xref: /linux/fs/nfs/write.c (revision 5bdef865eb358b6f3760e25e591ae115e9eeddef)
1 /*
2  * linux/fs/nfs/write.c
3  *
4  * Write file data over NFS.
5  *
6  * Copyright (C) 1996, 1997, Olaf Kirch <okir@monad.swb.de>
7  */
8 
9 #include <linux/types.h>
10 #include <linux/slab.h>
11 #include <linux/mm.h>
12 #include <linux/pagemap.h>
13 #include <linux/file.h>
14 #include <linux/writeback.h>
15 #include <linux/swap.h>
16 
17 #include <linux/sunrpc/clnt.h>
18 #include <linux/nfs_fs.h>
19 #include <linux/nfs_mount.h>
20 #include <linux/nfs_page.h>
21 #include <linux/backing-dev.h>
22 
23 #include <asm/uaccess.h>
24 
25 #include "delegation.h"
26 #include "internal.h"
27 #include "iostat.h"
28 #include "nfs4_fs.h"
29 
30 #define NFSDBG_FACILITY		NFSDBG_PAGECACHE
31 
32 #define MIN_POOL_WRITE		(32)
33 #define MIN_POOL_COMMIT		(4)
34 
35 /*
36  * Local function declarations
37  */
38 static void nfs_pageio_init_write(struct nfs_pageio_descriptor *desc,
39 				  struct inode *inode, int ioflags);
40 static void nfs_redirty_request(struct nfs_page *req);
41 static const struct rpc_call_ops nfs_write_partial_ops;
42 static const struct rpc_call_ops nfs_write_full_ops;
43 static const struct rpc_call_ops nfs_commit_ops;
44 
45 static struct kmem_cache *nfs_wdata_cachep;
46 static mempool_t *nfs_wdata_mempool;
47 static mempool_t *nfs_commit_mempool;
48 
49 struct nfs_write_data *nfs_commitdata_alloc(void)
50 {
51 	struct nfs_write_data *p = mempool_alloc(nfs_commit_mempool, GFP_NOFS);
52 
53 	if (p) {
54 		memset(p, 0, sizeof(*p));
55 		INIT_LIST_HEAD(&p->pages);
56 		p->res.seq_res.sr_slotid = NFS4_MAX_SLOT_TABLE;
57 	}
58 	return p;
59 }
60 
61 void nfs_commit_free(struct nfs_write_data *p)
62 {
63 	if (p && (p->pagevec != &p->page_array[0]))
64 		kfree(p->pagevec);
65 	mempool_free(p, nfs_commit_mempool);
66 }
67 
68 struct nfs_write_data *nfs_writedata_alloc(unsigned int pagecount)
69 {
70 	struct nfs_write_data *p = mempool_alloc(nfs_wdata_mempool, GFP_NOFS);
71 
72 	if (p) {
73 		memset(p, 0, sizeof(*p));
74 		INIT_LIST_HEAD(&p->pages);
75 		p->npages = pagecount;
76 		p->res.seq_res.sr_slotid = NFS4_MAX_SLOT_TABLE;
77 		if (pagecount <= ARRAY_SIZE(p->page_array))
78 			p->pagevec = p->page_array;
79 		else {
80 			p->pagevec = kcalloc(pagecount, sizeof(struct page *), GFP_NOFS);
81 			if (!p->pagevec) {
82 				mempool_free(p, nfs_wdata_mempool);
83 				p = NULL;
84 			}
85 		}
86 	}
87 	return p;
88 }
89 
90 static void nfs_writedata_free(struct nfs_write_data *p)
91 {
92 	if (p && (p->pagevec != &p->page_array[0]))
93 		kfree(p->pagevec);
94 	mempool_free(p, nfs_wdata_mempool);
95 }
96 
97 void nfs_writedata_release(void *data)
98 {
99 	struct nfs_write_data *wdata = data;
100 
101 	put_nfs_open_context(wdata->args.context);
102 	nfs_writedata_free(wdata);
103 }
104 
105 static void nfs_context_set_write_error(struct nfs_open_context *ctx, int error)
106 {
107 	ctx->error = error;
108 	smp_wmb();
109 	set_bit(NFS_CONTEXT_ERROR_WRITE, &ctx->flags);
110 }
111 
112 static struct nfs_page *nfs_page_find_request_locked(struct page *page)
113 {
114 	struct nfs_page *req = NULL;
115 
116 	if (PagePrivate(page)) {
117 		req = (struct nfs_page *)page_private(page);
118 		if (req != NULL)
119 			kref_get(&req->wb_kref);
120 	}
121 	return req;
122 }
123 
124 static struct nfs_page *nfs_page_find_request(struct page *page)
125 {
126 	struct inode *inode = page->mapping->host;
127 	struct nfs_page *req = NULL;
128 
129 	spin_lock(&inode->i_lock);
130 	req = nfs_page_find_request_locked(page);
131 	spin_unlock(&inode->i_lock);
132 	return req;
133 }
134 
135 /* Adjust the file length if we're writing beyond the end */
136 static void nfs_grow_file(struct page *page, unsigned int offset, unsigned int count)
137 {
138 	struct inode *inode = page->mapping->host;
139 	loff_t end, i_size;
140 	pgoff_t end_index;
141 
142 	spin_lock(&inode->i_lock);
143 	i_size = i_size_read(inode);
144 	end_index = (i_size - 1) >> PAGE_CACHE_SHIFT;
145 	if (i_size > 0 && page->index < end_index)
146 		goto out;
147 	end = ((loff_t)page->index << PAGE_CACHE_SHIFT) + ((loff_t)offset+count);
148 	if (i_size >= end)
149 		goto out;
150 	i_size_write(inode, end);
151 	nfs_inc_stats(inode, NFSIOS_EXTENDWRITE);
152 out:
153 	spin_unlock(&inode->i_lock);
154 }
155 
156 /* A writeback failed: mark the page as bad, and invalidate the page cache */
157 static void nfs_set_pageerror(struct page *page)
158 {
159 	SetPageError(page);
160 	nfs_zap_mapping(page->mapping->host, page->mapping);
161 }
162 
163 /* We can set the PG_uptodate flag if we see that a write request
164  * covers the full page.
165  */
166 static void nfs_mark_uptodate(struct page *page, unsigned int base, unsigned int count)
167 {
168 	if (PageUptodate(page))
169 		return;
170 	if (base != 0)
171 		return;
172 	if (count != nfs_page_length(page))
173 		return;
174 	SetPageUptodate(page);
175 }
176 
177 static int wb_priority(struct writeback_control *wbc)
178 {
179 	if (wbc->for_reclaim)
180 		return FLUSH_HIGHPRI | FLUSH_STABLE;
181 	if (wbc->for_kupdate)
182 		return FLUSH_LOWPRI;
183 	return 0;
184 }
185 
186 /*
187  * NFS congestion control
188  */
189 
190 int nfs_congestion_kb;
191 
192 #define NFS_CONGESTION_ON_THRESH 	(nfs_congestion_kb >> (PAGE_SHIFT-10))
193 #define NFS_CONGESTION_OFF_THRESH	\
194 	(NFS_CONGESTION_ON_THRESH - (NFS_CONGESTION_ON_THRESH >> 2))
195 
196 static int nfs_set_page_writeback(struct page *page)
197 {
198 	int ret = test_set_page_writeback(page);
199 
200 	if (!ret) {
201 		struct inode *inode = page->mapping->host;
202 		struct nfs_server *nfss = NFS_SERVER(inode);
203 
204 		if (atomic_long_inc_return(&nfss->writeback) >
205 				NFS_CONGESTION_ON_THRESH) {
206 			set_bdi_congested(&nfss->backing_dev_info,
207 						BLK_RW_ASYNC);
208 		}
209 	}
210 	return ret;
211 }
212 
213 static void nfs_end_page_writeback(struct page *page)
214 {
215 	struct inode *inode = page->mapping->host;
216 	struct nfs_server *nfss = NFS_SERVER(inode);
217 
218 	end_page_writeback(page);
219 	if (atomic_long_dec_return(&nfss->writeback) < NFS_CONGESTION_OFF_THRESH)
220 		clear_bdi_congested(&nfss->backing_dev_info, BLK_RW_ASYNC);
221 }
222 
223 /*
224  * Find an associated nfs write request, and prepare to flush it out
225  * May return an error if the user signalled nfs_wait_on_request().
