1 /* 2 * linux/fs/nfs/write.c 3 * 4 * Write file data over NFS. 5 * 6 * Copyright (C) 1996, 1997, Olaf Kirch <okir@monad.swb.de> 7 */ 8 9 #include <linux/types.h> 10 #include <linux/slab.h> 11 #include <linux/mm.h> 12 #include <linux/pagemap.h> 13 #include <linux/file.h> 14 #include <linux/writeback.h> 15 #include <linux/swap.h> 16 17 #include <linux/sunrpc/clnt.h> 18 #include <linux/nfs_fs.h> 19 #include <linux/nfs_mount.h> 20 #include <linux/nfs_page.h> 21 #include <linux/backing-dev.h> 22 23 #include <asm/uaccess.h> 24 25 #include "delegation.h" 26 #include "internal.h" 27 #include "iostat.h" 28 #include "nfs4_fs.h" 29 30 #define NFSDBG_FACILITY NFSDBG_PAGECACHE 31 32 #define MIN_POOL_WRITE (32) 33 #define MIN_POOL_COMMIT (4) 34 35 /* 36 * Local function declarations 37 */ 38 static void nfs_pageio_init_write(struct nfs_pageio_descriptor *desc, 39 struct inode *inode, int ioflags); 40 static void nfs_redirty_request(struct nfs_page *req); 41 static const struct rpc_call_ops nfs_write_partial_ops; 42 static const struct rpc_call_ops nfs_write_full_ops; 43 static const struct rpc_call_ops nfs_commit_ops; 44 45 static struct kmem_cache *nfs_wdata_cachep; 46 static mempool_t *nfs_wdata_mempool; 47 static mempool_t *nfs_commit_mempool; 48 49 struct nfs_write_data *nfs_commitdata_alloc(void) 50 { 51 struct nfs_write_data *p = mempool_alloc(nfs_commit_mempool, GFP_NOFS); 52 53 if (p) { 54 memset(p, 0, sizeof(*p)); 55 INIT_LIST_HEAD(&p->pages); 56 p->res.seq_res.sr_slotid = NFS4_MAX_SLOT_TABLE; 57 } 58 return p; 59 } 60 61 void nfs_commit_free(struct nfs_write_data *p) 62 { 63 if (p && (p->pagevec != &p->page_array[0])) 64 kfree(p->pagevec); 65 mempool_free(p, nfs_commit_mempool); 66 } 67 68 struct nfs_write_data *nfs_writedata_alloc(unsigned int pagecount) 69 { 70 struct nfs_write_data *p = mempool_alloc(nfs_wdata_mempool, GFP_NOFS); 71 72 if (p) { 73 memset(p, 0, sizeof(*p)); 74 INIT_LIST_HEAD(&p->pages); 75 p->npages = pagecount; 76 p->res.seq_res.sr_slotid = NFS4_MAX_SLOT_TABLE; 77 if (pagecount <= ARRAY_SIZE(p->page_array)) 78 p->pagevec = p->page_array; 79 else { 80 p->pagevec = kcalloc(pagecount, sizeof(struct page *), GFP_NOFS); 81 if (!p->pagevec) { 82 mempool_free(p, nfs_wdata_mempool); 83 p = NULL; 84 } 85 } 86 } 87 return p; 88 } 89 90 static void nfs_writedata_free(struct nfs_write_data *p) 91 { 92 if (p && (p->pagevec != &p->page_array[0])) 93 kfree(p->pagevec); 94 mempool_free(p, nfs_wdata_mempool); 95 } 96 97 void nfs_writedata_release(void *data) 98 { 99 struct nfs_write_data *wdata = data; 100 101 put_nfs_open_context(wdata->args.context); 102 nfs_writedata_free(wdata); 103 } 104 105 static void nfs_context_set_write_error(struct nfs_open_context *ctx, int error) 106 { 107 ctx->error = error; 108 smp_wmb(); 109 set_bit(NFS_CONTEXT_ERROR_WRITE, &ctx->flags); 110 } 111 112 static struct nfs_page *nfs_page_find_request_locked(struct page *page) 113 { 114 struct nfs_page *req = NULL; 115 116 if (PagePrivate(page)) { 117 req = (struct nfs_page *)page_private(page); 118 if (req != NULL) 119 kref_get(&req->wb_kref); 120 } 121 return req; 122 } 123 124 static struct nfs_page *nfs_page_find_request(struct page *page) 125 { 126 struct inode *inode = page->mapping->host; 127 struct nfs_page *req = NULL; 128 129 spin_lock(&inode->i_lock); 130 req = nfs_page_find_request_locked(page); 131 spin_unlock(&inode->i_lock); 132 return req; 133 } 134 135 /* Adjust the file length if we're writing beyond the end */ 136 static void nfs_grow_file(struct page *page, unsigned int offset, unsigned int count) 137 { 138 struct inode *inode = page->mapping->host; 139 loff_t end, i_size; 140 pgoff_t end_index; 141 142 spin_lock(&inode->i_lock); 143 i_size = i_size_read(inode); 144 end_index = (i_size - 1) >> PAGE_CACHE_SHIFT; 145 if (i_size > 0 && page->index < end_index) 146 goto out; 147 end = ((loff_t)page->index << PAGE_CACHE_SHIFT) + ((loff_t)offset+count); 148 if (i_size >= end) 149 goto out; 150 i_size_write(inode, end); 151 nfs_inc_stats(inode, NFSIOS_EXTENDWRITE); 152 out: 153 spin_unlock(&inode->i_lock); 154 } 155 156 /* A writeback failed: mark the page as bad, and invalidate the page cache */ 157 static void nfs_set_pageerror(struct page *page) 158 { 159 SetPageError(page); 160 nfs_zap_mapping(page->mapping->host, page->mapping); 161 } 162 163 /* We can set the PG_uptodate flag if we see that a write request 164 * covers the full page. 165 */ 166 static void nfs_mark_uptodate(struct page *page, unsigned int base, unsigned int count) 167 { 168 if (PageUptodate(page)) 169 return; 170 if (base != 0) 171 return; 172 if (count != nfs_page_length(page)) 173 return; 174 SetPageUptodate(page); 175 } 176 177 static int wb_priority(struct writeback_control *wbc) 178 { 179 if (wbc->for_reclaim) 180 return FLUSH_HIGHPRI | FLUSH_STABLE; 181 if (wbc->for_kupdate) 182 return FLUSH_LOWPRI; 183 return 0; 184 } 185 186 /* 187 * NFS congestion control 188 */ 189 190 int nfs_congestion_kb; 191 192 #define NFS_CONGESTION_ON_THRESH (nfs_congestion_kb >> (PAGE_SHIFT-10)) 193 #define NFS_CONGESTION_OFF_THRESH \ 194 (NFS_CONGESTION_ON_THRESH - (NFS_CONGESTION_ON_THRESH >> 2)) 195 196 static int nfs_set_page_writeback(struct page *page) 197 { 198 int ret = test_set_page_writeback(page); 199 200 if (!ret) { 201 struct inode *inode = page->mapping->host; 202 struct nfs_server *nfss = NFS_SERVER(inode); 203 204 if (atomic_long_inc_return(&nfss->writeback) > 205 NFS_CONGESTION_ON_THRESH) { 206 set_bdi_congested(&nfss->backing_dev_info, 207 BLK_RW_ASYNC); 208 } 209 } 210 return ret; 211 } 212 213 static void nfs_end_page_writeback(struct page *page) 214 { 215 struct inode *inode = page->mapping->host; 216 struct nfs_server *nfss = NFS_SERVER(inode); 217 218 end_page_writeback(page); 219 if (atomic_long_dec_return(&nfss->writeback) < NFS_CONGESTION_OFF_THRESH) 220 clear_bdi_congested(&nfss->backing_dev_info, BLK_RW_ASYNC); 221 } 222 223 /* 224 * Find an associated nfs write request, and prepare to flush it out 225 * May return an error if the user signalled nfs_wait_on_request(). 