1 /* 2 * linux/fs/nfs/write.c 3 * 4 * Write file data over NFS. 5 * 6 * Copyright (C) 1996, 1997, Olaf Kirch <okir@monad.swb.de> 7 */ 8 9 #include <linux/types.h> 10 #include <linux/slab.h> 11 #include <linux/mm.h> 12 #include <linux/pagemap.h> 13 #include <linux/file.h> 14 #include <linux/writeback.h> 15 #include <linux/swap.h> 16 #include <linux/migrate.h> 17 18 #include <linux/sunrpc/clnt.h> 19 #include <linux/nfs_fs.h> 20 #include <linux/nfs_mount.h> 21 #include <linux/nfs_page.h> 22 #include <linux/backing-dev.h> 23 24 #include <asm/uaccess.h> 25 26 #include "delegation.h" 27 #include "internal.h" 28 #include "iostat.h" 29 #include "nfs4_fs.h" 30 #include "fscache.h" 31 32 #define NFSDBG_FACILITY NFSDBG_PAGECACHE 33 34 #define MIN_POOL_WRITE (32) 35 #define MIN_POOL_COMMIT (4) 36 37 /* 38 * Local function declarations 39 */ 40 static void nfs_pageio_init_write(struct nfs_pageio_descriptor *desc, 41 struct inode *inode, int ioflags); 42 static void nfs_redirty_request(struct nfs_page *req); 43 static const struct rpc_call_ops nfs_write_partial_ops; 44 static const struct rpc_call_ops nfs_write_full_ops; 45 static const struct rpc_call_ops nfs_commit_ops; 46 47 static struct kmem_cache *nfs_wdata_cachep; 48 static mempool_t *nfs_wdata_mempool; 49 static mempool_t *nfs_commit_mempool; 50 51 struct nfs_write_data *nfs_commitdata_alloc(void) 52 { 53 struct nfs_write_data *p = mempool_alloc(nfs_commit_mempool, GFP_NOFS); 54 55 if (p) { 56 memset(p, 0, sizeof(*p)); 57 INIT_LIST_HEAD(&p->pages); 58 p->res.seq_res.sr_slotid = NFS4_MAX_SLOT_TABLE; 59 } 60 return p; 61 } 62 63 void nfs_commit_free(struct nfs_write_data *p) 64 { 65 if (p && (p->pagevec != &p->page_array[0])) 66 kfree(p->pagevec); 67 mempool_free(p, nfs_commit_mempool); 68 } 69 70 struct nfs_write_data *nfs_writedata_alloc(unsigned int pagecount) 71 { 72 struct nfs_write_data *p = mempool_alloc(nfs_wdata_mempool, GFP_NOFS); 73 74 if (p) { 75 memset(p, 0, sizeof(*p)); 76 INIT_LIST_HEAD(&p->pages); 77 p->npages = pagecount; 78 p->res.seq_res.sr_slotid = NFS4_MAX_SLOT_TABLE; 79 if (pagecount <= ARRAY_SIZE(p->page_array)) 80 p->pagevec = p->page_array; 81 else { 82 p->pagevec = kcalloc(pagecount, sizeof(struct page *), GFP_NOFS); 83 if (!p->pagevec) { 84 mempool_free(p, nfs_wdata_mempool); 85 p = NULL; 86 } 87 } 88 } 89 return p; 90 } 91 92 void nfs_writedata_free(struct nfs_write_data *p) 93 { 94 if (p && (p->pagevec != &p->page_array[0])) 95 kfree(p->pagevec); 96 mempool_free(p, nfs_wdata_mempool); 97 } 98 99 static void nfs_writedata_release(struct nfs_write_data *wdata) 100 { 101 put_nfs_open_context(wdata->args.context); 102 nfs_writedata_free(wdata); 103 } 104 105 static void nfs_context_set_write_error(struct nfs_open_context *ctx, int error) 106 { 107 ctx->error = error; 108 smp_wmb(); 109 set_bit(NFS_CONTEXT_ERROR_WRITE, &ctx->flags); 110 } 111 112 static struct nfs_page *nfs_page_find_request_locked(struct page *page) 113 { 114 struct nfs_page *req = NULL; 115 116 if (PagePrivate(page)) { 117 req = (struct nfs_page *)page_private(page); 118 if (req != NULL) 119 kref_get(&req->wb_kref); 120 } 121 return req; 122 } 123 124 static struct nfs_page *nfs_page_find_request(struct page *page) 125 { 126 struct inode *inode = page->mapping->host; 127 struct nfs_page *req = NULL; 128 129 spin_lock(&inode->i_lock); 130 req = nfs_page_find_request_locked(page); 131 spin_unlock(&inode->i_lock); 132 return req; 133 } 134 135 /* Adjust the file length if we're writing beyond the end */ 136 static void nfs_grow_file(struct page *page, unsigned int offset, unsigned int count) 137 { 138 struct inode *inode = page->mapping->host; 139 loff_t end, i_size; 140 pgoff_t end_index; 141 142 spin_lock(&inode->i_lock); 143 i_size = i_size_read(inode); 144 end_index = (i_size - 1) >> PAGE_CACHE_SHIFT; 145 if (i_size > 0 && page->index < end_index) 146 goto out; 147 end = ((loff_t)page->index << PAGE_CACHE_SHIFT) + ((loff_t)offset+count); 148 if (i_size >= end) 149 goto out; 150 i_size_write(inode, end); 151 nfs_inc_stats(inode, NFSIOS_EXTENDWRITE); 152 out: 153 spin_unlock(&inode->i_lock); 154 } 155 156 /* A writeback failed: mark the page as bad, and invalidate the page cache */ 157 static void nfs_set_pageerror(struct page *page) 158 { 159 SetPageError(page); 160 nfs_zap_mapping(page->mapping->host, page->mapping); 161 } 162 163 /* We can set the PG_uptodate flag if we see that a write request 164 * covers the full page. 165 */ 166 static void nfs_mark_uptodate(struct page *page, unsigned int base, unsigned int count) 167 { 168 if (PageUptodate(page)) 169 return; 170 if (base != 0) 171 return; 172 if (count != nfs_page_length(page)) 173 return; 174 SetPageUptodate(page); 175 } 176 177 static int wb_priority(struct writeback_control *wbc) 178 { 179 if (wbc->for_reclaim) 180 return FLUSH_HIGHPRI | FLUSH_STABLE; 181 if (wbc->for_kupdate || wbc->for_background) 182 return FLUSH_LOWPRI; 183 return 0; 184 } 185 186 /* 187 * NFS congestion control 188 */ 189 190 int nfs_congestion_kb; 191 192 #define NFS_CONGESTION_ON_THRESH (nfs_congestion_kb >> (PAGE_SHIFT-10)) 193 #define NFS_CONGESTION_OFF_THRESH \ 194 (NFS_CONGESTION_ON_THRESH - (NFS_CONGESTION_ON_THRESH >> 2)) 195 196 static int nfs_set_page_writeback(struct page *page) 197 { 198 int ret = test_set_page_writeback(page); 199 200 if (!ret) { 201 struct inode *inode = page->mapping->host; 202 struct nfs_server *nfss = NFS_SERVER(inode); 203 204 if (atomic_long_inc_return(&nfss->writeback) > 205 NFS_CONGESTION_ON_THRESH) { 206 set_bdi_congested(&nfss->backing_dev_info, 207 BLK_RW_ASYNC); 208 } 209 } 210 return ret; 211 } 212 213 static void nfs_end_page_writeback(struct page *page) 214 { 215 struct inode *inode = page->mapping->host; 216 struct nfs_server *nfss = NFS_SERVER(inode); 217 218 end_page_writeback(page); 219 if (atomic_long_dec_return(&nfss->writeback) < NFS_CONGESTION_OFF_THRESH) 220 clear_bdi_congested(&nfss->backing_dev_info, BLK_RW_ASYNC); 221 } 222 223 static struct nfs_page *nfs_find_and_lock_request(struct page *page) 224 { 225 struct inode *inode = page->mapping->host; 226 struct nfs_page *req; 227 int ret; 228 229 spin_lock(&inode->i_lock); 230 for (;;) { 231 req = nfs_page_find_request_locked(page); 232 if (req == NULL) 233 break; 234 if (nfs_set_page_tag_locked(req)) 235 break; 236 /* Note: If we hold the page lock, as is the case in nfs_writepage, 237 * then the call to nfs_set_page_tag_locked() will always 238 * succeed provided that someone hasn't already marked the 239 * request as dirty (in which case we don't care). 240 */ 241 spin_unlock(&inode->i_lock); 242 ret = nfs_wait_on_request(req); 243 nfs_release_request(req); 244 if (ret != 0) 245 return ERR_PTR(ret); 246 spin_lock(&inode->i_lock); 247 } 248 spin_unlock(&inode->i_lock); 249 return req; 250 } 251 252 /* 253 * Find an associated nfs write request, and prepare to flush it out 254 * May return an error if the user signalled nfs_wait_on_request(). 255 */ 256 static int nfs_page_async_flush(struct nfs_pageio_descriptor *pgio, 257 struct page *page) 258 { 259 struct nfs_page *req; 260 int ret = 0; 261 262 req = nfs_find_and_lock_request(page); 263 if (!req) 264 goto out; 265 ret = PTR_ERR(req); 266 if (IS_ERR(req)) 267 goto out; 268 269 ret = nfs_set_page_writeback(page); 270 BUG_ON(ret != 0); 271 BUG_ON(test_bit(PG_CLEAN, &req->wb_flags)); 272 273 if (!nfs_pageio_add_request(pgio, req)) { 274 nfs_redirty_request(req); 275 ret = pgio->pg_error; 276 } 277 out: 278 return ret; 279 } 280 281 static int nfs_do_writepage(struct page *page, struct writeback_control *wbc, struct nfs_pageio_descriptor *pgio) 282 { 283 struct inode *inode = page->mapping->host; 284 285 nfs_inc_stats(inode, NFSIOS_VFSWRITEPAGE); 286 nfs_add_stats(inode, NFSIOS_WRITEPAGES, 1); 287 288 nfs_pageio_cond_complete(pgio, page->index); 289 return nfs_page_async_flush(pgio, page); 290 } 291 292 /* 293 * Write an mmapped page to the server. 294 */ 295 static int nfs_writepage_locked(struct page *page, struct writeback_control *wbc) 296 { 297 struct nfs_pageio_descriptor pgio; 298 int err; 299 300 nfs_pageio_init_write(&pgio, page->mapping->host, wb_priority(wbc)); 301 err = nfs_do_writepage(page, wbc, &pgio); 302 nfs_pageio_complete(&pgio); 303 if (err < 0) 304 return err; 305 if (pgio.pg_error < 0) 306 return pgio.pg_error; 307 return 0; 308 } 309 310 int nfs_writepage(struct page *page, struct writeback_control *wbc) 311 { 312 int ret; 313 314 ret = nfs_writepage_locked(page, wbc); 315 unlock_page(page); 316 return ret; 317 } 318 319 static int nfs_writepages_callback(struct page *page, struct writeback_control *wbc, void *data) 320 { 321 int ret; 322 323 ret = nfs_do_writepage(page, wbc, data); 324 unlock_page(page); 325 return ret; 326 } 327 328 int nfs_writepages(struct address_space *mapping, struct writeback_control *wbc) 329 { 330 struct inode *inode = mapping->host; 331 unsigned long *bitlock = &NFS_I(inode)->flags; 332 struct nfs_pageio_descriptor pgio; 333 int err; 334 335 /* Stop dirtying of new pages while we sync */ 336 err = wait_on_bit_lock(bitlock, NFS_INO_FLUSHING, 337 nfs_wait_bit_killable, TASK_KILLABLE); 338 if (err) 339 goto out_err; 340 341 nfs_inc_stats(inode, NFSIOS_VFSWRITEPAGES); 342 343 nfs_pageio_init_write(&pgio, inode, wb_priority(wbc)); 344 err = write_cache_pages(mapping, wbc, nfs_writepages_callback, &pgio); 345 nfs_pageio_complete(&pgio); 346 347 clear_bit_unlock(NFS_INO_FLUSHING, bitlock); 348 smp_mb__after_clear_bit(); 349 wake_up_bit(bitlock, NFS_INO_FLUSHING); 350 351 if (err < 0) 352 goto out_err; 353 err = pgio.pg_error; 354 if (err < 0) 355 goto out_err; 356 return 0; 357 out_err: 358 return err; 359 } 360 361 /* 362 * Insert a write request into an inode 363 */ 364 static int nfs_inode_add_request(struct inode *inode, struct nfs_page *req) 365 { 366 struct nfs_inode *nfsi = NFS_I(inode); 367 int error; 368 369 error = radix_tree_preload(GFP_NOFS); 370 if (error != 0) 371 goto out; 372 373 /* Lock the request! */ 374 nfs_lock_request_dontget(req); 375 376 spin_lock(&inode->i_lock); 377 error = radix_tree_insert(&nfsi->nfs_page_tree, req->wb_index, req); 378 BUG_ON(error); 379 if (!nfsi->npages) { 380 igrab(inode); 381 if (nfs_have_delegation(inode, FMODE_WRITE)) 382 nfsi->change_attr++; 383 } 384 SetPagePrivate(req->wb_page); 