226  */
227 static int nfs_page_async_flush(struct nfs_pageio_descriptor *pgio,
228 				struct page *page)
229 {
230 	struct inode *inode = page->mapping->host;
231 	struct nfs_page *req;
232 	int ret;
233 
234 	spin_lock(&inode->i_lock);
235 	for(;;) {
236 		req = nfs_page_find_request_locked(page);
237 		if (req == NULL) {
238 			spin_unlock(&inode->i_lock);
239 			return 0;
240 		}
241 		if (nfs_set_page_tag_locked(req))
242 			break;
243 		/* Note: If we hold the page lock, as is the case in nfs_writepage,
244 		 *	 then the call to nfs_set_page_tag_locked() will always
245 		 *	 succeed provided that someone hasn't already marked the
246 		 *	 request as dirty (in which case we don't care).
247 		 */
248 		spin_unlock(&inode->i_lock);
249 		ret = nfs_wait_on_request(req);
250 		nfs_release_request(req);
251 		if (ret != 0)
252 			return ret;
253 		spin_lock(&inode->i_lock);
254 	}
255 	if (test_bit(PG_CLEAN, &req->wb_flags)) {
256 		spin_unlock(&inode->i_lock);
257 		BUG();
258 	}
259 	if (nfs_set_page_writeback(page) != 0) {
260 		spin_unlock(&inode->i_lock);
261 		BUG();
262 	}
263 	spin_unlock(&inode->i_lock);
264 	if (!nfs_pageio_add_request(pgio, req)) {
265 		nfs_redirty_request(req);
266 		return pgio->pg_error;
267 	}
268 	return 0;
269 }
270 
271 static int nfs_do_writepage(struct page *page, struct writeback_control *wbc, struct nfs_pageio_descriptor *pgio)
272 {
273 	struct inode *inode = page->mapping->host;
274 
275 	nfs_inc_stats(inode, NFSIOS_VFSWRITEPAGE);
276 	nfs_add_stats(inode, NFSIOS_WRITEPAGES, 1);
277 
278 	nfs_pageio_cond_complete(pgio, page->index);
279 	return nfs_page_async_flush(pgio, page);
280 }
281 
282 /*
283  * Write an mmapped page to the server.
284  */
285 static int nfs_writepage_locked(struct page *page, struct writeback_control *wbc)
286 {
287 	struct nfs_pageio_descriptor pgio;
288 	int err;
289 
290 	nfs_pageio_init_write(&pgio, page->mapping->host, wb_priority(wbc));
291 	err = nfs_do_writepage(page, wbc, &pgio);
292 	nfs_pageio_complete(&pgio);
293 	if (err < 0)
294 		return err;
295 	if (pgio.pg_error < 0)
296 		return pgio.pg_error;
297 	return 0;
298 }
299 
300 int nfs_writepage(struct page *page, struct writeback_control *wbc)
301 {
302 	int ret;
303 
304 	ret = nfs_writepage_locked(page, wbc);
305 	unlock_page(page);
306 	return ret;
307 }
308 
309 static int nfs_writepages_callback(struct page *page, struct writeback_control *wbc, void *data)
310 {
311 	int ret;
312 
313 	ret = nfs_do_writepage(page, wbc, data);
314 	unlock_page(page);
315 	return ret;
316 }
317 
318 int nfs_writepages(struct address_space *mapping, struct writeback_control *wbc)
319 {
320 	struct inode *inode = mapping->host;
321 	unsigned long *bitlock = &NFS_I(inode)->flags;
322 	struct nfs_pageio_descriptor pgio;
323 	int err;
324 
325 	/* Stop dirtying of new pages while we sync */
326 	err = wait_on_bit_lock(bitlock, NFS_INO_FLUSHING,
327 			nfs_wait_bit_killable, TASK_KILLABLE);
328 	if (err)
329 		goto out_err;
330 
331 	nfs_inc_stats(inode, NFSIOS_VFSWRITEPAGES);
332 
333 	nfs_pageio_init_write(&pgio, inode, wb_priority(wbc));
334 	err = write_cache_pages(mapping, wbc, nfs_writepages_callback, &pgio);
335 	nfs_pageio_complete(&pgio);
336 
337 	clear_bit_unlock(NFS_INO_FLUSHING, bitlock);
338 	smp_mb__after_clear_bit();
339 	wake_up_bit(bitlock, NFS_INO_FLUSHING);
340 
341 	if (err < 0)
342 		goto out_err;
343 	err = pgio.pg_error;
344 	if (err < 0)
345 		goto out_err;
346 	return 0;
347 out_err:
348 	return err;
349 }
350 
351 /*
352  * Insert a write request into an inode
353  */
354 static int nfs_inode_add_request(struct inode *inode, struct nfs_page *req)
355 {
356 	struct nfs_inode *nfsi = NFS_I(inode);
357 	int error;
358 
359 	error = radix_tree_preload(GFP_NOFS);
360 	if (error != 0)
361 		goto out;
362 
363 	/* Lock the request! */
364 	nfs_lock_request_dontget(req);
365 
366 	spin_lock(&inode->i_lock);
367 	error = radix_tree_insert(&nfsi->nfs_page_tree, req->wb_index, req);
368 	BUG_ON(error);
369 	if (!nfsi->npages) {
370 		igrab(inode);
371 		if (nfs_have_delegation(inode, FMODE_WRITE))
372 			nfsi->change_attr++;
373 	}
374 	SetPagePrivate(req->wb_page);
375 	set_page_private(req->wb_page, (unsigned long)req);
376 	nfsi->npages++;
377 	kref_get(&req->wb_kref);
378 	radix_tree_tag_set(&nfsi->nfs_page_tree, req->wb_index,
379 				NFS_PAGE_TAG_LOCKED);
380 	spin_unlock(&inode->i_lock);
381 	radix_tree_preload_end();
382 out:
383 	return error;
384 }
385 
386 /*
387  * Remove a write request from an inode
388  */
389 static void nfs_inode_remove_request(struct nfs_page *req)
390 {
391 	struct inode *inode = req->wb_context->path.dentry->d_inode;
392 	struct nfs_inode *nfsi = NFS_I(inode);
393 
394 	BUG_ON (!NFS_WBACK_BUSY(req));
395 
396 	spin_lock(&inode->i_lock);
397 	set_page_private(req->wb_page, 0);
398 	ClearPagePrivate(req->wb_page);
399 	radix_tree_delete(&nfsi->nfs_page_tree, req->wb_index);
400 	nfsi->npages--;
401 	if (!nfsi->npages) {
402 		spin_unlock(&inode->i_lock);
403 		iput(inode);
404 	} else
405 		spin_unlock(&inode->i_lock);
406 	nfs_clear_request(req);
407 	nfs_release_request(req);
408 }
409 
410 static void
411 nfs_mark_request_dirty(struct nfs_page *req)
412 {
413 	__set_page_dirty_nobuffers(req->wb_page);
414 }
415 
416 #if defined(CONFIG_NFS_V3) || defined(CONFIG_NFS_V4)
417 /*
418  * Add a request to the inode's commit list.
