1 /* 2 * linux/fs/nfs/write.c 3 * 4 * Writing file data over NFS. 5 * 6 * We do it like this: When a (user) process wishes to write data to an 7 * NFS file, a write request is allocated that contains the RPC task data 8 * plus some info on the page to be written, and added to the inode's 9 * write chain. If the process writes past the end of the page, an async 10 * RPC call to write the page is scheduled immediately; otherwise, the call 11 * is delayed for a few seconds. 12 * 13 * Just like readahead, no async I/O is performed if wsize < PAGE_SIZE. 14 * 15 * Write requests are kept on the inode's writeback list. Each entry in 16 * that list references the page (portion) to be written. When the 17 * cache timeout has expired, the RPC task is woken up, and tries to 18 * lock the page. As soon as it manages to do so, the request is moved 19 * from the writeback list to the writelock list. 20 * 21 * Note: we must make sure never to confuse the inode passed in the 22 * write_page request with the one in page->inode. As far as I understand 23 * it, these are different when doing a swap-out. 24 * 25 * To understand everything that goes on here and in the NFS read code, 26 * one should be aware that a page is locked in exactly one of the following 27 * cases: 28 * 29 * - A write request is in progress. 30 * - A user process is in generic_file_write/nfs_update_page 31 * - A user process is in generic_file_read 32 * 33 * Also note that because of the way pages are invalidated in 34 * nfs_revalidate_inode, the following assertions hold: 35 * 36 * - If a page is dirty, there will be no read requests (a page will 37 * not be re-read unless invalidated by nfs_revalidate_inode). 38 * - If the page is not uptodate, there will be no pending write 39 * requests, and no process will be in nfs_update_page. 40 * 41 * FIXME: Interaction with the vmscan routines is not optimal yet. 42 * Either vmscan must be made nfs-savvy, or we need a different page 43 * reclaim concept that supports something like FS-independent 44 * buffer_heads with a b_ops-> field. 45 * 46 * Copyright (C) 1996, 1997, Olaf Kirch <okir@monad.swb.de> 47 */ 48 49 #include <linux/config.h> 50 #include <linux/types.h> 51 #include <linux/slab.h> 52 #include <linux/mm.h> 53 #include <linux/pagemap.h> 54 #include <linux/file.h> 55 #include <linux/mpage.h> 56 #include <linux/writeback.h> 57 58 #include <linux/sunrpc/clnt.h> 59 #include <linux/nfs_fs.h> 60 #include <linux/nfs_mount.h> 61 #include <linux/nfs_page.h> 62 #include <asm/uaccess.h> 63 #include <linux/smp_lock.h> 64 65 #include "delegation.h" 66 #include "iostat.h" 67 68 #define NFSDBG_FACILITY NFSDBG_PAGECACHE 69 70 #define MIN_POOL_WRITE (32) 71 #define MIN_POOL_COMMIT (4) 72 73 /* 74 * Local function declarations 75 */ 76 static struct nfs_page * nfs_update_request(struct nfs_open_context*, 77 struct inode *, 78 struct page *, 79 unsigned int, unsigned int); 80 static int nfs_wait_on_write_congestion(struct address_space *, int); 81 static int nfs_wait_on_requests(struct inode *, unsigned long, unsigned int); 82 static int nfs_flush_inode(struct inode *inode, unsigned long idx_start, 83 unsigned int npages, int how); 84 static const struct rpc_call_ops nfs_write_partial_ops; 85 static const struct rpc_call_ops nfs_write_full_ops; 86 static const struct rpc_call_ops nfs_commit_ops; 87 88 static kmem_cache_t *nfs_wdata_cachep; 89 static mempool_t *nfs_wdata_mempool; 90 static mempool_t *nfs_commit_mempool; 91 92 static DECLARE_WAIT_QUEUE_HEAD(nfs_write_congestion); 93 94 struct nfs_write_data *nfs_commit_alloc(unsigned int pagecount) 95 { 96 struct nfs_write_data *p = mempool_alloc(nfs_commit_mempool, SLAB_NOFS); 97 98 if (p) { 99 memset(p, 0, sizeof(*p)); 100 INIT_LIST_HEAD(&p->pages); 101 if (pagecount <= ARRAY_SIZE(p->page_array)) 102 p->pagevec = p->page_array; 103 else { 104 p->pagevec = kcalloc(pagecount, sizeof(struct page *), GFP_NOFS); 105 if (!p->pagevec) { 106 mempool_free(p, nfs_commit_mempool); 107 p = NULL; 108 } 109 } 110 } 111 return p; 112 } 113 114 void nfs_commit_free(struct nfs_write_data *p) 115 { 116 if (p && (p->pagevec != &p->page_array[0])) 117 kfree(p->pagevec); 118 mempool_free(p, nfs_commit_mempool); 119 } 120 121 struct nfs_write_data *nfs_writedata_alloc(unsigned int pagecount) 122 { 123 struct nfs_write_data *p = mempool_alloc(nfs_wdata_mempool, SLAB_NOFS); 124 125 if (p) { 126 memset(p, 0, sizeof(*p)); 127 INIT_LIST_HEAD(&p->pages); 128 if (pagecount <= ARRAY_SIZE(p->page_array)) 129 p->pagevec = p->page_array; 130 else { 131 p->pagevec = kcalloc(pagecount, sizeof(struct page *), GFP_NOFS); 132 if (!p->pagevec) { 133 mempool_free(p, nfs_wdata_mempool); 134 p = NULL; 135 } 136 } 137 } 138 return p; 139 } 140 141 void nfs_writedata_free(struct nfs_write_data *p) 142 { 143 if (p && (p->pagevec != &p->page_array[0])) 144 kfree(p->pagevec); 145 mempool_free(p, nfs_wdata_mempool); 146 } 147 148 void nfs_writedata_release(void *wdata) 149 { 150 nfs_writedata_free(wdata); 151 } 152 153 /* Adjust the file length if we're writing beyond the end */ 154 static void nfs_grow_file(struct page *page, unsigned int offset, unsigned int count) 155 { 156 struct inode *inode = page->mapping->host; 157 loff_t end, i_size = i_size_read(inode); 158 unsigned long end_index = (i_size - 1) >> PAGE_CACHE_SHIFT; 159 160 if (i_size > 0 && page->index < end_index) 161 return; 162 end = ((loff_t)page->index << PAGE_CACHE_SHIFT) + ((loff_t)offset+count); 163 if (i_size >= end) 164 return; 165 nfs_inc_stats(inode, NFSIOS_EXTENDWRITE); 166 i_size_write(inode, end); 167 } 168 169 /* We can set the PG_uptodate flag if we see that a write request 170 * covers the full page. 171 */ 172 static void nfs_mark_uptodate(struct page *page, unsigned int base, unsigned int count) 173 { 174 loff_t end_offs; 175 176 if (PageUptodate(page)) 177 return; 178 if (base != 0) 179 return; 180 if (count == PAGE_CACHE_SIZE) { 181 SetPageUptodate(page); 182 return; 183 } 184 185 end_offs = i_size_read(page->mapping->host) - 1; 186 if (end_offs < 0) 187 return; 188 /* Is this the last page? */ 189 if (page->index != (unsigned long)(end_offs >> PAGE_CACHE_SHIFT)) 190 return; 191 /* This is the last page: set PG_uptodate if we cover the entire 192 * extent of the data, then zero the rest of the page. 193 */ 194 if (count == (unsigned int)(end_offs & (PAGE_CACHE_SIZE - 1)) + 1) { 195 memclear_highpage_flush(page, count, PAGE_CACHE_SIZE - count); 196 SetPageUptodate(page); 197 } 198 } 199 200 /* 201 * Write a page synchronously. 