385 set_page_private(req->wb_page, (unsigned long)req); 386 nfsi->npages++; 387 kref_get(&req->wb_kref); 388 radix_tree_tag_set(&nfsi->nfs_page_tree, req->wb_index, 389 NFS_PAGE_TAG_LOCKED); 390 spin_unlock(&inode->i_lock); 391 radix_tree_preload_end(); 392 out: 393 return error; 394 } 395 396 /* 397 * Remove a write request from an inode 398 */ 399 static void nfs_inode_remove_request(struct nfs_page *req) 400 { 401 struct inode *inode = req->wb_context->path.dentry->d_inode; 402 struct nfs_inode *nfsi = NFS_I(inode); 403 404 BUG_ON (!NFS_WBACK_BUSY(req)); 405 406 spin_lock(&inode->i_lock); 407 set_page_private(req->wb_page, 0); 408 ClearPagePrivate(req->wb_page); 409 radix_tree_delete(&nfsi->nfs_page_tree, req->wb_index); 410 nfsi->npages--; 411 if (!nfsi->npages) { 412 spin_unlock(&inode->i_lock); 413 iput(inode); 414 } else 415 spin_unlock(&inode->i_lock); 416 nfs_clear_request(req); 417 nfs_release_request(req); 418 } 419 420 static void 421 nfs_mark_request_dirty(struct nfs_page *req) 422 { 423 __set_page_dirty_nobuffers(req->wb_page); 424 } 425 426 #if defined(CONFIG_NFS_V3) || defined(CONFIG_NFS_V4) 427 /* 428 * Add a request to the inode's commit list. 429 */ 430 static void 431 nfs_mark_request_commit(struct nfs_page *req) 432 { 433 struct inode *inode = req->wb_context->path.dentry->d_inode; 434 struct nfs_inode *nfsi = NFS_I(inode); 435 436 spin_lock(&inode->i_lock); 437 set_bit(PG_CLEAN, &(req)->wb_flags); 438 radix_tree_tag_set(&nfsi->nfs_page_tree, 439 req->wb_index, 440 NFS_PAGE_TAG_COMMIT); 441 nfsi->ncommit++; 442 spin_unlock(&inode->i_lock); 443 inc_zone_page_state(req->wb_page, NR_UNSTABLE_NFS); 444 inc_bdi_stat(req->wb_page->mapping->backing_dev_info, BDI_RECLAIMABLE); 445 __mark_inode_dirty(inode, I_DIRTY_DATASYNC); 446 } 447 448 static int 449 nfs_clear_request_commit(struct nfs_page *req) 450 { 451 struct page *page = req->wb_page; 452 453 if (test_and_clear_bit(PG_CLEAN, &(req)->wb_flags)) { 454 dec_zone_page_state(page, NR_UNSTABLE_NFS); 455 dec_bdi_stat(page->mapping->backing_dev_info, BDI_RECLAIMABLE); 456 return 1; 457 } 458 return 0; 459 } 460 461 static inline 462 int nfs_write_need_commit(struct nfs_write_data *data) 463 { 464 return data->verf.committed != NFS_FILE_SYNC; 465 } 466 467 static inline 468 int nfs_reschedule_unstable_write(struct nfs_page *req) 469 { 470 if (test_and_clear_bit(PG_NEED_COMMIT, &req->wb_flags)) { 471 nfs_mark_request_commit(req); 472 return 1; 473 } 474 if (test_and_clear_bit(PG_NEED_RESCHED, &req->wb_flags)) { 475 nfs_mark_request_dirty(req); 476 return 1; 477 } 478 return 0; 479 } 480 #else 481 static inline void 482 nfs_mark_request_commit(struct nfs_page *req) 483 { 484 } 485 486 static inline int 487 nfs_clear_request_commit(struct nfs_page *req) 488 { 489 return 0; 490 } 491 492 static inline 493 int nfs_write_need_commit(struct nfs_write_data *data) 494 { 495 return 0; 496 } 497 498 static inline 499 int nfs_reschedule_unstable_write(struct nfs_page *req) 500 { 501 return 0; 502 } 503 #endif 504 505 #if defined(CONFIG_NFS_V3) || defined(CONFIG_NFS_V4) 506 static int 507 nfs_need_commit(struct nfs_inode *nfsi) 508 { 509 return radix_tree_tagged(&nfsi->nfs_page_tree, NFS_PAGE_TAG_COMMIT); 510 } 511 512 /* 513 * nfs_scan_commit - Scan an inode for commit requests 514 * @inode: NFS inode to scan 515 * @dst: destination list 516 * @idx_start: lower bound of page->index to scan. 517 * @npages: idx_start + npages sets the upper bound to scan. 518 * 519 * Moves requests from the inode's 'commit' request list. 520 * The requests are *not* checked to ensure that they form a contiguous set. 521 */ 522 static int 523 nfs_scan_commit(struct inode *inode, struct list_head *dst, pgoff_t idx_start, unsigned int npages) 524 { 525 struct nfs_inode *nfsi = NFS_I(inode); 526 int ret; 527 528 if (!nfs_need_commit(nfsi)) 529 return 0; 530 531 ret = nfs_scan_list(nfsi, dst, idx_start, npages, NFS_PAGE_TAG_COMMIT); 532 if (ret > 0) 533 nfsi->ncommit -= ret; 534 if (nfs_need_commit(NFS_I(inode))) 535 __mark_inode_dirty(inode, I_DIRTY_DATASYNC); 536 return ret; 537 } 538 #else 539 static inline int nfs_need_commit(struct nfs_inode *nfsi) 540 { 541 return 0; 542 } 543 544 static inline int nfs_scan_commit(struct inode *inode, struct list_head *dst, pgoff_t idx_start, unsigned int npages) 545 { 546 return 0; 547 } 548 #endif 549 550 /* 551 * Search for an existing write request, and attempt to update 552 * it to reflect a new dirty region on a given page. 553 * 554 * If the attempt fails, then the existing request is flushed out 555 * to disk. 556 */ 557 static struct nfs_page *nfs_try_to_update_request(struct inode *inode, 558 struct page *page, 559 unsigned int offset, 560 unsigned int bytes) 561 { 562 struct nfs_page *req; 563 unsigned int rqend; 564 unsigned int end; 565 int error; 566 567 if (!PagePrivate(page)) 568 return NULL; 569 570 end = offset + bytes; 571 spin_lock(&inode->i_lock); 572 573 for (;;) { 574 req = nfs_page_find_request_locked(page); 575 if (req == NULL) 576 goto out_unlock; 577 578 rqend = req->wb_offset + req->wb_bytes; 579 /* 580 * Tell the caller to flush out the request if 581 * the offsets are non-contiguous. 