->wb_page);
593 	nfs_release_request(req);
594 }
595 
596 static bool
597 nfs_error_is_fatal_on_server(int err)
598 {
599 	switch (err) {
600 	case 0:
601 	case -ERESTARTSYS:
602 	case -EINTR:
603 		return false;
604 	}
605 	return nfs_error_is_fatal(err);
606 }
607 
608 /*
609  * Find an associated nfs write request, and prepare to flush it out
610  * May return an error if the user signalled nfs_wait_on_request().
611  */
612 static int nfs_page_async_flush(struct nfs_pageio_descriptor *pgio,
613 				struct page *page)
614 {
615 	struct nfs_page *req;
616 	int ret = 0;
617 
618 	req = nfs_lock_and_join_requests(page);
619 	if (!req)
620 		goto out;
621 	ret = PTR_ERR(req);
622 	if (IS_ERR(req))
623 		goto out;
624 
625 	nfs_set_page_writeback(page);
626 	WARN_ON_ONCE(test_bit(PG_CLEAN, &req->wb_flags));
627 
628 	ret = 0;
629 	/* If there is a fatal error that covers this write, just exit */
630 	if (nfs_error_is_fatal_on_server(req->wb_context->error))
631 		goto out_launder;
632 
633 	if (!nfs_pageio_add_request(pgio, req)) {
634 		ret = pgio->pg_error;
635 		/*
636 		 * Remove the problematic req upon fatal errors on the server
637 		 */
638 		if (nfs_error_is_fatal(ret)) {
639 			nfs_context_set_write_error(req->wb_context, ret);
640 			if (nfs_error_is_fatal_on_server(ret))
641 				goto out_launder;
642 		}
643 		nfs_redirty_request(req);
644 		ret = -EAGAIN;
645 	} else
646 		nfs_add_stats(page_file_mapping(page)->host,
647 				NFSIOS_WRITEPAGES, 1);
648 out:
649 	return ret;
650 out_launder:
651 	nfs_write_error_remove_page(req);
652 	return ret;
653 }
654 
655 static int nfs_do_writepage(struct page *page, struct writeback_control *wbc,
656 			    struct nfs_pageio_descriptor *pgio)
657 {
658 	int ret;
659 
660 	nfs_pageio_cond_complete(pgio, page_index(page));
661 	ret = nfs_page_async_flush(pgio, page);
662 	if (ret == -EAGAIN) {
663 		redirty_page_for_writepage(wbc, page);
664 		ret = 0;
665 	}
666 	return ret;
667 }
668 
669 /*
670  * Write an mmapped page to the server.
671  */
672 static int nfs_writepage_locked(struct page *page,
673 				struct writeback_control *wbc)
674 {
675 	struct nfs_pageio_descriptor pgio;
676 	struct inode *inode = page_file_mapping(page)->host;
677 	int err;
678 
679 	nfs_inc_stats(inode, NFSIOS_VFSWRITEPAGE);
680 	nfs_pageio_init_write(&pgio, inode, 0,
681 				false, &nfs_async_write_completion_ops);
682 	err = nfs_do_writepage(page, wbc, &pgio);
683 	nfs_pageio_complete(&pgio);
684 	if (err < 0)
685 		return err;
686 	if (pgio.pg_error < 0)
687 		return pgio.pg_error;
688 	return 0;
689 }
690 
691 int nfs_writepage(struct page *page, struct writeback_control *wbc)
692 {
693 	int ret;
694 
695 	ret = nfs_writepage_locked(page, wbc);
696 	unlock_page(page);
697 	return ret;
698 }
699 
700 static int nfs_writepages_callback(struct page *page, struct writeback_control *wbc, void *data)
701 {
702 	int ret;
703 
704 	ret = nfs_do_writepage(page, wbc, data);
705 	unlock_page(page);
706 	return ret;
707 }
708 
709 static void nfs_io_completion_commit(void *inode)
710 {
711 	nfs_commit_inode(inode, 0);
712 }
713 
714 int nfs_writepages(struct address_space *mapping, struct writeback_control *wbc)
715 {
716 	struct inode *inode = mapping->host;
717 	struct nfs_pageio_descriptor pgio;
718 	struct nfs_io_completion *ioc = nfs_io_completion_alloc(GFP_NOFS);
719 	int err;
720 
721 	nfs_inc_stats(inode, NFSIOS_VFSWRITEPAGES);
722 
723 	if (ioc)
724 		nfs_io_completion_init(ioc, nfs_io_completion_commit, inode);
725 
726 	nfs_pageio_init_write(&pgio, inode, wb_priority(wbc), false,
727 				&nfs_async_write_completion_ops);
728 	pgio.pg_io_completion = ioc;
729 	err = write_cache_pages(mapping, wbc, nfs_writepages_callback, &pgio);
730 	nfs_pageio_complete(&pgio);
731 	nfs_io_completion_put(ioc);
732 
733 	if (err < 0)
734 		goto out_err;
735 	err = pgio.pg_error;
736 	if (err < 0)
737 		goto out_err;
738 	return 0;
739 out_err:
740 	return err;
741 }
742 
743 /*
744  * Insert a write request into an inode
745  */
746 static void nfs_inode_add_request(struct inode *inode, struct nfs_page *req)
747 {
748 	struct address_space *mapping = page_file_mapping(req->wb_page);
749 	struct nfs_inode *nfsi = NFS_I(inode);
750 
751 	WARN_ON_ONCE(req->wb_this_page != req);
752 
753 	/* Lock the request! */
754 	nfs_lock_request(req);
755 
756 	/*
757 	 * Swap-space should not get truncated. Hence no need to plug the race
758 	 * with invalidate/truncate.
759 	 */
760 	spin_lock(&mapping->private_lock);
761 	if (!nfs_have_writebacks(inode) &&
762 	    NFS_PROTO(inode)->have_delegation(inode, FMODE_WRITE)) {
763 		spin_lock(&inode->i_lock);
764 		inode->i_version++;
765 		spin_unlock(&inode->i_lock);
766 	}
767 	if (likely(!PageSwapCache(req->wb_page))) {
768 		set_bit(PG_MAPPED, &req->wb_flags);
769 		SetPagePrivate(req->wb_page);
770 		set_page_private(req->wb_page, (unsigned long)req);
771 	}
772 	spin_unlock(&mapping->private_lock);
773 	atomic_long_inc(&nfsi->nrequests);
774 	/* this a head request for a page group - mark it as having an
775 	 * extra reference so sub groups can follow suit.
776 	 * This flag also informs pgio layer when to bump nrequests when
777 	 * adding subrequests. */
778 	WARN_ON(test_and_set_bit(PG_INODE_REF, &req->wb_flags));
779 	kref_get(&req->wb_kref);
780 }
781 
782 /*
783  * Remove a write request from an inode
784  */
785 static void nfs_inode_remove_request(struct nfs_page *req)
786 {
787 	struct address_space *mapping = page_file_mapping(req->wb_page);
788 	struct inode *inode = mapping->host;
789 	struct nfs_inode *nfsi = NFS_I(inode);
790 	struct nfs_page *head;
791 
792 	atomic_long_dec(&nfsi->nrequests);
793 	if (nfs_page_group_sync_on_bit(req, PG_REMOVE)) {
794 		head = req->wb_head;
795 
796 		spin_lock(&mapping->private_lock);
797 		if (likely(head->wb_page && !PageSwapCache(head->wb_page))) {
798 			set_page_private(head->wb_page, 0);
799 			ClearPagePrivate(head->wb_page);
800 			clear_bit(PG_MAPPED, &head->wb_flags);
801 		}
802 		spin_unlock(&mapping->private_lock);
803 	}
804 
805 	if (test_and_clear_bit(PG_INODE_REF, &req->wb_flags))
806 		nfs_release_request(req);
807 }
808 
809 static void
810 nfs_mark_request_dirty(struct nfs_page *req)
811 {
812 	if (req->wb_page)
813 		__set_page_dirty_nobuffers(req->wb_page);
814 }
815 
816 /*
817  * nfs_page_search_commits_for_head_request_locked
818  *
819  * Search through commit lists on @inode for the head request for @page.
