1 /* 2 * linux/fs/nfs/write.c 3 * 4 * Writing file data over NFS. 5 * 6 * We do it like this: When a (user) process wishes to write data to an 7 * NFS file, a write request is allocated that contains the RPC task data 8 * plus some info on the page to be written, and added to the inode's 9 * write chain. If the process writes past the end of the page, an async 10 * RPC call to write the page is scheduled immediately; otherwise, the call 11 * is delayed for a few seconds. 12 * 13 * Just like readahead, no async I/O is performed if wsize < PAGE_SIZE. 14 * 15 * Write requests are kept on the inode's writeback list. Each entry in 16 * that list references the page (portion) to be written. When the 17 * cache timeout has expired, the RPC task is woken up, and tries to 18 * lock the page. As soon as it manages to do so, the request is moved 19 * from the writeback list to the writelock list. 20 * 21 * Note: we must make sure never to confuse the inode passed in the 22 * write_page request with the one in page->inode. As far as I understand 23 * it, these are different when doing a swap-out. 24 * 25 * To understand everything that goes on here and in the NFS read code, 26 * one should be aware that a page is locked in exactly one of the following 27 * cases: 28 * 29 * - A write request is in progress. 30 * - A user process is in generic_file_write/nfs_update_page 31 * - A user process is in generic_file_read 32 * 33 * Also note that because of the way pages are invalidated in 34 * nfs_revalidate_inode, the following assertions hold: 35 * 36 * - If a page is dirty, there will be no read requests (a page will 37 * not be re-read unless invalidated by nfs_revalidate_inode). 38 * - If the page is not uptodate, there will be no pending write 39 * requests, and no process will be in nfs_update_page. 40 * 41 * FIXME: Interaction with the vmscan routines is not optimal yet. 42 * Either vmscan must be made nfs-savvy, or we need a different page 43 * reclaim concept that supports something like FS-independent 44 * buffer_heads with a b_ops-> field. 45 * 46 * Copyright (C) 1996, 1997, Olaf Kirch <okir@monad.swb.de> 47 */ 48 49 #include <linux/types.h> 50 #include <linux/slab.h> 51 #include <linux/mm.h> 52 #include <linux/pagemap.h> 53 #include <linux/file.h> 54 #include <linux/writeback.h> 55 56 #include <linux/sunrpc/clnt.h> 57 #include <linux/nfs_fs.h> 58 #include <linux/nfs_mount.h> 59 #include <linux/nfs_page.h> 60 #include <linux/backing-dev.h> 61 62 #include <asm/uaccess.h> 63 #include <linux/smp_lock.h> 64 65 #include "delegation.h" 66 #include "internal.h" 67 #include "iostat.h" 68 69 #define NFSDBG_FACILITY NFSDBG_PAGECACHE 70 71 #define MIN_POOL_WRITE (32) 72 #define MIN_POOL_COMMIT (4) 73 74 /* 75 * Local function declarations 76 */ 77 static struct nfs_page * nfs_update_request(struct nfs_open_context*, 78 struct page *, 79 unsigned int, unsigned int); 80 static void nfs_mark_request_dirty(struct nfs_page *req); 81 static int nfs_wait_on_write_congestion(struct address_space *, int); 82 static int nfs_wait_on_requests(struct inode *, unsigned long, unsigned int); 83 static long nfs_flush_mapping(struct address_space *mapping, struct writeback_control *wbc, int how); 84 static const struct rpc_call_ops nfs_write_partial_ops; 85 static const struct rpc_call_ops nfs_write_full_ops; 86 static const struct rpc_call_ops nfs_commit_ops; 87 88 static struct kmem_cache *nfs_wdata_cachep; 89 static mempool_t *nfs_wdata_mempool; 90 static mempool_t *nfs_commit_mempool; 91 92 static DECLARE_WAIT_QUEUE_HEAD(nfs_write_congestion); 93 94 struct nfs_write_data *nfs_commit_alloc(void) 95 { 96 struct nfs_write_data *p = mempool_alloc(nfs_commit_mempool, GFP_NOFS); 97 98 if (p) { 99 memset(p, 0, sizeof(*p)); 100 INIT_LIST_HEAD(&p->pages); 101 } 102 return p; 103 } 104 105 void nfs_commit_rcu_free(struct rcu_head *head) 106 { 107 struct nfs_write_data *p = container_of(head, struct nfs_write_data, task.u.tk_rcu); 108 if (p && (p->pagevec != &p->page_array[0])) 109 kfree(p->pagevec); 110 mempool_free(p, nfs_commit_mempool); 111 } 112 113 void nfs_commit_free(struct nfs_write_data *wdata) 114 { 115 call_rcu_bh(&wdata->task.u.tk_rcu, nfs_commit_rcu_free); 116 } 117 118 struct nfs_write_data *nfs_writedata_alloc(size_t len) 119 { 120 unsigned int pagecount = (len + PAGE_SIZE - 1) >> PAGE_SHIFT; 121 struct nfs_write_data *p = mempool_alloc(nfs_wdata_mempool, GFP_NOFS); 122 123 if (p) { 124 memset(p, 0, sizeof(*p)); 125 INIT_LIST_HEAD(&p->pages); 126 p->npages = pagecount; 127 if (pagecount <= ARRAY_SIZE(p->page_array)) 128 p->pagevec = p->page_array; 129 else { 130 p->pagevec = kcalloc(pagecount, sizeof(struct page *), GFP_NOFS); 131 if (!p->pagevec) { 132 mempool_free(p, nfs_wdata_mempool); 133 p = NULL; 134 } 135 } 136 } 137 return p; 138 } 139 140 static void nfs_writedata_rcu_free(struct rcu_head *head) 141 { 142 struct nfs_write_data *p = container_of(head, struct nfs_write_data, task.u.tk_rcu); 143 if (p && (p->pagevec != &p->page_array[0])) 144 kfree(p->pagevec); 145 mempool_free(p, nfs_wdata_mempool); 146 } 147 148 static void nfs_writedata_free(struct nfs_write_data *wdata) 149 { 150 call_rcu_bh(&wdata->task.u.tk_rcu, nfs_writedata_rcu_free); 151 } 152 153 void nfs_writedata_release(void *wdata) 154 { 155 nfs_writedata_free(wdata); 156 } 157 158 static struct nfs_page *nfs_page_find_request_locked(struct page *page) 159 { 160 struct nfs_page *req = NULL; 161 162 if (PagePrivate(page)) { 163 req = (struct nfs_page *)page_private(page); 164 if (req != NULL) 165 atomic_inc(&req->wb_count); 166 } 167 return req; 168 } 169 170 static struct nfs_page *nfs_page_find_request(struct page *page) 171 { 172 struct nfs_page *req = NULL; 173 spinlock_t *req_lock = &NFS_I(page->mapping->host)->req_lock; 