582 * Note: nfs_flush_incompatible() will already 583 * have flushed out requests having wrong owners. 584 */ 585 if (offset > rqend 586 || end < req->wb_offset) 587 goto out_flushme; 588 589 if (nfs_set_page_tag_locked(req)) 590 break; 591 592 /* The request is locked, so wait and then retry */ 593 spin_unlock(&inode->i_lock); 594 error = nfs_wait_on_request(req); 595 nfs_release_request(req); 596 if (error != 0) 597 goto out_err; 598 spin_lock(&inode->i_lock); 599 } 600 601 if (nfs_clear_request_commit(req) && 602 radix_tree_tag_clear(&NFS_I(inode)->nfs_page_tree, 603 req->wb_index, NFS_PAGE_TAG_COMMIT) != NULL) 604 NFS_I(inode)->ncommit--; 605 606 /* Okay, the request matches. Update the region */ 607 if (offset < req->wb_offset) { 608 req->wb_offset = offset; 609 req->wb_pgbase = offset; 610 } 611 if (end > rqend) 612 req->wb_bytes = end - req->wb_offset; 613 else 614 req->wb_bytes = rqend - req->wb_offset; 615 out_unlock: 616 spin_unlock(&inode->i_lock); 617 return req; 618 out_flushme: 619 spin_unlock(&inode->i_lock); 620 nfs_release_request(req); 621 error = nfs_wb_page(inode, page); 622 out_err: 623 return ERR_PTR(error); 624 } 625 626 /* 627 * Try to update an existing write request, or create one if there is none. 628 * 629 * Note: Should always be called with the Page Lock held to prevent races 630 * if we have to add a new request. Also assumes that the caller has 631 * already called nfs_flush_incompatible() if necessary. 632 */ 633 static struct nfs_page * nfs_setup_write_request(struct nfs_open_context* ctx, 634 struct page *page, unsigned int offset, unsigned int bytes) 635 { 636 struct inode *inode = page->mapping->host; 637 struct nfs_page *req; 638 int error; 639 640 req = nfs_try_to_update_request(inode, page, offset, bytes); 641 if (req != NULL) 642 goto out; 643 req = nfs_create_request(ctx, inode, page, offset, bytes); 644 if (IS_ERR(req)) 645 goto out; 646 error = nfs_inode_add_request(inode, req); 647 if (error != 0) { 648 nfs_release_request(req); 649 req = ERR_PTR(error); 650 } 651 out: 652 return req; 653 } 654 655 static int nfs_writepage_setup(struct nfs_open_context *ctx, struct page *page, 656 unsigned int offset, unsigned int count) 657 { 658 struct nfs_page *req; 659 660 req = nfs_setup_write_request(ctx, page, offset, count); 661 if (IS_ERR(req)) 662 return PTR_ERR(req); 663 /* Update file length */ 664 nfs_grow_file(page, offset, count); 665 nfs_mark_uptodate(page, req->wb_pgbase, req->wb_bytes); 666 nfs_clear_page_tag_locked(req); 667 return 0; 668 } 669 670 int nfs_flush_incompatible(struct file *file, struct page *page) 671 { 672 struct nfs_open_context *ctx = nfs_file_open_context(file); 673 struct nfs_page *req; 674 int do_flush, status; 675 /* 676 * Look for a request corresponding to this page. If there 677 * is one, and it belongs to another file, we flush it out 678 * before we try to copy anything into the page. Do this 679 * due to the lack of an ACCESS-type call in NFSv2. 680 * Also do the same if we find a request from an existing 681 * dropped page. 682 */ 683 do { 684 req = nfs_page_find_request(page); 685 if (req == NULL) 686 return 0; 687 do_flush = req->wb_page != page || req->wb_context != ctx; 688 nfs_release_request(req); 689 if (!do_flush) 690 return 0; 691 status = nfs_wb_page(page->mapping->host, page); 692 } while (status == 0); 693 return status; 694 } 695 696 /* 697 * If the page cache is marked as unsafe or invalid, then we can't rely on 698 * the PageUptodate() flag. In this case, we will need to turn off 699 * write optimisations that depend on the page contents being correct. 700 */ 701 static int nfs_write_pageuptodate(struct page *page, struct inode *inode) 702 { 703 return PageUptodate(page) && 704 !(NFS_I(inode)->cache_validity & (NFS_INO_REVAL_PAGECACHE|NFS_INO_INVALID_DATA)); 705 } 706 707 /* 708 * Update and possibly write a cached page of an NFS file. 709 * 710 * XXX: Keep an eye on generic_file_read to make sure it doesn't do bad 711 * things with a page scheduled for an RPC call (e.g. invalidate it). 712 */ 713 int nfs_updatepage(struct file *file, struct page *page, 714 unsigned int offset, unsigned int count) 715 { 716 struct nfs_open_context *ctx = nfs_file_open_context(file); 717 struct inode *inode = page->mapping->host; 718 int status = 0; 719 720 nfs_inc_stats(inode, NFSIOS_VFSUPDATEPAGE); 721 722 dprintk("NFS: nfs_updatepage(%s/%s %d@%lld)\n", 723 file->f_path.dentry->d_parent->d_name.name, 724 file->f_path.dentry->d_name.name, count, 725 (long long)(page_offset(page) + offset)); 726 727 /* If we're not using byte range locks, and we know the page 728 * is up to date, it may be more efficient to extend the write 729 * to cover the entire page in order to avoid fragmentation 730 * inefficiencies. 731 */ 732 if (nfs_write_pageuptodate(page, inode) && 733 inode->i_flock == NULL && 734 !