202 * Offset is the data offset within the page. 203 */ 204 static int nfs_writepage_sync(struct nfs_open_context *ctx, struct inode *inode, 205 struct page *page, unsigned int offset, unsigned int count, 206 int how) 207 { 208 unsigned int wsize = NFS_SERVER(inode)->wsize; 209 int result, written = 0; 210 struct nfs_write_data *wdata; 211 212 wdata = nfs_writedata_alloc(1); 213 if (!wdata) 214 return -ENOMEM; 215 216 wdata->flags = how; 217 wdata->cred = ctx->cred; 218 wdata->inode = inode; 219 wdata->args.fh = NFS_FH(inode); 220 wdata->args.context = ctx; 221 wdata->args.pages = &page; 222 wdata->args.stable = NFS_FILE_SYNC; 223 wdata->args.pgbase = offset; 224 wdata->args.count = wsize; 225 wdata->res.fattr = &wdata->fattr; 226 wdata->res.verf = &wdata->verf; 227 228 dprintk("NFS: nfs_writepage_sync(%s/%Ld %d@%Ld)\n", 229 inode->i_sb->s_id, 230 (long long)NFS_FILEID(inode), 231 count, (long long)(page_offset(page) + offset)); 232 233 set_page_writeback(page); 234 nfs_begin_data_update(inode); 235 do { 236 if (count < wsize) 237 wdata->args.count = count; 238 wdata->args.offset = page_offset(page) + wdata->args.pgbase; 239 240 result = NFS_PROTO(inode)->write(wdata); 241 242 if (result < 0) { 243 /* Must mark the page invalid after I/O error */ 244 ClearPageUptodate(page); 245 goto io_error; 246 } 247 if (result < wdata->args.count) 248 printk(KERN_WARNING "NFS: short write, count=%u, result=%d\n", 249 wdata->args.count, result); 250 251 wdata->args.offset += result; 252 wdata->args.pgbase += result; 253 written += result; 254 count -= result; 255 nfs_add_stats(inode, NFSIOS_SERVERWRITTENBYTES, result); 256 } while (count); 257 /* Update file length */ 258 nfs_grow_file(page, offset, written); 259 /* Set the PG_uptodate flag? */ 260 nfs_mark_uptodate(page, offset, written); 261 262 if (PageError(page)) 263 ClearPageError(page); 264 265 io_error: 266 nfs_end_data_update(inode); 267 end_page_writeback(page); 268 nfs_writedata_free(wdata); 269 return written ? written : result; 270 } 271 272 static int nfs_writepage_async(struct nfs_open_context *ctx, 273 struct inode *inode, struct page *page, 274 unsigned int offset, unsigned int count) 275 { 276 struct nfs_page *req; 277 278 req = nfs_update_request(ctx, inode, page, offset, count); 279 if (IS_ERR(req)) 280 return PTR_ERR(req); 281 /* Update file length */ 282 nfs_grow_file(page, offset, count); 283 /* Set the PG_uptodate flag? */ 284 nfs_mark_uptodate(page, offset, count); 285 nfs_unlock_request(req); 286 return 0; 287 } 288 289 static int wb_priority(struct writeback_control *wbc) 290 { 291 if (wbc->for_reclaim) 292 return FLUSH_HIGHPRI; 293 if (wbc->for_kupdate) 294 return FLUSH_LOWPRI; 295 return 0; 296 } 297 298 /* 299 * Write an mmapped page to the server. 300 */ 301 int nfs_writepage(struct page *page, struct writeback_control *wbc) 302 { 303 struct nfs_open_context *ctx; 304 struct inode *inode = page->mapping->host; 305 unsigned long end_index; 306 unsigned offset = PAGE_CACHE_SIZE; 307 loff_t i_size = i_size_read(inode); 308 int inode_referenced = 0; 309 int priority = wb_priority(wbc); 310 int err; 311 312 nfs_inc_stats(inode, NFSIOS_VFSWRITEPAGE); 313 nfs_add_stats(inode, NFSIOS_WRITEPAGES, 1); 314 315 /* 316 * Note: We need to ensure that we have a reference to the inode 317 * if we are to do asynchronous writes. If not, waiting 318 * in nfs_wait_on_request() may deadlock with clear_inode(). 319 * 320 * If igrab() fails here, then it is in any case safe to 321 * call nfs_wb_page(), since there will be no pending writes. 322 */ 323 if (igrab(inode) != 0) 324 inode_referenced = 1; 325 end_index = i_size >> PAGE_CACHE_SHIFT; 326 327 /* Ensure we've flushed out any previous writes */ 328 nfs_wb_page_priority(inode, page, priority); 329 330 /* easy case */ 331 if (page->index < end_index) 332 goto do_it; 333 /* things got complicated... */ 334 offset = i_size & (PAGE_CACHE_SIZE-1); 335 336 /* OK, are we completely out? */ 337 err = 0; /* potential race with truncate - ignore */ 338 if (page->index >= end_index+1 || !offset) 339 goto out; 340 do_it: 341 ctx = nfs_find_open_context(inode, NULL, FMODE_WRITE); 342 if (ctx == NULL) { 343 err = -EBADF; 344 goto out; 345 } 346 lock_kernel(); 347 if (!IS_SYNC(inode) && inode_referenced) { 348 err = nfs_writepage_async(ctx, inode, page, 0, offset); 349 if (!wbc->for_writepages) 350 nfs_flush_inode(inode, 0, 0, wb_priority(wbc)); 351 } else { 352 err = nfs_writepage_sync(ctx, inode, page, 0, 353 offset, priority); 354 if (err >= 0) { 355 if (err != offset) 356 redirty_page_for_writepage(wbc, page); 357 err = 0; 358 } 359 } 360 unlock_kernel(); 361 put_nfs_open_context(ctx); 362 out: 363 unlock_page(page); 364 if (inode_referenced) 365 iput(inode); 366 return err; 367 } 368 369 /* 370 * Note: causes nfs_update_request() to block on the assumption 371 * that the writeback is generated due to memory pressure. 