174 175 spin_lock(req_lock); 176 req = nfs_page_find_request_locked(page); 177 spin_unlock(req_lock); 178 return req; 179 } 180 181 /* Adjust the file length if we're writing beyond the end */ 182 static void nfs_grow_file(struct page *page, unsigned int offset, unsigned int count) 183 { 184 struct inode *inode = page->mapping->host; 185 loff_t end, i_size = i_size_read(inode); 186 unsigned long end_index = (i_size - 1) >> PAGE_CACHE_SHIFT; 187 188 if (i_size > 0 && page->index < end_index) 189 return; 190 end = ((loff_t)page->index << PAGE_CACHE_SHIFT) + ((loff_t)offset+count); 191 if (i_size >= end) 192 return; 193 nfs_inc_stats(inode, NFSIOS_EXTENDWRITE); 194 i_size_write(inode, end); 195 } 196 197 /* We can set the PG_uptodate flag if we see that a write request 198 * covers the full page. 199 */ 200 static void nfs_mark_uptodate(struct page *page, unsigned int base, unsigned int count) 201 { 202 if (PageUptodate(page)) 203 return; 204 if (base != 0) 205 return; 206 if (count != nfs_page_length(page)) 207 return; 208 if (count != PAGE_CACHE_SIZE) 209 memclear_highpage_flush(page, count, PAGE_CACHE_SIZE - count); 210 SetPageUptodate(page); 211 } 212 213 static int nfs_writepage_setup(struct nfs_open_context *ctx, struct page *page, 214 unsigned int offset, unsigned int count) 215 { 216 struct nfs_page *req; 217 int ret; 218 219 for (;;) { 220 req = nfs_update_request(ctx, page, offset, count); 221 if (!IS_ERR(req)) 222 break; 223 ret = PTR_ERR(req); 224 if (ret != -EBUSY) 225 return ret; 226 ret = nfs_wb_page(page->mapping->host, page); 227 if (ret != 0) 228 return ret; 229 } 230 /* Update file length */ 231 nfs_grow_file(page, offset, count); 232 /* Set the PG_uptodate flag? */ 233 nfs_mark_uptodate(page, offset, count); 234 nfs_unlock_request(req); 235 return 0; 236 } 237 238 static int wb_priority(struct writeback_control *wbc) 239 { 240 if (wbc->for_reclaim) 241 return FLUSH_HIGHPRI; 242 if (wbc->for_kupdate) 243 return FLUSH_LOWPRI; 244 return 0; 245 } 246 247 /* 248 * Find an associated nfs write request, and prepare to flush it out 249 * Returns 1 if there was no write request, or if the request was 250 * already tagged by nfs_set_page_dirty.Returns 0 if the request 251 * was not tagged. 252 * May also return an error if the user signalled nfs_wait_on_request(). 253 */ 254 static int nfs_page_mark_flush(struct page *page) 255 { 256 struct nfs_page *req; 257 spinlock_t *req_lock = &NFS_I(page->mapping->host)->req_lock; 258 int ret; 259 260 spin_lock(req_lock); 261 for(;;) { 262 req = nfs_page_find_request_locked(page); 263 if (req == NULL) { 264 spin_unlock(req_lock); 265 return 1; 266 } 267 if (nfs_lock_request_dontget(req)) 268 break; 269 /* Note: If we hold the page lock, as is the case in nfs_writepage, 270 * then the call to nfs_lock_request_dontget() will always 271 * succeed provided that someone hasn't already marked the 272 * request as dirty (in which case we don't care). 273 */ 274 spin_unlock(req_lock); 275 ret = nfs_wait_on_request(req); 276 nfs_release_request(req); 277 if (ret != 0) 278 return ret; 279 spin_lock(req_lock); 280 } 281 spin_unlock(req_lock); 282 if (test_and_set_bit(PG_FLUSHING, &req->wb_flags) == 0) { 283 nfs_mark_request_dirty(req); 284 set_page_writeback(page); 285 } 286 ret = test_bit(PG_NEED_FLUSH, &req->wb_flags); 287 nfs_unlock_request(req); 288 return ret; 289 } 290 291 /* 292 * Write an mmapped page to the server. 293 */ 294 static int nfs_writepage_locked(struct page *page, struct writeback_control *wbc) 295 { 296 struct nfs_open_context *ctx; 297 struct inode *inode = page->mapping->host; 298 unsigned offset; 299 int err; 300 301 nfs_inc_stats(inode, NFSIOS_VFSWRITEPAGE); 302 nfs_add_stats(inode, NFSIOS_WRITEPAGES, 1); 303 304 err = nfs_page_mark_flush(page); 305 if (err <= 0) 306 goto out; 307 err = 0; 308 offset = nfs_page_length(page); 309 if (!offset) 310 goto out; 311 312 ctx = nfs_find_open_context(inode, NULL, FMODE_WRITE); 313 if (ctx == NULL) { 314 err = -EBADF; 315 goto out; 316 } 317 err = nfs_writepage_setup(ctx, page, 0, offset); 318 put_nfs_open_context(ctx); 319 if (err != 0) 320 goto out; 321 err = nfs_page_mark_flush(page); 322 if (err > 0) 323 err = 0; 324 out: 325 if (!wbc->for_writepages) 326 nfs_flush_mapping(page->mapping, wbc, wb_priority(wbc)); 327 return err; 328 } 329 330 int nfs_writepage(struct page *page, struct writeback_control *wbc) 331 { 332 int err; 333 334 err = nfs_writepage_locked(page, wbc); 335 unlock_page(page); 336 return err; 337 } 338 339 /* 340 * Note: causes nfs_update_request() to block on the assumption 341 * that the writeback is generated due to memory pressure. 342 */ 343 int nfs_writepages(struct address_space *mapping, struct writeback_control *wbc) 344 { 345 struct backing_dev_info *bdi = mapping->backing_dev_info; 346 struct inode *inode = mapping->host; 347 int err; 348 349 nfs_inc_stats(inode, NFSIOS_VFSWRITEPAGES); 350 351 err = generic_writepages(mapping, wbc); 352 if (err) 353 return err; 354 while (test_and_set_bit(BDI_write_congested, &bdi->state) != 0) { 355 if (wbc->nonblocking) 356 return 0; 357 nfs_wait_on_write_congestion(mapping, 0); 358 } 359 err = nfs_flush_mapping(mapping, wbc, wb_priority(wbc)); 360 if (err < 0) 361 goto out; 362 nfs_add_stats(inode, NFSIOS_WRITEPAGES, err); 363 if (!wbc->nonblocking && wbc->sync_mode == WB_SYNC_ALL) { 364 err = nfs_wait_on_requests(inode, 0, 0); 365 if (err < 0) 366 goto out; 367 } 368 err = nfs_commit_inode(inode, wb_priority(wbc)); 369 if (err > 0) 370 err = 0; 371 out: 372 clear_bit(BDI_write_congested, &bdi->state); 373 wake_up_all(&nfs_write_congestion); 374 congestion_end(WRITE); 375 return err; 376 } 377 378 /* 379 * Insert a write request into an inode 380 */ 381 static int nfs_inode_add_request(struct