419  */
420 static void
421 nfs_mark_request_commit(struct nfs_page *req)
422 {
423 	struct inode *inode = req->wb_context->path.dentry->d_inode;
424 	struct nfs_inode *nfsi = NFS_I(inode);
425 
426 	spin_lock(&inode->i_lock);
427 	set_bit(PG_CLEAN, &(req)->wb_flags);
428 	radix_tree_tag_set(&nfsi->nfs_page_tree,
429 			req->wb_index,
430 			NFS_PAGE_TAG_COMMIT);
431 	spin_unlock(&inode->i_lock);
432 	inc_zone_page_state(req->wb_page, NR_UNSTABLE_NFS);
433 	inc_bdi_stat(req->wb_page->mapping->backing_dev_info, BDI_RECLAIMABLE);
434 	__mark_inode_dirty(inode, I_DIRTY_DATASYNC);
435 }
436 
437 static int
438 nfs_clear_request_commit(struct nfs_page *req)
439 {
440 	struct page *page = req->wb_page;
441 
442 	if (test_and_clear_bit(PG_CLEAN, &(req)->wb_flags)) {
443 		dec_zone_page_state(page, NR_UNSTABLE_NFS);
444 		dec_bdi_stat(page->mapping->backing_dev_info, BDI_RECLAIMABLE);
445 		return 1;
446 	}
447 	return 0;
448 }
449 
450 static inline
451 int nfs_write_need_commit(struct nfs_write_data *data)
452 {
453 	return data->verf.committed != NFS_FILE_SYNC;
454 }
455 
456 static inline
457 int nfs_reschedule_unstable_write(struct nfs_page *req)
458 {
459 	if (test_and_clear_bit(PG_NEED_COMMIT, &req->wb_flags)) {
460 		nfs_mark_request_commit(req);
461 		return 1;
462 	}
463 	if (test_and_clear_bit(PG_NEED_RESCHED, &req->wb_flags)) {
464 		nfs_mark_request_dirty(req);
465 		return 1;
466 	}
467 	return 0;
468 }
469 #else
470 static inline void
471 nfs_mark_request_commit(struct nfs_page *req)
472 {
473 }
474 
475 static inline int
476 nfs_clear_request_commit(struct nfs_page *req)
477 {
478 	return 0;
479 }
480 
481 static inline
482 int nfs_write_need_commit(struct nfs_write_data *data)
483 {
484 	return 0;
485 }
486 
487 static inline
488 int nfs_reschedule_unstable_write(struct nfs_page *req)
489 {
490 	return 0;
491 }
492 #endif
493 
494 /*
495  * Wait for a request to complete.
496  *
497  * Interruptible by fatal signals only.
498  */
499 static int nfs_wait_on_requests_locked(struct inode *inode, pgoff_t idx_start, unsigned int npages)
500 {
501 	struct nfs_inode *nfsi = NFS_I(inode);
502 	struct nfs_page *req;
503 	pgoff_t idx_end, next;
504 	unsigned int		res = 0;
505 	int			error;
506 
507 	if (npages == 0)
508 		idx_end = ~0;
509 	else
510 		idx_end = idx_start + npages - 1;
511 
512 	next = idx_start;
513 	while (radix_tree_gang_lookup_tag(&nfsi->nfs_page_tree, (void **)&req, next, 1, NFS_PAGE_TAG_LOCKED)) {
514 		if (req->wb_index > idx_end)
515 			break;
516 
517 		next = req->wb_index + 1;
518 		BUG_ON(!NFS_WBACK_BUSY(req));
519 
520 		kref_get(&req->wb_kref);
521 		spin_unlock(&inode->i_lock);
522 		error = nfs_wait_on_request(req);
523 		nfs_release_request(req);
524 		spin_lock(&inode->i_lock);
525 		if (error < 0)
526 			return error;
527 		res++;
528 	}
529 	return res;
530 }
531 
532 static void nfs_cancel_commit_list(struct list_head *head)
533 {
534 	struct nfs_page *req;
535 
536 	while(!list_empty(head)) {
537 		req = nfs_list_entry(head->next);
538 		nfs_list_remove_request(req);
539 		nfs_clear_request_commit(req);
540 		nfs_inode_remove_request(req);
541 		nfs_unlock_request(req);
542 	}
543 }
544 
545 #if defined(CONFIG_NFS_V3) || defined(CONFIG_NFS_V4)
546 static int
547 nfs_need_commit(struct nfs_inode *nfsi)
548 {
549 	return radix_tree_tagged(&nfsi->nfs_page_tree, NFS_PAGE_TAG_COMMIT);
550 }
551 
552 /*
553  * nfs_scan_commit - Scan an inode for commit requests
554  * @inode: NFS inode to scan
555  * @dst: destination list
556  * @idx_start: lower bound of page->index to scan.
557  * @npages: idx_start + npages sets the upper bound to scan.
558  *
559  * Moves requests from the inode's 'commit' request list.
560  * The requests are *not* checked to ensure that they form a contiguous set.
561  */
562 static int
563 nfs_scan_commit(struct inode *inode, struct list_head *dst, pgoff_t idx_start, unsigned int npages)
564 {
565 	struct nfs_inode *nfsi = NFS_I(inode);
566 
567 	if (!nfs_need_commit(nfsi))
568 		return 0;
569 
570 	return nfs_scan_list(nfsi, dst, idx_start, npages, NFS_PAGE_TAG_COMMIT);
571 }
572 #else
573 static inline int nfs_need_commit(struct nfs_inode *nfsi)
574 {
575 	return 0;
576 }
577 
578 static inline int nfs_scan_commit(struct inode *inode, struct list_head *dst, pgoff_t idx_start, unsigned int npages)
579 {
580 	return 0;
581 }
582 #endif
583 
584 /*
585  * Search for an existing write request, and attempt to update
586  * it to reflect a new dirty region on a given page.
587  *
588  * If the attempt fails, then the existing request is flushed out
589  * to disk.
590  */
591 static struct nfs_page *nfs_try_to_update_request(struct inode *inode,
592 		struct page *page,
593 		unsigned int offset,
594 		unsigned int bytes)
595 {
596 	struct nfs_page *req;
597 	unsigned int rqend;
598 	unsigned int end;
599 	int error;
600 
601 	if (!PagePrivate(page))
602 		return NULL;
603 
604 	end = offset + bytes;
605 	spin_lock(&inode->i_lock);
606 
607 	for (;;) {
608 		req = nfs_page_find_request_locked(page);
609 		if (req == NULL)
610 			goto out_unlock;
611 
612 		rqend = req->wb_offset + req->wb_bytes;
613 		/*
614 		 * Tell the caller to flush out the request if
615 		 * the offsets are non-contiguous.
616 		 * Note: nfs_flush_incompatible() will already
617 		 * have flushed out requests having wrong owners.
618 		 */
619 		if (offset > rqend
620 		    || end < req->wb_offset)
621 			goto out_flushme;
622 
623 		if (nfs_set_page_tag_locked(req))
624 			break;
625 
626 		/* The request is locked, so wait and then retry */
627 		spin_unlock(&inode->i_lock);
628 		error = nfs_wait_on_request(req);
629 		nfs_release_request(req);
630 		if (error != 0)
631 			goto out_err;
632 		spin_lock(&inode->i_lock);
633 	}
634 
635 	if (nfs_clear_request_commit(req))
636 		radix_tree_tag_clear(&NFS_I(inode)->nfs_page_tree,
637 				req->wb_index, NFS_PAGE_TAG_COMMIT);
638 
639 	/* Okay, the request matches. Update the region */
640 	if (offset < req->wb_offset) {
641 		req->wb_offset = offset;
642 		req->wb_pgbase = offset;
643 	}
644 	if (end > rqend)
645 		req->wb_bytes = end - req->wb_offset;
646 	else
647 		req->wb_bytes = rqend - req->wb_offset;
648 out_unlock:
649 	spin_unlock(&inode->i_lock);
650 	return req;
651 out_flushme:
652 	spin_unlock(&inode->i_lock);
653 	nfs_release_request(req);
654 	error = nfs_wb_page(inode, page);
655 out_err:
656 	return ERR_PTR(error);
657 }
658 
659 /*
660  * Try to update an existing write request, or create one if there is none.