(file->f_flags & O_DSYNC)) { 735 count = max(count + offset, nfs_page_length(page)); 736 offset = 0; 737 } 738 739 status = nfs_writepage_setup(ctx, page, offset, count); 740 if (status < 0) 741 nfs_set_pageerror(page); 742 else 743 __set_page_dirty_nobuffers(page); 744 745 dprintk("NFS: nfs_updatepage returns %d (isize %lld)\n", 746 status, (long long)i_size_read(inode)); 747 return status; 748 } 749 750 static void nfs_writepage_release(struct nfs_page *req) 751 { 752 753 if (PageError(req->wb_page) || !nfs_reschedule_unstable_write(req)) { 754 nfs_end_page_writeback(req->wb_page); 755 nfs_inode_remove_request(req); 756 } else 757 nfs_end_page_writeback(req->wb_page); 758 nfs_clear_page_tag_locked(req); 759 } 760 761 static int flush_task_priority(int how) 762 { 763 switch (how & (FLUSH_HIGHPRI|FLUSH_LOWPRI)) { 764 case FLUSH_HIGHPRI: 765 return RPC_PRIORITY_HIGH; 766 case FLUSH_LOWPRI: 767 return RPC_PRIORITY_LOW; 768 } 769 return RPC_PRIORITY_NORMAL; 770 } 771 772 /* 773 * Set up the argument/result storage required for the RPC call. 774 */ 775 static int nfs_write_rpcsetup(struct nfs_page *req, 776 struct nfs_write_data *data, 777 const struct rpc_call_ops *call_ops, 778 unsigned int count, unsigned int offset, 779 int how) 780 { 781 struct inode *inode = req->wb_context->path.dentry->d_inode; 782 int flags = (how & FLUSH_SYNC) ? 0 : RPC_TASK_ASYNC; 783 int priority = flush_task_priority(how); 784 struct rpc_task *task; 785 struct rpc_message msg = { 786 .rpc_argp = &data->args, 787 .rpc_resp = &data->res, 788 .rpc_cred = req->wb_context->cred, 789 }; 790 struct rpc_task_setup task_setup_data = { 791 .rpc_client = NFS_CLIENT(inode), 792 .task = &data->task, 793 .rpc_message = &msg, 794 .callback_ops = call_ops, 795 .callback_data = data, 796 .workqueue = nfsiod_workqueue, 797 .flags = flags, 798 .priority = priority, 799 }; 800 801 /* Set up the RPC argument and reply structs 802 * NB: take care not to mess about with data->commit et al. */ 803 804 data->req = req; 805 data->inode = inode = req->wb_context->path.dentry->d_inode; 806 data->cred = msg.rpc_cred; 807 808 data->args.fh = NFS_FH(inode); 809 data->args.offset = req_offset(req) + offset; 810 data->args.pgbase = req->wb_pgbase + offset; 811 data->args.pages = data->pagevec; 812 data->args.count = count; 813 data->args.context = get_nfs_open_context(req->wb_context); 814 data->args.stable = NFS_UNSTABLE; 815 if (how & FLUSH_STABLE) { 816 data->args.stable = NFS_DATA_SYNC; 817 if (!nfs_need_commit(NFS_I(inode))) 818 data->args.stable = NFS_FILE_SYNC; 819 } 820 821 data->res.fattr = &data->fattr; 822 data->res.count = count; 823 data->res.verf = &data->verf; 824 nfs_fattr_init(&data->fattr); 825 826 /* Set up the initial task struct. */ 827 NFS_PROTO(inode)->write_setup(data, &msg); 828 829 dprintk("NFS: %5u initiated write call " 830 "(req %s/%lld, %u bytes @ offset %llu)\n", 831 data->task.tk_pid, 832 inode->i_sb->s_id, 833 (long long)NFS_FILEID(inode), 834 count, 835 (unsigned long long)data->args.offset); 836 837 task = rpc_run_task(&task_setup_data); 838 if (IS_ERR(task)) 839 return PTR_ERR(task); 840 rpc_put_task(task); 841 return 0; 842 } 843 844 /* If a nfs_flush_* function fails, it should remove reqs from @head and 845 * call this on each, which will prepare them to be retried on next 846 * writeback using standard nfs. 847 */ 848 static void nfs_redirty_request(struct nfs_page *req) 849 { 850 nfs_mark_request_dirty(req); 851 nfs_end_page_writeback(req->wb_page); 852 nfs_clear_page_tag_locked(req); 853 } 854 855 /* 856 * Generate multiple small requests to write out a single 857 * contiguous dirty area on one page. 858 */ 859 static int nfs_flush_multi(struct inode *inode, struct list_head *head, unsigned int npages, size_t count, int how) 860 { 861 struct nfs_page *req = nfs_list_entry(head->next); 862 struct page *page = req->wb_page; 863 struct nfs_write_data *data; 864 size_t wsize = NFS_SERVER(inode)->wsize, nbytes; 865 unsigned int offset; 866 int requests = 0; 867 int ret = 0; 868 LIST_HEAD(list); 869 870 nfs_list_remove_request(req); 871 872 nbytes = count; 873 do { 874 size_t len = min(nbytes, wsize); 875 876 data = nfs_writedata_alloc(1); 877 if (!data) 878 goto out_bad; 879 list_add(&data->pages, &list); 880 requests++; 881 nbytes -= len; 882 } while (nbytes != 0); 883 atomic_set(&req->wb_complete, requests); 884 885 ClearPageError(page); 886 offset = 0; 887 nbytes = count; 888 do { 889 int ret2; 890 891 data = list_entry(list.next, struct nfs_write_data, pages); 892 list_del_init(&data->pages); 893 894 data->pagevec[0] = page; 895 896 if (nbytes < wsize) 897 wsize = nbytes; 898 ret2 = nfs_write_rpcsetup(req, data, &nfs_write_partial_ops, 899 wsize, offset, how); 900 if (ret == 0) 901 ret = ret2; 902 offset += wsize; 903 nbytes -= wsize; 904 } while (nbytes != 0); 905 906 return ret; 907 908 out_bad: 909 while (!list_empty(&list)) { 910 data = list_entry(list.next, struct nfs_write_data, pages); 911 list_del(&data->pages); 912 nfs_writedata_release(data); 913 } 914 nfs_redirty_request(req); 915 return -ENOMEM; 916 } 917 918 /* 919 * Create an RPC task for the given write request and kick it. 920 * The page must have been locked by the caller. 921 * 922 * It may happen that the page we're passed is not marked dirty. 923 * This is the case if nfs_updatepage detects a conflicting request 924 * that has been written but not committed. 