820  * Must be called while holding the inode (which is cinfo) lock.
821  *
822  * Returns the head request if found, or NULL if not found.
823  */
824 static struct nfs_page *
825 nfs_page_search_commits_for_head_request_locked(struct nfs_inode *nfsi,
826 						struct page *page)
827 {
828 	struct nfs_page *freq, *t;
829 	struct nfs_commit_info cinfo;
830 	struct inode *inode = &nfsi->vfs_inode;
831 
832 	nfs_init_cinfo_from_inode(&cinfo, inode);
833 
834 	/* search through pnfs commit lists */
835 	freq = pnfs_search_commit_reqs(inode, &cinfo, page);
836 	if (freq)
837 		return freq->wb_head;
838 
839 	/* Linearly search the commit list for the correct request */
840 	list_for_each_entry_safe(freq, t, &cinfo.mds->list, wb_list) {
841 		if (freq->wb_page == page)
842 			return freq->wb_head;
843 	}
844 
845 	return NULL;
846 }
847 
848 /**
849  * nfs_request_add_commit_list_locked - add request to a commit list
850  * @req: pointer to a struct nfs_page
851  * @dst: commit list head
852  * @cinfo: holds list lock and accounting info
853  *
854  * This sets the PG_CLEAN bit, updates the cinfo count of
855  * number of outstanding requests requiring a commit as well as
856  * the MM page stats.
857  *
858  * The caller must hold NFS_I(cinfo->inode)->commit_mutex, and the
859  * nfs_page lock.
860  */
861 void
862 nfs_request_add_commit_list_locked(struct nfs_page *req, struct list_head *dst,
863 			    struct nfs_commit_info *cinfo)
864 {
865 	set_bit(PG_CLEAN, &req->wb_flags);
866 	nfs_list_add_request(req, dst);
867 	atomic_long_inc(&cinfo->mds->ncommit);
868 }
869 EXPORT_SYMBOL_GPL(nfs_request_add_commit_list_locked);
870 
871 /**
872  * nfs_request_add_commit_list - add request to a commit list
873  * @req: pointer to a struct nfs_page
874  * @dst: commit list head
875  * @cinfo: holds list lock and accounting info
876  *
877  * This sets the PG_CLEAN bit, updates the cinfo count of
878  * number of outstanding requests requiring a commit as well as
879  * the MM page stats.
880  *
881  * The caller must _not_ hold the cinfo->lock, but must be
882  * holding the nfs_page lock.
883  */
884 void
885 nfs_request_add_commit_list(struct nfs_page *req, struct nfs_commit_info *cinfo)
886 {
887 	mutex_lock(&NFS_I(cinfo->inode)->commit_mutex);
888 	nfs_request_add_commit_list_locked(req, &cinfo->mds->list, cinfo);
889 	mutex_unlock(&NFS_I(cinfo->inode)->commit_mutex);
890 	if (req->wb_page)
891 		nfs_mark_page_unstable(req->wb_page, cinfo);
892 }
893 EXPORT_SYMBOL_GPL(nfs_request_add_commit_list);
894 
895 /**
896  * nfs_request_remove_commit_list - Remove request from a commit list
897  * @req: pointer to a nfs_page
898  * @cinfo: holds list lock and accounting info
899  *
900  * This clears the PG_CLEAN bit, and updates the cinfo's count of
901  * number of outstanding requests requiring a commit
902  * It does not update the MM page stats.
903  *
904  * The caller _must_ hold the cinfo->lock and the nfs_page lock.
905  */
906 void
907 nfs_request_remove_commit_list(struct nfs_page *req,
908 			       struct nfs_commit_info *cinfo)
909 {
910 	if (!test_and_clear_bit(PG_CLEAN, &(req)->wb_flags))
911 		return;
912 	nfs_list_remove_request(req);
913 	atomic_long_dec(&cinfo->mds->ncommit);
914 }
915 EXPORT_SYMBOL_GPL(nfs_request_remove_commit_list);
916 
917 static void nfs_init_cinfo_from_inode(struct nfs_commit_info *cinfo,
918 				      struct inode *inode)
919 {
920 	cinfo->inode = inode;
921 	cinfo->mds = &NFS_I(inode)->commit_info;
922 	cinfo->ds = pnfs_get_ds_info(inode);
923 	cinfo->dreq = NULL;
924 	cinfo->completion_ops = &nfs_commit_completion_ops;
925 }
926 
927 void nfs_init_cinfo(struct nfs_commit_info *cinfo,
928 		    struct inode *inode,
929 		    struct nfs_direct_req *dreq)
930 {
931 	if (dreq)
932 		nfs_init_cinfo_from_dreq(cinfo, dreq);
933 	else
934 		nfs_init_cinfo_from_inode(cinfo, inode);
935 }
936 EXPORT_SYMBOL_GPL(nfs_init_cinfo);
937 
938 /*
939  * Add a request to the inode's commit list.
940  */
941 void
942 nfs_mark_request_commit(struct nfs_page *req, struct pnfs_layout_segment *lseg,
943 			struct nfs_commit_info *cinfo, u32 ds_commit_idx)
944 {
945 	if (pnfs_mark_request_commit(req, lseg, cinfo, ds_commit_idx))
946 		return;
947 	nfs_request_add_commit_list(req, cinfo);
948 }
949 
950 static void
951 nfs_clear_page_commit(struct page *page)
952 {
953 	dec_node_page_state(page, NR_UNSTABLE_NFS);
954 	dec_wb_stat(&inode_to_bdi(page_file_mapping(page)->host)->wb,
955 		    WB_RECLAIMABLE);
956 }
957 
958 /* Called holding the request lock on @req */
959 static void
960 nfs_clear_request_commit(struct nfs_page *req)
961 {
962 	if (test_bit(PG_CLEAN, &req->wb_flags)) {
963 		struct inode *inode = d_inode(req->wb_context->dentry);
964 		struct nfs_commit_info cinfo;
965 
966 		nfs_init_cinfo_from_inode(&cinfo, inode);
967 		mutex_lock(&NFS_I(inode)->commit_mutex);
968 		if (!pnfs_clear_request_commit(req, &cinfo)) {
969 			nfs_request_remove_commit_list(req, &cinfo);
970 		}
971 		mutex_unlock(&NFS_I(inode)->commit_mutex);
972 		nfs_clear_page_commit(req->wb_page);
973 	}
974 }
975 
976 int nfs_write_need_commit(struct nfs_pgio_header *hdr)
977 {
978 	if (hdr->verf.committed == NFS_DATA_SYNC)
979 		return hdr->lseg == NULL;
980 	return hdr->verf.committed != NFS_FILE_SYNC;
981 }
982 
983 static void nfs_async_write_init(struct nfs_pgio_header *hdr)
984 {
985 	nfs_io_completion_get(hdr->io_completion);
986 }
987 
988 static void nfs_write_completion(struct nfs_pgio_header *hdr)
989 {
990 	struct nfs_commit_info cinfo;
991 	unsigned long bytes = 0;
992 
993 	if (test_bit(NFS_IOHDR_REDO, &hdr->flags))
994 		goto out;
995 	nfs_init_cinfo_from_inode(&cinfo, hdr->inode);
996 	while (!list_empty(&hdr->pages)) {
997 		struct nfs_page *req = nfs_list_entry(hdr->pages.next);
998 
999 		bytes += req->wb_bytes;
1000 		nfs_list_remove_request(req);
1001 		if (test_bit(NFS_IOHDR_ERROR, &hdr->flags) &&
1002 		    (hdr->good_bytes < bytes)) {
1003 			nfs_set_pageerror(req->wb_page);
1004 			nfs_context_set_write_error(req->wb_context, hdr->error);
1005 			goto remove_req;
1006 		}
1007 		if (nfs_write_need_commit(hdr)) {
1008 			memcpy(&req->wb_verf, &hdr->verf.verifier, sizeof(req->wb_verf));
1009 			nfs_mark_request_commit(req, hdr->lseg, &cinfo,