661  *
662  * Note: Should always be called with the Page Lock held to prevent races
663  * if we have to add a new request. Also assumes that the caller has
664  * already called nfs_flush_incompatible() if necessary.
665  */
666 static struct nfs_page * nfs_setup_write_request(struct nfs_open_context* ctx,
667 		struct page *page, unsigned int offset, unsigned int bytes)
668 {
669 	struct inode *inode = page->mapping->host;
670 	struct nfs_page	*req;
671 	int error;
672 
673 	req = nfs_try_to_update_request(inode, page, offset, bytes);
674 	if (req != NULL)
675 		goto out;
676 	req = nfs_create_request(ctx, inode, page, offset, bytes);
677 	if (IS_ERR(req))
678 		goto out;
679 	error = nfs_inode_add_request(inode, req);
680 	if (error != 0) {
681 		nfs_release_request(req);
682 		req = ERR_PTR(error);
683 	}
684 out:
685 	return req;
686 }
687 
688 static int nfs_writepage_setup(struct nfs_open_context *ctx, struct page *page,
689 		unsigned int offset, unsigned int count)
690 {
691 	struct nfs_page	*req;
692 
693 	req = nfs_setup_write_request(ctx, page, offset, count);
694 	if (IS_ERR(req))
695 		return PTR_ERR(req);
696 	/* Update file length */
697 	nfs_grow_file(page, offset, count);
698 	nfs_mark_uptodate(page, req->wb_pgbase, req->wb_bytes);
699 	nfs_clear_page_tag_locked(req);
700 	return 0;
701 }
702 
703 int nfs_flush_incompatible(struct file *file, struct page *page)
704 {
705 	struct nfs_open_context *ctx = nfs_file_open_context(file);
706 	struct nfs_page	*req;
707 	int do_flush, status;
708 	/*
709 	 * Look for a request corresponding to this page. If there
710 	 * is one, and it belongs to another file, we flush it out
711 	 * before we try to copy anything into the page. Do this
712 	 * due to the lack of an ACCESS-type call in NFSv2.
713 	 * Also do the same if we find a request from an existing
714 	 * dropped page.
715 	 */
716 	do {
717 		req = nfs_page_find_request(page);
718 		if (req == NULL)
719 			return 0;
720 		do_flush = req->wb_page != page || req->wb_context != ctx;
721 		nfs_release_request(req);
722 		if (!do_flush)
723 			return 0;
724 		status = nfs_wb_page(page->mapping->host, page);
725 	} while (status == 0);
726 	return status;
727 }
728 
729 /*
730  * If the page cache is marked as unsafe or invalid, then we can't rely on
731  * the PageUptodate() flag. In this case, we will need to turn off
732  * write optimisations that depend on the page contents being correct.
733  */
734 static int nfs_write_pageuptodate(struct page *page, struct inode *inode)
735 {
736 	return PageUptodate(page) &&
737 		!(NFS_I(inode)->cache_validity & (NFS_INO_REVAL_PAGECACHE|NFS_INO_INVALID_DATA));
738 }
739 
740 /*
741  * Update and possibly write a cached page of an NFS file.
742  *
743  * XXX: Keep an eye on generic_file_read to make sure it doesn't do bad
744  * things with a page scheduled for an RPC call (e.g. invalidate it).
745  */
746 int nfs_updatepage(struct file *file, struct page *page,
747 		unsigned int offset, unsigned int count)
748 {
749 	struct nfs_open_context *ctx = nfs_file_open_context(file);
750 	struct inode	*inode = page->mapping->host;
751 	int		status = 0;
752 
753 	nfs_inc_stats(inode, NFSIOS_VFSUPDATEPAGE);
754 
755 	dprintk("NFS:       nfs_updatepage(%s/%s %d@%lld)\n",
756 		file->f_path.dentry->d_parent->d_name.name,
757 		file->f_path.dentry->d_name.name, count,
758 		(long long)(page_offset(page) + offset));
759 
760 	/* If we're not using byte range locks, and we know the page
761 	 * is up to date, it may be more efficient to extend the write
762 	 * to cover the entire page in order to avoid fragmentation
763 	 * inefficiencies.
764 	 */
765 	if (nfs_write_pageuptodate(page, inode) &&
766 			inode->i_flock == NULL &&
767 			!(file->f_flags & O_SYNC)) {
768 		count = max(count + offset, nfs_page_length(page));
769 		offset = 0;
770 	}
771 
772 	status = nfs_writepage_setup(ctx, page, offset, count);
773 	if (status < 0)
774 		nfs_set_pageerror(page);
775 	else
776 		__set_page_dirty_nobuffers(page);
777 
778 	dprintk("NFS:       nfs_updatepage returns %d (isize %lld)\n",
779 			status, (long long)i_size_read(inode));
780 	return status;
781 }
782 
783 static void nfs_writepage_release(struct nfs_page *req)
784 {
785 
786 	if (PageError(req->wb_page) || !nfs_reschedule_unstable_write(req)) {
787 		nfs_end_page_writeback(req->wb_page);
788 		nfs_inode_remove_request(req);
789 	} else
790 		nfs_end_page_writeback(req->wb_page);
791 	nfs_clear_page_tag_locked(req);
792 }
793 
794 static int flush_task_priority(int how)
795 {
796 	switch (how & (FLUSH_HIGHPRI|FLUSH_LOWPRI)) {
797 		case FLUSH_HIGHPRI:
798 			return RPC_PRIORITY_HIGH;
799 		case FLUSH_LOWPRI:
800 			return RPC_PRIORITY_LOW;
801 	}
802 	return RPC_PRIORITY_NORMAL;
803 }
804 
805 /*
806  * Set up the argument/result storage required for the RPC call.
807  */
808 static int nfs_write_rpcsetup(struct nfs_page *req,
809 		struct nfs_write_data *data,
810 		const struct rpc_call_ops *call_ops,
811 		unsigned int count, unsigned int offset,
812 		int how)
813 {
814 	struct inode *inode = req->wb_context->path.dentry->d_inode;
815 	int flags = (how & FLUSH_SYNC) ? 0 : RPC_TASK_ASYNC;
816 	int priority = flush_task_priority(how);
817 	struct rpc_task *task;
818 	struct rpc_message msg = {
819 		.rpc_argp = &data->args,
820 		.rpc_resp = &data->res,
821 		.rpc_cred = req->wb_context->cred,
822 	};
823 	struct rpc_task_setup task_setup_data = {
824 		.rpc_client = NFS_CLIENT(inode),
825 		.task = &data->task,
826 		.rpc_message = &msg,
827 		.callback_ops = call_ops,
828 		.callback_data = data,
829 		.workqueue = nfsiod_workqueue,
830 		.flags = flags,
831 		.priority = priority,
832 	};
833 
834 	/* Set up the RPC argument and reply structs
835 	 * NB: take care not to mess about with data->commit et al. */
836 
837 	data->req = req;
838 	data->inode = inode = req->wb_context->path.dentry->d_inode;
839 	data->cred = msg.rpc_cred;
840 
841 	data->args.fh     = NFS_FH(inode);
842 	data->args.offset = req_offset(req) + offset;
843 	data->args.pgbase = req->wb_pgbase + offset;
844 	data->args.pages  = data->pagevec;
845 	data->args.count  = count;
846 	data->args.context = get_nfs_open_context(req->wb_context);
847 	data->args.stable  = NFS_UNSTABLE;
848 	if (how & FLUSH_STABLE) {
849 		data->args.stable = NFS_DATA_SYNC;
850 		if (!nfs_need_commit(NFS_I(inode)))
851 			data->args.stable = NFS_FILE_SYNC;
852 	}
853 
854 	data->res.fattr   = &data->fattr;
855 	data->res.count   = count;
856 	data->res.verf    = &data->verf;
857 	nfs_fattr_init(&data->fattr);
858 
859 	/* Set up the initial task struct.  */
860 	NFS_PROTO(inode)->write_setup(data, &msg);
861 
862 	dprintk("NFS: %5u initiated write call "
863 		"(req %s/%lld, %u bytes @ offset %llu)\n",
864 		data->task.tk_pid,
865 		inode->i_sb->s_id,
866 		(long long)NFS_FILEID(inode),
867 		count,
868 		(unsigned long long)data->args.offset);
869 
870 	task = rpc_run_task(&task_setup_data);
871 	if (IS_ERR(task))
872 		return PTR_ERR(task);
873 	rpc_put_task(task);
874 	return 0;
875 }
876 
877 /* If a nfs_flush_* function fails, it should remove reqs from @head and
878  * call this on each, which will prepare them to be retried on next
879  * writeback using standard nfs.