inode *inode, struct nfs_page *req) 382 { 383 struct nfs_inode *nfsi = NFS_I(inode); 384 int error; 385 386 error = radix_tree_insert(&nfsi->nfs_page_tree, req->wb_index, req); 387 BUG_ON(error == -EEXIST); 388 if (error) 389 return error; 390 if (!nfsi->npages) { 391 igrab(inode); 392 nfs_begin_data_update(inode); 393 if (nfs_have_delegation(inode, FMODE_WRITE)) 394 nfsi->change_attr++; 395 } 396 SetPagePrivate(req->wb_page); 397 set_page_private(req->wb_page, (unsigned long)req); 398 nfsi->npages++; 399 atomic_inc(&req->wb_count); 400 return 0; 401 } 402 403 /* 404 * Insert a write request into an inode 405 */ 406 static void nfs_inode_remove_request(struct nfs_page *req) 407 { 408 struct inode *inode = req->wb_context->dentry->d_inode; 409 struct nfs_inode *nfsi = NFS_I(inode); 410 411 BUG_ON (!NFS_WBACK_BUSY(req)); 412 413 spin_lock(&nfsi->req_lock); 414 set_page_private(req->wb_page, 0); 415 ClearPagePrivate(req->wb_page); 416 radix_tree_delete(&nfsi->nfs_page_tree, req->wb_index); 417 nfsi->npages--; 418 if (!nfsi->npages) { 419 spin_unlock(&nfsi->req_lock); 420 nfs_end_data_update(inode); 421 iput(inode); 422 } else 423 spin_unlock(&nfsi->req_lock); 424 nfs_clear_request(req); 425 nfs_release_request(req); 426 } 427 428 /* 429 * Add a request to the inode's dirty list. 430 */ 431 static void 432 nfs_mark_request_dirty(struct nfs_page *req) 433 { 434 struct inode *inode = req->wb_context->dentry->d_inode; 435 struct nfs_inode *nfsi = NFS_I(inode); 436 437 spin_lock(&nfsi->req_lock); 438 radix_tree_tag_set(&nfsi->nfs_page_tree, 439 req->wb_index, NFS_PAGE_TAG_DIRTY); 440 nfs_list_add_request(req, &nfsi->dirty); 441 nfsi->ndirty++; 442 spin_unlock(&nfsi->req_lock); 443 __mark_inode_dirty(inode, I_DIRTY_PAGES); 444 } 445 446 static void 447 nfs_redirty_request(struct nfs_page *req) 448 { 449 clear_bit(PG_FLUSHING, &req->wb_flags); 450 __set_page_dirty_nobuffers(req->wb_page); 451 } 452 453 /* 454 * Check if a request is dirty 455 */ 456 static inline int 457 nfs_dirty_request(struct nfs_page *req) 458 { 459 return test_bit(PG_FLUSHING, &req->wb_flags) == 0; 460 } 461 462 #if defined(CONFIG_NFS_V3) || defined(CONFIG_NFS_V4) 463 /* 464 * Add a request to the inode's commit list. 465 */ 466 static void 467 nfs_mark_request_commit(struct nfs_page *req) 468 { 469 struct inode *inode = req->wb_context->dentry->d_inode; 470 struct nfs_inode *nfsi = NFS_I(inode); 471 472 spin_lock(&nfsi->req_lock); 473 nfs_list_add_request(req, &nfsi->commit); 474 nfsi->ncommit++; 475 spin_unlock(&nfsi->req_lock); 476 inc_zone_page_state(req->wb_page, NR_UNSTABLE_NFS); 477 __mark_inode_dirty(inode, I_DIRTY_DATASYNC); 478 } 479 #endif 480 481 /* 482 * Wait for a request to complete. 483 * 484 * Interruptible by signals only if mounted with intr flag. 485 */ 486 static int nfs_wait_on_requests_locked(struct inode *inode, unsigned long idx_start, unsigned int npages) 487 { 488 struct nfs_inode *nfsi = NFS_I(inode); 489 struct nfs_page *req; 490 unsigned long idx_end, next; 491 unsigned int res = 0; 492 int error; 493 494 if (npages == 0) 495 idx_end = ~0; 496 else 497 idx_end = idx_start + npages - 1; 498 499 next = idx_start; 500 while (radix_tree_gang_lookup_tag(&nfsi->nfs_page_tree, (void **)&req, next, 1, NFS_PAGE_TAG_WRITEBACK)) { 501 if (req->wb_index > idx_end) 502 break; 503 504 next = req->wb_index + 1; 505 BUG_ON(!NFS_WBACK_BUSY(req)); 506 507 atomic_inc(&req->wb_count); 508 spin_unlock(&nfsi->req_lock); 509 error = nfs_wait_on_request(req); 510 nfs_release_request(req); 511 spin_lock(&nfsi->req_lock); 512 if (error < 0) 513 return error; 514 res++; 515 } 516 return res; 517 } 518 519 static int nfs_wait_on_requests(struct inode *inode, unsigned long idx_start, unsigned int npages) 520 { 521 struct nfs_inode *nfsi = NFS_I(inode); 522 int ret; 523 524 spin_lock(&nfsi->req_lock); 525 ret = nfs_wait_on_requests_locked(inode, idx_start, npages); 526 spin_unlock(&nfsi->req_lock); 527 return ret; 528 } 529 530 static void nfs_cancel_dirty_list(struct list_head *head) 531 { 532 struct nfs_page *req; 533 while(!list_empty(head)) { 534 req = nfs_list_entry(head->next); 535 nfs_list_remove_request(req); 536 nfs_inode_remove_request(req); 537 nfs_clear_page_writeback(req); 538 } 539 } 540 541 static void nfs_cancel_commit_list(struct list_head *head) 542 { 543 struct nfs_page *req; 544 545 while(!list_empty(head)) { 546 req = nfs_list_entry(head->next); 547 dec_zone_page_state(req->wb_page, NR_UNSTABLE_NFS); 548 nfs_list_remove_request(req); 549 nfs_inode_remove_request(req); 550 nfs_unlock_request(req); 551 } 552 } 553 554 #if defined(CONFIG_NFS_V3) || defined(CONFIG_NFS_V4) 555 /* 556 * nfs_scan_commit - Scan an inode for commit requests 557 * @inode: NFS inode to scan 558 * @dst: destination list 559 * @idx_start: lower bound of page->index to scan. 560 * @npages: idx_start + npages sets the upper bound to scan. 561 * 562 * Moves requests from the inode's 'commit' request list. 563 * The requests are *not* checked to ensure that they form a contiguous set. 564 */ 565 static int 566 nfs_scan_commit(struct inode *inode, struct list_head *dst, unsigned long idx_start, unsigned int npages) 567 { 568 struct nfs_inode *nfsi = NFS_I(inode); 569 int res = 0; 570 571 if (nfsi->ncommit != 0) { 572 res = nfs_scan_list(nfsi, &nfsi->commit, dst, idx_start, npages); 573 nfsi->ncommit -= res; 574 if ((nfsi->ncommit == 0) != list_empty(&nfsi->commit)) 575 printk(KERN_ERR "NFS: desynchronized value of nfs_i.ncommit.