1010 				hdr->pgio_mirror_idx);
1011 			goto next;
1012 		}
1013 remove_req:
1014 		nfs_inode_remove_request(req);
1015 next:
1016 		nfs_end_page_writeback(req);
1017 		nfs_release_request(req);
1018 	}
1019 out:
1020 	nfs_io_completion_put(hdr->io_completion);
1021 	hdr->release(hdr);
1022 }
1023 
1024 unsigned long
1025 nfs_reqs_to_commit(struct nfs_commit_info *cinfo)
1026 {
1027 	return atomic_long_read(&cinfo->mds->ncommit);
1028 }
1029 
1030 /* NFS_I(cinfo->inode)->commit_mutex held by caller */
1031 int
1032 nfs_scan_commit_list(struct list_head *src, struct list_head *dst,
1033 		     struct nfs_commit_info *cinfo, int max)
1034 {
1035 	struct nfs_page *req, *tmp;
1036 	int ret = 0;
1037 
1038 restart:
1039 	list_for_each_entry_safe(req, tmp, src, wb_list) {
1040 		kref_get(&req->wb_kref);
1041 		if (!nfs_lock_request(req)) {
1042 			int status;
1043 
1044 			/* Prevent deadlock with nfs_lock_and_join_requests */
1045 			if (!list_empty(dst)) {
1046 				nfs_release_request(req);
1047 				continue;
1048 			}
1049 			/* Ensure we make progress to prevent livelock */
1050 			mutex_unlock(&NFS_I(cinfo->inode)->commit_mutex);
1051 			status = nfs_wait_on_request(req);
1052 			nfs_release_request(req);
1053 			mutex_lock(&NFS_I(cinfo->inode)->commit_mutex);
1054 			if (status < 0)
1055 				break;
1056 			goto restart;
1057 		}
1058 		nfs_request_remove_commit_list(req, cinfo);
1059 		clear_bit(PG_COMMIT_TO_DS, &req->wb_flags);
1060 		nfs_list_add_request(req, dst);
1061 		ret++;
1062 		if ((ret == max) && !cinfo->dreq)
1063 			break;
1064 		cond_resched();
1065 	}
1066 	return ret;
1067 }
1068 EXPORT_SYMBOL_GPL(nfs_scan_commit_list);
1069 
1070 /*
1071  * nfs_scan_commit - Scan an inode for commit requests
1072  * @inode: NFS inode to scan
1073  * @dst: mds destination list
1074  * @cinfo: mds and ds lists of reqs ready to commit
1075  *
1076  * Moves requests from the inode's 'commit' request list.
1077  * The requests are *not* checked to ensure that they form a contiguous set.
1078  */
1079 int
1080 nfs_scan_commit(struct inode *inode, struct list_head *dst,
1081 		struct nfs_commit_info *cinfo)
1082 {
1083 	int ret = 0;
1084 
1085 	if (!atomic_long_read(&cinfo->mds->ncommit))
1086 		return 0;
1087 	mutex_lock(&NFS_I(cinfo->inode)->commit_mutex);
1088 	if (atomic_long_read(&cinfo->mds->ncommit) > 0) {
1089 		const int max = INT_MAX;
1090 
1091 		ret = nfs_scan_commit_list(&cinfo->mds->list, dst,
1092 					   cinfo, max);
1093 		ret += pnfs_scan_commit_lists(inode, cinfo, max - ret);
1094 	}
1095 	mutex_unlock(&NFS_I(cinfo->inode)->commit_mutex);
1096 	return ret;
1097 }
1098 
1099 /*
1100  * Search for an existing write request, and attempt to update
1101  * it to reflect a new dirty region on a given page.
1102  *
1103  * If the attempt fails, then the existing request is flushed out
1104  * to disk.
1105  */
1106 static struct nfs_page *nfs_try_to_update_request(struct inode *inode,
1107 		struct page *page,
1108 		unsigned int offset,
1109 		unsigned int bytes)
1110 {
1111 	struct nfs_page *req;
1112 	unsigned int rqend;
1113 	unsigned int end;
1114 	int error;
1115 
1116 	end = offset + bytes;
1117 
1118 	req = nfs_lock_and_join_requests(page);
1119 	if (IS_ERR_OR_NULL(req))
1120 		return req;
1121 
1122 	rqend = req->wb_offset + req->wb_bytes;
1123 	/*
1124 	 * Tell the caller to flush out the request if
1125 	 * the offsets are non-contiguous.
1126 	 * Note: nfs_flush_incompatible() will already
1127 	 * have flushed out requests having wrong owners.
1128 	 */
1129 	if (offset > rqend || end < req->wb_offset)
1130 		goto out_flushme;
1131 
1132 	/* Okay, the request matches. Update the region */
1133 	if (offset < req->wb_offset) {
1134 		req->wb_offset = offset;
1135 		req->wb_pgbase = offset;
1136 	}
1137 	if (end > rqend)
1138 		req->wb_bytes = end - req->wb_offset;
1139 	else
1140 		req->wb_bytes = rqend - req->wb_offset;
1141 	return req;
1142 out_flushme:
1143 	/*
1144 	 * Note: we mark the request dirty here because
1145 	 * nfs_lock_and_join_requests() cannot preserve
1146 	 * commit flags, so we have to replay the write.
1147 	 */
1148 	nfs_mark_request_dirty(req);
1149 	nfs_unlock_and_release_request(req);
1150 	error = nfs_wb_page(inode, page);
1151 	return (error < 0) ? ERR_PTR(error) : NULL;
1152 }
1153 
1154 /*
1155  * Try to update an existing write request, or create one if there is none.
1156  *
1157  * Note: Should always be called with the Page Lock held to prevent races
1158  * if we have to add a new request. Also assumes that the caller has
1159  * already called nfs_flush_incompatible() if necessary.
1160  */
1161 static struct nfs_page * nfs_setup_write_request(struct nfs_open_context* ctx,
1162 		struct page *page, unsigned int offset, unsigned int bytes)
1163 {
1164 	struct inode *inode = page_file_mapping(page)->host;
1165 	struct nfs_page	*req;
1166 
1167 	req = nfs_try_to_update_request(inode, page, offset, bytes);
1168 	if (req != NULL)
1169 		goto out;
1170 	req = nfs_create_request(ctx, page, NULL, offset, bytes);
1171 	if (IS_ERR(req))
1172 		goto out;
1173 	nfs_inode_add_request(inode, req);
1174 out:
1175 	return req;
1176 }
1177 
1178 static int nfs_writepage_setup(struct nfs_open_context *ctx, struct page *page,
1179 		unsigned int offset, unsigned int count)
1180 {
1181 	struct nfs_page	*req;
1182 
1183 	req = nfs_setup_write_request(ctx, page, offset, count);
1184 	if (IS_ERR(req))
1185 		return PTR_ERR(req);
1186 	/* Update file length */
1187 	nfs_grow_file(page, offset, count);
1188 	nfs_mark_uptodate(req);
1189 	nfs_mark_request_dirty(req);
1190 	nfs_unlock_and_release_request(req);
1191 	return 0;
1192 }
1193 
1194 int nfs_flush_incompatible(struct file *file, struct page *page)
1195 {
1196 	struct nfs_open_context *ctx = nfs_file_open_context(file);
1197 	struct nfs_lock_context *l_ctx;
1198 	struct file_lock_context *flctx = file_inode(file)->i_flctx;
1199 	struct nfs_page	*req;
1200 	int do_flush, status;
1201 	/*
1202 	 * Look for a request corresponding to this page. If there
1203 	 * is one, and it belongs to another file, we flush it out
1204 	 * before we try to copy anything into the page. Do this
1205 	 * due to the lack of an ACCESS-type call in NFSv2.