880  */
881 static void nfs_redirty_request(struct nfs_page *req)
882 {
883 	nfs_mark_request_dirty(req);
884 	nfs_end_page_writeback(req->wb_page);
885 	nfs_clear_page_tag_locked(req);
886 }
887 
888 /*
889  * Generate multiple small requests to write out a single
890  * contiguous dirty area on one page.
891  */
892 static int nfs_flush_multi(struct inode *inode, struct list_head *head, unsigned int npages, size_t count, int how)
893 {
894 	struct nfs_page *req = nfs_list_entry(head->next);
895 	struct page *page = req->wb_page;
896 	struct nfs_write_data *data;
897 	size_t wsize = NFS_SERVER(inode)->wsize, nbytes;
898 	unsigned int offset;
899 	int requests = 0;
900 	int ret = 0;
901 	LIST_HEAD(list);
902 
903 	nfs_list_remove_request(req);
904 
905 	nbytes = count;
906 	do {
907 		size_t len = min(nbytes, wsize);
908 
909 		data = nfs_writedata_alloc(1);
910 		if (!data)
911 			goto out_bad;
912 		list_add(&data->pages, &list);
913 		requests++;
914 		nbytes -= len;
915 	} while (nbytes != 0);
916 	atomic_set(&req->wb_complete, requests);
917 
918 	ClearPageError(page);
919 	offset = 0;
920 	nbytes = count;
921 	do {
922 		int ret2;
923 
924 		data = list_entry(list.next, struct nfs_write_data, pages);
925 		list_del_init(&data->pages);
926 
927 		data->pagevec[0] = page;
928 
929 		if (nbytes < wsize)
930 			wsize = nbytes;
931 		ret2 = nfs_write_rpcsetup(req, data, &nfs_write_partial_ops,
932 				   wsize, offset, how);
933 		if (ret == 0)
934 			ret = ret2;
935 		offset += wsize;
936 		nbytes -= wsize;
937 	} while (nbytes != 0);
938 
939 	return ret;
940 
941 out_bad:
942 	while (!list_empty(&list)) {
943 		data = list_entry(list.next, struct nfs_write_data, pages);
944 		list_del(&data->pages);
945 		nfs_writedata_release(data);
946 	}
947 	nfs_redirty_request(req);
948 	return -ENOMEM;
949 }
950 
951 /*
952  * Create an RPC task for the given write request and kick it.
953  * The page must have been locked by the caller.
954  *
955  * It may happen that the page we're passed is not marked dirty.
956  * This is the case if nfs_updatepage detects a conflicting request
957  * that has been written but not committed.
958  */
959 static int nfs_flush_one(struct inode *inode, struct list_head *head, unsigned int npages, size_t count, int how)
960 {
961 	struct nfs_page		*req;
962 	struct page		**pages;
963 	struct nfs_write_data	*data;
964 
965 	data = nfs_writedata_alloc(npages);
966 	if (!data)
967 		goto out_bad;
968 
969 	pages = data->pagevec;
970 	while (!list_empty(head)) {
971 		req = nfs_list_entry(head->next);
972 		nfs_list_remove_request(req);
973 		nfs_list_add_request(req, &data->pages);
974 		ClearPageError(req->wb_page);
975 		*pages++ = req->wb_page;
976 	}
977 	req = nfs_list_entry(data->pages.next);
978 
979 	/* Set up the argument struct */
980 	return nfs_write_rpcsetup(req, data, &nfs_write_full_ops, count, 0, how);
981  out_bad:
982 	while (!list_empty(head)) {
983 		req = nfs_list_entry(head->next);
984 		nfs_list_remove_request(req);
985 		nfs_redirty_request(req);
986 	}
987 	return -ENOMEM;
988 }
989 
990 static void nfs_pageio_init_write(struct nfs_pageio_descriptor *pgio,
991 				  struct inode *inode, int ioflags)
992 {
993 	size_t wsize = NFS_SERVER(inode)->wsize;
994 
995 	if (wsize < PAGE_CACHE_SIZE)
996 		nfs_pageio_init(pgio, inode, nfs_flush_multi, wsize, ioflags);
997 	else
998 		nfs_pageio_init(pgio, inode, nfs_flush_one, wsize, ioflags);
999 }
1000 
1001 /*
1002  * Handle a write reply that flushed part of a page.
1003  */
1004 static void nfs_writeback_done_partial(struct rpc_task *task, void *calldata)
1005 {
1006 	struct nfs_write_data	*data = calldata;
1007 
1008 	dprintk("NFS: %5u write(%s/%lld %d@%lld)",
1009 		task->tk_pid,
1010 		data->req->wb_context->path.dentry->d_inode->i_sb->s_id,
1011 		(long long)
1012 		  NFS_FILEID(data->req->wb_context->path.dentry->d_inode),
1013 		data->req->wb_bytes, (long long)req_offset(data->req));
1014 
1015 	nfs_writeback_done(task, data);
1016 }
1017 
1018 static void nfs_writeback_release_partial(void *calldata)
1019 {
1020 	struct nfs_write_data	*data = calldata;
1021 	struct nfs_page		*req = data->req;
1022 	struct page		*page = req->wb_page;
1023 	int status = data->task.tk_status;
1024 
1025 	if (status < 0) {
1026 		nfs_set_pageerror(page);
1027 		nfs_context_set_write_error(req->wb_context, status);
1028 		dprintk(", error = %d\n", status);
1029 		goto out;
1030 	}
1031 
1032 	if (nfs_write_need_commit(data)) {
1033 		struct inode *inode = page->mapping->host;
1034 
1035 		spin_lock(&inode->i_lock);
1036 		if (test_bit(PG_NEED_RESCHED, &req->wb_flags)) {
1037 			/* Do nothing we need to resend the writes */
1038 		} else if (!test_and_set_bit(PG_NEED_COMMIT, &req->wb_flags)) {
1039 			memcpy(&req->wb_verf, &data->verf, sizeof(req->wb_verf));
1040 			dprintk(" defer commit\n");
1041 		} else if (memcmp(&req->wb_verf, &data->verf, sizeof(req->wb_verf))) {
1042 			set_bit(PG_NEED_RESCHED, &req->wb_flags);
1043 			clear_bit(PG_NEED_COMMIT, &req->wb_flags);
1044 			dprintk(" server reboot detected\n");
1045 		}
1046 		spin_unlock(&inode->i_lock);
1047 	} else
1048 		dprintk(" OK\n");
1049 
1050 out:
1051 	if (atomic_dec_and_test(&req->wb_complete))
1052 		nfs_writepage_release(req);
1053 	nfs_writedata_release(calldata);
1054 }
1055 
1056 #if defined(CONFIG_NFS_V4_1)
1057 void nfs_write_prepare(struct rpc_task *task, void *calldata)
1058 {
1059 	struct nfs_write_data *data = calldata;
1060 	struct nfs_client *clp = (NFS_SERVER(data->inode))->nfs_client;
1061 
1062 	if (nfs4_setup_sequence(clp, &data->args.seq_args,
1063 				&data->res.seq_res, 1, task))
1064 		return;
1065 	rpc_call_start(task);
1066 }
1067 #endif /* CONFIG_NFS_V4_1 */
1068 
1069 static const struct rpc_call_ops nfs_write_partial_ops = {
1070 #if defined(CONFIG_NFS_V4_1)
1071 	.rpc_call_prepare = nfs_write_prepare,
1072 #endif /* CONFIG_NFS_V4_1 */
1073 	.rpc_call_done = nfs_writeback_done_partial,
1074 	.rpc_release = nfs_writeback_release_partial,
1075 };
1076 
1077 /*
1078  * Handle a write reply that flushes a whole page.