372 */ 373 int nfs_writepages(struct address_space *mapping, struct writeback_control *wbc) 374 { 375 struct backing_dev_info *bdi = mapping->backing_dev_info; 376 struct inode *inode = mapping->host; 377 int err; 378 379 nfs_inc_stats(inode, NFSIOS_VFSWRITEPAGES); 380 381 err = generic_writepages(mapping, wbc); 382 if (err) 383 return err; 384 while (test_and_set_bit(BDI_write_congested, &bdi->state) != 0) { 385 if (wbc->nonblocking) 386 return 0; 387 nfs_wait_on_write_congestion(mapping, 0); 388 } 389 err = nfs_flush_inode(inode, 0, 0, wb_priority(wbc)); 390 if (err < 0) 391 goto out; 392 nfs_add_stats(inode, NFSIOS_WRITEPAGES, err); 393 wbc->nr_to_write -= err; 394 if (!wbc->nonblocking && wbc->sync_mode == WB_SYNC_ALL) { 395 err = nfs_wait_on_requests(inode, 0, 0); 396 if (err < 0) 397 goto out; 398 } 399 err = nfs_commit_inode(inode, wb_priority(wbc)); 400 if (err > 0) { 401 wbc->nr_to_write -= err; 402 err = 0; 403 } 404 out: 405 clear_bit(BDI_write_congested, &bdi->state); 406 wake_up_all(&nfs_write_congestion); 407 return err; 408 } 409 410 /* 411 * Insert a write request into an inode 412 */ 413 static int nfs_inode_add_request(struct inode *inode, struct nfs_page *req) 414 { 415 struct nfs_inode *nfsi = NFS_I(inode); 416 int error; 417 418 error = radix_tree_insert(&nfsi->nfs_page_tree, req->wb_index, req); 419 BUG_ON(error == -EEXIST); 420 if (error) 421 return error; 422 if (!nfsi->npages) { 423 igrab(inode); 424 nfs_begin_data_update(inode); 425 if (nfs_have_delegation(inode, FMODE_WRITE)) 426 nfsi->change_attr++; 427 } 428 SetPagePrivate(req->wb_page); 429 nfsi->npages++; 430 atomic_inc(&req->wb_count); 431 return 0; 432 } 433 434 /* 435 * Insert a write request into an inode 436 */ 437 static void nfs_inode_remove_request(struct nfs_page *req) 438 { 439 struct inode *inode = req->wb_context->dentry->d_inode; 440 struct nfs_inode *nfsi = NFS_I(inode); 441 442 BUG_ON (!NFS_WBACK_BUSY(req)); 443 444 spin_lock(&nfsi->req_lock); 445 ClearPagePrivate(req->wb_page); 446 radix_tree_delete(&nfsi->nfs_page_tree, req->wb_index); 447 nfsi->npages--; 448 if (!nfsi->npages) { 449 spin_unlock(&nfsi->req_lock); 450 nfs_end_data_update(inode); 451 iput(inode); 452 } else 453 spin_unlock(&nfsi->req_lock); 454 nfs_clear_request(req); 455 nfs_release_request(req); 456 } 457 458 /* 459 * Find a request 460 */ 461 static inline struct nfs_page * 462 _nfs_find_request(struct inode *inode, unsigned long index) 463 { 464 struct nfs_inode *nfsi = NFS_I(inode); 465 struct nfs_page *req; 466 467 req = (struct nfs_page*)radix_tree_lookup(&nfsi->nfs_page_tree, index); 468 if (req) 469 atomic_inc(&req->wb_count); 470 return req; 471 } 472 473 static struct nfs_page * 474 nfs_find_request(struct inode *inode, unsigned long index) 475 { 476 struct nfs_page *req; 477 struct nfs_inode *nfsi = NFS_I(inode); 478 479 spin_lock(&nfsi->req_lock); 480 req = _nfs_find_request(inode, index); 481 spin_unlock(&nfsi->req_lock); 482 return req; 483 } 484 485 /* 486 * Add a request to the inode's dirty list. 487 */ 488 static void 489 nfs_mark_request_dirty(struct nfs_page *req) 490 { 491 struct inode *inode = req->wb_context->dentry->d_inode; 492 struct nfs_inode *nfsi = NFS_I(inode); 493 494 spin_lock(&nfsi->req_lock); 495 radix_tree_tag_set(&nfsi->nfs_page_tree, 496 req->wb_index, NFS_PAGE_TAG_DIRTY); 497 nfs_list_add_request(req, &nfsi->dirty); 498 nfsi->ndirty++; 499 spin_unlock(&nfsi->req_lock); 500 inc_zone_page_state(req->wb_page, NR_FILE_DIRTY); 501 mark_inode_dirty(inode); 502 } 503 504 /* 505 * Check if a request is dirty 506 */ 507 static inline int 508 nfs_dirty_request(struct nfs_page *req) 509 { 510 struct nfs_inode *nfsi = NFS_I(req->wb_context->dentry->d_inode); 511 return !list_empty(&req->wb_list) && req->wb_list_head == &nfsi->dirty; 512 } 513 514 #if defined(CONFIG_NFS_V3) || defined(CONFIG_NFS_V4) 515 /* 516 * Add a request to the inode's commit list. 517 */ 518 static void 519 nfs_mark_request_commit(struct nfs_page *req) 520 { 521 struct inode *inode = req->wb_context->dentry->d_inode; 522 struct nfs_inode *nfsi = NFS_I(inode); 523 524 spin_lock(&nfsi->req_lock); 525 nfs_list_add_request(req, &nfsi->commit); 526 nfsi->ncommit++; 527 spin_unlock(&nfsi->req_lock); 528 inc_zone_page_state(req->wb_page, NR_UNSTABLE_NFS); 529 mark_inode_dirty(inode); 530 } 531 #endif 532 533 /* 534 * Wait for a request to complete. 535 * 536 * Interruptible by signals only if mounted with intr flag. 537 */ 538 static int nfs_wait_on_requests_locked(struct inode *inode, unsigned long idx_start, unsigned int npages) 539 { 540 struct nfs_inode *nfsi = NFS_I(inode); 541 struct nfs_page *req; 542 unsigned long idx_end, next; 543 unsigned int res = 0; 544 int error; 545 546 if (npages == 0) 547 idx_end = ~0; 548 else 549 idx_end = idx_start + npages - 1; 550 551 next = idx_start; 552 while (radix_tree_gang_lookup_tag(&nfsi->nfs_page_tree, (void **)&req, next, 1, NFS_PAGE_TAG_WRITEBACK)) { 553 if (req->wb_index > idx_end) 554 break; 555 556 next = req->wb_index + 1; 557 BUG_ON(!NFS_WBACK_BUSY(req)); 558 559 atomic_inc(&req->wb_count); 560 spin_unlock(&nfsi->req_lock); 561 error = nfs_wait_on_request(req); 562 nfs_release_request(req); 563 spin_lock(&nfsi->req_lock); 564 if (error < 0) 565 return error; 566 res++; 567 } 568 return res; 569 } 570 571 static int nfs_wait_on_requests(struct inode *inode, unsigned long idx_start, unsigned int npages) 572 { 573 struct nfs_inode *nfsi = NFS_I(inode); 574 int ret; 575 576 spin_lock(&nfsi->req_lock); 577 ret = nfs_wait_on_requests_locked(inode, idx_start, npages); 578 spin_unlock(&nfsi->req_lock); 579 return ret; 580 } 581 582 static void nfs_cancel_requests(struct list_head *head) 583 { 584 struct nfs_page *req; 585 while(!list_empty(head)) { 586 req = nfs_list_entry(head->next); 587 nfs_list_remove_request(req); 588 