1206 	 * Also do the same if we find a request from an existing
1207 	 * dropped page.
1208 	 */
1209 	do {
1210 		req = nfs_page_find_head_request(page);
1211 		if (req == NULL)
1212 			return 0;
1213 		l_ctx = req->wb_lock_context;
1214 		do_flush = req->wb_page != page ||
1215 			!nfs_match_open_context(req->wb_context, ctx);
1216 		if (l_ctx && flctx &&
1217 		    !(list_empty_careful(&flctx->flc_posix) &&
1218 		      list_empty_careful(&flctx->flc_flock))) {
1219 			do_flush |= l_ctx->lockowner != current->files;
1220 		}
1221 		nfs_release_request(req);
1222 		if (!do_flush)
1223 			return 0;
1224 		status = nfs_wb_page(page_file_mapping(page)->host, page);
1225 	} while (status == 0);
1226 	return status;
1227 }
1228 
1229 /*
1230  * Avoid buffered writes when a open context credential's key would
1231  * expire soon.
1232  *
1233  * Returns -EACCES if the key will expire within RPC_KEY_EXPIRE_FAIL.
1234  *
1235  * Return 0 and set a credential flag which triggers the inode to flush
1236  * and performs  NFS_FILE_SYNC writes if the key will expired within
1237  * RPC_KEY_EXPIRE_TIMEO.
1238  */
1239 int
1240 nfs_key_timeout_notify(struct file *filp, struct inode *inode)
1241 {
1242 	struct nfs_open_context *ctx = nfs_file_open_context(filp);
1243 	struct rpc_auth *auth = NFS_SERVER(inode)->client->cl_auth;
1244 
1245 	return rpcauth_key_timeout_notify(auth, ctx->cred);
1246 }
1247 
1248 /*
1249  * Test if the open context credential key is marked to expire soon.
1250  */
1251 bool nfs_ctx_key_to_expire(struct nfs_open_context *ctx, struct inode *inode)
1252 {
1253 	struct rpc_auth *auth = NFS_SERVER(inode)->client->cl_auth;
1254 
1255 	return rpcauth_cred_key_to_expire(auth, ctx->cred);
1256 }
1257 
1258 /*
1259  * If the page cache is marked as unsafe or invalid, then we can't rely on
1260  * the PageUptodate() flag. In this case, we will need to turn off
1261  * write optimisations that depend on the page contents being correct.
1262  */
1263 static bool nfs_write_pageuptodate(struct page *page, struct inode *inode)
1264 {
1265 	struct nfs_inode *nfsi = NFS_I(inode);
1266 
1267 	if (nfs_have_delegated_attributes(inode))
1268 		goto out;
1269 	if (nfsi->cache_validity & NFS_INO_REVAL_PAGECACHE)
1270 		return false;
1271 	smp_rmb();
1272 	if (test_bit(NFS_INO_INVALIDATING, &nfsi->flags))
1273 		return false;
1274 out:
1275 	if (nfsi->cache_validity & NFS_INO_INVALID_DATA)
1276 		return false;
1277 	return PageUptodate(page) != 0;
1278 }
1279 
1280 static bool
1281 is_whole_file_wrlock(struct file_lock *fl)
1282 {
1283 	return fl->fl_start == 0 && fl->fl_end == OFFSET_MAX &&
1284 			fl->fl_type == F_WRLCK;
1285 }
1286 
1287 /* If we know the page is up to date, and we're not using byte range locks (or
1288  * if we have the whole file locked for writing), it may be more efficient to
1289  * extend the write to cover the entire page in order to avoid fragmentation
1290  * inefficiencies.
1291  *
1292  * If the file is opened for synchronous writes then we can just skip the rest
1293  * of the checks.
1294  */
1295 static int nfs_can_extend_write(struct file *file, struct page *page, struct inode *inode)
1296 {
1297 	int ret;
1298 	struct file_lock_context *flctx = inode->i_flctx;
1299 	struct file_lock *fl;
1300 
1301 	if (file->f_flags & O_DSYNC)
1302 		return 0;
1303 	if (!nfs_write_pageuptodate(page, inode))
1304 		return 0;
1305 	if (NFS_PROTO(inode)->have_delegation(inode, FMODE_WRITE))
1306 		return 1;
1307 	if (!flctx || (list_empty_careful(&flctx->flc_flock) &&
1308 		       list_empty_careful(&flctx->flc_posix)))
1309 		return 1;
1310 
1311 	/* Check to see if there are whole file write locks */
1312 	ret = 0;
1313 	spin_lock(&flctx->flc_lock);
1314 	if (!list_empty(&flctx->flc_posix)) {
1315 		fl = list_first_entry(&flctx->flc_posix, struct file_lock,
1316 					fl_list);
1317 		if (is_whole_file_wrlock(fl))
1318 			ret = 1;
1319 	} else if (!list_empty(&flctx->flc_flock)) {
1320 		fl = list_first_entry(&flctx->flc_flock, struct file_lock,
1321 					fl_list);
1322 		if (fl->fl_type == F_WRLCK)
1323 			ret = 1;
1324 	}
1325 	spin_unlock(&flctx->flc_lock);
1326 	return ret;
1327 }
1328 
1329 /*
1330  * Update and possibly write a cached page of an NFS file.
1331  *
1332  * XXX: Keep an eye on generic_file_read to make sure it doesn't do bad
1333  * things with a page scheduled for an RPC call (e.g. invalidate it).
1334  */
1335 int nfs_updatepage(struct file *file, struct page *page,
1336 		unsigned int offset, unsigned int count)
1337 {
1338 	struct nfs_open_context *ctx = nfs_file_open_context(file);
1339 	struct inode	*inode = page_file_mapping(page)->host;
1340 	int		status = 0;
1341 
1342 	nfs_inc_stats(inode, NFSIOS_VFSUPDATEPAGE);
1343 
1344 	dprintk("NFS:       nfs_updatepage(%pD2 %d@%lld)\n",
1345 		file, count, (long long)(page_file_offset(page) + offset));
1346 
1347 	if (!count)
1348 		goto out;
1349 
1350 	if (nfs_can_extend_write(file, page, inode)) {
1351 		count = max(count + offset, nfs_page_length(page));
1352 		offset = 0;
1353 	}
1354 
1355 	status = nfs_writepage_setup(ctx, page, offset, count);
1356 	if (status < 0)
1357 		nfs_set_pageerror(page);
1358 	else
1359 		__set_page_dirty_nobuffers(page);
1360 out:
1361 	dprintk("NFS:       nfs_updatepage returns %d (isize %lld)\n",
1362 			status, (long long)i_size_read(inode));
1363 	return status;
1364 }
1365 
1366 static int flush_task_priority(int how)
1367 {
1368 	switch (how & (FLUSH_HIGHPRI|FLUSH_LOWPRI)) {
1369 		case FLUSH_HIGHPRI:
1370 			return RPC_PRIORITY_HIGH;
1371 		case FLUSH_LOWPRI:
1372 			return RPC_PRIORITY_LOW;
1373 	}
1374 	return RPC_PRIORITY_NORMAL;
1375 }
1376 
1377 static void nfs_initiate_write(struct nfs_pgio_header *hdr,
1378 			       struct rpc_message *msg,
1379 			       const struct nfs_rpc_ops *rpc_ops,
1380 			       struct rpc_task_setup *task_setup_data, int how)
1381 {
1382 	int priority = flush_task_priority(how);
1383 
1384 	task_setup_data->priority = priority;
1385 	rpc_ops->write_setup(hdr, msg);
1386 
1387 	nfs4_state_protect_write(NFS_SERVER(hdr->inode)->nfs_client,
1388 				 &task_setup_data->rpc_client, msg, hdr);
1389 }
1390 
1391 /* If a nfs_flush_* function fails, it should remove reqs from @head and
1392  * call this on each, which will prepare them to be retried on next
1393  * writeback using standard nfs.