226 */ 227 static int nfs_page_async_flush(struct nfs_pageio_descriptor *pgio, 228 struct page *page) 229 { 230 struct inode *inode = page->mapping->host; 231 struct nfs_page *req; 232 int ret; 233 234 spin_lock(&inode->i_lock); 235 for(;;) { 236 req = nfs_page_find_request_locked(page); 237 if (req == NULL) { 238 spin_unlock(&inode->i_lock); 239 return 0; 240 } 241 if (nfs_set_page_tag_locked(req)) 242 break; 243 /* Note: If we hold the page lock, as is the case in nfs_writepage, 244 * then the call to nfs_set_page_tag_locked() will always 245 * succeed provided that someone hasn't already marked the 246 * request as dirty (in which case we don't care). 247 */ 248 spin_unlock(&inode->i_lock); 249 ret = nfs_wait_on_request(req); 250 nfs_release_request(req); 251 if (ret != 0) 252 return ret; 253 spin_lock(&inode->i_lock); 254 } 255 if (test_bit(PG_CLEAN, &req->wb_flags)) { 256 spin_unlock(&inode->i_lock); 257 BUG(); 258 } 259 if (nfs_set_page_writeback(page) != 0) { 260 spin_unlock(&inode->i_lock); 261 BUG(); 262 } 263 spin_unlock(&inode->i_lock); 264 if (!nfs_pageio_add_request(pgio, req)) { 265 nfs_redirty_request(req); 266 return pgio->pg_error; 267 } 268 return 0; 269 } 270 271 static int nfs_do_writepage(struct page *page, struct writeback_control *wbc, struct nfs_pageio_descriptor *pgio) 272 { 273 struct inode *inode = page->mapping->host; 274 275 nfs_inc_stats(inode, NFSIOS_VFSWRITEPAGE); 276 nfs_add_stats(inode, NFSIOS_WRITEPAGES, 1); 277 278 nfs_pageio_cond_complete(pgio, page->index); 279 return nfs_page_async_flush(pgio, page); 280 } 281 282 /* 283 * Write an mmapped page to the server. 284 */ 285 static int nfs_writepage_locked(struct page *page, struct writeback_control *wbc) 286 { 287 struct nfs_pageio_descriptor pgio; 288 int err; 289 290 nfs_pageio_init_write(&pgio, page->mapping->host, wb_priority(wbc)); 291 err = nfs_do_writepage(page, wbc, &pgio); 292 nfs_pageio_complete(&pgio); 293 if (err < 0) 294 return err; 295 if (pgio.pg_error < 0) 296 return pgio.pg_error; 297 return 0; 298 } 299 300 int nfs_writepage(struct page *page, struct writeback_control *wbc) 301 { 302 int ret; 303 304 ret = nfs_writepage_locked(page, wbc); 305 unlock_page(page); 306 return ret; 307 } 308 309 static int nfs_writepages_callback(struct page *page, struct writeback_control *wbc, void *data) 310 { 311 int ret; 312 313 ret = nfs_do_writepage(page, wbc, data); 314 unlock_page(page); 315 return ret; 316 } 317 318 int nfs_writepages(struct address_space *mapping, struct writeback_control *wbc) 319 { 320 struct inode *inode = mapping->host; 321 unsigned long *bitlock = &NFS_I(inode)->flags; 322 struct nfs_pageio_descriptor pgio; 323 int err; 324 325 /* Stop dirtying of new pages while we sync */ 326 err = wait_on_bit_lock(bitlock, NFS_INO_FLUSHING, 327 nfs_wait_bit_killable, TASK_KILLABLE); 328 if (err) 329 goto out_err; 330 331 nfs_inc_stats(inode, NFSIOS_VFSWRITEPAGES); 332 333 nfs_pageio_init_write(&pgio, inode, wb_priority(wbc)); 334 err = write_cache_pages(mapping, wbc, nfs_writepages_callback, &pgio); 335 nfs_pageio_complete(&pgio); 336 337 clear_bit_unlock(NFS_INO_FLUSHING, bitlock); 338 smp_mb__after_clear_bit(); 339 wake_up_bit(bitlock, NFS_INO_FLUSHING); 340 341 if (err < 0) 342 goto out_err; 343 err = pgio.pg_error; 344 if (err < 0) 345 goto out_err; 346 return 0; 347 out_err: 348 return err; 349 } 350 351 /* 352 * Insert a write request into an inode 353 */ 354 static int nfs_inode_add_request(struct inode *inode, struct nfs_page *req) 355 { 356 struct nfs_inode *nfsi = NFS_I(inode); 357 int error; 358 359 error = radix_tree_preload(GFP_NOFS); 360 if (error != 0) 361 goto out; 362 363 /* Lock the request! */ 364 nfs_lock_request_dontget(req); 365 366 spin_lock(&inode->i_lock); 367 error = radix_tree_insert(&nfsi->nfs_page_tree, req->wb_index, req); 368 BUG_ON(error); 369 if (!nfsi->npages) { 370 igrab(inode); 371 if (nfs_have_delegation(inode, FMODE_WRITE)) 372 nfsi->change_attr++; 373 } 374 SetPagePrivate(req->wb_page); 375 set_page_private(req->wb_page, (unsigned long)req); 376 nfsi->npages++; 377 kref_get(&req->wb_kref); 378 radix_tree_tag_set(&nfsi->nfs_page_tree, req->wb_index, 379 NFS_PAGE_TAG_LOCKED); 380 spin_unlock(&inode->i_lock); 381 radix_tree_preload_end(); 382 out: 383 return error; 384 } 385 386 /* 387 * Remove a write request from an inode 388 */ 389 static void nfs_inode_remove_request(struct nfs_page *req) 390 { 391 struct inode *inode = req->wb_context->path.dentry->d_inode; 392 struct nfs_inode *nfsi = NFS_I(inode); 393 394 BUG_ON (!NFS_WBACK_BUSY(req)); 395 396 spin_lock(&inode->i_lock); 397 set_page_private(req->wb_page, 0); 398 ClearPagePrivate(req->wb_page); 399 radix_tree_delete(&nfsi->nfs_page_tree, req->wb_index); 400 nfsi->npages--; 401 if (!nfsi->npages) { 402 spin_unlock(&inode->i_lock); 403 iput(inode); 404 } else 405 spin_unlock(&inode->i_lock); 406 nfs_clear_request(req); 407 nfs_release_request(req); 408 } 409 410 static void 411 nfs_mark_request_dirty(struct nfs_page *req) 412 { 413 __set_page_dirty_nobuffers(req->wb_page); 414 } 415 416 #if defined(CONFIG_NFS_V3) || defined(CONFIG_NFS_V4) 417 /* 418 * Add a request to the inode's commit list. 419 */ 420 static void 421 nfs_mark_request_commit(struct nfs_page *req) 422 { 423 struct inode *inode = req->wb_context->path.dentry->d_inode; 424 struct nfs_inode *nfsi = NFS_I(inode); 425 426 spin_lock(&inode->i_lock); 427 set_bit(PG_CLEAN, &(req)->wb_flags); 428 radix_tree_tag_set(&nfsi->nfs_page_tree, 429 req->wb_index, 430 NFS_PAGE_TAG_COMMIT); 431 spin_unlock(&inode->i_lock); 432 inc_zone_page_state(req->wb_page, NR_UNSTABLE_NFS); 