925 */ 926 static int nfs_flush_one(struct inode *inode, struct list_head *head, unsigned int npages, size_t count, int how) 927 { 928 struct nfs_page *req; 929 struct page **pages; 930 struct nfs_write_data *data; 931 932 data = nfs_writedata_alloc(npages); 933 if (!data) 934 goto out_bad; 935 936 pages = data->pagevec; 937 while (!list_empty(head)) { 938 req = nfs_list_entry(head->next); 939 nfs_list_remove_request(req); 940 nfs_list_add_request(req, &data->pages); 941 ClearPageError(req->wb_page); 942 *pages++ = req->wb_page; 943 } 944 req = nfs_list_entry(data->pages.next); 945 946 /* Set up the argument struct */ 947 return nfs_write_rpcsetup(req, data, &nfs_write_full_ops, count, 0, how); 948 out_bad: 949 while (!list_empty(head)) { 950 req = nfs_list_entry(head->next); 951 nfs_list_remove_request(req); 952 nfs_redirty_request(req); 953 } 954 return -ENOMEM; 955 } 956 957 static void nfs_pageio_init_write(struct nfs_pageio_descriptor *pgio, 958 struct inode *inode, int ioflags) 959 { 960 size_t wsize = NFS_SERVER(inode)->wsize; 961 962 if (wsize < PAGE_CACHE_SIZE) 963 nfs_pageio_init(pgio, inode, nfs_flush_multi, wsize, ioflags); 964 else 965 nfs_pageio_init(pgio, inode, nfs_flush_one, wsize, ioflags); 966 } 967 968 /* 969 * Handle a write reply that flushed part of a page. 970 */ 971 static void nfs_writeback_done_partial(struct rpc_task *task, void *calldata) 972 { 973 struct nfs_write_data *data = calldata; 974 975 dprintk("NFS: %5u write(%s/%lld %d@%lld)", 976 task->tk_pid, 977 data->req->wb_context->path.dentry->d_inode->i_sb->s_id, 978 (long long) 979 NFS_FILEID(data->req->wb_context->path.dentry->d_inode), 980 data->req->wb_bytes, (long long)req_offset(data->req)); 981 982 nfs_writeback_done(task, data); 983 } 984 985 static void nfs_writeback_release_partial(void *calldata) 986 { 987 struct nfs_write_data *data = calldata; 988 struct nfs_page *req = data->req; 989 struct page *page = req->wb_page; 990 int status = data->task.tk_status; 991 992 if (status < 0) { 993 nfs_set_pageerror(page); 994 nfs_context_set_write_error(req->wb_context, status); 995 dprintk(", error = %d\n", status); 996 goto out; 997 } 998 999 if (nfs_write_need_commit(data)) { 1000 struct inode *inode = page->mapping->host; 1001 1002 spin_lock(&inode->i_lock); 1003 if (test_bit(PG_NEED_RESCHED, &req->wb_flags)) { 1004 /* Do nothing we need to resend the writes */ 1005 } else if (!test_and_set_bit(PG_NEED_COMMIT, &req->wb_flags)) { 1006 memcpy(&req->wb_verf, &data->verf, sizeof(req->wb_verf)); 1007 dprintk(" defer commit\n"); 1008 } else if (memcmp(&req->wb_verf, &data->verf, sizeof(req->wb_verf))) { 1009 set_bit(PG_NEED_RESCHED, &req->wb_flags); 1010 clear_bit(PG_NEED_COMMIT, &req->wb_flags); 1011 dprintk(" server reboot detected\n"); 1012 } 1013 spin_unlock(&inode->i_lock); 1014 } else 1015 dprintk(" OK\n"); 1016 1017 out: 1018 if (atomic_dec_and_test(&req->wb_complete)) 1019 nfs_writepage_release(req); 1020 nfs_writedata_release(calldata); 1021 } 1022 1023 #if defined(CONFIG_NFS_V4_1) 1024 void nfs_write_prepare(struct rpc_task *task, void *calldata) 1025 { 1026 struct nfs_write_data *data = calldata; 1027 struct nfs_client *clp = (NFS_SERVER(data->inode))->nfs_client; 1028 1029 if (nfs4_setup_sequence(clp, &data->args.seq_args, 1030 &data->res.seq_res, 1, task)) 1031 return; 1032 rpc_call_start(task); 1033 } 1034 #endif /* CONFIG_NFS_V4_1 */ 1035 1036 static const struct rpc_call_ops nfs_write_partial_ops = { 1037 #if defined(CONFIG_NFS_V4_1) 1038 .rpc_call_prepare = nfs_write_prepare, 1039 #endif /* CONFIG_NFS_V4_1 */ 1040 .rpc_call_done = nfs_writeback_done_partial, 1041 .rpc_release = nfs_writeback_release_partial, 1042 }; 1043 1044 /* 1045 * Handle a write reply that flushes a whole page. 1046 * 1047 * FIXME: There is an inherent race with invalidate_inode_pages and 1048 * writebacks since the page->count is kept > 1 for as long 1049 * as the page has a write request pending. 1050 */ 1051 static void nfs_writeback_done_full(struct rpc_task *task, void *calldata) 1052 { 1053 struct nfs_write_data *data = calldata; 1054 1055 nfs_writeback_done(task, data); 1056 } 1057 1058 static void nfs_writeback_release_full(void *calldata) 1059 { 1060 struct nfs_write_data *data = calldata; 1061 int status = data->task.tk_status; 1062 1063 /* Update attributes as result of writeback. */ 1064 while (!list_empty(&data->pages)) { 1065 struct nfs_page *req = nfs_list_entry(data->pages.next); 1066 struct page *page = req->wb_page; 1067 1068 nfs_list_remove_request(req); 1069 1070 dprintk("NFS: %5u write (%s/%lld %d@%lld)", 1071 data->task.tk_pid, 1072 req->wb_context->path.dentry->d_inode->i_sb->s_id, 1073 (long long)NFS_FILEID(req->wb_context->path.dentry->d_inode), 1074 req->wb_bytes, 1075 (long long)req_offset(req)); 1076 1077 if (status < 0) { 1078 nfs_set_pageerror(page); 1079 nfs_context_set_write_error(req->wb_context, status); 1080 dprintk(", error = %d\n", status); 1081 goto remove_request; 1082 } 1083 1084 if (nfs_write_need_commit(data)) { 1085 memcpy(&req->wb_verf, &data->verf, sizeof(req->wb_verf)); 1086 nfs_mark_request_commit(req); 1087 nfs_end_page_writeback(page); 1088 dprintk(" marked for commit\n"); 1089 goto next; 1090 } 1091 dprintk(" OK\n"); 1092 remove_request: 1093 nfs_end_page_writeback(page); 1094 nfs_inode_remove_request(req); 1095 next: 1096 nfs_clear_page_tag_locked(req); 1097 } 1098 nfs_writedata_release(calldata); 1099 } 1100 1101 static const struct rpc_call_ops nfs_write_full_ops = { 1102 #if defined(CONFIG_NFS_V4_1) 1103 .rpc_call_prepare = nfs_write_prepare, 1104 #endif /* CONFIG_NFS_V4_1 */ 1105 .rpc_call_done = nfs_writeback_done_full, 1106 .rpc_release = nfs_writeback_release_full, 1107 }; 1108 1109 1110 /* 1111 * This function is called when the WRITE call is complete. 