nfs_inode_remove_request(req); 589 nfs_clear_page_writeback(req); 590 } 591 } 592 593 /* 594 * nfs_scan_dirty - Scan an inode for dirty requests 595 * @inode: NFS inode to scan 596 * @dst: destination list 597 * @idx_start: lower bound of page->index to scan. 598 * @npages: idx_start + npages sets the upper bound to scan. 599 * 600 * Moves requests from the inode's dirty page list. 601 * The requests are *not* checked to ensure that they form a contiguous set. 602 */ 603 static int 604 nfs_scan_dirty(struct inode *inode, struct list_head *dst, unsigned long idx_start, unsigned int npages) 605 { 606 struct nfs_inode *nfsi = NFS_I(inode); 607 int res = 0; 608 609 if (nfsi->ndirty != 0) { 610 res = nfs_scan_lock_dirty(nfsi, dst, idx_start, npages); 611 nfsi->ndirty -= res; 612 if ((nfsi->ndirty == 0) != list_empty(&nfsi->dirty)) 613 printk(KERN_ERR "NFS: desynchronized value of nfs_i.ndirty.\n"); 614 } 615 return res; 616 } 617 618 #if defined(CONFIG_NFS_V3) || defined(CONFIG_NFS_V4) 619 /* 620 * nfs_scan_commit - Scan an inode for commit requests 621 * @inode: NFS inode to scan 622 * @dst: destination list 623 * @idx_start: lower bound of page->index to scan. 624 * @npages: idx_start + npages sets the upper bound to scan. 625 * 626 * Moves requests from the inode's 'commit' request list. 627 * The requests are *not* checked to ensure that they form a contiguous set. 628 */ 629 static int 630 nfs_scan_commit(struct inode *inode, struct list_head *dst, unsigned long idx_start, unsigned int npages) 631 { 632 struct nfs_inode *nfsi = NFS_I(inode); 633 int res = 0; 634 635 if (nfsi->ncommit != 0) { 636 res = nfs_scan_list(nfsi, &nfsi->commit, dst, idx_start, npages); 637 nfsi->ncommit -= res; 638 if ((nfsi->ncommit == 0) != list_empty(&nfsi->commit)) 639 printk(KERN_ERR "NFS: desynchronized value of nfs_i.ncommit.\n"); 640 } 641 return res; 642 } 643 #else 644 static inline int nfs_scan_commit(struct inode *inode, struct list_head *dst, unsigned long idx_start, unsigned int npages) 645 { 646 return 0; 647 } 648 #endif 649 650 static int nfs_wait_on_write_congestion(struct address_space *mapping, int intr) 651 { 652 struct backing_dev_info *bdi = mapping->backing_dev_info; 653 DEFINE_WAIT(wait); 654 int ret = 0; 655 656 might_sleep(); 657 658 if (!bdi_write_congested(bdi)) 659 return 0; 660 661 nfs_inc_stats(mapping->host, NFSIOS_CONGESTIONWAIT); 662 663 if (intr) { 664 struct rpc_clnt *clnt = NFS_CLIENT(mapping->host); 665 sigset_t oldset; 666 667 rpc_clnt_sigmask(clnt, &oldset); 668 prepare_to_wait(&nfs_write_congestion, &wait, TASK_INTERRUPTIBLE); 669 if (bdi_write_congested(bdi)) { 670 if (signalled()) 671 ret = -ERESTARTSYS; 672 else 673 schedule(); 674 } 675 rpc_clnt_sigunmask(clnt, &oldset); 676 } else { 677 prepare_to_wait(&nfs_write_congestion, &wait, TASK_UNINTERRUPTIBLE); 678 if (bdi_write_congested(bdi)) 679 schedule(); 680 } 681 finish_wait(&nfs_write_congestion, &wait); 682 return ret; 683 } 684 685 686 /* 687 * Try to update any existing write request, or create one if there is none. 688 * In order to match, the request's credentials must match those of 689 * the calling process. 690 * 691 * Note: Should always be called with the Page Lock held! 692 */ 693 static struct nfs_page * nfs_update_request(struct nfs_open_context* ctx, 694 struct inode *inode, struct page *page, 695 unsigned int offset, unsigned int bytes) 696 { 697 struct nfs_server *server = NFS_SERVER(inode); 698 struct nfs_inode *nfsi = NFS_I(inode); 699 struct nfs_page *req, *new = NULL; 700 unsigned long rqend, end; 701 702 end = offset + bytes; 703 704 if (nfs_wait_on_write_congestion(page->mapping, server->flags & NFS_MOUNT_INTR)) 705 return ERR_PTR(-ERESTARTSYS); 706 for (;;) { 707 /* Loop over all inode entries and see if we find 708 * A request for the page we wish to update 709 */ 710 spin_lock(&nfsi->req_lock); 711 req = _nfs_find_request(inode, page->index); 712 if (req) { 713 if (!nfs_lock_request_dontget(req)) { 714 int error; 715 spin_unlock(&nfsi->req_lock); 716 error = nfs_wait_on_request(req); 717 nfs_release_request(req); 718 if (error < 0) { 719 if (new) 720 nfs_release_request(new); 721 return ERR_PTR(error); 722 } 723 continue; 724 } 725 spin_unlock(&nfsi->req_lock); 726 if (new) 727 nfs_release_request(new); 728 break; 729 } 730 731 if (new) { 732 int error; 733 nfs_lock_request_dontget(new); 734 error = nfs_inode_add_request(inode, new); 735 if (error) { 736 spin_unlock(&nfsi->req_lock); 737 nfs_unlock_request(new); 738 return ERR_PTR(error); 739 } 740 spin_unlock(&nfsi->req_lock); 741 nfs_mark_request_dirty(new); 742 return new; 743 } 744 spin_unlock(&nfsi->req_lock); 745 746 new = nfs_create_request(ctx, inode, page, offset, bytes); 747 if (IS_ERR(new)) 748 return new; 749 } 750 751 /* We have a request for our page. 752 * If the creds don't match, or the 753 * page addresses don't match, 754 * tell the caller to wait on the conflicting 755 * request. 756 */ 757 rqend = req->wb_offset + req->wb_bytes; 758 if (req->wb_context != ctx 759 || req->wb_page != page 760 || !nfs_dirty_request(req) 761 || offset > rqend || end < req->wb_offset) { 762 nfs_unlock_request(req); 763 return ERR_PTR(-EBUSY); 764 } 765 766 /* Okay, the request matches. Update the region */ 767 if (offset < req->wb_offset) { 768 req->wb_offset = offset; 769 req->wb_pgbase = offset; 770 req->wb_bytes = rqend - req->wb_offset; 771 } 772 773 if (end > rqend) 774 req->wb_bytes = end - req->wb_offset; 775 776 return req; 777 } 778 779 int nfs_flush_incompatible(struct file *file, struct page *page) 780 { 781 struct nfs_open_context *ctx = (struct nfs_open_context *)file->private_data; 782 struct inode *inode = page->mapping->host; 783 struct nfs_page *req; 784 int status = 0; 785 /* 786 * Look for a request corresponding to this page. If there 787 * is one, and it belongs to another file, we flush it out 788 * before we try to copy anything into the page. Do this 789 * due to the lack of an ACCESS-type call in NFSv2. 