1394  */
1395 static void nfs_redirty_request(struct nfs_page *req)
1396 {
1397 	nfs_mark_request_dirty(req);
1398 	set_bit(NFS_CONTEXT_RESEND_WRITES, &req->wb_context->flags);
1399 	nfs_end_page_writeback(req);
1400 	nfs_release_request(req);
1401 }
1402 
1403 static void nfs_async_write_error(struct list_head *head)
1404 {
1405 	struct nfs_page	*req;
1406 
1407 	while (!list_empty(head)) {
1408 		req = nfs_list_entry(head->next);
1409 		nfs_list_remove_request(req);
1410 		nfs_redirty_request(req);
1411 	}
1412 }
1413 
1414 static void nfs_async_write_reschedule_io(struct nfs_pgio_header *hdr)
1415 {
1416 	nfs_async_write_error(&hdr->pages);
1417 }
1418 
1419 static const struct nfs_pgio_completion_ops nfs_async_write_completion_ops = {
1420 	.init_hdr = nfs_async_write_init,
1421 	.error_cleanup = nfs_async_write_error,
1422 	.completion = nfs_write_completion,
1423 	.reschedule_io = nfs_async_write_reschedule_io,
1424 };
1425 
1426 void nfs_pageio_init_write(struct nfs_pageio_descriptor *pgio,
1427 			       struct inode *inode, int ioflags, bool force_mds,
1428 			       const struct nfs_pgio_completion_ops *compl_ops)
1429 {
1430 	struct nfs_server *server = NFS_SERVER(inode);
1431 	const struct nfs_pageio_ops *pg_ops = &nfs_pgio_rw_ops;
1432 
1433 #ifdef CONFIG_NFS_V4_1
1434 	if (server->pnfs_curr_ld && !force_mds)
1435 		pg_ops = server->pnfs_curr_ld->pg_write_ops;
1436 #endif
1437 	nfs_pageio_init(pgio, inode, pg_ops, compl_ops, &nfs_rw_write_ops,
1438 			server->wsize, ioflags);
1439 }
1440 EXPORT_SYMBOL_GPL(nfs_pageio_init_write);
1441 
1442 void nfs_pageio_reset_write_mds(struct nfs_pageio_descriptor *pgio)
1443 {
1444 	struct nfs_pgio_mirror *mirror;
1445 
1446 	if (pgio->pg_ops && pgio->pg_ops->pg_cleanup)
1447 		pgio->pg_ops->pg_cleanup(pgio);
1448 
1449 	pgio->pg_ops = &nfs_pgio_rw_ops;
1450 
1451 	nfs_pageio_stop_mirroring(pgio);
1452 
1453 	mirror = &pgio->pg_mirrors[0];
1454 	mirror->pg_bsize = NFS_SERVER(pgio->pg_inode)->wsize;
1455 }
1456 EXPORT_SYMBOL_GPL(nfs_pageio_reset_write_mds);
1457 
1458 
1459 void nfs_commit_prepare(struct rpc_task *task, void *calldata)
1460 {
1461 	struct nfs_commit_data *data = calldata;
1462 
1463 	NFS_PROTO(data->inode)->commit_rpc_prepare(task, data);
1464 }
1465 
1466 /*
1467  * Special version of should_remove_suid() that ignores capabilities.
1468  */
1469 static int nfs_should_remove_suid(const struct inode *inode)
1470 {
1471 	umode_t mode = inode->i_mode;
1472 	int kill = 0;
1473 
1474 	/* suid always must be killed */
1475 	if (unlikely(mode & S_ISUID))
1476 		kill = ATTR_KILL_SUID;
1477 
1478 	/*
1479 	 * sgid without any exec bits is just a mandatory locking mark; leave
1480 	 * it alone.  If some exec bits are set, it's a real sgid; kill it.
1481 	 */
1482 	if (unlikely((mode & S_ISGID) && (mode & S_IXGRP)))
1483 		kill |= ATTR_KILL_SGID;
1484 
1485 	if (unlikely(kill && S_ISREG(mode)))
1486 		return kill;
1487 
1488 	return 0;
1489 }
1490 
1491 static void nfs_writeback_check_extend(struct nfs_pgio_header *hdr,
1492 		struct nfs_fattr *fattr)
1493 {
1494 	struct nfs_pgio_args *argp = &hdr->args;
1495 	struct nfs_pgio_res *resp = &hdr->res;
1496 	u64 size = argp->offset + resp->count;
1497 
1498 	if (!(fattr->valid & NFS_ATTR_FATTR_SIZE))
1499 		fattr->size = size;
1500 	if (nfs_size_to_loff_t(fattr->size) < i_size_read(hdr->inode)) {
1501 		fattr->valid &= ~NFS_ATTR_FATTR_SIZE;
1502 		return;
1503 	}
1504 	if (size != fattr->size)
1505 		return;
1506 	/* Set attribute barrier */
1507 	nfs_fattr_set_barrier(fattr);
1508 	/* ...and update size */
1509 	fattr->valid |= NFS_ATTR_FATTR_SIZE;
1510 }
1511 
1512 void nfs_writeback_update_inode(struct nfs_pgio_header *hdr)
1513 {
1514 	struct nfs_fattr *fattr = &hdr->fattr;
1515 	struct inode *inode = hdr->inode;
1516 
1517 	spin_lock(&inode->i_lock);
1518 	nfs_writeback_check_extend(hdr, fattr);
1519 	nfs_post_op_update_inode_force_wcc_locked(inode, fattr);
1520 	spin_unlock(&inode->i_lock);
1521 }
1522 EXPORT_SYMBOL_GPL(nfs_writeback_update_inode);
1523 
1524 /*
1525  * This function is called when the WRITE call is complete.
1526  */
1527 static int nfs_writeback_done(struct rpc_task *task,
1528 			      struct nfs_pgio_header *hdr,
1529 			      struct inode *inode)
1530 {
1531 	int status;
1532 
1533 	/*
1534 	 * ->write_done will attempt to use post-op attributes to detect
1535 	 * conflicting writes by other clients.  A strict interpretation
1536 	 * of close-to-open would allow us to continue caching even if
1537 	 * another writer had changed the file, but some applications
1538 	 * depend on tighter cache coherency when writing.
1539 	 */
1540 	status = NFS_PROTO(inode)->write_done(task, hdr);
1541 	if (status != 0)
1542 		return status;
1543 	nfs_add_stats(inode, NFSIOS_SERVERWRITTENBYTES, hdr->res.count);
1544 
1545 	if (hdr->res.verf->committed < hdr->args.stable &&
1546 	    task->tk_status >= 0) {
1547 		/* We tried a write call, but the server did not
1548 		 * commit data to stable storage even though we
1549 		 * requested it.
1550 		 * Note: There is a known bug in Tru64 < 5.0 in which
1551 		 *	 the server reports NFS_DATA_SYNC, but performs
1552 		 *	 NFS_FILE_SYNC. We therefore implement this checking
1553 		 *	 as a dprintk() in order to avoid filling syslog.
1554 		 */
1555 		static unsigned long    complain;
1556 
1557 		/* Note this will print the MDS for a DS write */
1558 		if (time_before(complain, jiffies)) {
1559 			dprintk("NFS:       faulty NFS server %s:"
1560 				" (committed = %d) != (stable = %d)\n",
1561 				NFS_SERVER(inode)->nfs_client->cl_hostname,
1562 				hdr->res.verf->committed, hdr->args.stable);
1563 			complain = jiffies + 300 * HZ;
1564 		}
1565 	}
1566 
1567 	/* Deal with the suid/sgid bit corner case */
1568 	if (nfs_should_remove_suid(inode))
1569 		nfs_mark_for_revalidate(inode);
1570 	return 0;
1571 }
1572 
1573 /*
1574  * This function is called when the WRITE call is complete.