433 inc_bdi_stat(req->wb_page->mapping->backing_dev_info, BDI_RECLAIMABLE); 434 __mark_inode_dirty(inode, I_DIRTY_DATASYNC); 435 } 436 437 static int 438 nfs_clear_request_commit(struct nfs_page *req) 439 { 440 struct page *page = req->wb_page; 441 442 if (test_and_clear_bit(PG_CLEAN, &(req)->wb_flags)) { 443 dec_zone_page_state(page, NR_UNSTABLE_NFS); 444 dec_bdi_stat(page->mapping->backing_dev_info, BDI_RECLAIMABLE); 445 return 1; 446 } 447 return 0; 448 } 449 450 static inline 451 int nfs_write_need_commit(struct nfs_write_data *data) 452 { 453 return data->verf.committed != NFS_FILE_SYNC; 454 } 455 456 static inline 457 int nfs_reschedule_unstable_write(struct nfs_page *req) 458 { 459 if (test_and_clear_bit(PG_NEED_COMMIT, &req->wb_flags)) { 460 nfs_mark_request_commit(req); 461 return 1; 462 } 463 if (test_and_clear_bit(PG_NEED_RESCHED, &req->wb_flags)) { 464 nfs_mark_request_dirty(req); 465 return 1; 466 } 467 return 0; 468 } 469 #else 470 static inline void 471 nfs_mark_request_commit(struct nfs_page *req) 472 { 473 } 474 475 static inline int 476 nfs_clear_request_commit(struct nfs_page *req) 477 { 478 return 0; 479 } 480 481 static inline 482 int nfs_write_need_commit(struct nfs_write_data *data) 483 { 484 return 0; 485 } 486 487 static inline 488 int nfs_reschedule_unstable_write(struct nfs_page *req) 489 { 490 return 0; 491 } 492 #endif 493 494 /* 495 * Wait for a request to complete. 496 * 497 * Interruptible by fatal signals only. 498 */ 499 static int nfs_wait_on_requests_locked(struct inode *inode, pgoff_t idx_start, unsigned int npages) 500 { 501 struct nfs_inode *nfsi = NFS_I(inode); 502 struct nfs_page *req; 503 pgoff_t idx_end, next; 504 unsigned int res = 0; 505 int error; 506 507 if (npages == 0) 508 idx_end = ~0; 509 else 510 idx_end = idx_start + npages - 1; 511 512 next = idx_start; 513 while (radix_tree_gang_lookup_tag(&nfsi->nfs_page_tree, (void **)&req, next, 1, NFS_PAGE_TAG_LOCKED)) { 514 if (req->wb_index > idx_end) 515 break; 516 517 next = req->wb_index + 1; 518 BUG_ON(!NFS_WBACK_BUSY(req)); 519 520 kref_get(&req->wb_kref); 521 spin_unlock(&inode->i_lock); 522 error = nfs_wait_on_request(req); 523 nfs_release_request(req); 524 spin_lock(&inode->i_lock); 525 if (error < 0) 526 return error; 527 res++; 528 } 529 return res; 530 } 531 532 static void nfs_cancel_commit_list(struct list_head *head) 533 { 534 struct nfs_page *req; 535 536 while(!list_empty(head)) { 537 req = nfs_list_entry(head->next); 538 nfs_list_remove_request(req); 539 nfs_clear_request_commit(req); 540 nfs_inode_remove_request(req); 541 nfs_unlock_request(req); 542 } 543 } 544 545 #if defined(CONFIG_NFS_V3) || defined(CONFIG_NFS_V4) 546 static int 547 nfs_need_commit(struct nfs_inode *nfsi) 548 { 549 return radix_tree_tagged(&nfsi->nfs_page_tree, NFS_PAGE_TAG_COMMIT); 550 } 551 552 /* 553 * nfs_scan_commit - Scan an inode for commit requests 554 * @inode: NFS inode to scan 555 * @dst: destination list 556 * @idx_start: lower bound of page->index to scan. 557 * @npages: idx_start + npages sets the upper bound to scan. 558 * 559 * Moves requests from the inode's 'commit' request list. 560 * The requests are *not* checked to ensure that they form a contiguous set. 561 */ 562 static int 563 nfs_scan_commit(struct inode *inode, struct list_head *dst, pgoff_t idx_start, unsigned int npages) 564 { 565 struct nfs_inode *nfsi = NFS_I(inode); 566 567 if (!nfs_need_commit(nfsi)) 568 return 0; 569 570 return nfs_scan_list(nfsi, dst, idx_start, npages, NFS_PAGE_TAG_COMMIT); 571 } 572 #else 573 static inline int nfs_need_commit(struct nfs_inode *nfsi) 574 { 575 return 0; 576 } 577 578 static inline int nfs_scan_commit(struct inode *inode, struct list_head *dst, pgoff_t idx_start, unsigned int npages) 579 { 580 return 0; 581 } 582 #endif 583 584 /* 585 * Search for an existing write request, and attempt to update 586 * it to reflect a new dirty region on a given page. 587 * 588 * If the attempt fails, then the existing request is flushed out 589 * to disk. 590 */ 591 static struct nfs_page *nfs_try_to_update_request(struct inode *inode, 592 struct page *page, 593 unsigned int offset, 594 unsigned int bytes) 595 { 596 struct nfs_page *req; 597 unsigned int rqend; 598 unsigned int end; 599 int error; 600 601 if (!PagePrivate(page)) 602 return NULL; 603 604 end = offset + bytes; 605 spin_lock(&inode->i_lock); 606 607 for (;;) { 608 req = nfs_page_find_request_locked(page); 609 if (req == NULL) 610 goto out_unlock; 611 612 rqend = req->wb_offset + req->wb_bytes; 613 /* 614 * Tell the caller to flush out the request if 615 * the offsets are non-contiguous. 616 * Note: nfs_flush_incompatible() will already 617 * have flushed out requests having wrong owners. 618 */ 619 if (offset > rqend 620 || end < req->wb_offset) 621 goto out_flushme; 622 623 if (nfs_set_page_tag_locked(req)) 624 break; 625 626 /* The request is locked, so wait and then retry */ 627 spin_unlock(&inode->i_lock); 628 error = nfs_wait_on_request(req); 629 nfs_release_request(req); 630 if (error != 0) 631 goto out_err; 632 spin_lock(&inode->i_lock); 633 } 634 635 if (nfs_clear_request_commit(req)) 636 radix_tree_tag_clear(&NFS_I(inode)->nfs_page_tree, 637 req->wb_index, NFS_PAGE_TAG_COMMIT); 638 639 /* Okay, the request matches. Update the region */ 640 if (offset < req->wb_offset) { 641 req->wb_offset = offset; 642 req->wb_pgbase = offset; 643 } 644 if (end > rqend) 645 req->wb_bytes = end - req->wb_offset; 646 else 647 req->wb_bytes = rqend - req->wb_offset; 648 out_unlock: 649 spin_unlock(&inode->i_lock); 650 return req; 651 out_flushme: 652 spin_unlock(&inode->i_lock); 653 nfs_release_request(req); 654 error = nfs_wb_page(inode, page); 655 out_err: 656 return ERR_PTR(error); 657 } 658 659 /* 660 * Try to update an existing write request, or create one if there is none. 661 * 662 * Note: Should always be called with the Page Lock held to prevent races 663 * if we have to add a new request. Also assumes that the caller has 664 * already called nfs_flush_incompatible() if necessary. 