790 * Also do the same if we find a request from an existing 791 * dropped page. 792 */ 793 req = nfs_find_request(inode, page->index); 794 if (req) { 795 if (req->wb_page != page || ctx != req->wb_context) 796 status = nfs_wb_page(inode, page); 797 nfs_release_request(req); 798 } 799 return (status < 0) ? status : 0; 800 } 801 802 /* 803 * Update and possibly write a cached page of an NFS file. 804 * 805 * XXX: Keep an eye on generic_file_read to make sure it doesn't do bad 806 * things with a page scheduled for an RPC call (e.g. invalidate it). 807 */ 808 int nfs_updatepage(struct file *file, struct page *page, 809 unsigned int offset, unsigned int count) 810 { 811 struct nfs_open_context *ctx = (struct nfs_open_context *)file->private_data; 812 struct inode *inode = page->mapping->host; 813 struct nfs_page *req; 814 int status = 0; 815 816 nfs_inc_stats(inode, NFSIOS_VFSUPDATEPAGE); 817 818 dprintk("NFS: nfs_updatepage(%s/%s %d@%Ld)\n", 819 file->f_dentry->d_parent->d_name.name, 820 file->f_dentry->d_name.name, count, 821 (long long)(page_offset(page) +offset)); 822 823 if (IS_SYNC(inode)) { 824 status = nfs_writepage_sync(ctx, inode, page, offset, count, 0); 825 if (status > 0) { 826 if (offset == 0 && status == PAGE_CACHE_SIZE) 827 SetPageUptodate(page); 828 return 0; 829 } 830 return status; 831 } 832 833 /* If we're not using byte range locks, and we know the page 834 * is entirely in cache, it may be more efficient to avoid 835 * fragmenting write requests. 836 */ 837 if (PageUptodate(page) && inode->i_flock == NULL && !(file->f_mode & O_SYNC)) { 838 loff_t end_offs = i_size_read(inode) - 1; 839 unsigned long end_index = end_offs >> PAGE_CACHE_SHIFT; 840 841 count += offset; 842 offset = 0; 843 if (unlikely(end_offs < 0)) { 844 /* Do nothing */ 845 } else if (page->index == end_index) { 846 unsigned int pglen; 847 pglen = (unsigned int)(end_offs & (PAGE_CACHE_SIZE-1)) + 1; 848 if (count < pglen) 849 count = pglen; 850 } else if (page->index < end_index) 851 count = PAGE_CACHE_SIZE; 852 } 853 854 /* 855 * Try to find an NFS request corresponding to this page 856 * and update it. 857 * If the existing request cannot be updated, we must flush 858 * it out now. 859 */ 860 do { 861 req = nfs_update_request(ctx, inode, page, offset, count); 862 status = (IS_ERR(req)) ? PTR_ERR(req) : 0; 863 if (status != -EBUSY) 864 break; 865 /* Request could not be updated. Flush it out and try again */ 866 status = nfs_wb_page(inode, page); 867 } while (status >= 0); 868 if (status < 0) 869 goto done; 870 871 status = 0; 872 873 /* Update file length */ 874 nfs_grow_file(page, offset, count); 875 /* Set the PG_uptodate flag? */ 876 nfs_mark_uptodate(page, req->wb_pgbase, req->wb_bytes); 877 nfs_unlock_request(req); 878 done: 879 dprintk("NFS: nfs_updatepage returns %d (isize %Ld)\n", 880 status, (long long)i_size_read(inode)); 881 if (status < 0) 882 ClearPageUptodate(page); 883 return status; 884 } 885 886 static void nfs_writepage_release(struct nfs_page *req) 887 { 888 end_page_writeback(req->wb_page); 889 890 #if defined(CONFIG_NFS_V3) || defined(CONFIG_NFS_V4) 891 if (!PageError(req->wb_page)) { 892 if (NFS_NEED_RESCHED(req)) { 893 nfs_mark_request_dirty(req); 894 goto out; 895 } else if (NFS_NEED_COMMIT(req)) { 896 nfs_mark_request_commit(req); 897 goto out; 898 } 899 } 900 nfs_inode_remove_request(req); 901 902 out: 903 nfs_clear_commit(req); 904 nfs_clear_reschedule(req); 905 #else 906 nfs_inode_remove_request(req); 907 #endif 908 nfs_clear_page_writeback(req); 909 } 910 911 static inline int flush_task_priority(int how) 912 { 913 switch (how & (FLUSH_HIGHPRI|FLUSH_LOWPRI)) { 914 case FLUSH_HIGHPRI: 915 return RPC_PRIORITY_HIGH; 916 case FLUSH_LOWPRI: 917 return RPC_PRIORITY_LOW; 918 } 919 return RPC_PRIORITY_NORMAL; 920 } 921 922 /* 923 * Set up the argument/result storage required for the RPC call. 924 */ 925 static void nfs_write_rpcsetup(struct nfs_page *req, 926 struct nfs_write_data *data, 927 const struct rpc_call_ops *call_ops, 928 unsigned int count, unsigned int offset, 929 int how) 930 { 931 struct inode *inode; 932 int flags; 933 934 /* Set up the RPC argument and reply structs 935 * NB: take care not to mess about with data->commit et al. */ 936 937 data->req = req; 938 data->inode = inode = req->wb_context->dentry->d_inode; 939 data->cred = req->wb_context->cred; 940 941 data->args.fh = NFS_FH(inode); 942 data->args.offset = req_offset(req) + offset; 943 data->args.pgbase = req->wb_pgbase + offset; 944 data->args.pages = data->pagevec; 945 data->args.count = count; 946 data->args.context = req->wb_context; 947 948 data->res.fattr = &data->fattr; 949 data->res.count = count; 950 data->res.verf = &data->verf; 951 nfs_fattr_init(&data->fattr); 952 953 /* Set up the initial task struct. */ 954 flags = (how & FLUSH_SYNC) ? 