1079  *
1080  * FIXME: There is an inherent race with invalidate_inode_pages and
1081  *	  writebacks since the page->count is kept > 1 for as long
1082  *	  as the page has a write request pending.
1083  */
1084 static void nfs_writeback_done_full(struct rpc_task *task, void *calldata)
1085 {
1086 	struct nfs_write_data	*data = calldata;
1087 
1088 	nfs_writeback_done(task, data);
1089 }
1090 
1091 static void nfs_writeback_release_full(void *calldata)
1092 {
1093 	struct nfs_write_data	*data = calldata;
1094 	int status = data->task.tk_status;
1095 
1096 	/* Update attributes as result of writeback. */
1097 	while (!list_empty(&data->pages)) {
1098 		struct nfs_page *req = nfs_list_entry(data->pages.next);
1099 		struct page *page = req->wb_page;
1100 
1101 		nfs_list_remove_request(req);
1102 
1103 		dprintk("NFS: %5u write (%s/%lld %d@%lld)",
1104 			data->task.tk_pid,
1105 			req->wb_context->path.dentry->d_inode->i_sb->s_id,
1106 			(long long)NFS_FILEID(req->wb_context->path.dentry->d_inode),
1107 			req->wb_bytes,
1108 			(long long)req_offset(req));
1109 
1110 		if (status < 0) {
1111 			nfs_set_pageerror(page);
1112 			nfs_context_set_write_error(req->wb_context, status);
1113 			dprintk(", error = %d\n", status);
1114 			goto remove_request;
1115 		}
1116 
1117 		if (nfs_write_need_commit(data)) {
1118 			memcpy(&req->wb_verf, &data->verf, sizeof(req->wb_verf));
1119 			nfs_mark_request_commit(req);
1120 			nfs_end_page_writeback(page);
1121 			dprintk(" marked for commit\n");
1122 			goto next;
1123 		}
1124 		dprintk(" OK\n");
1125 remove_request:
1126 		nfs_end_page_writeback(page);
1127 		nfs_inode_remove_request(req);
1128 	next:
1129 		nfs_clear_page_tag_locked(req);
1130 	}
1131 	nfs_writedata_release(calldata);
1132 }
1133 
1134 static const struct rpc_call_ops nfs_write_full_ops = {
1135 #if defined(CONFIG_NFS_V4_1)
1136 	.rpc_call_prepare = nfs_write_prepare,
1137 #endif /* CONFIG_NFS_V4_1 */
1138 	.rpc_call_done = nfs_writeback_done_full,
1139 	.rpc_release = nfs_writeback_release_full,
1140 };
1141 
1142 
1143 /*
1144  * This function is called when the WRITE call is complete.
1145  */
1146 int nfs_writeback_done(struct rpc_task *task, struct nfs_write_data *data)
1147 {
1148 	struct nfs_writeargs	*argp = &data->args;
1149 	struct nfs_writeres	*resp = &data->res;
1150 	struct nfs_server	*server = NFS_SERVER(data->inode);
1151 	int status;
1152 
1153 	dprintk("NFS: %5u nfs_writeback_done (status %d)\n",
1154 		task->tk_pid, task->tk_status);
1155 
1156 	/*
1157 	 * ->write_done will attempt to use post-op attributes to detect
1158 	 * conflicting writes by other clients.  A strict interpretation
1159 	 * of close-to-open would allow us to continue caching even if
1160 	 * another writer had changed the file, but some applications
1161 	 * depend on tighter cache coherency when writing.
1162 	 */
1163 	status = NFS_PROTO(data->inode)->write_done(task, data);
1164 	if (status != 0)
1165 		return status;
1166 	nfs_add_stats(data->inode, NFSIOS_SERVERWRITTENBYTES, resp->count);
1167 
1168 #if defined(CONFIG_NFS_V3) || defined(CONFIG_NFS_V4)
1169 	if (resp->verf->committed < argp->stable && task->tk_status >= 0) {
1170 		/* We tried a write call, but the server did not
1171 		 * commit data to stable storage even though we
1172 		 * requested it.
1173 		 * Note: There is a known bug in Tru64 < 5.0 in which
1174 		 *	 the server reports NFS_DATA_SYNC, but performs
1175 		 *	 NFS_FILE_SYNC. We therefore implement this checking
1176 		 *	 as a dprintk() in order to avoid filling syslog.
1177 		 */
1178 		static unsigned long    complain;
1179 
1180 		if (time_before(complain, jiffies)) {
1181 			dprintk("NFS:       faulty NFS server %s:"
1182 				" (committed = %d) != (stable = %d)\n",
1183 				server->nfs_client->cl_hostname,
1184 				resp->verf->committed, argp->stable);
1185 			complain = jiffies + 300 * HZ;
1186 		}
1187 	}
1188 #endif
1189 	/* Is this a short write? */
1190 	if (task->tk_status >= 0 && resp->count < argp->count) {
1191 		static unsigned long    complain;
1192 
1193 		nfs_inc_stats(data->inode, NFSIOS_SHORTWRITE);
1194 
1195 		/* Has the server at least made some progress? */
1196 		if (resp->count != 0) {
1197 			/* Was this an NFSv2 write or an NFSv3 stable write? */
1198 			if (resp->verf->committed != NFS_UNSTABLE) {
1199 				/* Resend from where the server left off */
1200 				argp->offset += resp->count;
1201 				argp->pgbase += resp->count;
1202 				argp->count -= resp->count;
1203 			} else {
1204 				/* Resend as a stable write in order to avoid
1205 				 * headaches in the case of a server crash.
1206 				 */
1207 				argp->stable = NFS_FILE_SYNC;
1208 			}
1209 			nfs4_restart_rpc(task, server->nfs_client);
1210 			return -EAGAIN;
1211 		}
1212 		if (time_before(complain, jiffies)) {
1213 			printk(KERN_WARNING
1214 			       "NFS: Server wrote zero bytes, expected %u.\n",
1215 					argp->count);
1216 			complain = jiffies + 300 * HZ;
1217 		}
1218 		/* Can't do anything about it except throw an error. */
1219 		task->tk_status = -EIO;
1220 	}
1221 	nfs4_sequence_free_slot(server->nfs_client, &data->res.seq_res);
1222 	return 0;
1223 }
1224 
1225 
1226 #if defined(CONFIG_NFS_V3) || defined(CONFIG_NFS_V4)
1227 void nfs_commitdata_release(void *data)
1228 {
1229 	struct nfs_write_data *wdata = data;
1230 
1231 	put_nfs_open_context(wdata->args.context);
1232 	nfs_commit_free(wdata);
1233 }
1234 
1235 /*
1236  * Set up the argument/result storage required for the RPC call.