665 */ 666 static struct nfs_page * nfs_setup_write_request(struct nfs_open_context* ctx, 667 struct page *page, unsigned int offset, unsigned int bytes) 668 { 669 struct inode *inode = page->mapping->host; 670 struct nfs_page *req; 671 int error; 672 673 req = nfs_try_to_update_request(inode, page, offset, bytes); 674 if (req != NULL) 675 goto out; 676 req = nfs_create_request(ctx, inode, page, offset, bytes); 677 if (IS_ERR(req)) 678 goto out; 679 error = nfs_inode_add_request(inode, req); 680 if (error != 0) { 681 nfs_release_request(req); 682 req = ERR_PTR(error); 683 } 684 out: 685 return req; 686 } 687 688 static int nfs_writepage_setup(struct nfs_open_context *ctx, struct page *page, 689 unsigned int offset, unsigned int count) 690 { 691 struct nfs_page *req; 692 693 req = nfs_setup_write_request(ctx, page, offset, count); 694 if (IS_ERR(req)) 695 return PTR_ERR(req); 696 /* Update file length */ 697 nfs_grow_file(page, offset, count); 698 nfs_mark_uptodate(page, req->wb_pgbase, req->wb_bytes); 699 nfs_clear_page_tag_locked(req); 700 return 0; 701 } 702 703 int nfs_flush_incompatible(struct file *file, struct page *page) 704 { 705 struct nfs_open_context *ctx = nfs_file_open_context(file); 706 struct nfs_page *req; 707 int do_flush, status; 708 /* 709 * Look for a request corresponding to this page. If there 710 * is one, and it belongs to another file, we flush it out 711 * before we try to copy anything into the page. Do this 712 * due to the lack of an ACCESS-type call in NFSv2. 713 * Also do the same if we find a request from an existing 714 * dropped page. 715 */ 716 do { 717 req = nfs_page_find_request(page); 718 if (req == NULL) 719 return 0; 720 do_flush = req->wb_page != page || req->wb_context != ctx; 721 nfs_release_request(req); 722 if (!do_flush) 723 return 0; 724 status = nfs_wb_page(page->mapping->host, page); 725 } while (status == 0); 726 return status; 727 } 728 729 /* 730 * If the page cache is marked as unsafe or invalid, then we can't rely on 731 * the PageUptodate() flag. In this case, we will need to turn off 732 * write optimisations that depend on the page contents being correct. 733 */ 734 static int nfs_write_pageuptodate(struct page *page, struct inode *inode) 735 { 736 return PageUptodate(page) && 737 !(NFS_I(inode)->cache_validity & (NFS_INO_REVAL_PAGECACHE|NFS_INO_INVALID_DATA)); 738 } 739 740 /* 741 * Update and possibly write a cached page of an NFS file. 742 * 743 * XXX: Keep an eye on generic_file_read to make sure it doesn't do bad 744 * things with a page scheduled for an RPC call (e.g. invalidate it). 745 */ 746 int nfs_updatepage(struct file *file, struct page *page, 747 unsigned int offset, unsigned int count) 748 { 749 struct nfs_open_context *ctx = nfs_file_open_context(file); 750 struct inode *inode = page->mapping->host; 751 int status = 0; 752 753 nfs_inc_stats(inode, NFSIOS_VFSUPDATEPAGE); 754 755 dprintk("NFS: nfs_updatepage(%s/%s %d@%lld)\n", 756 file->f_path.dentry->d_parent->d_name.name, 757 file->f_path.dentry->d_name.name, count, 758 (long long)(page_offset(page) + offset)); 759 760 /* If we're not using byte range locks, and we know the page 761 * is up to date, it may be more efficient to extend the write 762 * to cover the entire page in order to avoid fragmentation 763 * inefficiencies. 764 */ 765 if (nfs_write_pageuptodate(page, inode) && 766 inode->i_flock == NULL && 767 !(file->f_flags & O_SYNC)) { 768 count = max(count + offset, nfs_page_length(page)); 769 offset = 0; 770 } 771 772 status = nfs_writepage_setup(ctx, page, offset, count); 773 if (status < 0) 774 nfs_set_pageerror(page); 775 else 776 __set_page_dirty_nobuffers(page); 777 778 dprintk("NFS: nfs_updatepage returns %d (isize %lld)\n", 779 status, (long long)i_size_read(inode)); 780 return status; 781 } 782 783 static void nfs_writepage_release(struct nfs_page *req) 784 { 785 786 if (PageError(req->wb_page) || !nfs_reschedule_unstable_write(req)) { 787 nfs_end_page_writeback(req->wb_page); 788 nfs_inode_remove_request(req); 789 } else 790 nfs_end_page_writeback(req->wb_page); 791 nfs_clear_page_tag_locked(req); 792 } 793 794 static int flush_task_priority(int how) 795 { 796 switch (how & (FLUSH_HIGHPRI|FLUSH_LOWPRI)) { 797 case FLUSH_HIGHPRI: 798 return RPC_PRIORITY_HIGH; 799 case FLUSH_LOWPRI: 800 return RPC_PRIORITY_LOW; 801 } 802 return RPC_PRIORITY_NORMAL; 803 } 804 805 /* 806 * Set up the argument/result storage required for the RPC call. 807 */ 808 static int nfs_write_rpcsetup(struct nfs_page *req, 809 struct nfs_write_data *data, 810 const struct rpc_call_ops *call_ops, 811 unsigned int count, unsigned int offset, 812 int how) 813 { 814 struct inode *inode = req->wb_context->path.dentry->d_inode; 815 int flags = (how & FLUSH_SYNC) ? 