1575  */
1576 static void nfs_writeback_result(struct rpc_task *task,
1577 				 struct nfs_pgio_header *hdr)
1578 {
1579 	struct nfs_pgio_args	*argp = &hdr->args;
1580 	struct nfs_pgio_res	*resp = &hdr->res;
1581 
1582 	if (resp->count < argp->count) {
1583 		static unsigned long    complain;
1584 
1585 		/* This a short write! */
1586 		nfs_inc_stats(hdr->inode, NFSIOS_SHORTWRITE);
1587 
1588 		/* Has the server at least made some progress? */
1589 		if (resp->count == 0) {
1590 			if (time_before(complain, jiffies)) {
1591 				printk(KERN_WARNING
1592 				       "NFS: Server wrote zero bytes, expected %u.\n",
1593 				       argp->count);
1594 				complain = jiffies + 300 * HZ;
1595 			}
1596 			nfs_set_pgio_error(hdr, -EIO, argp->offset);
1597 			task->tk_status = -EIO;
1598 			return;
1599 		}
1600 
1601 		/* For non rpc-based layout drivers, retry-through-MDS */
1602 		if (!task->tk_ops) {
1603 			hdr->pnfs_error = -EAGAIN;
1604 			return;
1605 		}
1606 
1607 		/* Was this an NFSv2 write or an NFSv3 stable write? */
1608 		if (resp->verf->committed != NFS_UNSTABLE) {
1609 			/* Resend from where the server left off */
1610 			hdr->mds_offset += resp->count;
1611 			argp->offset += resp->count;
1612 			argp->pgbase += resp->count;
1613 			argp->count -= resp->count;
1614 		} else {
1615 			/* Resend as a stable write in order to avoid
1616 			 * headaches in the case of a server crash.
1617 			 */
1618 			argp->stable = NFS_FILE_SYNC;
1619 		}
1620 		rpc_restart_call_prepare(task);
1621 	}
1622 }
1623 
1624 static int wait_on_commit(struct nfs_mds_commit_info *cinfo)
1625 {
1626 	return wait_on_atomic_t(&cinfo->rpcs_out,
1627 			nfs_wait_atomic_killable, TASK_KILLABLE);
1628 }
1629 
1630 static void nfs_commit_begin(struct nfs_mds_commit_info *cinfo)
1631 {
1632 	atomic_inc(&cinfo->rpcs_out);
1633 }
1634 
1635 static void nfs_commit_end(struct nfs_mds_commit_info *cinfo)
1636 {
1637 	if (atomic_dec_and_test(&cinfo->rpcs_out))
1638 		wake_up_atomic_t(&cinfo->rpcs_out);
1639 }
1640 
1641 void nfs_commitdata_release(struct nfs_commit_data *data)
1642 {
1643 	put_nfs_open_context(data->context);
1644 	nfs_commit_free(data);
1645 }
1646 EXPORT_SYMBOL_GPL(nfs_commitdata_release);
1647 
1648 int nfs_initiate_commit(struct rpc_clnt *clnt, struct nfs_commit_data *data,
1649 			const struct nfs_rpc_ops *nfs_ops,
1650 			const struct rpc_call_ops *call_ops,
1651 			int how, int flags)
1652 {
1653 	struct rpc_task *task;
1654 	int priority = flush_task_priority(how);
1655 	struct rpc_message msg = {
1656 		.rpc_argp = &data->args,
1657 		.rpc_resp = &data->res,
1658 		.rpc_cred = data->cred,
1659 	};
1660 	struct rpc_task_setup task_setup_data = {
1661 		.task = &data->task,
1662 		.rpc_client = clnt,
1663 		.rpc_message = &msg,
1664 		.callback_ops = call_ops,
1665 		.callback_data = data,
1666 		.workqueue = nfsiod_workqueue,
1667 		.flags = RPC_TASK_ASYNC | flags,
1668 		.priority = priority,
1669 	};
1670 	/* Set up the initial task struct.  */
1671 	nfs_ops->commit_setup(data, &msg);
1672 
1673 	dprintk("NFS: initiated commit call\n");
1674 
1675 	nfs4_state_protect(NFS_SERVER(data->inode)->nfs_client,
1676 		NFS_SP4_MACH_CRED_COMMIT, &task_setup_data.rpc_client, &msg);
1677 
1678 	task = rpc_run_task(&task_setup_data);
1679 	if (IS_ERR(task))
1680 		return PTR_ERR(task);
1681 	if (how & FLUSH_SYNC)
1682 		rpc_wait_for_completion_task(task);
1683 	rpc_put_task(task);
1684 	return 0;
1685 }
1686 EXPORT_SYMBOL_GPL(nfs_initiate_commit);
1687 
1688 static loff_t nfs_get_lwb(struct list_head *head)
1689 {
1690 	loff_t lwb = 0;
1691 	struct nfs_page *req;
1692 
1693 	list_for_each_entry(req, head, wb_list)
1694 		if (lwb < (req_offset(req) + req->wb_bytes))
1695 			lwb = req_offset(req) + req->wb_bytes;
1696 
1697 	return lwb;
1698 }
1699 
1700 /*
1701  * Set up the argument/result storage required for the RPC call.
1702  */
1703 void nfs_init_commit(struct nfs_commit_data *data,
1704 		     struct list_head *head,
1705 		     struct pnfs_layout_segment *lseg,
1706 		     struct nfs_commit_info *cinfo)
1707 {
1708 	struct nfs_page *first = nfs_list_entry(head->next);
1709 	struct inode *inode = d_inode(first->wb_context->dentry);
1710 
1711 	/* Set up the RPC argument and reply structs
1712 	 * NB: take care not to mess about with data->commit et al. */
1713 
1714 	list_splice_init(head, &data->pages);
1715 
1716 	data->inode	  = inode;
1717 	data->cred	  = first->wb_context->cred;
1718 	data->lseg	  = lseg; /* reference transferred */
1719 	/* only set lwb for pnfs commit */
1720 	if (lseg)
1721 		data->lwb = nfs_get_lwb(&data->pages);
1722 	data->mds_ops     = &nfs_commit_ops;
1723 	data->completion_ops = cinfo->completion_ops;
1724 	data->dreq	  = cinfo->dreq;
1725 
1726 	data->args.fh     = NFS_FH(data->inode);
1727 	/* Note: we always request a commit of the entire inode */
1728 	data->args.offset = 0;
1729 	data->args.count  = 0;
1730 	data->context     = get_nfs_open_context(first->wb_context);
1731 	data->res.fattr   = &data->fattr;
1732 	data->res.verf    = &data->verf;
1733 	nfs_fattr_init(&data->fattr);
1734 }
1735 EXPORT_SYMBOL_GPL(nfs_init_commit);
1736 
1737 void nfs_retry_commit(struct list_head *page_list,
1738 		      struct pnfs_layout_segment *lseg,
1739 		      struct nfs_commit_info *cinfo,
1740 		      u32 ds_commit_idx)
1741 {
1742 	struct nfs_page *req;
1743 
1744 	while (!list_empty(page_list)) {
1745 		req = nfs_list_entry(page_list->next);
1746 		nfs_list_remove_request(req);
1747 		nfs_mark_request_commit(req, lseg, cinfo, ds_commit_idx);
1748 		if (!cinfo->dreq)
1749 			nfs_clear_page_commit(req->wb_page);
1750 		nfs_unlock_and_release_request(req);
1751 	}
1752 }
1753 EXPORT_SYMBOL_GPL(nfs_retry_commit);
1754 
1755 static void
1756 nfs_commit_resched_write(struct nfs_commit_info *cinfo,
1757 		struct nfs_page *req)
1758 {
1759 	__set_page_dirty_nobuffers(req->wb_page);
1760 }
1761 
1762 /*
1763  * Commit dirty pages
1764  */
1765 static int
1766 nfs_commit_list(struct inode *inode, struct list_head *head, int how,