\n"); 576 } 577 return res; 578 } 579 #else 580 static inline int nfs_scan_commit(struct inode *inode, struct list_head *dst, unsigned long idx_start, unsigned int npages) 581 { 582 return 0; 583 } 584 #endif 585 586 static int nfs_wait_on_write_congestion(struct address_space *mapping, int intr) 587 { 588 struct backing_dev_info *bdi = mapping->backing_dev_info; 589 DEFINE_WAIT(wait); 590 int ret = 0; 591 592 might_sleep(); 593 594 if (!bdi_write_congested(bdi)) 595 return 0; 596 597 nfs_inc_stats(mapping->host, NFSIOS_CONGESTIONWAIT); 598 599 if (intr) { 600 struct rpc_clnt *clnt = NFS_CLIENT(mapping->host); 601 sigset_t oldset; 602 603 rpc_clnt_sigmask(clnt, &oldset); 604 prepare_to_wait(&nfs_write_congestion, &wait, TASK_INTERRUPTIBLE); 605 if (bdi_write_congested(bdi)) { 606 if (signalled()) 607 ret = -ERESTARTSYS; 608 else 609 schedule(); 610 } 611 rpc_clnt_sigunmask(clnt, &oldset); 612 } else { 613 prepare_to_wait(&nfs_write_congestion, &wait, TASK_UNINTERRUPTIBLE); 614 if (bdi_write_congested(bdi)) 615 schedule(); 616 } 617 finish_wait(&nfs_write_congestion, &wait); 618 return ret; 619 } 620 621 622 /* 623 * Try to update any existing write request, or create one if there is none. 624 * In order to match, the request's credentials must match those of 625 * the calling process. 626 * 627 * Note: Should always be called with the Page Lock held! 628 */ 629 static struct nfs_page * nfs_update_request(struct nfs_open_context* ctx, 630 struct page *page, unsigned int offset, unsigned int bytes) 631 { 632 struct inode *inode = page->mapping->host; 633 struct nfs_inode *nfsi = NFS_I(inode); 634 struct nfs_page *req, *new = NULL; 635 unsigned long rqend, end; 636 637 end = offset + bytes; 638 639 if (nfs_wait_on_write_congestion(page->mapping, NFS_SERVER(inode)->flags & NFS_MOUNT_INTR)) 640 return ERR_PTR(-ERESTARTSYS); 641 for (;;) { 642 /* Loop over all inode entries and see if we find 643 * A request for the page we wish to update 644 */ 645 spin_lock(&nfsi->req_lock); 646 req = nfs_page_find_request_locked(page); 647 if (req) { 648 if (!nfs_lock_request_dontget(req)) { 649 int error; 650 651 spin_unlock(&nfsi->req_lock); 652 error = nfs_wait_on_request(req); 653 nfs_release_request(req); 654 if (error < 0) { 655 if (new) 656 nfs_release_request(new); 657 return ERR_PTR(error); 658 } 659 continue; 660 } 661 spin_unlock(&nfsi->req_lock); 662 if (new) 663 nfs_release_request(new); 664 break; 665 } 666 667 if (new) { 668 int error; 669 nfs_lock_request_dontget(new); 670 error = nfs_inode_add_request(inode, new); 671 if (error) { 672 spin_unlock(&nfsi->req_lock); 673 nfs_unlock_request(new); 674 return ERR_PTR(error); 675 } 676 spin_unlock(&nfsi->req_lock); 677 return new; 678 } 679 spin_unlock(&nfsi->req_lock); 680 681 new = nfs_create_request(ctx, inode, page, offset, bytes); 682 if (IS_ERR(new)) 683 return new; 684 } 685 686 /* We have a request for our page. 687 * If the creds don't match, or the 688 * page addresses don't match, 689 * tell the caller to wait on the conflicting 690 * request. 691 */ 692 rqend = req->wb_offset + req->wb_bytes; 693 if (req->wb_context != ctx 694 || req->wb_page != page 695 || !nfs_dirty_request(req) 696 || offset > rqend || end < req->wb_offset) { 697 nfs_unlock_request(req); 698 return ERR_PTR(-EBUSY); 699 } 700 701 /* Okay, the request matches. Update the region */ 702 if (offset < req->wb_offset) { 703 req->wb_offset = offset; 704 req->wb_pgbase = offset; 705 req->wb_bytes = rqend - req->wb_offset; 706 } 707 708 if (end > rqend) 709 req->wb_bytes = end - req->wb_offset; 710 711 return req; 712 } 713 714 int nfs_flush_incompatible(struct file *file, struct page *page) 715 { 716 struct nfs_open_context *ctx = (struct nfs_open_context *)file->private_data; 717 struct nfs_page *req; 718 int do_flush, status; 719 /* 720 * Look for a request corresponding to this page. If there 721 * is one, and it belongs to another file, we flush it out 722 * before we try to copy anything into the page. Do this 723 * due to the lack of an ACCESS-type call in NFSv2. 724 * Also do the same if we find a request from an existing 725 * dropped page. 726 */ 727 do { 728 req = nfs_page_find_request(page); 729 if (req == NULL) 730 return 0; 731 do_flush = req->wb_page != page || req->wb_context != ctx 732 || !nfs_dirty_request(req); 733 nfs_release_request(req); 734 if (!do_flush) 735 return 0; 736 status = nfs_wb_page(page->mapping->host, page); 737 } while (status == 0); 738 return status; 739 } 740 741 /* 742 * Update and possibly write a cached page of an NFS file. 743 * 744 * XXX: Keep an eye on generic_file_read to make sure it doesn't do bad 745 * things with a page scheduled for an RPC call (e.g. invalidate it). 746 */ 747 int nfs_updatepage(struct file *file, struct page *page, 748 unsigned int offset, unsigned int count) 749 { 750 struct nfs_open_context *ctx = (struct nfs_open_context *)file->private_data; 751 struct inode *inode = page->mapping->host; 752 int status = 0; 753 754 nfs_inc_stats(inode, NFSIOS_VFSUPDATEPAGE); 755 756 dprintk("NFS: nfs_updatepage(%s/%s %d@%Ld)\n", 757 file->f_path.dentry->d_parent->d_name.name, 758 file->f_path.dentry->d_name.name, count, 759 (long long)(page_offset(page) +offset)); 760 761 /* If we're not using byte range locks, and we know the page 762 * is entirely in cache, it may be more efficient to avoid 763 * fragmenting write requests. 764 */ 765 if (PageUptodate(page) && inode->i_flock == NULL && !