0 : RPC_TASK_ASYNC; 816 int priority = flush_task_priority(how); 817 struct rpc_task *task; 818 struct rpc_message msg = { 819 .rpc_argp = &data->args, 820 .rpc_resp = &data->res, 821 .rpc_cred = req->wb_context->cred, 822 }; 823 struct rpc_task_setup task_setup_data = { 824 .rpc_client = NFS_CLIENT(inode), 825 .task = &data->task, 826 .rpc_message = &msg, 827 .callback_ops = call_ops, 828 .callback_data = data, 829 .workqueue = nfsiod_workqueue, 830 .flags = flags, 831 .priority = priority, 832 }; 833 834 /* Set up the RPC argument and reply structs 835 * NB: take care not to mess about with data->commit et al. */ 836 837 data->req = req; 838 data->inode = inode = req->wb_context->path.dentry->d_inode; 839 data->cred = msg.rpc_cred; 840 841 data->args.fh = NFS_FH(inode); 842 data->args.offset = req_offset(req) + offset; 843 data->args.pgbase = req->wb_pgbase + offset; 844 data->args.pages = data->pagevec; 845 data->args.count = count; 846 data->args.context = get_nfs_open_context(req->wb_context); 847 data->args.stable = NFS_UNSTABLE; 848 if (how & FLUSH_STABLE) { 849 data->args.stable = NFS_DATA_SYNC; 850 if (!nfs_need_commit(NFS_I(inode))) 851 data->args.stable = NFS_FILE_SYNC; 852 } 853 854 data->res.fattr = &data->fattr; 855 data->res.count = count; 856 data->res.verf = &data->verf; 857 nfs_fattr_init(&data->fattr); 858 859 /* Set up the initial task struct. */ 860 NFS_PROTO(inode)->write_setup(data, &msg); 861 862 dprintk("NFS: %5u initiated write call " 863 "(req %s/%lld, %u bytes @ offset %llu)\n", 864 data->task.tk_pid, 865 inode->i_sb->s_id, 866 (long long)NFS_FILEID(inode), 867 count, 868 (unsigned long long)data->args.offset); 869 870 task = rpc_run_task(&task_setup_data); 871 if (IS_ERR(task)) 872 return PTR_ERR(task); 873 rpc_put_task(task); 874 return 0; 875 } 876 877 /* If a nfs_flush_* function fails, it should remove reqs from @head and 878 * call this on each, which will prepare them to be retried on next 879 * writeback using standard nfs. 880 */ 881 static void nfs_redirty_request(struct nfs_page *req) 882 { 883 nfs_mark_request_dirty(req); 884 nfs_end_page_writeback(req->wb_page); 885 nfs_clear_page_tag_locked(req); 886 } 887 888 /* 889 * Generate multiple small requests to write out a single 890 * contiguous dirty area on one page. 891 */ 892 static int nfs_flush_multi(struct inode *inode, struct list_head *head, unsigned int npages, size_t count, int how) 893 { 894 struct nfs_page *req = nfs_list_entry(head->next); 895 struct page *page = req->wb_page; 896 struct nfs_write_data *data; 897 size_t wsize = NFS_SERVER(inode)->wsize, nbytes; 898 unsigned int offset; 899 int requests = 0; 900 int ret = 0; 901 LIST_HEAD(list); 902 903 nfs_list_remove_request(req); 904 905 nbytes = count; 906 do { 907 size_t len = min(nbytes, wsize); 908 909 data = nfs_writedata_alloc(1); 910 if (!data) 911 goto out_bad; 912 list_add(&data->pages, &list); 913 requests++; 914 nbytes -= len; 915 } while (nbytes != 0); 916 atomic_set(&req->wb_complete, requests); 917 918 ClearPageError(page); 919 offset = 0; 920 nbytes = count; 921 do { 922 int ret2; 923 924 data = list_entry(list.next, struct nfs_write_data, pages); 925 list_del_init(&data->pages); 926 927 data->pagevec[0] = page; 928 929 if (nbytes < wsize) 930 wsize = nbytes; 931 ret2 = nfs_write_rpcsetup(req, data, &nfs_write_partial_ops, 932 wsize, offset, how); 933 if (ret == 0) 934 ret = ret2; 935 offset += wsize; 936 nbytes -= wsize; 937 } while (nbytes != 0); 938 939 return ret; 940 941 out_bad: 942 while (!list_empty(&list)) { 943 data = list_entry(list.next, struct nfs_write_data, pages); 944 list_del(&data->pages); 945 nfs_writedata_release(data); 946 } 947 nfs_redirty_request(req); 948 return -ENOMEM; 949 } 950 951 /* 952 * Create an RPC task for the given write request and kick it. 953 * The page must have been locked by the caller. 954 * 955 * It may happen that the page we're passed is not marked dirty. 956 * This is the case if nfs_updatepage detects a conflicting request 957 * that has been written but not committed. 958 */ 959 static int nfs_flush_one(struct inode *inode, struct list_head *head, unsigned int npages, size_t count, int how) 960 { 961 struct nfs_page *req; 962 struct page **pages; 963 struct nfs_write_data *data; 964 965 data = nfs_writedata_alloc(npages); 966 if (!data) 967 goto out_bad; 968 969 pages = data->pagevec; 970 while (!list_empty(head)) { 971 req = nfs_list_entry(head->next); 972 nfs_list_remove_request(req); 973 nfs_list_add_request(req, &data->pages); 974 ClearPageError(req->wb_page); 975 *pages++ = req->wb_page; 976 } 977 req = nfs_list_entry(data->pages.next); 978 979 /* Set up the argument struct */ 980 return nfs_write_rpcsetup(req, data, &nfs_write_full_ops, count, 0, how); 981 out_bad: 982 while (!list_empty(head)) { 983 req = nfs_list_entry(head->next); 984 nfs_list_remove_request(req); 985 nfs_redirty_request(req); 986 } 987 return -ENOMEM; 988 } 989 990 static void nfs_pageio_init_write(struct nfs_pageio_descriptor *pgio, 991 struct inode *inode, int ioflags) 992 { 993 size_t wsize = NFS_SERVER(inode)->wsize; 994 995 if (wsize < PAGE_CACHE_SIZE) 996 nfs_pageio_init(pgio, inode, nfs_flush_multi, wsize, ioflags); 997 else 998 nfs_pageio_init(pgio, inode, nfs_flush_one, wsize, ioflags); 999 } 1000 1001 /* 1002 * Handle a write reply that flushed part of a page. 1003 */ 1004 static void nfs_writeback_done_partial(struct rpc_task *task, void *calldata) 1005 { 1006 struct nfs_write_data *data = calldata; 1007 1008 dprintk("NFS: %5u write(%s/%lld %d@%lld)", 1009 task->tk_pid, 1010 data->req->wb_context->path.dentry->d_inode->i_sb->s_id, 1011 (long long) 1012 NFS_FILEID(data->req->wb_context->path.dentry->d_inode), 1013 data->req->wb_bytes, (long long)req_offset(data->req)); 1014 1015 nfs_writeback_done(task, data); 1016 } 1017 1018 static void nfs_writeback_release_partial(void *calldata) 1019 { 1020 struct nfs_write_data *data = calldata; 1021 struct nfs_page *req = data->req; 1022 struct page *page = req->wb_page; 1023 int status = data->task.tk_status; 1024 1025 if (status < 0) { 1026 nfs_set_pageerror(page); 1027 nfs_context_set_write_error(req->wb_context, status); 1028 dprintk(", error = %d\n", status); 1029 goto out; 1030 } 1031 1032 if (nfs_write_need_commit(data)) { 1033 struct inode *inode = page->mapping->host; 1034 1035 spin_lock(&inode->i_lock); 1036 if (test_bit(PG_NEED_RESCHED, &req->wb_flags)) { 1037 /* Do nothing we need to resend the writes */ 1038 } else if (!test_and_set_bit(PG_NEED_COMMIT, &req->wb_flags)) { 1039 memcpy(&req->wb_verf, &data->verf, sizeof(req->wb_verf)); 1040 dprintk(" defer commit\n"); 1041 } else if (memcmp(&req->wb_verf, &data->verf, sizeof(req->wb_verf))) { 1042 set_bit(PG_NEED_RESCHED, &req->wb_flags); 1043 clear_bit(PG_NEED_COMMIT, &req->wb_flags); 1044 dprintk(" server reboot detected\n"); 1045 } 1046 spin_unlock(&inode->i_lock); 1047 } else 1048 dprintk(" OK\n"); 1049 1050 out: 1051 if (atomic_dec_and_test(&req->wb_complete)) 1052 nfs_writepage_release(req); 1053 nfs_writedata_release(calldata); 1054 } 1055 1056 #if defined(CONFIG_NFS_V4_1) 1057 void nfs_write_prepare(struct rpc_task *task, void *calldata) 1058 { 1059 struct nfs_write_data *data = calldata; 1060 struct nfs_client *clp = (NFS_SERVER(data->inode))->nfs_client; 1061 1062 if (nfs4_setup_sequence(clp, &data->args.seq_args, 1063 &data->res.seq_res, 1, task)) 1064 return; 1065 rpc_call_start(task); 1066 } 1067 #endif /* CONFIG_NFS_V4_1 */ 1068 1069 static const struct rpc_call_ops nfs_write_partial_ops = { 1070 #if defined(CONFIG_NFS_V4_1) 1071 .rpc_call_prepare = nfs_write_prepare, 1072 #endif /* CONFIG_NFS_V4_1 */ 1073 .rpc_call_done = nfs_writeback_done_partial, 1074 .rpc_release = nfs_writeback_release_partial, 1075 }; 1076 1077 /* 1078 * Handle a write reply that flushes a whole page. 1079 * 1080 * FIXME: There is an inherent race with invalidate_inode_pages and 1081 * writebacks since the page->count is kept > 1 for as long 1082 * as the page has a write request pending. 1083 */ 1084 static void nfs_writeback_done_full(struct rpc_task *task, void *calldata) 1085 { 1086 struct nfs_write_data *data = calldata; 1087 1088 nfs_writeback_done(task, data); 1089 } 1090 1091 static void nfs_writeback_release_full(void *calldata) 1092 { 1093 struct nfs_write_data *data = calldata; 1094 int status = data->task.tk_status; 1095 1096 /* Update attributes as result of writeback. */ 1097 while (!list_empty(&data->pages)) { 1098 struct nfs_page *req = nfs_list_entry(data->pages.next); 1099 struct page *page = req->wb_page; 1100 1101 nfs_list_remove_request(req); 1102 1103 dprintk("NFS: %5u write (%s/%lld %d@%lld)", 1104 data->task.tk_pid, 1105 req->wb_context->path.dentry->d_inode->i_sb->s_id, 1106 (long long)NFS_FILEID(req->wb_context->path.dentry->d_inode), 1107 req->wb_bytes, 1108 (long long)req_offset(req)); 1109 1110 if (status < 0) { 1111 nfs_set_pageerror(page); 1112 nfs_context_set_write_error(req->wb_context, status); 1113 dprintk(", error = %d\n", status); 1114 goto remove_request; 1115 } 1116 1117 if (nfs_write_need_commit(data)) { 1118 memcpy(&req->wb_verf, &data->verf, sizeof(req->wb_verf)); 1119 nfs_mark_request_commit(req); 1120 nfs_end_page_writeback(page); 1121 dprintk(" marked for commit\n"); 1122 goto next; 1123 } 1124 dprintk(" OK\n"); 1125 remove_request: 1126 nfs_end_page_writeback(page); 1127 nfs_inode_remove_request(req); 1128 next: 1129 nfs_clear_page_tag_locked(req); 1130 } 1131 nfs_writedata_release(calldata); 1132 } 1133 1134 static const struct rpc_call_ops nfs_write_full_ops = { 1135 #if defined(CONFIG_NFS_V4_1) 1136 .rpc_call_prepare = nfs_write_prepare, 1137 #endif /* CONFIG_NFS_V4_1 */ 1138 .rpc_call_done = nfs_writeback_done_full, 1139 .rpc_release = nfs_writeback_release_full, 1140 }; 1141 1142 1143 /* 1144 * This function is called when the WRITE call is complete. 1145 */ 1146 int nfs_writeback_done(struct rpc_task *task, struct nfs_write_data *data) 1147 { 1148 struct nfs_writeargs *argp = &data->args; 1149 struct nfs_writeres *resp = &data->res; 1150 struct nfs_server *server = NFS_SERVER(data->inode); 1151 int status; 1152 1153 dprintk("NFS: %5u nfs_writeback_done (status %d)\n", 1154 task->tk_pid, task->tk_status); 1155 1156 /* 1157 * ->write_done will attempt to use post-op attributes to detect 1158 * conflicting writes by other clients. A strict interpretation 1159 * of close-to-open would allow us to continue caching even if 1160 * another writer had changed the file, but some applications 1161 * depend on tighter cache coherency when writing. 1162 */ 1163 status = NFS_PROTO(data->inode)->write_done(task, data); 1164 if (status != 0) 1165 return status; 1166 nfs_add_stats(data->inode, NFSIOS_SERVERWRITTENBYTES, resp->count); 1167 1168 #if defined(CONFIG_NFS_V3) || defined(CONFIG_NFS_V4) 1169 if (resp->verf->committed < argp->stable && task->tk_status >= 0) { 1170 /* We tried a write call, but the server did not 1171 * commit data to stable storage even though we 1172 * requested it. 1173 * Note: There is a known bug in Tru64 < 5.0 in which 1174 * the server reports NFS_DATA_SYNC, but performs 1175 * NFS_FILE_SYNC. We therefore implement this checking 1176 * as a dprintk() in order to avoid filling syslog. 1177 */ 1178 static unsigned long complain; 1179 1180 if (time_before(complain, jiffies)) { 1181 dprintk("NFS: faulty NFS server %s:" 1182 " (committed = %d) != (stable = %d)\n", 1183 server->nfs_client->cl_hostname, 1184 resp->verf->committed, argp->stable); 1185 complain = jiffies + 300 * HZ; 1186 } 1187 } 1188 #endif 1189 /* Is this a short write? */ 1190 if (task->tk_status >= 0 && resp->count < argp->count) { 1191 static unsigned long complain; 1192 1193 nfs_inc_stats(data->inode, NFSIOS_SHORTWRITE); 1194 1195 /* Has the server at least made some progress? */ 1196 if (resp->count != 0) { 1197 /* Was this an NFSv2 write or an NFSv3 stable write? */ 1198 if (resp->verf->committed != NFS_UNSTABLE) { 1199 /* Resend from where the server left off */ 1200 argp->offset += resp->count; 1201 argp->pgbase += resp->count; 1202 argp->count -= resp->count; 1203 } else { 1204 /* Resend as a stable write in order to avoid 1205 * headaches in the case of a server crash. 1206 */ 1207 argp->stable = NFS_FILE_SYNC; 1208 } 1209 nfs4_restart_rpc(task, server->nfs_client); 1210 return -EAGAIN; 1211 } 1212 if (time_before(complain, jiffies)) { 1213 printk(KERN_WARNING 1214 "NFS: Server wrote zero bytes, expected %u.