1767 		struct nfs_commit_info *cinfo)
1768 {
1769 	struct nfs_commit_data	*data;
1770 
1771 	/* another commit raced with us */
1772 	if (list_empty(head))
1773 		return 0;
1774 
1775 	data = nfs_commitdata_alloc(true);
1776 
1777 	/* Set up the argument struct */
1778 	nfs_init_commit(data, head, NULL, cinfo);
1779 	atomic_inc(&cinfo->mds->rpcs_out);
1780 	return nfs_initiate_commit(NFS_CLIENT(inode), data, NFS_PROTO(inode),
1781 				   data->mds_ops, how, 0);
1782 }
1783 
1784 /*
1785  * COMMIT call returned
1786  */
1787 static void nfs_commit_done(struct rpc_task *task, void *calldata)
1788 {
1789 	struct nfs_commit_data	*data = calldata;
1790 
1791         dprintk("NFS: %5u nfs_commit_done (status %d)\n",
1792                                 task->tk_pid, task->tk_status);
1793 
1794 	/* Call the NFS version-specific code */
1795 	NFS_PROTO(data->inode)->commit_done(task, data);
1796 }
1797 
1798 static void nfs_commit_release_pages(struct nfs_commit_data *data)
1799 {
1800 	struct nfs_page	*req;
1801 	int status = data->task.tk_status;
1802 	struct nfs_commit_info cinfo;
1803 	struct nfs_server *nfss;
1804 
1805 	while (!list_empty(&data->pages)) {
1806 		req = nfs_list_entry(data->pages.next);
1807 		nfs_list_remove_request(req);
1808 		if (req->wb_page)
1809 			nfs_clear_page_commit(req->wb_page);
1810 
1811 		dprintk("NFS:       commit (%s/%llu %d@%lld)",
1812 			req->wb_context->dentry->d_sb->s_id,
1813 			(unsigned long long)NFS_FILEID(d_inode(req->wb_context->dentry)),
1814 			req->wb_bytes,
1815 			(long long)req_offset(req));
1816 		if (status < 0) {
1817 			nfs_context_set_write_error(req->wb_context, status);
1818 			if (req->wb_page)
1819 				nfs_inode_remove_request(req);
1820 			dprintk_cont(", error = %d\n", status);
1821 			goto next;
1822 		}
1823 
1824 		/* Okay, COMMIT succeeded, apparently. Check the verifier
1825 		 * returned by the server against all stored verfs. */
1826 		if (!nfs_write_verifier_cmp(&req->wb_verf, &data->verf.verifier)) {
1827 			/* We have a match */
1828 			if (req->wb_page)
1829 				nfs_inode_remove_request(req);
1830 			dprintk_cont(" OK\n");
1831 			goto next;
1832 		}
1833 		/* We have a mismatch. Write the page again */
1834 		dprintk_cont(" mismatch\n");
1835 		nfs_mark_request_dirty(req);
1836 		set_bit(NFS_CONTEXT_RESEND_WRITES, &req->wb_context->flags);
1837 	next:
1838 		nfs_unlock_and_release_request(req);
1839 	}
1840 	nfss = NFS_SERVER(data->inode);
1841 	if (atomic_long_read(&nfss->writeback) < NFS_CONGESTION_OFF_THRESH)
1842 		clear_bdi_congested(inode_to_bdi(data->inode), BLK_RW_ASYNC);
1843 
1844 	nfs_init_cinfo(&cinfo, data->inode, data->dreq);
1845 	nfs_commit_end(cinfo.mds);
1846 }
1847 
1848 static void nfs_commit_release(void *calldata)
1849 {
1850 	struct nfs_commit_data *data = calldata;
1851 
1852 	data->completion_ops->completion(data);
1853 	nfs_commitdata_release(calldata);
1854 }
1855 
1856 static const struct rpc_call_ops nfs_commit_ops = {
1857 	.rpc_call_prepare = nfs_commit_prepare,
1858 	.rpc_call_done = nfs_commit_done,
1859 	.rpc_release = nfs_commit_release,
1860 };
1861 
1862 static const struct nfs_commit_completion_ops nfs_commit_completion_ops = {
1863 	.completion = nfs_commit_release_pages,
1864 	.resched_write = nfs_commit_resched_write,
1865 };
1866 
1867 int nfs_generic_commit_list(struct inode *inode, struct list_head *head,
1868 			    int how, struct nfs_commit_info *cinfo)
1869 {
1870 	int status;
1871 
1872 	status = pnfs_commit_list(inode, head, how, cinfo);
1873 	if (status == PNFS_NOT_ATTEMPTED)
1874 		status = nfs_commit_list(inode, head, how, cinfo);
1875 	return status;
1876 }
1877 
1878 int nfs_commit_inode(struct inode *inode, int how)
1879 {
1880 	LIST_HEAD(head);
1881 	struct nfs_commit_info cinfo;
1882 	int may_wait = how & FLUSH_SYNC;
1883 	int error = 0;
1884 	int res;
1885 
1886 	nfs_init_cinfo_from_inode(&cinfo, inode);
1887 	nfs_commit_begin(cinfo.mds);
1888 	res = nfs_scan_commit(inode, &head, &cinfo);
1889 	if (res)
1890 		error = nfs_generic_commit_list(inode, &head, how, &cinfo);
1891 	nfs_commit_end(cinfo.mds);
1892 	if (error < 0)
1893 		goto out_error;
1894 	if (!may_wait)
1895 		goto out_mark_dirty;
1896 	error = wait_on_commit(cinfo.mds);
1897 	if (error < 0)
1898 		return error;
1899 	return res;
1900 out_error:
1901 	res = error;
1902 	/* Note: If we exit without ensuring that the commit is complete,
1903 	 * we must mark the inode as dirty. Otherwise, future calls to
1904 	 * sync_inode() with the WB_SYNC_ALL flag set will fail to ensure
1905 	 * that the data is on the disk.
1906 	 */
1907 out_mark_dirty:
1908 	__mark_inode_dirty(inode, I_DIRTY_DATASYNC);
1909 	return res;
1910 }
1911 EXPORT_SYMBOL_GPL(nfs_commit_inode);
1912 
1913 int nfs_write_inode(struct inode *inode, struct writeback_control *wbc)
1914 {
1915 	struct nfs_inode *nfsi = NFS_I(inode);
1916 	int flags = FLUSH_SYNC;
1917 	int ret = 0;
1918 
1919 	/* no commits means nothing needs to be done */
1920 	if (!atomic_long_read(&nfsi->commit_info.ncommit))
1921 		return ret;
1922 
1923 	if (wbc->sync_mode == WB_SYNC_NONE) {
1924 		/* Don't commit yet if this is a non-blocking flush and there
1925 		 * are a lot of outstanding writes for this mapping.
1926 		 */
1927 		if (mapping_tagged(inode->i_mapping, PAGECACHE_TAG_WRITEBACK))
1928 			goto out_mark_dirty;
1929 
1930 		/* don't wait for the COMMIT response */
1931 		flags = 0;
1932 	}
1933 
1934 	ret = nfs_commit_inode(inode, flags);
1935 	if (ret >= 0) {
1936 		if (wbc->sync_mode == WB_SYNC_NONE) {
1937 			if (ret < wbc->nr_to_write)
1938 				wbc->nr_to_write -= ret;
1939 			else
1940 				wbc->nr_to_write = 0;
1941 		}
1942 		return 0;
1943 	}
1944 out_mark_dirty:
1945 	__mark_inode_dirty(inode, I_DIRTY_DATASYNC);
1946 	return ret;
1947 }
1948 EXPORT_SYMBOL_GPL(nfs_write_inode);
1949 
1950 /*
1951  * Wrapper for filemap_write_and_wait_range()
1952  *
1953  * Needed for pNFS in order to ensure data becomes visible to the
1954  * client.