(file->f_mode & O_SYNC)) { 766 count = max(count + offset, nfs_page_length(page)); 767 offset = 0; 768 } 769 770 status = nfs_writepage_setup(ctx, page, offset, count); 771 __set_page_dirty_nobuffers(page); 772 773 dprintk("NFS: nfs_updatepage returns %d (isize %Ld)\n", 774 status, (long long)i_size_read(inode)); 775 if (status < 0) 776 ClearPageUptodate(page); 777 return status; 778 } 779 780 static void nfs_writepage_release(struct nfs_page *req) 781 { 782 end_page_writeback(req->wb_page); 783 784 #if defined(CONFIG_NFS_V3) || defined(CONFIG_NFS_V4) 785 if (!PageError(req->wb_page)) { 786 if (NFS_NEED_RESCHED(req)) { 787 nfs_redirty_request(req); 788 goto out; 789 } else if (NFS_NEED_COMMIT(req)) { 790 nfs_mark_request_commit(req); 791 goto out; 792 } 793 } 794 nfs_inode_remove_request(req); 795 796 out: 797 nfs_clear_commit(req); 798 nfs_clear_reschedule(req); 799 #else 800 nfs_inode_remove_request(req); 801 #endif 802 nfs_clear_page_writeback(req); 803 } 804 805 static inline int flush_task_priority(int how) 806 { 807 switch (how & (FLUSH_HIGHPRI|FLUSH_LOWPRI)) { 808 case FLUSH_HIGHPRI: 809 return RPC_PRIORITY_HIGH; 810 case FLUSH_LOWPRI: 811 return RPC_PRIORITY_LOW; 812 } 813 return RPC_PRIORITY_NORMAL; 814 } 815 816 /* 817 * Set up the argument/result storage required for the RPC call. 818 */ 819 static void nfs_write_rpcsetup(struct nfs_page *req, 820 struct nfs_write_data *data, 821 const struct rpc_call_ops *call_ops, 822 unsigned int count, unsigned int offset, 823 int how) 824 { 825 struct inode *inode; 826 int flags; 827 828 /* Set up the RPC argument and reply structs 829 * NB: take care not to mess about with data->commit et al. */ 830 831 data->req = req; 832 data->inode = inode = req->wb_context->dentry->d_inode; 833 data->cred = req->wb_context->cred; 834 835 data->args.fh = NFS_FH(inode); 836 data->args.offset = req_offset(req) + offset; 837 data->args.pgbase = req->wb_pgbase + offset; 838 data->args.pages = data->pagevec; 839 data->args.count = count; 840 data->args.context = req->wb_context; 841 842 data->res.fattr = &data->fattr; 843 data->res.count = count; 844 data->res.verf = &data->verf; 845 nfs_fattr_init(&data->fattr); 846 847 /* Set up the initial task struct. */ 848 flags = (how & FLUSH_SYNC) ? 0 : RPC_TASK_ASYNC; 849 rpc_init_task(&data->task, NFS_CLIENT(inode), flags, call_ops, data); 850 NFS_PROTO(inode)->write_setup(data, how); 851 852 data->task.tk_priority = flush_task_priority(how); 853 data->task.tk_cookie = (unsigned long)inode; 854 855 dprintk("NFS: %4d initiated write call (req %s/%Ld, %u bytes @ offset %Lu)\n", 856 data->task.tk_pid, 857 inode->i_sb->s_id, 858 (long long)NFS_FILEID(inode), 859 count, 860 (unsigned long long)data->args.offset); 861 } 862 863 static void nfs_execute_write(struct nfs_write_data *data) 864 { 865 struct rpc_clnt *clnt = NFS_CLIENT(data->inode); 866 sigset_t oldset; 867 868 rpc_clnt_sigmask(clnt, &oldset); 869 rpc_execute(&data->task); 870 rpc_clnt_sigunmask(clnt, &oldset); 871 } 872 873 /* 874 * Generate multiple small requests to write out a single 875 * contiguous dirty area on one page. 876 */ 877 static int nfs_flush_multi(struct inode *inode, struct list_head *head, int how) 878 { 879 struct nfs_page *req = nfs_list_entry(head->next); 880 struct page *page = req->wb_page; 881 struct nfs_write_data *data; 882 size_t wsize = NFS_SERVER(inode)->wsize, nbytes; 883 unsigned int offset; 884 int requests = 0; 885 LIST_HEAD(list); 886 887 nfs_list_remove_request(req); 888 889 nbytes = req->wb_bytes; 890 do { 891 size_t len = min(nbytes, wsize); 892 893 data = nfs_writedata_alloc(len); 894 if (!data) 895 goto out_bad; 896 list_add(&data->pages, &list); 897 requests++; 898 nbytes -= len; 899 } while (nbytes != 0); 900 atomic_set(&req->wb_complete, requests); 901 902 ClearPageError(page); 903 offset = 0; 904 nbytes = req->wb_bytes; 905 do { 906 data = list_entry(list.next, struct nfs_write_data, pages); 907 list_del_init(&data->pages); 908 909 data->pagevec[0] = page; 910 911 if (nbytes > wsize) { 912 nfs_write_rpcsetup(req, data, &nfs_write_partial_ops, 913 wsize, offset, how); 914 offset += wsize; 915 nbytes -= wsize; 916 } else { 917 nfs_write_rpcsetup(req, data, &nfs_write_partial_ops, 918 nbytes, offset, how); 919 nbytes = 0; 920 } 921 nfs_execute_write(data); 922 } while (nbytes != 0); 923 924 return 0; 925 926 out_bad: 927 while (!list_empty(&list)) { 928 data = list_entry(list.next, struct nfs_write_data, pages); 929 list_del(&data->pages); 930 nfs_writedata_release(data); 931 } 932 nfs_redirty_request(req); 933 nfs_clear_page_writeback(req); 934 return -ENOMEM; 935 } 936 937 /* 938 * Create an RPC task for the given write request and kick it. 939 * The page must have been locked by the caller. 940 * 941 * It may happen that the page we're passed is not marked dirty. 942 * This is the case if nfs_updatepage detects a conflicting request 943 * that has been written but not committed. 944 */ 945 static int nfs_flush_one(struct inode *inode, struct list_head *head, int how) 946 { 947 struct nfs_page *req; 948 struct page **pages; 949 struct nfs_write_data *data; 950 unsigned int count; 951 952 data = nfs_writedata_alloc(NFS_SERVER(inode)->wsize); 953 if (!data) 954 goto out_bad; 955 956 pages = data->pagevec; 957 count = 0; 958 while (!list_empty(head)) { 959 req = nfs_list_entry(head->next); 960 nfs_list_remove_request(req); 961 nfs_list_add_request(req, &data->pages); 962 ClearPageError(req->wb_page); 963 *pages++ = req->wb_page; 964 count += req->wb_bytes; 965 } 966 req = nfs_list_entry(data->pages.next); 967 968 /* Set up the argument struct */ 969 nfs_write_rpcsetup(req, data, &nfs_write_full_ops, count, 0, how); 970 971 nfs_execute_write(data); 972 return 0; 973 out_bad: 974 while (!list_empty(head)) { 975 struct nfs_page *req = nfs_list_entry(head->next); 976 nfs_list_remove_request(req); 977 nfs_redirty_request(req); 978 nfs_clear_page_writeback(req); 979 } 980 return -ENOMEM; 981 } 982 983 static int nfs_flush_list(struct inode *inode, struct list_head *head, int npages, int how) 984 { 985 LIST_HEAD(one_request); 986 int (*flush_one)(struct inode *, struct list_head *, int); 987 struct nfs_page *req; 988 int wpages = NFS_SERVER(inode)->wpages; 989 int wsize = NFS_SERVER(inode)->wsize; 990 int error; 991 992 flush_one = nfs_flush_one; 993 if (wsize < PAGE_CACHE_SIZE) 