\n", 1215 argp->count); 1216 complain = jiffies + 300 * HZ; 1217 } 1218 /* Can't do anything about it except throw an error. */ 1219 task->tk_status = -EIO; 1220 } 1221 nfs4_sequence_free_slot(server->nfs_client, &data->res.seq_res); 1222 return 0; 1223 } 1224 1225 1226 #if defined(CONFIG_NFS_V3) || defined(CONFIG_NFS_V4) 1227 void nfs_commitdata_release(void *data) 1228 { 1229 struct nfs_write_data *wdata = data; 1230 1231 put_nfs_open_context(wdata->args.context); 1232 nfs_commit_free(wdata); 1233 } 1234 1235 /* 1236 * Set up the argument/result storage required for the RPC call. 1237 */ 1238 static int nfs_commit_rpcsetup(struct list_head *head, 1239 struct nfs_write_data *data, 1240 int how) 1241 { 1242 struct nfs_page *first = nfs_list_entry(head->next); 1243 struct inode *inode = first->wb_context->path.dentry->d_inode; 1244 int flags = (how & FLUSH_SYNC) ? 0 : RPC_TASK_ASYNC; 1245 int priority = flush_task_priority(how); 1246 struct rpc_task *task; 1247 struct rpc_message msg = { 1248 .rpc_argp = &data->args, 1249 .rpc_resp = &data->res, 1250 .rpc_cred = first->wb_context->cred, 1251 }; 1252 struct rpc_task_setup task_setup_data = { 1253 .task = &data->task, 1254 .rpc_client = NFS_CLIENT(inode), 1255 .rpc_message = &msg, 1256 .callback_ops = &nfs_commit_ops, 1257 .callback_data = data, 1258 .workqueue = nfsiod_workqueue, 1259 .flags = flags, 1260 .priority = priority, 1261 }; 1262 1263 /* Set up the RPC argument and reply structs 1264 * NB: take care not to mess about with data->commit et al. */ 1265 1266 list_splice_init(head, &data->pages); 1267 1268 data->inode = inode; 1269 data->cred = msg.rpc_cred; 1270 1271 data->args.fh = NFS_FH(data->inode); 1272 /* Note: we always request a commit of the entire inode */ 1273 data->args.offset = 0; 1274 data->args.count = 0; 1275 data->args.context = get_nfs_open_context(first->wb_context); 1276 data->res.count = 0; 1277 data->res.fattr = &data->fattr; 1278 data->res.verf = &data->verf; 1279 nfs_fattr_init(&data->fattr); 1280 1281 /* Set up the initial task struct. */ 1282 NFS_PROTO(inode)->commit_setup(data, &msg); 1283 1284 dprintk("NFS: %5u initiated commit call\n", data->task.tk_pid); 1285 1286 task = rpc_run_task(&task_setup_data); 1287 if (IS_ERR(task)) 1288 return PTR_ERR(task); 1289 rpc_put_task(task); 1290 return 0; 1291 } 1292 1293 /* 1294 * Commit dirty pages 1295 */ 1296 static int 1297 nfs_commit_list(struct inode *inode, struct list_head *head, int how) 1298 { 1299 struct nfs_write_data *data; 1300 struct nfs_page *req; 1301 1302 data = nfs_commitdata_alloc(); 1303 1304 if (!data) 1305 goto out_bad; 1306 1307 /* Set up the argument struct */ 1308 return nfs_commit_rpcsetup(head, data, how); 1309 out_bad: 1310 while (!list_empty(head)) { 1311 req = nfs_list_entry(head->next); 1312 nfs_list_remove_request(req); 1313 nfs_mark_request_commit(req); 1314 dec_zone_page_state(req->wb_page, NR_UNSTABLE_NFS); 1315 dec_bdi_stat(req->wb_page->mapping->backing_dev_info, 1316 BDI_RECLAIMABLE); 1317 nfs_clear_page_tag_locked(req); 1318 } 1319 return -ENOMEM; 1320 } 1321 1322 /* 1323 * COMMIT call returned 1324 */ 1325 static void nfs_commit_done(struct rpc_task *task, void *calldata) 1326 { 1327 struct nfs_write_data *data = calldata; 1328 1329 dprintk("NFS: %5u nfs_commit_done (status %d)\n", 1330 task->tk_pid, task->tk_status); 1331 1332 /* Call the NFS version-specific code */ 1333 if (NFS_PROTO(data->inode)->commit_done(task, data) != 0) 1334 return; 1335 } 1336 1337 static void nfs_commit_release(void *calldata) 1338 { 1339 struct nfs_write_data *data = calldata; 1340 struct nfs_page *req; 1341 int status = data->task.tk_status; 1342 1343 while (!list_empty(&data->pages)) { 1344 req = nfs_list_entry(data->pages.next); 1345 nfs_list_remove_request(req); 1346 nfs_clear_request_commit(req); 1347 1348 dprintk("NFS: commit (%s/%lld %d@%lld)", 1349 req->wb_context->path.dentry->d_inode->i_sb->s_id, 1350 (long long)NFS_FILEID(req->wb_context->path.dentry->d_inode), 1351 req->wb_bytes, 1352 (long long)req_offset(req)); 1353 if (status < 0) { 1354 nfs_context_set_write_error(req->wb_context, status); 1355 nfs_inode_remove_request(req); 1356 dprintk(", error = %d\n", status); 1357 goto next; 1358 } 1359 1360 /* Okay, COMMIT succeeded, apparently. Check the verifier 1361 * returned by the server against all stored verfs. */ 1362 if (!memcmp(req->wb_verf.verifier, data->verf.verifier, sizeof(data->verf.verifier))) { 1363 /* We have a match */ 1364 nfs_inode_remove_request(req); 1365 dprintk(" OK\n"); 1366 goto next; 1367 } 1368 /* We have a mismatch. Write the page again */ 1369 dprintk(" mismatch\n"); 1370 nfs_mark_request_dirty(req); 1371 next: 1372 nfs_clear_page_tag_locked(req); 1373 } 1374 nfs_commitdata_release(calldata); 1375 } 1376 1377 static const struct rpc_call_ops nfs_commit_ops = { 1378 #if defined(CONFIG_NFS_V4_1) 1379 .rpc_call_prepare = nfs_write_prepare, 1380 #endif /* CONFIG_NFS_V4_1 */ 1381 .rpc_call_done = nfs_commit_done, 1382 .rpc_release = nfs_commit_release, 1383 }; 1384 1385 int nfs_commit_inode(struct inode *inode, int how) 1386 { 1387 LIST_HEAD(head); 1388 int res; 1389 1390 spin_lock(&inode->i_lock); 1391 res = nfs_scan_commit(inode, &head, 0, 0); 1392 spin_unlock(&inode->i_lock); 1393 if (res) { 1394 int error = nfs_commit_list(inode, &head, how); 1395 if (error < 0) 1396 return error; 1397 } 1398 return res; 1399 } 1400 #else 1401 static inline int nfs_commit_list(struct inode *inode, struct list_head *head, int how) 1402 { 1403 return 0; 1404 } 1405 #endif 1406 1407 long nfs_sync_mapping_wait(struct address_space *mapping, struct writeback_control *wbc, int how) 1408 { 1409 struct inode *inode = mapping->host; 1410 pgoff_t idx_start, idx_end; 1411 unsigned int npages = 0; 1412 LIST_HEAD(head); 1413 int nocommit = how & FLUSH_NOCOMMIT; 1414 long pages, ret; 1415 1416 /* FIXME */ 