0 : RPC_TASK_ASYNC; 955 rpc_init_task(&data->task, NFS_CLIENT(inode), flags, call_ops, data); 956 NFS_PROTO(inode)->write_setup(data, how); 957 958 data->task.tk_priority = flush_task_priority(how); 959 data->task.tk_cookie = (unsigned long)inode; 960 961 dprintk("NFS: %4d initiated write call (req %s/%Ld, %u bytes @ offset %Lu)\n", 962 data->task.tk_pid, 963 inode->i_sb->s_id, 964 (long long)NFS_FILEID(inode), 965 count, 966 (unsigned long long)data->args.offset); 967 } 968 969 static void nfs_execute_write(struct nfs_write_data *data) 970 { 971 struct rpc_clnt *clnt = NFS_CLIENT(data->inode); 972 sigset_t oldset; 973 974 rpc_clnt_sigmask(clnt, &oldset); 975 lock_kernel(); 976 rpc_execute(&data->task); 977 unlock_kernel(); 978 rpc_clnt_sigunmask(clnt, &oldset); 979 } 980 981 /* 982 * Generate multiple small requests to write out a single 983 * contiguous dirty area on one page. 984 */ 985 static int nfs_flush_multi(struct inode *inode, struct list_head *head, int how) 986 { 987 struct nfs_page *req = nfs_list_entry(head->next); 988 struct page *page = req->wb_page; 989 struct nfs_write_data *data; 990 unsigned int wsize = NFS_SERVER(inode)->wsize; 991 unsigned int nbytes, offset; 992 int requests = 0; 993 LIST_HEAD(list); 994 995 nfs_list_remove_request(req); 996 997 nbytes = req->wb_bytes; 998 for (;;) { 999 data = nfs_writedata_alloc(1); 1000 if (!data) 1001 goto out_bad; 1002 list_add(&data->pages, &list); 1003 requests++; 1004 if (nbytes <= wsize) 1005 break; 1006 nbytes -= wsize; 1007 } 1008 atomic_set(&req->wb_complete, requests); 1009 1010 ClearPageError(page); 1011 set_page_writeback(page); 1012 offset = 0; 1013 nbytes = req->wb_bytes; 1014 do { 1015 data = list_entry(list.next, struct nfs_write_data, pages); 1016 list_del_init(&data->pages); 1017 1018 data->pagevec[0] = page; 1019 1020 if (nbytes > wsize) { 1021 nfs_write_rpcsetup(req, data, &nfs_write_partial_ops, 1022 wsize, offset, how); 1023 offset += wsize; 1024 nbytes -= wsize; 1025 } else { 1026 nfs_write_rpcsetup(req, data, &nfs_write_partial_ops, 1027 nbytes, offset, how); 1028 nbytes = 0; 1029 } 1030 nfs_execute_write(data); 1031 } while (nbytes != 0); 1032 1033 return 0; 1034 1035 out_bad: 1036 while (!list_empty(&list)) { 1037 data = list_entry(list.next, struct nfs_write_data, pages); 1038 list_del(&data->pages); 1039 nfs_writedata_free(data); 1040 } 1041 nfs_mark_request_dirty(req); 1042 nfs_clear_page_writeback(req); 1043 return -ENOMEM; 1044 } 1045 1046 /* 1047 * Create an RPC task for the given write request and kick it. 1048 * The page must have been locked by the caller. 1049 * 1050 * It may happen that the page we're passed is not marked dirty. 1051 * This is the case if nfs_updatepage detects a conflicting request 1052 * that has been written but not committed. 1053 */ 1054 static int nfs_flush_one(struct inode *inode, struct list_head *head, int how) 1055 { 1056 struct nfs_page *req; 1057 struct page **pages; 1058 struct nfs_write_data *data; 1059 unsigned int count; 1060 1061 data = nfs_writedata_alloc(NFS_SERVER(inode)->wpages); 1062 if (!data) 1063 goto out_bad; 1064 1065 pages = data->pagevec; 1066 count = 0; 1067 while (!list_empty(head)) { 1068 req = nfs_list_entry(head->next); 1069 nfs_list_remove_request(req); 1070 nfs_list_add_request(req, &data->pages); 1071 ClearPageError(req->wb_page); 1072 set_page_writeback(req->wb_page); 1073 *pages++ = req->wb_page; 1074 count += req->wb_bytes; 1075 } 1076 req = nfs_list_entry(data->pages.next); 1077 1078 /* Set up the argument struct */ 1079 nfs_write_rpcsetup(req, data, &nfs_write_full_ops, count, 0, how); 1080 1081 nfs_execute_write(data); 1082 return 0; 1083 out_bad: 1084 while (!list_empty(head)) { 1085 struct nfs_page *req = nfs_list_entry(head->next); 1086 nfs_list_remove_request(req); 1087 nfs_mark_request_dirty(req); 1088 nfs_clear_page_writeback(req); 1089 } 1090 return -ENOMEM; 1091 } 1092 1093 static int nfs_flush_list(struct inode *inode, struct list_head *head, int npages, int how) 1094 { 1095 LIST_HEAD(one_request); 1096 int (*flush_one)(struct inode *, struct list_head *, int); 1097 struct nfs_page *req; 1098 int wpages = NFS_SERVER(inode)->wpages; 1099 int wsize = NFS_SERVER(inode)->wsize; 1100 int error; 1101 1102 flush_one = nfs_flush_one; 1103 if (wsize < PAGE_CACHE_SIZE) 1104 flush_one = nfs_flush_multi; 1105 /* For single writes, FLUSH_STABLE is more efficient */ 1106 if (npages <= wpages && npages == NFS_I(inode)->npages 1107 && nfs_list_entry(head->next)->wb_bytes <= wsize) 1108 how |= FLUSH_STABLE; 1109 1110 do { 1111 nfs_coalesce_requests(head, &one_request, wpages); 1112 req = nfs_list_entry(one_request.next); 1113 error = flush_one(inode, &one_request, how); 1114 if (error < 0) 1115 goto out_err; 1116 } while (!list_empty(head)); 1117 return 0; 1118 out_err: 1119 while (!list_empty(head)) { 1120 req = nfs_list_entry(head->next); 1121 nfs_list_remove_request(req); 1122 nfs_mark_request_dirty(req); 1123 nfs_clear_page_writeback(req); 1124 } 1125 return error; 1126 } 1127 1128 /* 1129 * Handle a write reply that flushed part of a page. 1130 */ 1131 static void nfs_writeback_done_partial(struct rpc_task *task, void *calldata) 1132 { 1133 struct nfs_write_data *data = calldata; 1134 struct nfs_page *req = data->req; 1135 struct page *page = req->wb_page; 1136 1137 dprintk("NFS: write (%s/%Ld %d@%Ld)", 1138 req->wb_context->dentry->d_inode->i_sb->s_id, 1139 (long long)NFS_FILEID(req->wb_context->dentry->d_inode), 1140 req->wb_bytes, 1141 (long long)req_offset(req)); 1142 1143 if (nfs_writeback_done(task, data) != 0) 1144 return; 1145 1146 if (task->tk_status < 0) { 1147 ClearPageUptodate(page); 1148 SetPageError(page); 1149 req->wb_context->error = task->tk_status; 1150 dprintk(", error = %d\n", task->tk_status); 1151 } else { 1152 #if defined(CONFIG_NFS_V3) || defined(CONFIG_NFS_V4) 1153 if (data->verf.committed < NFS_FILE_SYNC) { 1154 if (!NFS_NEED_COMMIT(req)) { 1155 nfs_defer_commit(req); 1156 memcpy(&req->wb_verf, &data->verf, sizeof(req->wb_verf)); 1157 dprintk(" defer commit\n"); 1158 } else if (memcmp(&req->wb_verf, &data->verf, sizeof(req->wb_verf))) { 1159 nfs_defer_reschedule(req); 1160 dprintk(" server reboot detected\n"); 1161 } 1162 } else 1163 #endif 1164 dprintk(" OK\n"); 1165 } 1166 1167 if (atomic_dec_and_test(&req->wb_complete)) 1168 nfs_writepage_release(req); 1169 } 1170 1171 static const struct rpc_call_ops nfs_write_partial_ops = { 1172 .rpc_call_done = nfs_writeback_done_partial, 1173 .rpc_release = nfs_writedata_release, 1174 }; 1175 1176 /* 1177 * Handle a write reply that flushes a whole page. 1178 * 1179 * FIXME: There is an inherent race with invalidate_inode_pages and 1180 * writebacks since the page->count is kept > 1 for as long 1181 * as the page has a write request pending. 