994 flush_one = nfs_flush_multi; 995 /* For single writes, FLUSH_STABLE is more efficient */ 996 if (npages <= wpages && npages == NFS_I(inode)->npages 997 && nfs_list_entry(head->next)->wb_bytes <= wsize) 998 how |= FLUSH_STABLE; 999 1000 do { 1001 nfs_coalesce_requests(head, &one_request, wpages); 1002 req = nfs_list_entry(one_request.next); 1003 error = flush_one(inode, &one_request, how); 1004 if (error < 0) 1005 goto out_err; 1006 } while (!list_empty(head)); 1007 return 0; 1008 out_err: 1009 while (!list_empty(head)) { 1010 req = nfs_list_entry(head->next); 1011 nfs_list_remove_request(req); 1012 nfs_redirty_request(req); 1013 nfs_clear_page_writeback(req); 1014 } 1015 return error; 1016 } 1017 1018 /* 1019 * Handle a write reply that flushed part of a page. 1020 */ 1021 static void nfs_writeback_done_partial(struct rpc_task *task, void *calldata) 1022 { 1023 struct nfs_write_data *data = calldata; 1024 struct nfs_page *req = data->req; 1025 struct page *page = req->wb_page; 1026 1027 dprintk("NFS: write (%s/%Ld %d@%Ld)", 1028 req->wb_context->dentry->d_inode->i_sb->s_id, 1029 (long long)NFS_FILEID(req->wb_context->dentry->d_inode), 1030 req->wb_bytes, 1031 (long long)req_offset(req)); 1032 1033 if (nfs_writeback_done(task, data) != 0) 1034 return; 1035 1036 if (task->tk_status < 0) { 1037 ClearPageUptodate(page); 1038 SetPageError(page); 1039 req->wb_context->error = task->tk_status; 1040 dprintk(", error = %d\n", task->tk_status); 1041 } else { 1042 #if defined(CONFIG_NFS_V3) || defined(CONFIG_NFS_V4) 1043 if (data->verf.committed < NFS_FILE_SYNC) { 1044 if (!NFS_NEED_COMMIT(req)) { 1045 nfs_defer_commit(req); 1046 memcpy(&req->wb_verf, &data->verf, sizeof(req->wb_verf)); 1047 dprintk(" defer commit\n"); 1048 } else if (memcmp(&req->wb_verf, &data->verf, sizeof(req->wb_verf))) { 1049 nfs_defer_reschedule(req); 1050 dprintk(" server reboot detected\n"); 1051 } 1052 } else 1053 #endif 1054 dprintk(" OK\n"); 1055 } 1056 1057 if (atomic_dec_and_test(&req->wb_complete)) 1058 nfs_writepage_release(req); 1059 } 1060 1061 static const struct rpc_call_ops nfs_write_partial_ops = { 1062 .rpc_call_done = nfs_writeback_done_partial, 1063 .rpc_release = nfs_writedata_release, 1064 }; 1065 1066 /* 1067 * Handle a write reply that flushes a whole page. 1068 * 1069 * FIXME: There is an inherent race with invalidate_inode_pages and 1070 * writebacks since the page->count is kept > 1 for as long 1071 * as the page has a write request pending. 1072 */ 1073 static void nfs_writeback_done_full(struct rpc_task *task, void *calldata) 1074 { 1075 struct nfs_write_data *data = calldata; 1076 struct nfs_page *req; 1077 struct page *page; 1078 1079 if (nfs_writeback_done(task, data) != 0) 1080 return; 1081 1082 /* Update attributes as result of writeback. */ 1083 while (!list_empty(&data->pages)) { 1084 req = nfs_list_entry(data->pages.next); 1085 nfs_list_remove_request(req); 1086 page = req->wb_page; 1087 1088 dprintk("NFS: write (%s/%Ld %d@%Ld)", 1089 req->wb_context->dentry->d_inode->i_sb->s_id, 1090 (long long)NFS_FILEID(req->wb_context->dentry->d_inode), 1091 req->wb_bytes, 1092 (long long)req_offset(req)); 1093 1094 if (task->tk_status < 0) { 1095 ClearPageUptodate(page); 1096 SetPageError(page); 1097 req->wb_context->error = task->tk_status; 1098 end_page_writeback(page); 1099 nfs_inode_remove_request(req); 1100 dprintk(", error = %d\n", task->tk_status); 1101 goto next; 1102 } 1103 end_page_writeback(page); 1104 1105 #if defined(CONFIG_NFS_V3) || defined(CONFIG_NFS_V4) 1106 if (data->args.stable != NFS_UNSTABLE || data->verf.committed == NFS_FILE_SYNC) { 1107 nfs_inode_remove_request(req); 1108 dprintk(" OK\n"); 1109 goto next; 1110 } 1111 memcpy(&req->wb_verf, &data->verf, sizeof(req->wb_verf)); 1112 nfs_mark_request_commit(req); 1113 dprintk(" marked for commit\n"); 1114 #else 1115 nfs_inode_remove_request(req); 1116 #endif 1117 next: 1118 nfs_clear_page_writeback(req); 1119 } 1120 } 1121 1122 static const struct rpc_call_ops nfs_write_full_ops = { 1123 .rpc_call_done = nfs_writeback_done_full, 1124 .rpc_release = nfs_writedata_release, 1125 }; 1126 1127 1128 /* 1129 * This function is called when the WRITE call is complete. 1130 */ 1131 int nfs_writeback_done(struct rpc_task *task, struct nfs_write_data *data) 1132 { 1133 struct nfs_writeargs *argp = &data->args; 1134 struct nfs_writeres *resp = &data->res; 1135 int status; 1136 1137 dprintk("NFS: %4d nfs_writeback_done (status %d)\n", 1138 task->tk_pid, task->tk_status); 1139 1140 /* 1141 * ->write_done will attempt to use post-op attributes to detect 1142 * conflicting writes by other clients. A strict interpretation 1143 * of close-to-open would allow us to continue caching even if 1144 * another writer had changed the file, but some applications 1145 * depend on tighter cache coherency when writing. 1146 */ 1147 status = NFS_PROTO(data->inode)->write_done(task, data); 1148 if (status != 0) 1149 return status; 1150 nfs_add_stats(data->inode, NFSIOS_SERVERWRITTENBYTES, resp->count); 1151 1152 #if defined(CONFIG_NFS_V3) || defined(CONFIG_NFS_V4) 1153 if (resp->verf->committed < argp->stable && task->tk_status >= 0) { 1154 /* We tried a write call, but the server did not 1155 * commit data to stable storage even though we 1156 * requested it. 1157 * Note: There is a known bug in Tru64 < 5.0 in which 1158 * the server reports NFS_DATA_SYNC, but performs 1159 * NFS_FILE_SYNC. We therefore implement this checking 1160 * as a dprintk() in order to avoid filling syslog. 