1955  */
1956 int nfs_filemap_write_and_wait_range(struct address_space *mapping,
1957 		loff_t lstart, loff_t lend)
1958 {
1959 	int ret;
1960 
1961 	ret = filemap_write_and_wait_range(mapping, lstart, lend);
1962 	if (ret == 0)
1963 		ret = pnfs_sync_inode(mapping->host, true);
1964 	return ret;
1965 }
1966 EXPORT_SYMBOL_GPL(nfs_filemap_write_and_wait_range);
1967 
1968 /*
1969  * flush the inode to disk.
1970  */
1971 int nfs_wb_all(struct inode *inode)
1972 {
1973 	int ret;
1974 
1975 	trace_nfs_writeback_inode_enter(inode);
1976 
1977 	ret = filemap_write_and_wait(inode->i_mapping);
1978 	if (ret)
1979 		goto out;
1980 	ret = nfs_commit_inode(inode, FLUSH_SYNC);
1981 	if (ret < 0)
1982 		goto out;
1983 	pnfs_sync_inode(inode, true);
1984 	ret = 0;
1985 
1986 out:
1987 	trace_nfs_writeback_inode_exit(inode, ret);
1988 	return ret;
1989 }
1990 EXPORT_SYMBOL_GPL(nfs_wb_all);
1991 
1992 int nfs_wb_page_cancel(struct inode *inode, struct page *page)
1993 {
1994 	struct nfs_page *req;
1995 	int ret = 0;
1996 
1997 	wait_on_page_writeback(page);
1998 
1999 	/* blocking call to cancel all requests and join to a single (head)
2000 	 * request */
2001 	req = nfs_lock_and_join_requests(page);
2002 
2003 	if (IS_ERR(req)) {
2004 		ret = PTR_ERR(req);
2005 	} else if (req) {
2006 		/* all requests from this page have been cancelled by
2007 		 * nfs_lock_and_join_requests, so just remove the head
2008 		 * request from the inode / page_private pointer and
2009 		 * release it */
2010 		nfs_inode_remove_request(req);
2011 		nfs_unlock_and_release_request(req);
2012 	}
2013 
2014 	return ret;
2015 }
2016 
2017 /*
2018  * Write back all requests on one page - we do this before reading it.
2019  */
2020 int nfs_wb_page(struct inode *inode, struct page *page)
2021 {
2022 	loff_t range_start = page_file_offset(page);
2023 	loff_t range_end = range_start + (loff_t)(PAGE_SIZE - 1);
2024 	struct writeback_control wbc = {
2025 		.sync_mode = WB_SYNC_ALL,
2026 		.nr_to_write = 0,
2027 		.range_start = range_start,
2028 		.range_end = range_end,
2029 	};
2030 	int ret;
2031 
2032 	trace_nfs_writeback_page_enter(inode);
2033 
2034 	for (;;) {
2035 		wait_on_page_writeback(page);
2036 		if (clear_page_dirty_for_io(page)) {
2037 			ret = nfs_writepage_locked(page, &wbc);
2038 			if (ret < 0)
2039 				goto out_error;
2040 			continue;
2041 		}
2042 		ret = 0;
2043 		if (!PagePrivate(page))
2044 			break;
2045 		ret = nfs_commit_inode(inode, FLUSH_SYNC);
2046 		if (ret < 0)
2047 			goto out_error;
2048 	}
2049 out_error:
2050 	trace_nfs_writeback_page_exit(inode, ret);
2051 	return ret;
2052 }
2053 
2054 #ifdef CONFIG_MIGRATION
2055 int nfs_migrate_page(struct address_space *mapping, struct page *newpage,
2056 		struct page *page, enum migrate_mode mode)
2057 {
2058 	/*
2059 	 * If PagePrivate is set, then the page is currently associated with
2060 	 * an in-progress read or write request. Don't try to migrate it.
2061 	 *
2062 	 * FIXME: we could do this in principle, but we'll need a way to ensure
2063 	 *        that we can safely release the inode reference while holding
2064 	 *        the page lock.
2065 	 */
2066 	if (PagePrivate(page))
2067 		return -EBUSY;
2068 
2069 	if (!nfs_fscache_release_page(page, GFP_KERNEL))
2070 		return -EBUSY;
2071 
2072 	return migrate_page(mapping, newpage, page, mode);
2073 }
2074 #endif
2075 
2076 int __init nfs_init_writepagecache(void)
2077 {
2078 	nfs_wdata_cachep = kmem_cache_create("nfs_write_data",
2079 					     sizeof(struct nfs_pgio_header),
2080 					     0, SLAB_HWCACHE_ALIGN,
2081 					     NULL);
2082 	if (nfs_wdata_cachep == NULL)
2083 		return -ENOMEM;
2084 
2085 	nfs_wdata_mempool = mempool_create_slab_pool(MIN_POOL_WRITE,
2086 						     nfs_wdata_cachep);
2087 	if (nfs_wdata_mempool == NULL)
2088 		goto out_destroy_write_cache;
2089 
2090 	nfs_cdata_cachep = kmem_cache_create("nfs_commit_data",
2091 					     sizeof(struct nfs_commit_data),
2092 					     0, SLAB_HWCACHE_ALIGN,
2093 					     NULL);
2094 	if (nfs_cdata_cachep == NULL)
2095 		goto out_destroy_write_mempool;
2096 
2097 	nfs_commit_mempool = mempool_create_slab_pool(MIN_POOL_COMMIT,
2098 						      nfs_cdata_cachep);
2099 	if (nfs_commit_mempool == NULL)
2100 		goto out_destroy_commit_cache;
2101 
2102 	/*
2103 	 * NFS congestion size, scale with available memory.
2104 	 *
2105 	 *  64MB:    8192k
2106 	 * 128MB:   11585k
2107 	 * 256MB:   16384k
2108 	 * 512MB:   23170k
2109 	 *   1GB:   32768k
2110 	 *   2GB:   46340k
2111 	 *   4GB:   65536k
2112 	 *   8GB:   92681k
2113 	 *  16GB:  131072k
2114 	 *
2115 	 * This allows larger machines to have larger/more transfers.
2116 	 * Limit the default to 256M
2117 	 */
2118 	nfs_congestion_kb = (16*int_sqrt(totalram_pages)) << (PAGE_SHIFT-10);
2119 	if (nfs_congestion_kb > 256*1024)
2120 		nfs_congestion_kb = 256*1024;
2121 
2122 	return 0;
2123 
2124 out_destroy_commit_cache:
2125 	kmem_cache_destroy(nfs_cdata_cachep);
2126 out_destroy_write_mempool:
2127 	mempool_destroy(nfs_wdata_mempool);
2128 out_destroy_write_cache:
2129 	kmem_cache_destroy(nfs_wdata_cachep);
2130 	return -ENOMEM;
2131 }
2132 
2133 void nfs_destroy_writepagecache(void)
2134 {
2135 	mempool_destroy(nfs_commit_mempool);
2136 	kmem_cache_destroy(nfs_cdata_cachep);
2137 	mempool_destroy(nfs_wdata_mempool);
2138 	kmem_cache_destroy(nfs_wdata_cachep);
2139 }
2140 
2141 static const struct nfs_rw_ops nfs_rw_write_ops = {
2142 	.rw_alloc_header	= nfs_writehdr_alloc,
2143 	.rw_free_header		= nfs_writehdr_free,
2144 	.rw_done		= nfs_writeback_done,
2145 	.rw_result		= nfs_writeback_result,
2146 	.rw_initiate		= nfs_initiate_write,
2147 };
2148