1237  */
1238 static int nfs_commit_rpcsetup(struct list_head *head,
1239 		struct nfs_write_data *data,
1240 		int how)
1241 {
1242 	struct nfs_page *first = nfs_list_entry(head->next);
1243 	struct inode *inode = first->wb_context->path.dentry->d_inode;
1244 	int flags = (how & FLUSH_SYNC) ? 0 : RPC_TASK_ASYNC;
1245 	int priority = flush_task_priority(how);
1246 	struct rpc_task *task;
1247 	struct rpc_message msg = {
1248 		.rpc_argp = &data->args,
1249 		.rpc_resp = &data->res,
1250 		.rpc_cred = first->wb_context->cred,
1251 	};
1252 	struct rpc_task_setup task_setup_data = {
1253 		.task = &data->task,
1254 		.rpc_client = NFS_CLIENT(inode),
1255 		.rpc_message = &msg,
1256 		.callback_ops = &nfs_commit_ops,
1257 		.callback_data = data,
1258 		.workqueue = nfsiod_workqueue,
1259 		.flags = flags,
1260 		.priority = priority,
1261 	};
1262 
1263 	/* Set up the RPC argument and reply structs
1264 	 * NB: take care not to mess about with data->commit et al. */
1265 
1266 	list_splice_init(head, &data->pages);
1267 
1268 	data->inode	  = inode;
1269 	data->cred	  = msg.rpc_cred;
1270 
1271 	data->args.fh     = NFS_FH(data->inode);
1272 	/* Note: we always request a commit of the entire inode */
1273 	data->args.offset = 0;
1274 	data->args.count  = 0;
1275 	data->args.context = get_nfs_open_context(first->wb_context);
1276 	data->res.count   = 0;
1277 	data->res.fattr   = &data->fattr;
1278 	data->res.verf    = &data->verf;
1279 	nfs_fattr_init(&data->fattr);
1280 
1281 	/* Set up the initial task struct.  */
1282 	NFS_PROTO(inode)->commit_setup(data, &msg);
1283 
1284 	dprintk("NFS: %5u initiated commit call\n", data->task.tk_pid);
1285 
1286 	task = rpc_run_task(&task_setup_data);
1287 	if (IS_ERR(task))
1288 		return PTR_ERR(task);
1289 	rpc_put_task(task);
1290 	return 0;
1291 }
1292 
1293 /*
1294  * Commit dirty pages
1295  */
1296 static int
1297 nfs_commit_list(struct inode *inode, struct list_head *head, int how)
1298 {
1299 	struct nfs_write_data	*data;
1300 	struct nfs_page         *req;
1301 
1302 	data = nfs_commitdata_alloc();
1303 
1304 	if (!data)
1305 		goto out_bad;
1306 
1307 	/* Set up the argument struct */
1308 	return nfs_commit_rpcsetup(head, data, how);
1309  out_bad:
1310 	while (!list_empty(head)) {
1311 		req = nfs_list_entry(head->next);
1312 		nfs_list_remove_request(req);
1313 		nfs_mark_request_commit(req);
1314 		dec_zone_page_state(req->wb_page, NR_UNSTABLE_NFS);
1315 		dec_bdi_stat(req->wb_page->mapping->backing_dev_info,
1316 				BDI_RECLAIMABLE);
1317 		nfs_clear_page_tag_locked(req);
1318 	}
1319 	return -ENOMEM;
1320 }
1321 
1322 /*
1323  * COMMIT call returned
1324  */
1325 static void nfs_commit_done(struct rpc_task *task, void *calldata)
1326 {
1327 	struct nfs_write_data	*data = calldata;
1328 
1329         dprintk("NFS: %5u nfs_commit_done (status %d)\n",
1330                                 task->tk_pid, task->tk_status);
1331 
1332 	/* Call the NFS version-specific code */
1333 	if (NFS_PROTO(data->inode)->commit_done(task, data) != 0)
1334 		return;
1335 }
1336 
1337 static void nfs_commit_release(void *calldata)
1338 {
1339 	struct nfs_write_data	*data = calldata;
1340 	struct nfs_page		*req;
1341 	int status = data->task.tk_status;
1342 
1343 	while (!list_empty(&data->pages)) {
1344 		req = nfs_list_entry(data->pages.next);
1345 		nfs_list_remove_request(req);
1346 		nfs_clear_request_commit(req);
1347 
1348 		dprintk("NFS:       commit (%s/%lld %d@%lld)",
1349 			req->wb_context->path.dentry->d_inode->i_sb->s_id,
1350 			(long long)NFS_FILEID(req->wb_context->path.dentry->d_inode),
1351 			req->wb_bytes,
1352 			(long long)req_offset(req));
1353 		if (status < 0) {
1354 			nfs_context_set_write_error(req->wb_context, status);
1355 			nfs_inode_remove_request(req);
1356 			dprintk(", error = %d\n", status);
1357 			goto next;
1358 		}
1359 
1360 		/* Okay, COMMIT succeeded, apparently. Check the verifier
1361 		 * returned by the server against all stored verfs. */
1362 		if (!memcmp(req->wb_verf.verifier, data->verf.verifier, sizeof(data->verf.verifier))) {
1363 			/* We have a match */
1364 			nfs_inode_remove_request(req);
1365 			dprintk(" OK\n");
1366 			goto next;
1367 		}
1368 		/* We have a mismatch. Write the page again */
1369 		dprintk(" mismatch\n");
1370 		nfs_mark_request_dirty(req);
1371 	next:
1372 		nfs_clear_page_tag_locked(req);
1373 	}
1374 	nfs_commitdata_release(calldata);
1375 }
1376 
1377 static const struct rpc_call_ops nfs_commit_ops = {
1378 #if defined(CONFIG_NFS_V4_1)
1379 	.rpc_call_prepare = nfs_write_prepare,
1380 #endif /* CONFIG_NFS_V4_1 */
1381 	.rpc_call_done = nfs_commit_done,
1382 	.rpc_release = nfs_commit_release,
1383 };
1384 
1385 int nfs_commit_inode(struct inode *inode, int how)
1386 {
1387 	LIST_HEAD(head);
1388 	int res;
1389 
1390 	spin_lock(&inode->i_lock);
1391 	res = nfs_scan_commit(inode, &head, 0, 0);
1392 	spin_unlock(&inode->i_lock);
1393 	if (res) {
1394 		int error = nfs_commit_list(inode, &head, how);
1395 		if (error < 0)
1396 			return error;
1397 	}
1398 	return res;
1399 }
1400 #else
1401 static inline int nfs_commit_list(struct inode *inode, struct list_head *head, int how)
1402 {
1403 	return 0;
1404 }
1405 #endif
1406 
1407 long nfs_sync_mapping_wait(struct address_space *mapping, struct writeback_control *wbc, int how)
1408 {
1409 	struct inode *inode = mapping->host;
1410 	pgoff_t idx_start, idx_end;
1411 	unsigned int npages = 0;
1412 	LIST_HEAD(head);
1413 	int nocommit = how & FLUSH_NOCOMMIT;
1414 	long pages, ret;
1415 
1416 	/* FIXME */
1417 	if (wbc->range_cyclic)
1418 		idx_start = 0;
1419 	else {
1420 		idx_start = wbc->range_start >> PAGE_CACHE_SHIFT;
1421 		idx_end = wbc->range_end >> PAGE_CACHE_SHIFT;
1422 		if (idx_end > idx_start) {
1423 			pgoff_t l_npages = 1 + idx_end - idx_start;
1424 			npages = l_npages;
1425 			if (sizeof(npages) != sizeof(l_npages) &&
1426 					(pgoff_t)npages != l_npages)
1427 				npages = 0;
1428 		}
1429 	}
1430 	how &= ~FLUSH_NOCOMMIT;
1431 	spin_lock(&inode->i_lock);
1432 	do {
1433 		ret = nfs_wait_on_requests_locked(inode, idx_start, npages);
1434 		if (ret != 0)
1435 			continue;
1436 		if (nocommit)
1437 			break;
1438 		pages = nfs_scan_commit(inode, &head, idx_start, npages);
1439 		if (pages == 0)
1440 			break;
1441 		if (how & FLUSH_INVALIDATE) {
1442 			spin_unlock(&inode->i_lock);
1443 			nfs_cancel_commit_list(&head);
1444 			ret = pages;
1445 			spin_lock(&inode->i_lock);
1446 			continue;
1447 		}
1448 		pages += nfs_scan_commit(inode, &head, 0, 0);
1449 		spin_unlock(&inode->i_lock);
1450 		ret = nfs_commit_list(inode, &head, how);
1451 		spin_lock(&inode->i_lock);
1452 
1453 	} while (ret >= 0);
1454 	spin_unlock(&inode->i_lock);
1455 	return ret;
1456 }
1457 
1458 static int __nfs_write_mapping(struct address_space *mapping, struct writeback_control *wbc, int how)
1459 {
1460 	int ret;
1461 
1462 	ret = nfs_writepages(mapping, wbc);
1463 	if (ret < 0)
1464 		goto out;
1465 	ret = nfs_sync_mapping_wait(mapping, wbc, how);
1466 	if (ret < 0)
1467 		goto out;
1468 	return 0;
1469 out:
1470 	__mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
1471 	return ret;
1472 }
1473 
1474 /* Two pass sync: first using WB_SYNC_NONE, then WB_SYNC_ALL */
1475 static int nfs_write_mapping(struct address_space *mapping, int how)
1476 {
1477 	struct writeback_control wbc = {
1478 		.bdi = mapping->backing_dev_info,
1479 		.sync_mode = WB_SYNC_ALL,
1480 		.nr_to_write = LONG_MAX,
1481 		.range_start = 0,
1482 		.range_end = LLONG_MAX,
1483 		.for_writepages = 1,
1484 	};
1485 
1486 	return __nfs_write_mapping(mapping, &wbc, how);
1487 }
1488 
1489 /*
1490  * flush the inode to disk.