1161 */ 1162 static unsigned long complain; 1163 1164 if (time_before(complain, jiffies)) { 1165 dprintk("NFS: faulty NFS server %s:" 1166 " (committed = %d) != (stable = %d)\n", 1167 NFS_SERVER(data->inode)->nfs_client->cl_hostname, 1168 resp->verf->committed, argp->stable); 1169 complain = jiffies + 300 * HZ; 1170 } 1171 } 1172 #endif 1173 /* Is this a short write? */ 1174 if (task->tk_status >= 0 && resp->count < argp->count) { 1175 static unsigned long complain; 1176 1177 nfs_inc_stats(data->inode, NFSIOS_SHORTWRITE); 1178 1179 /* Has the server at least made some progress? */ 1180 if (resp->count != 0) { 1181 /* Was this an NFSv2 write or an NFSv3 stable write? */ 1182 if (resp->verf->committed != NFS_UNSTABLE) { 1183 /* Resend from where the server left off */ 1184 argp->offset += resp->count; 1185 argp->pgbase += resp->count; 1186 argp->count -= resp->count; 1187 } else { 1188 /* Resend as a stable write in order to avoid 1189 * headaches in the case of a server crash. 1190 */ 1191 argp->stable = NFS_FILE_SYNC; 1192 } 1193 rpc_restart_call(task); 1194 return -EAGAIN; 1195 } 1196 if (time_before(complain, jiffies)) { 1197 printk(KERN_WARNING 1198 "NFS: Server wrote zero bytes, expected %u.\n", 1199 argp->count); 1200 complain = jiffies + 300 * HZ; 1201 } 1202 /* Can't do anything about it except throw an error. */ 1203 task->tk_status = -EIO; 1204 } 1205 return 0; 1206 } 1207 1208 1209 #if defined(CONFIG_NFS_V3) || defined(CONFIG_NFS_V4) 1210 void nfs_commit_release(void *wdata) 1211 { 1212 nfs_commit_free(wdata); 1213 } 1214 1215 /* 1216 * Set up the argument/result storage required for the RPC call. 1217 */ 1218 static void nfs_commit_rpcsetup(struct list_head *head, 1219 struct nfs_write_data *data, 1220 int how) 1221 { 1222 struct nfs_page *first; 1223 struct inode *inode; 1224 int flags; 1225 1226 /* Set up the RPC argument and reply structs 1227 * NB: take care not to mess about with data->commit et al. */ 1228 1229 list_splice_init(head, &data->pages); 1230 first = nfs_list_entry(data->pages.next); 1231 inode = first->wb_context->dentry->d_inode; 1232 1233 data->inode = inode; 1234 data->cred = first->wb_context->cred; 1235 1236 data->args.fh = NFS_FH(data->inode); 1237 /* Note: we always request a commit of the entire inode */ 1238 data->args.offset = 0; 1239 data->args.count = 0; 1240 data->res.count = 0; 1241 data->res.fattr = &data->fattr; 1242 data->res.verf = &data->verf; 1243 nfs_fattr_init(&data->fattr); 1244 1245 /* Set up the initial task struct. */ 1246 flags = (how & FLUSH_SYNC) ? 0 : RPC_TASK_ASYNC; 1247 rpc_init_task(&data->task, NFS_CLIENT(inode), flags, &nfs_commit_ops, data); 1248 NFS_PROTO(inode)->commit_setup(data, how); 1249 1250 data->task.tk_priority = flush_task_priority(how); 1251 data->task.tk_cookie = (unsigned long)inode; 1252 1253 dprintk("NFS: %4d initiated commit call\n", data->task.tk_pid); 1254 } 1255 1256 /* 1257 * Commit dirty pages 1258 */ 1259 static int 1260 nfs_commit_list(struct inode *inode, struct list_head *head, int how) 1261 { 1262 struct nfs_write_data *data; 1263 struct nfs_page *req; 1264 1265 data = nfs_commit_alloc(); 1266 1267 if (!data) 1268 goto out_bad; 1269 1270 /* Set up the argument struct */ 1271 nfs_commit_rpcsetup(head, data, how); 1272 1273 nfs_execute_write(data); 1274 return 0; 1275 out_bad: 1276 while (!list_empty(head)) { 1277 req = nfs_list_entry(head->next); 1278 nfs_list_remove_request(req); 1279 nfs_mark_request_commit(req); 1280 dec_zone_page_state(req->wb_page, NR_UNSTABLE_NFS); 1281 nfs_clear_page_writeback(req); 1282 } 1283 return -ENOMEM; 1284 } 1285 1286 /* 1287 * COMMIT call returned 1288 */ 1289 static void nfs_commit_done(struct rpc_task *task, void *calldata) 1290 { 1291 struct nfs_write_data *data = calldata; 1292 struct nfs_page *req; 1293 1294 dprintk("NFS: %4d nfs_commit_done (status %d)\n", 1295 task->tk_pid, task->tk_status); 1296 1297 /* Call the NFS version-specific code */ 1298 if (NFS_PROTO(data->inode)->commit_done(task, data) != 0) 1299 return; 1300 1301 while (!list_empty(&data->pages)) { 1302 req = nfs_list_entry(data->pages.next); 1303 nfs_list_remove_request(req); 1304 dec_zone_page_state(req->wb_page, NR_UNSTABLE_NFS); 1305 1306 dprintk("NFS: commit (%s/%Ld %d@%Ld)", 1307 req->wb_context->dentry->d_inode->i_sb->s_id, 1308 (long long)NFS_FILEID(req->wb_context->dentry->d_inode), 1309 req->wb_bytes, 1310 (long long)req_offset(req)); 1311 if (task->tk_status < 0) { 1312 req->wb_context->error = task->tk_status; 1313 nfs_inode_remove_request(req); 1314 dprintk(", error = %d\n", task->tk_status); 1315 goto next; 1316 } 1317 1318 /* Okay, COMMIT succeeded, apparently. Check the verifier 1319 * returned by the server against all stored verfs. */ 1320 if (!memcmp(req->wb_verf.verifier, data->verf.verifier, sizeof(data->verf.verifier))) { 1321 /* We have a match */ 1322 nfs_inode_remove_request(req); 1323 dprintk(" OK\n"); 1324 goto next; 1325 } 1326 /* We have a mismatch. Write the page again */ 1327 dprintk(" mismatch\n"); 1328 nfs_redirty_request(req); 1329 next: 1330 nfs_clear_page_writeback(req); 1331 } 1332 } 1333 1334 static const struct rpc_call_ops nfs_commit_ops = { 1335 .rpc_call_done = nfs_commit_done, 1336 .rpc_release = nfs_commit_release, 1337 }; 1338 #else 1339 static inline int nfs_commit_list(struct inode *inode, struct list_head *head, int how) 1340 { 1341 return 0; 1342 } 1343 #endif 1344 1345 static long nfs_flush_mapping(struct address_space *mapping, struct writeback_control *wbc, int how) 1346 { 1347 struct nfs_inode *nfsi = NFS_I(mapping->host); 1348 LIST_HEAD(head); 1349 long res; 1350 1351 spin_lock(&nfsi->req_lock); 1352 res = nfs_scan_dirty(mapping, wbc, &head); 1353 spin_unlock(&nfsi->req_lock); 1354 if (res) { 1355 int error = nfs_flush_list(mapping->host, &head, res, how); 1356 if (error < 0) 1357 return error; 1358 } 1359 return res; 1360 } 1361 1362 #if defined(CONFIG_NFS_V3) || defined(CONFIG_NFS_V4) 1363 int nfs_commit_inode(struct inode *inode, int how) 1364 { 1365 struct