1417 if (wbc->range_cyclic) 1418 idx_start = 0; 1419 else { 1420 idx_start = wbc->range_start >> PAGE_CACHE_SHIFT; 1421 idx_end = wbc->range_end >> PAGE_CACHE_SHIFT; 1422 if (idx_end > idx_start) { 1423 pgoff_t l_npages = 1 + idx_end - idx_start; 1424 npages = l_npages; 1425 if (sizeof(npages) != sizeof(l_npages) && 1426 (pgoff_t)npages != l_npages) 1427 npages = 0; 1428 } 1429 } 1430 how &= ~FLUSH_NOCOMMIT; 1431 spin_lock(&inode->i_lock); 1432 do { 1433 ret = nfs_wait_on_requests_locked(inode, idx_start, npages); 1434 if (ret != 0) 1435 continue; 1436 if (nocommit) 1437 break; 1438 pages = nfs_scan_commit(inode, &head, idx_start, npages); 1439 if (pages == 0) 1440 break; 1441 if (how & FLUSH_INVALIDATE) { 1442 spin_unlock(&inode->i_lock); 1443 nfs_cancel_commit_list(&head); 1444 ret = pages; 1445 spin_lock(&inode->i_lock); 1446 continue; 1447 } 1448 pages += nfs_scan_commit(inode, &head, 0, 0); 1449 spin_unlock(&inode->i_lock); 1450 ret = nfs_commit_list(inode, &head, how); 1451 spin_lock(&inode->i_lock); 1452 1453 } while (ret >= 0); 1454 spin_unlock(&inode->i_lock); 1455 return ret; 1456 } 1457 1458 static int __nfs_write_mapping(struct address_space *mapping, struct writeback_control *wbc, int how) 1459 { 1460 int ret; 1461 1462 ret = nfs_writepages(mapping, wbc); 1463 if (ret < 0) 1464 goto out; 1465 ret = nfs_sync_mapping_wait(mapping, wbc, how); 1466 if (ret < 0) 1467 goto out; 1468 return 0; 1469 out: 1470 __mark_inode_dirty(mapping->host, I_DIRTY_PAGES); 1471 return ret; 1472 } 1473 1474 /* Two pass sync: first using WB_SYNC_NONE, then WB_SYNC_ALL */ 1475 static int nfs_write_mapping(struct address_space *mapping, int how) 1476 { 1477 struct writeback_control wbc = { 1478 .bdi = mapping->backing_dev_info, 1479 .sync_mode = WB_SYNC_ALL, 1480 .nr_to_write = LONG_MAX, 1481 .range_start = 0, 1482 .range_end = LLONG_MAX, 1483 .for_writepages = 1, 1484 }; 1485 1486 return __nfs_write_mapping(mapping, &wbc, how); 1487 } 1488 1489 /* 1490 * flush the inode to disk. 1491 */ 1492 int nfs_wb_all(struct inode *inode) 1493 { 1494 return nfs_write_mapping(inode->i_mapping, 0); 1495 } 1496 1497 int nfs_wb_nocommit(struct inode *inode) 1498 { 1499 return nfs_write_mapping(inode->i_mapping, FLUSH_NOCOMMIT); 1500 } 1501 1502 int nfs_wb_page_cancel(struct inode *inode, struct page *page) 1503 { 1504 struct nfs_page *req; 1505 loff_t range_start = page_offset(page); 1506 loff_t range_end = range_start + (loff_t)(PAGE_CACHE_SIZE - 1); 1507 struct writeback_control wbc = { 1508 .bdi = page->mapping->backing_dev_info, 1509 .sync_mode = WB_SYNC_ALL, 1510 .nr_to_write = LONG_MAX, 1511 .range_start = range_start, 1512 .range_end = range_end, 1513 }; 1514 int ret = 0; 1515 1516 BUG_ON(!PageLocked(page)); 1517 for (;;) { 1518 req = nfs_page_find_request(page); 1519 if (req == NULL) 1520 goto out; 1521 if (test_bit(PG_CLEAN, &req->wb_flags)) { 1522 nfs_release_request(req); 1523 break; 1524 } 1525 if (nfs_lock_request_dontget(req)) { 1526 nfs_inode_remove_request(req); 1527 /* 1528 * In case nfs_inode_remove_request has marked the 1529 * page as being dirty 1530 */ 1531 cancel_dirty_page(page, PAGE_CACHE_SIZE); 1532 nfs_unlock_request(req); 1533 break; 1534 } 1535 ret = nfs_wait_on_request(req); 1536 if (ret < 0) 1537 goto out; 1538 } 1539 if (!PagePrivate(page)) 1540 return 0; 1541 ret = nfs_sync_mapping_wait(page->mapping, &wbc, FLUSH_INVALIDATE); 1542 out: 1543 return ret; 1544 } 1545 1546 static int nfs_wb_page_priority(struct inode *inode, struct page *page, 1547 int how) 1548 { 1549 loff_t range_start = page_offset(page); 1550 loff_t range_end = range_start + (loff_t)(PAGE_CACHE_SIZE - 1); 1551 struct writeback_control wbc = { 1552 .bdi = page->mapping->backing_dev_info, 1553 .sync_mode = WB_SYNC_ALL, 1554 .nr_to_write = LONG_MAX, 1555 .range_start = range_start, 1556 .range_end = range_end, 1557 }; 1558 int ret; 1559 1560 do { 1561 if (clear_page_dirty_for_io(page)) { 1562 ret = nfs_writepage_locked(page, &wbc); 1563 if (ret < 0) 1564 goto out_error; 1565 } else if (!PagePrivate(page)) 1566 break; 1567 ret = nfs_sync_mapping_wait(page->mapping, &wbc, how); 1568 if (ret < 0) 1569 goto out_error; 1570 } while (PagePrivate(page)); 1571 return 0; 1572 out_error: 1573 __mark_inode_dirty(inode, I_DIRTY_PAGES); 1574 return ret; 1575 } 1576 1577 /* 1578 * Write back all requests on one page - we do this before reading it. 1579 */ 1580 int nfs_wb_page(struct inode *inode, struct page* page) 1581 { 1582 return nfs_wb_page_priority(inode, page, FLUSH_STABLE); 1583 } 1584 1585 int __init nfs_init_writepagecache(void) 1586 { 1587 nfs_wdata_cachep = kmem_cache_create("nfs_write_data", 1588 sizeof(struct nfs_write_data), 1589 0, SLAB_HWCACHE_ALIGN, 1590 NULL); 1591 if (nfs_wdata_cachep == NULL) 1592 return -ENOMEM; 1593 1594 nfs_wdata_mempool = mempool_create_slab_pool(MIN_POOL_WRITE, 1595 nfs_wdata_cachep); 1596 if (nfs_wdata_mempool == NULL) 1597 return -ENOMEM; 1598 1599 nfs_commit_mempool = mempool_create_slab_pool(MIN_POOL_COMMIT, 1600 nfs_wdata_cachep); 1601 if (nfs_commit_mempool == NULL) 1602 return -ENOMEM; 1603 1604 /* 1605 * NFS congestion size, scale with available memory. 1606 * 1607 * 64MB: 8192k 1608 * 128MB: 11585k 1609 * 256MB: 16384k 1610 * 512MB: 23170k 1611 * 1GB: 32768k 1612 * 2GB: 46340k 1613 * 4GB: 65536k 1614 * 8GB: 92681k 1615 * 16GB: 131072k 1616 * 1617 * This allows larger machines to have larger/more transfers. 1618 * Limit the default to 256M 1619 */ 1620 nfs_congestion_kb = (16*int_sqrt(totalram_pages)) << (PAGE_SHIFT-10); 1621 if (nfs_congestion_kb > 256*1024) 1622 nfs_congestion_kb = 256*1024; 1623 1624 return 0; 1625 } 1626 1627 void nfs_destroy_writepagecache(void) 1628 { 1629 mempool_destroy(nfs_commit_mempool); 1630 mempool_destroy(nfs_wdata_mempool); 1631 kmem_cache_destroy(nfs_wdata_cachep); 1632 } 1633 1634