1182 */ 1183 static void nfs_writeback_done_full(struct rpc_task *task, void *calldata) 1184 { 1185 struct nfs_write_data *data = calldata; 1186 struct nfs_page *req; 1187 struct page *page; 1188 1189 if (nfs_writeback_done(task, data) != 0) 1190 return; 1191 1192 /* Update attributes as result of writeback. */ 1193 while (!list_empty(&data->pages)) { 1194 req = nfs_list_entry(data->pages.next); 1195 nfs_list_remove_request(req); 1196 page = req->wb_page; 1197 1198 dprintk("NFS: write (%s/%Ld %d@%Ld)", 1199 req->wb_context->dentry->d_inode->i_sb->s_id, 1200 (long long)NFS_FILEID(req->wb_context->dentry->d_inode), 1201 req->wb_bytes, 1202 (long long)req_offset(req)); 1203 1204 if (task->tk_status < 0) { 1205 ClearPageUptodate(page); 1206 SetPageError(page); 1207 req->wb_context->error = task->tk_status; 1208 end_page_writeback(page); 1209 nfs_inode_remove_request(req); 1210 dprintk(", error = %d\n", task->tk_status); 1211 goto next; 1212 } 1213 end_page_writeback(page); 1214 1215 #if defined(CONFIG_NFS_V3) || defined(CONFIG_NFS_V4) 1216 if (data->args.stable != NFS_UNSTABLE || data->verf.committed == NFS_FILE_SYNC) { 1217 nfs_inode_remove_request(req); 1218 dprintk(" OK\n"); 1219 goto next; 1220 } 1221 memcpy(&req->wb_verf, &data->verf, sizeof(req->wb_verf)); 1222 nfs_mark_request_commit(req); 1223 dprintk(" marked for commit\n"); 1224 #else 1225 nfs_inode_remove_request(req); 1226 #endif 1227 next: 1228 nfs_clear_page_writeback(req); 1229 } 1230 } 1231 1232 static const struct rpc_call_ops nfs_write_full_ops = { 1233 .rpc_call_done = nfs_writeback_done_full, 1234 .rpc_release = nfs_writedata_release, 1235 }; 1236 1237 1238 /* 1239 * This function is called when the WRITE call is complete. 1240 */ 1241 int nfs_writeback_done(struct rpc_task *task, struct nfs_write_data *data) 1242 { 1243 struct nfs_writeargs *argp = &data->args; 1244 struct nfs_writeres *resp = &data->res; 1245 int status; 1246 1247 dprintk("NFS: %4d nfs_writeback_done (status %d)\n", 1248 task->tk_pid, task->tk_status); 1249 1250 /* Call the NFS version-specific code */ 1251 status = NFS_PROTO(data->inode)->write_done(task, data); 1252 if (status != 0) 1253 return status; 1254 nfs_add_stats(data->inode, NFSIOS_SERVERWRITTENBYTES, resp->count); 1255 1256 #if defined(CONFIG_NFS_V3) || defined(CONFIG_NFS_V4) 1257 if (resp->verf->committed < argp->stable && task->tk_status >= 0) { 1258 /* We tried a write call, but the server did not 1259 * commit data to stable storage even though we 1260 * requested it. 1261 * Note: There is a known bug in Tru64 < 5.0 in which 1262 * the server reports NFS_DATA_SYNC, but performs 1263 * NFS_FILE_SYNC. We therefore implement this checking 1264 * as a dprintk() in order to avoid filling syslog. 1265 */ 1266 static unsigned long complain; 1267 1268 if (time_before(complain, jiffies)) { 1269 dprintk("NFS: faulty NFS server %s:" 1270 " (committed = %d) != (stable = %d)\n", 1271 NFS_SERVER(data->inode)->hostname, 1272 resp->verf->committed, argp->stable); 1273 complain = jiffies + 300 * HZ; 1274 } 1275 } 1276 #endif 1277 /* Is this a short write? */ 1278 if (task->tk_status >= 0 && resp->count < argp->count) { 1279 static unsigned long complain; 1280 1281 nfs_inc_stats(data->inode, NFSIOS_SHORTWRITE); 1282 1283 /* Has the server at least made some progress? */ 1284 if (resp->count != 0) { 1285 /* Was this an NFSv2 write or an NFSv3 stable write? */ 1286 if (resp->verf->committed != NFS_UNSTABLE) { 1287 /* Resend from where the server left off */ 1288 argp->offset += resp->count; 1289 argp->pgbase += resp->count; 1290 argp->count -= resp->count; 1291 } else { 1292 /* Resend as a stable write in order to avoid 1293 * headaches in the case of a server crash. 1294 */ 1295 argp->stable = NFS_FILE_SYNC; 1296 } 1297 rpc_restart_call(task); 1298 return -EAGAIN; 1299 } 1300 if (time_before(complain, jiffies)) { 1301 printk(KERN_WARNING 1302 "NFS: Server wrote zero bytes, expected %u.\n", 1303 argp->count); 1304 complain = jiffies + 300 * HZ; 1305 } 1306 /* Can't do anything about it except throw an error. */ 1307 task->tk_status = -EIO; 1308 } 1309 return 0; 1310 } 1311 1312 1313 #if defined(CONFIG_NFS_V3) || defined(CONFIG_NFS_V4) 1314 void nfs_commit_release(void *wdata) 1315 { 1316 nfs_commit_free(wdata); 1317 } 1318 1319 /* 1320 * Set up the argument/result storage required for the RPC call. 1321 */ 1322 static void nfs_commit_rpcsetup(struct list_head *head, 1323 struct nfs_write_data *data, 1324 int how) 1325 { 1326 struct nfs_page *first; 1327 struct inode *inode; 1328 int flags; 1329 1330 /* Set up the RPC argument and reply structs 1331 * NB: take care not to mess about with data->commit et al. */ 1332 1333 list_splice_init(head, &data->pages); 1334 first = nfs_list_entry(data->pages.next); 1335 inode = first->wb_context->dentry->d_inode; 1336 1337 data->inode = inode; 1338 data->cred = first->wb_context->cred; 1339 1340 data->args.fh = NFS_FH(data->inode); 1341 /* Note: we always request a commit of the entire inode */ 1342 data->args.offset = 0; 1343 data->args.count = 0; 1344 data->res.count = 0; 1345 data->res.fattr = &data->fattr; 1346 data->res.verf = &data->verf; 1347 nfs_fattr_init(&data->fattr); 1348 1349 /* Set up the initial task struct. */ 1350 flags = (how & FLUSH_SYNC) ? 