nfs_inode *nfsi = NFS_I(inode); 1366 LIST_HEAD(head); 1367 int res; 1368 1369 spin_lock(&nfsi->req_lock); 1370 res = nfs_scan_commit(inode, &head, 0, 0); 1371 spin_unlock(&nfsi->req_lock); 1372 if (res) { 1373 int error = nfs_commit_list(inode, &head, how); 1374 if (error < 0) 1375 return error; 1376 } 1377 return res; 1378 } 1379 #endif 1380 1381 long nfs_sync_mapping_wait(struct address_space *mapping, struct writeback_control *wbc, int how) 1382 { 1383 struct inode *inode = mapping->host; 1384 struct nfs_inode *nfsi = NFS_I(inode); 1385 unsigned long idx_start, idx_end; 1386 unsigned int npages = 0; 1387 LIST_HEAD(head); 1388 int nocommit = how & FLUSH_NOCOMMIT; 1389 long pages, ret; 1390 1391 /* FIXME */ 1392 if (wbc->range_cyclic) 1393 idx_start = 0; 1394 else { 1395 idx_start = wbc->range_start >> PAGE_CACHE_SHIFT; 1396 idx_end = wbc->range_end >> PAGE_CACHE_SHIFT; 1397 if (idx_end > idx_start) { 1398 unsigned long l_npages = 1 + idx_end - idx_start; 1399 npages = l_npages; 1400 if (sizeof(npages) != sizeof(l_npages) && 1401 (unsigned long)npages != l_npages) 1402 npages = 0; 1403 } 1404 } 1405 how &= ~FLUSH_NOCOMMIT; 1406 spin_lock(&nfsi->req_lock); 1407 do { 1408 wbc->pages_skipped = 0; 1409 ret = nfs_wait_on_requests_locked(inode, idx_start, npages); 1410 if (ret != 0) 1411 continue; 1412 pages = nfs_scan_dirty(mapping, wbc, &head); 1413 if (pages != 0) { 1414 spin_unlock(&nfsi->req_lock); 1415 if (how & FLUSH_INVALIDATE) { 1416 nfs_cancel_dirty_list(&head); 1417 ret = pages; 1418 } else 1419 ret = nfs_flush_list(inode, &head, pages, how); 1420 spin_lock(&nfsi->req_lock); 1421 continue; 1422 } 1423 if (wbc->pages_skipped != 0) 1424 continue; 1425 if (nocommit) 1426 break; 1427 pages = nfs_scan_commit(inode, &head, idx_start, npages); 1428 if (pages == 0) { 1429 if (wbc->pages_skipped != 0) 1430 continue; 1431 break; 1432 } 1433 if (how & FLUSH_INVALIDATE) { 1434 spin_unlock(&nfsi->req_lock); 1435 nfs_cancel_commit_list(&head); 1436 ret = pages; 1437 spin_lock(&nfsi->req_lock); 1438 continue; 1439 } 1440 pages += nfs_scan_commit(inode, &head, 0, 0); 1441 spin_unlock(&nfsi->req_lock); 1442 ret = nfs_commit_list(inode, &head, how); 1443 spin_lock(&nfsi->req_lock); 1444 } while (ret >= 0); 1445 spin_unlock(&nfsi->req_lock); 1446 return ret; 1447 } 1448 1449 /* 1450 * flush the inode to disk. 1451 */ 1452 int nfs_wb_all(struct inode *inode) 1453 { 1454 struct address_space *mapping = inode->i_mapping; 1455 struct writeback_control wbc = { 1456 .bdi = mapping->backing_dev_info, 1457 .sync_mode = WB_SYNC_ALL, 1458 .nr_to_write = LONG_MAX, 1459 .for_writepages = 1, 1460 .range_cyclic = 1, 1461 }; 1462 int ret; 1463 1464 ret = generic_writepages(mapping, &wbc); 1465 if (ret < 0) 1466 goto out; 1467 ret = nfs_sync_mapping_wait(mapping, &wbc, 0); 1468 if (ret >= 0) 1469 return 0; 1470 out: 1471 __mark_inode_dirty(mapping->host, I_DIRTY_PAGES); 1472 return ret; 1473 } 1474 1475 int nfs_sync_mapping_range(struct address_space *mapping, loff_t range_start, loff_t range_end, int how) 1476 { 1477 struct writeback_control wbc = { 1478 .bdi = mapping->backing_dev_info, 1479 .sync_mode = WB_SYNC_ALL, 1480 .nr_to_write = LONG_MAX, 1481 .range_start = range_start, 1482 .range_end = range_end, 1483 .for_writepages = 1, 1484 }; 1485 int ret; 1486 1487 if (!(how & FLUSH_NOWRITEPAGE)) { 1488 ret = generic_writepages(mapping, &wbc); 1489 if (ret < 0) 1490 goto out; 1491 } 1492 ret = nfs_sync_mapping_wait(mapping, &wbc, how); 1493 if (ret >= 0) 1494 return 0; 1495 out: 1496 __mark_inode_dirty(mapping->host, I_DIRTY_PAGES); 1497 return ret; 1498 } 1499 1500 int nfs_wb_page_priority(struct inode *inode, struct page *page, int how) 1501 { 1502 loff_t range_start = page_offset(page); 1503 loff_t range_end = range_start + (loff_t)(PAGE_CACHE_SIZE - 1); 1504 struct writeback_control wbc = { 1505 .bdi = page->mapping->backing_dev_info, 1506 .sync_mode = WB_SYNC_ALL, 1507 .nr_to_write = LONG_MAX, 1508 .range_start = range_start, 1509 .range_end = range_end, 1510 }; 1511 int ret; 1512 1513 BUG_ON(!PageLocked(page)); 1514 if (!(how & FLUSH_NOWRITEPAGE) && clear_page_dirty_for_io(page)) { 1515 ret = nfs_writepage_locked(page, &wbc); 1516 if (ret < 0) 1517 goto out; 1518 } 1519 ret = nfs_sync_mapping_wait(page->mapping, &wbc, how); 1520 if (ret >= 0) 1521 return 0; 1522 out: 1523 __mark_inode_dirty(inode, I_DIRTY_PAGES); 1524 return ret; 1525 } 1526 1527 /* 1528 * Write back all requests on one page - we do this before reading it. 1529 */ 1530 int nfs_wb_page(struct inode *inode, struct page* page) 1531 { 1532 return nfs_wb_page_priority(inode, page, FLUSH_STABLE); 1533 } 1534 1535 int nfs_set_page_dirty(struct page *page) 1536 { 1537 struct nfs_page *req; 1538 1539 req = nfs_page_find_request(page); 1540 if (req != NULL) { 1541 /* Mark any existing write requests for flushing */ 1542 set_bit(PG_NEED_FLUSH, &req->wb_flags); 1543 nfs_release_request(req); 1544 } 1545 return __set_page_dirty_nobuffers(page); 1546 } 1547 1548 1549 int __init nfs_init_writepagecache(void) 1550 { 1551 nfs_wdata_cachep = kmem_cache_create("nfs_write_data", 1552 sizeof(struct nfs_write_data), 1553 0, SLAB_HWCACHE_ALIGN, 1554 NULL, NULL); 1555 if (nfs_wdata_cachep == NULL) 1556 return -ENOMEM; 1557 1558 nfs_wdata_mempool = mempool_create_slab_pool(MIN_POOL_WRITE, 1559 nfs_wdata_cachep); 1560 if (nfs_wdata_mempool == NULL) 1561 return -ENOMEM; 1562 1563 nfs_commit_mempool = mempool_create_slab_pool(MIN_POOL_COMMIT, 1564 nfs_wdata_cachep); 1565 if (nfs_commit_mempool == NULL) 1566 return -ENOMEM; 1567 1568 return 0; 1569 } 1570 1571 void nfs_destroy_writepagecache(void) 1572 { 1573 mempool_destroy(nfs_commit_mempool); 1574 mempool_destroy(nfs_wdata_mempool); 1575 kmem_cache_destroy(nfs_wdata_cachep); 1576 } 1577 1578