1491  */
1492 int nfs_wb_all(struct inode *inode)
1493 {
1494 	return nfs_write_mapping(inode->i_mapping, 0);
1495 }
1496 
1497 int nfs_wb_nocommit(struct inode *inode)
1498 {
1499 	return nfs_write_mapping(inode->i_mapping, FLUSH_NOCOMMIT);
1500 }
1501 
1502 int nfs_wb_page_cancel(struct inode *inode, struct page *page)
1503 {
1504 	struct nfs_page *req;
1505 	loff_t range_start = page_offset(page);
1506 	loff_t range_end = range_start + (loff_t)(PAGE_CACHE_SIZE - 1);
1507 	struct writeback_control wbc = {
1508 		.bdi = page->mapping->backing_dev_info,
1509 		.sync_mode = WB_SYNC_ALL,
1510 		.nr_to_write = LONG_MAX,
1511 		.range_start = range_start,
1512 		.range_end = range_end,
1513 	};
1514 	int ret = 0;
1515 
1516 	BUG_ON(!PageLocked(page));
1517 	for (;;) {
1518 		req = nfs_page_find_request(page);
1519 		if (req == NULL)
1520 			goto out;
1521 		if (test_bit(PG_CLEAN, &req->wb_flags)) {
1522 			nfs_release_request(req);
1523 			break;
1524 		}
1525 		if (nfs_lock_request_dontget(req)) {
1526 			nfs_inode_remove_request(req);
1527 			/*
1528 			 * In case nfs_inode_remove_request has marked the
1529 			 * page as being dirty
1530 			 */
1531 			cancel_dirty_page(page, PAGE_CACHE_SIZE);
1532 			nfs_unlock_request(req);
1533 			break;
1534 		}
1535 		ret = nfs_wait_on_request(req);
1536 		if (ret < 0)
1537 			goto out;
1538 	}
1539 	if (!PagePrivate(page))
1540 		return 0;
1541 	ret = nfs_sync_mapping_wait(page->mapping, &wbc, FLUSH_INVALIDATE);
1542 out:
1543 	return ret;
1544 }
1545 
1546 static int nfs_wb_page_priority(struct inode *inode, struct page *page,
1547 				int how)
1548 {
1549 	loff_t range_start = page_offset(page);
1550 	loff_t range_end = range_start + (loff_t)(PAGE_CACHE_SIZE - 1);
1551 	struct writeback_control wbc = {
1552 		.bdi = page->mapping->backing_dev_info,
1553 		.sync_mode = WB_SYNC_ALL,
1554 		.nr_to_write = LONG_MAX,
1555 		.range_start = range_start,
1556 		.range_end = range_end,
1557 	};
1558 	int ret;
1559 
1560 	do {
1561 		if (clear_page_dirty_for_io(page)) {
1562 			ret = nfs_writepage_locked(page, &wbc);
1563 			if (ret < 0)
1564 				goto out_error;
1565 		} else if (!PagePrivate(page))
1566 			break;
1567 		ret = nfs_sync_mapping_wait(page->mapping, &wbc, how);
1568 		if (ret < 0)
1569 			goto out_error;
1570 	} while (PagePrivate(page));
1571 	return 0;
1572 out_error:
1573 	__mark_inode_dirty(inode, I_DIRTY_PAGES);
1574 	return ret;
1575 }
1576 
1577 /*
1578  * Write back all requests on one page - we do this before reading it.
1579  */
1580 int nfs_wb_page(struct inode *inode, struct page* page)
1581 {
1582 	return nfs_wb_page_priority(inode, page, FLUSH_STABLE);
1583 }
1584 
1585 int __init nfs_init_writepagecache(void)
1586 {
1587 	nfs_wdata_cachep = kmem_cache_create("nfs_write_data",
1588 					     sizeof(struct nfs_write_data),
1589 					     0, SLAB_HWCACHE_ALIGN,
1590 					     NULL);
1591 	if (nfs_wdata_cachep == NULL)
1592 		return -ENOMEM;
1593 
1594 	nfs_wdata_mempool = mempool_create_slab_pool(MIN_POOL_WRITE,
1595 						     nfs_wdata_cachep);
1596 	if (nfs_wdata_mempool == NULL)
1597 		return -ENOMEM;
1598 
1599 	nfs_commit_mempool = mempool_create_slab_pool(MIN_POOL_COMMIT,
1600 						      nfs_wdata_cachep);
1601 	if (nfs_commit_mempool == NULL)
1602 		return -ENOMEM;
1603 
1604 	/*
1605 	 * NFS congestion size, scale with available memory.
1606 	 *
1607 	 *  64MB:    8192k
1608 	 * 128MB:   11585k
1609 	 * 256MB:   16384k
1610 	 * 512MB:   23170k
1611 	 *   1GB:   32768k
1612 	 *   2GB:   46340k
1613 	 *   4GB:   65536k
1614 	 *   8GB:   92681k
1615 	 *  16GB:  131072k
1616 	 *
1617 	 * This allows larger machines to have larger/more transfers.
1618 	 * Limit the default to 256M
1619 	 */
1620 	nfs_congestion_kb = (16*int_sqrt(totalram_pages)) << (PAGE_SHIFT-10);
1621 	if (nfs_congestion_kb > 256*1024)
1622 		nfs_congestion_kb = 256*1024;
1623 
1624 	return 0;
1625 }
1626 
1627 void nfs_destroy_writepagecache(void)
1628 {
1629 	mempool_destroy(nfs_commit_mempool);
1630 	mempool_destroy(nfs_wdata_mempool);
1631 	kmem_cache_destroy(nfs_wdata_cachep);
1632 }
1633 
1634