0 : RPC_TASK_ASYNC; 1351 rpc_init_task(&data->task, NFS_CLIENT(inode), flags, &nfs_commit_ops, data); 1352 NFS_PROTO(inode)->commit_setup(data, how); 1353 1354 data->task.tk_priority = flush_task_priority(how); 1355 data->task.tk_cookie = (unsigned long)inode; 1356 1357 dprintk("NFS: %4d initiated commit call\n", data->task.tk_pid); 1358 } 1359 1360 /* 1361 * Commit dirty pages 1362 */ 1363 static int 1364 nfs_commit_list(struct inode *inode, struct list_head *head, int how) 1365 { 1366 struct nfs_write_data *data; 1367 struct nfs_page *req; 1368 1369 data = nfs_commit_alloc(NFS_SERVER(inode)->wpages); 1370 1371 if (!data) 1372 goto out_bad; 1373 1374 /* Set up the argument struct */ 1375 nfs_commit_rpcsetup(head, data, how); 1376 1377 nfs_execute_write(data); 1378 return 0; 1379 out_bad: 1380 while (!list_empty(head)) { 1381 req = nfs_list_entry(head->next); 1382 nfs_list_remove_request(req); 1383 nfs_mark_request_commit(req); 1384 nfs_clear_page_writeback(req); 1385 } 1386 return -ENOMEM; 1387 } 1388 1389 /* 1390 * COMMIT call returned 1391 */ 1392 static void nfs_commit_done(struct rpc_task *task, void *calldata) 1393 { 1394 struct nfs_write_data *data = calldata; 1395 struct nfs_page *req; 1396 1397 dprintk("NFS: %4d nfs_commit_done (status %d)\n", 1398 task->tk_pid, task->tk_status); 1399 1400 /* Call the NFS version-specific code */ 1401 if (NFS_PROTO(data->inode)->commit_done(task, data) != 0) 1402 return; 1403 1404 while (!list_empty(&data->pages)) { 1405 req = nfs_list_entry(data->pages.next); 1406 nfs_list_remove_request(req); 1407 dec_zone_page_state(req->wb_page, NR_UNSTABLE_NFS); 1408 1409 dprintk("NFS: commit (%s/%Ld %d@%Ld)", 1410 req->wb_context->dentry->d_inode->i_sb->s_id, 1411 (long long)NFS_FILEID(req->wb_context->dentry->d_inode), 1412 req->wb_bytes, 1413 (long long)req_offset(req)); 1414 if (task->tk_status < 0) { 1415 req->wb_context->error = task->tk_status; 1416 nfs_inode_remove_request(req); 1417 dprintk(", error = %d\n", task->tk_status); 1418 goto next; 1419 } 1420 1421 /* Okay, COMMIT succeeded, apparently. Check the verifier 1422 * returned by the server against all stored verfs. */ 1423 if (!memcmp(req->wb_verf.verifier, data->verf.verifier, sizeof(data->verf.verifier))) { 1424 /* We have a match */ 1425 nfs_inode_remove_request(req); 1426 dprintk(" OK\n"); 1427 goto next; 1428 } 1429 /* We have a mismatch. Write the page again */ 1430 dprintk(" mismatch\n"); 1431 nfs_mark_request_dirty(req); 1432 next: 1433 nfs_clear_page_writeback(req); 1434 } 1435 } 1436 1437 static const struct rpc_call_ops nfs_commit_ops = { 1438 .rpc_call_done = nfs_commit_done, 1439 .rpc_release = nfs_commit_release, 1440 }; 1441 #else 1442 static inline int nfs_commit_list(struct inode *inode, struct list_head *head, int how) 1443 { 1444 return 0; 1445 } 1446 #endif 1447 1448 static int nfs_flush_inode(struct inode *inode, unsigned long idx_start, 1449 unsigned int npages, int how) 1450 { 1451 struct nfs_inode *nfsi = NFS_I(inode); 1452 LIST_HEAD(head); 1453 int res; 1454 1455 spin_lock(&nfsi->req_lock); 1456 res = nfs_scan_dirty(inode, &head, idx_start, npages); 1457 spin_unlock(&nfsi->req_lock); 1458 if (res) { 1459 int error = nfs_flush_list(inode, &head, res, how); 1460 if (error < 0) 1461 return error; 1462 } 1463 return res; 1464 } 1465 1466 #if defined(CONFIG_NFS_V3) || defined(CONFIG_NFS_V4) 1467 int nfs_commit_inode(struct inode *inode, int how) 1468 { 1469 struct nfs_inode *nfsi = NFS_I(inode); 1470 LIST_HEAD(head); 1471 int res; 1472 1473 spin_lock(&nfsi->req_lock); 1474 res = nfs_scan_commit(inode, &head, 0, 0); 1475 spin_unlock(&nfsi->req_lock); 1476 if (res) { 1477 int error = nfs_commit_list(inode, &head, how); 1478 if (error < 0) 1479 return error; 1480 } 1481 return res; 1482 } 1483 #endif 1484 1485 int nfs_sync_inode_wait(struct inode *inode, unsigned long idx_start, 1486 unsigned int npages, int how) 1487 { 1488 struct nfs_inode *nfsi = NFS_I(inode); 1489 LIST_HEAD(head); 1490 int nocommit = how & FLUSH_NOCOMMIT; 1491 int pages, ret; 1492 1493 how &= ~FLUSH_NOCOMMIT; 1494 spin_lock(&nfsi->req_lock); 1495 do { 1496 ret = nfs_wait_on_requests_locked(inode, idx_start, npages); 1497 if (ret != 0) 1498 continue; 1499 pages = nfs_scan_dirty(inode, &head, idx_start, npages); 1500 if (pages != 0) { 1501 spin_unlock(&nfsi->req_lock); 1502 if (how & FLUSH_INVALIDATE) 1503 nfs_cancel_requests(&head); 1504 else 1505 ret = nfs_flush_list(inode, &head, pages, how); 1506 spin_lock(&nfsi->req_lock); 1507 continue; 1508 } 1509 if (nocommit) 1510 break; 1511 pages = nfs_scan_commit(inode, &head, idx_start, npages); 1512 if (pages == 0) 1513 break; 1514 if (how & FLUSH_INVALIDATE) { 1515 spin_unlock(&nfsi->req_lock); 1516 nfs_cancel_requests(&head); 1517 spin_lock(&nfsi->req_lock); 1518 continue; 1519 } 1520 pages += nfs_scan_commit(inode, &head, 0, 0); 1521 spin_unlock(&nfsi->req_lock); 1522 ret = nfs_commit_list(inode, &head, how); 1523 spin_lock(&nfsi->req_lock); 1524 } while (ret >= 0); 1525 spin_unlock(&nfsi->req_lock); 1526 return ret; 1527 } 1528 1529 int __init nfs_init_writepagecache(void) 1530 { 1531 nfs_wdata_cachep = kmem_cache_create("nfs_write_data", 1532 sizeof(struct nfs_write_data), 1533 0, SLAB_HWCACHE_ALIGN, 1534 NULL, NULL); 1535 if (nfs_wdata_cachep == NULL) 1536 return -ENOMEM; 1537 1538 nfs_wdata_mempool = mempool_create_slab_pool(MIN_POOL_WRITE, 1539 nfs_wdata_cachep); 1540 if (nfs_wdata_mempool == NULL) 1541 return -ENOMEM; 1542 1543 nfs_commit_mempool = mempool_create_slab_pool(MIN_POOL_COMMIT, 1544 nfs_wdata_cachep); 1545 if (nfs_commit_mempool == NULL) 1546 return -ENOMEM; 1547 1548 return 0; 1549 } 1550 1551 void nfs_destroy_writepagecache(void) 1552 { 1553 mempool_destroy(nfs_commit_mempool); 1554 mempool_destroy(nfs_wdata_mempool); 1555 if (kmem_cache_destroy(nfs_wdata_cachep)) 1556 printk(KERN_INFO "nfs_write_data: not all structures were freed\n"); 1557 } 1558 1559