1112 */ 1113 int nfs_writeback_done(struct rpc_task *task, struct nfs_write_data *data) 1114 { 1115 struct nfs_writeargs *argp = &data->args; 1116 struct nfs_writeres *resp = &data->res; 1117 struct nfs_server *server = NFS_SERVER(data->inode); 1118 int status; 1119 1120 dprintk("NFS: %5u nfs_writeback_done (status %d)\n", 1121 task->tk_pid, task->tk_status); 1122 1123 /* 1124 * ->write_done will attempt to use post-op attributes to detect 1125 * conflicting writes by other clients. A strict interpretation 1126 * of close-to-open would allow us to continue caching even if 1127 * another writer had changed the file, but some applications 1128 * depend on tighter cache coherency when writing. 1129 */ 1130 status = NFS_PROTO(data->inode)->write_done(task, data); 1131 if (status != 0) 1132 return status; 1133 nfs_add_stats(data->inode, NFSIOS_SERVERWRITTENBYTES, resp->count); 1134 1135 #if defined(CONFIG_NFS_V3) || defined(CONFIG_NFS_V4) 1136 if (resp->verf->committed < argp->stable && task->tk_status >= 0) { 1137 /* We tried a write call, but the server did not 1138 * commit data to stable storage even though we 1139 * requested it. 1140 * Note: There is a known bug in Tru64 < 5.0 in which 1141 * the server reports NFS_DATA_SYNC, but performs 1142 * NFS_FILE_SYNC. We therefore implement this checking 1143 * as a dprintk() in order to avoid filling syslog. 1144 */ 1145 static unsigned long complain; 1146 1147 if (time_before(complain, jiffies)) { 1148 dprintk("NFS: faulty NFS server %s:" 1149 " (committed = %d) != (stable = %d)\n", 1150 server->nfs_client->cl_hostname, 1151 resp->verf->committed, argp->stable); 1152 complain = jiffies + 300 * HZ; 1153 } 1154 } 1155 #endif 1156 /* Is this a short write? */ 1157 if (task->tk_status >= 0 && resp->count < argp->count) { 1158 static unsigned long complain; 1159 1160 nfs_inc_stats(data->inode, NFSIOS_SHORTWRITE); 1161 1162 /* Has the server at least made some progress? */ 1163 if (resp->count != 0) { 1164 /* Was this an NFSv2 write or an NFSv3 stable write? */ 1165 if (resp->verf->committed != NFS_UNSTABLE) { 1166 /* Resend from where the server left off */ 1167 argp->offset += resp->count; 1168 argp->pgbase += resp->count; 1169 argp->count -= resp->count; 1170 } else { 1171 /* Resend as a stable write in order to avoid 1172 * headaches in the case of a server crash. 1173 */ 1174 argp->stable = NFS_FILE_SYNC; 1175 } 1176 nfs_restart_rpc(task, server->nfs_client); 1177 return -EAGAIN; 1178 } 1179 if (time_before(complain, jiffies)) { 1180 printk(KERN_WARNING 1181 "NFS: Server wrote zero bytes, expected %u.\n", 1182 argp->count); 1183 complain = jiffies + 300 * HZ; 1184 } 1185 /* Can't do anything about it except throw an error. */ 1186 task->tk_status = -EIO; 1187 } 1188 return 0; 1189 } 1190 1191 1192 #if defined(CONFIG_NFS_V3) || defined(CONFIG_NFS_V4) 1193 static void nfs_commitdata_release(void *data) 1194 { 1195 struct nfs_write_data *wdata = data; 1196 1197 put_nfs_open_context(wdata->args.context); 1198 nfs_commit_free(wdata); 1199 } 1200 1201 /* 1202 * Set up the argument/result storage required for the RPC call. 1203 */ 1204 static int nfs_commit_rpcsetup(struct list_head *head, 1205 struct nfs_write_data *data, 1206 int how) 1207 { 1208 struct nfs_page *first = nfs_list_entry(head->next); 1209 struct inode *inode = first->wb_context->path.dentry->d_inode; 1210 int flags = (how & FLUSH_SYNC) ? 0 : RPC_TASK_ASYNC; 1211 int priority = flush_task_priority(how); 1212 struct rpc_task *task; 1213 struct rpc_message msg = { 1214 .rpc_argp = &data->args, 1215 .rpc_resp = &data->res, 1216 .rpc_cred = first->wb_context->cred, 1217 }; 1218 struct rpc_task_setup task_setup_data = { 1219 .task = &data->task, 1220 .rpc_client = NFS_CLIENT(inode), 1221 .rpc_message = &msg, 1222 .callback_ops = &nfs_commit_ops, 1223 .callback_data = data, 1224 .workqueue = nfsiod_workqueue, 1225 .flags = flags, 1226 .priority = priority, 1227 }; 1228 1229 /* Set up the RPC argument and reply structs 1230 * NB: take care not to mess about with data->commit et al. */ 1231 1232 list_splice_init(head, &data->pages); 1233 1234 data->inode = inode; 1235 data->cred = msg.rpc_cred; 1236 1237 data->args.fh = NFS_FH(data->inode); 1238 /* Note: we always request a commit of the entire inode */ 1239 data->args.offset = 0; 1240 data->args.count = 0; 1241 data->args.context = get_nfs_open_context(first->wb_context); 1242 data->res.count = 0; 1243 data->res.fattr = &data->fattr; 1244 data->res.verf = &data->verf; 1245 nfs_fattr_init(&data->fattr); 1246 1247 /* Set up the initial task struct. */ 1248 NFS_PROTO(inode)->commit_setup(data, &msg); 1249 1250 dprintk("NFS: %5u initiated commit call\n", data->task.tk_pid); 1251 1252 task = rpc_run_task(&task_setup_data); 1253 if (IS_ERR(task)) 1254 return PTR_ERR(task); 1255 rpc_put_task(task); 1256 return 0; 1257 } 1258 1259 /* 1260 * Commit dirty pages 1261 */ 1262 static int 1263 nfs_commit_list(struct inode *inode, struct list_head *head, int how) 1264 { 1265 struct nfs_write_data *data; 1266 struct nfs_page *req; 1267 1268 data = nfs_commitdata_alloc(); 1269 1270 if (!data) 1271 goto out_bad; 1272 1273 /* Set up the argument struct */ 1274 return nfs_commit_rpcsetup(head, data, how); 1275 out_bad: 1276 while (!list_empty(head)) { 1277 req = nfs_list_entry(head->next); 1278 nfs_list_remove_request(req); 1279 nfs_mark_request_commit(req); 1280 dec_zone_page_state(req->wb_page, NR_UNSTABLE_NFS); 1281 dec_bdi_stat(req->wb_page->mapping->backing_dev_info, 1282 BDI_RECLAIMABLE); 1283 nfs_clear_page_tag_locked(req); 1284 } 1285 return -ENOMEM; 1286 } 1287 1288 /* 1289 * COMMIT call returned 1290 */ 1291 static void nfs_commit_done(struct rpc_task *task, void *calldata) 1292 { 1293 struct nfs_write_data *data = calldata; 1294 1295 dprintk("NFS: %5u nfs_commit_done (status %d)\n", 1296 task->tk_pid, task->tk_status); 1297 1298 /* Call the NFS version-specific code */ 1299 if (NFS_PROTO(data->inode)->commit_done(task, data) != 0) 1300 return; 1301 } 1302 1303 static void nfs_commit_release(void *calldata) 1304 { 1305 struct nfs_write_data *data = calldata; 1306 struct nfs_page *req; 1307 int status = data->task.tk_status; 1308 1309 while (!list_empty(&data->pages)) { 1310 req = nfs_list_entry(data->pages.next); 1311 nfs_list_remove_request(req); 1312 nfs_clear_request_commit(req); 1313 1314 dprintk("NFS: commit (%s/%lld %d@%lld)", 1315 req->wb_context->path.dentry->d_inode->i_sb->s_id, 1316 (long long)NFS_FILEID(req->wb_context->path.dentry->d_inode), 1317 req->wb_bytes, 1318 (long long)req_offset(req)); 1319 if (status < 0) { 1320 nfs_context_set_write_error(req->wb_context, status); 1321 nfs_inode_remove_request(req); 1322 dprintk(", error = %d\n", status); 1323 goto next; 1324 } 1325 1326 /* Okay, COMMIT succeeded, apparently. Check the verifier 1327 * returned by the server against all stored verfs. */ 1328 if (!memcmp(req->wb_verf.verifier, data->verf.verifier, sizeof(data->verf.verifier))) { 1329 /* We have a match */ 1330 nfs_inode_remove_request(req); 1331 dprintk(" OK\n"); 1332 goto next; 1333 } 1334 /* We have a mismatch. Write the page again */ 1335 dprintk(" mismatch\n"); 1336 nfs_mark_request_dirty(req); 1337 next: 1338 nfs_clear_page_tag_locked(req); 1339 } 1340 nfs_commitdata_release(calldata); 1341 } 1342 1343 static const struct rpc_call_ops nfs_commit_ops = { 1344 #if defined(CONFIG_NFS_V4_1) 1345 .rpc_call_prepare = nfs_write_prepare, 1346 #endif /* CONFIG_NFS_V4_1 */ 1347 .rpc_call_done = nfs_commit_done, 1348 .rpc_release = nfs_commit_release, 1349 }; 1350 1351 static int nfs_commit_inode(struct inode *inode, int how) 1352 { 1353 LIST_HEAD(head); 1354 int res; 1355 1356 spin_lock(&inode->i_lock); 1357 res = nfs_scan_commit(inode, &head, 0, 0); 1358 spin_unlock(&inode->i_lock); 1359 if (res) { 1360 int error = nfs_commit_list(inode, &head, how); 1361 if (error < 0) 1362 return error; 1363 } 1364 return res; 1365 } 1366 1367 static int nfs_commit_unstable_pages(struct inode *inode, struct writeback_control *wbc) 1368 { 1369 struct nfs_inode *nfsi = NFS_I(inode); 1370 int flags = FLUSH_SYNC; 1371 int ret = 0; 1372 1373 /* Don't commit yet if this is a non-blocking flush and there are 1374 * lots of outstanding writes for this mapping. 1375 */ 1376 if (wbc->sync_mode == WB_SYNC_NONE && 1377 nfsi->ncommit <= (nfsi->npages >> 1)) 1378 goto out_mark_dirty; 1379 1380 if (wbc->nonblocking || wbc->for_background) 1381 flags = 0; 1382 ret = nfs_commit_inode(inode, flags); 1383 if (ret >= 0) { 1384 if (wbc->sync_mode == WB_SYNC_NONE) { 1385 if (ret < wbc->nr_to_write) 1386 wbc->nr_to_write -= ret; 1387 else 1388 wbc->nr_to_write = 0; 1389 } 1390 return 0; 1391 } 1392 out_mark_dirty: 1393 __mark_inode_dirty(inode, I_DIRTY_DATASYNC); 1394 return ret; 1395 } 1396 #else 1397 static int nfs_commit_inode(struct inode *inode, int how) 1398 { 1399 return 0; 1400 } 1401 1402 static int nfs_commit_unstable_pages(struct inode *inode, struct writeback_control *wbc) 1403 { 1404 return 0; 1405 } 1406 #endif 1407 1408 int nfs_write_inode(struct inode *inode, struct writeback_control *wbc) 1409 { 1410 return nfs_commit_unstable_pages(inode, wbc); 1411 } 1412 1413 /* 1414 * flush the inode to disk. 1415 */ 1416 int nfs_wb_all(struct inode *inode) 1417 { 1418 struct writeback_control wbc = { 1419 .sync_mode = WB_SYNC_ALL, 1420 .nr_to_write = LONG_MAX, 1421 .range_start = 0, 1422 .range_end = LLONG_MAX, 1423 }; 1424 1425 return sync_inode(inode, &wbc); 1426 } 1427 1428 int nfs_wb_page_cancel(struct inode *inode, struct page *page) 1429 { 1430 struct nfs_page *req; 1431 int ret = 0; 1432 1433 BUG_ON(!PageLocked(page)); 1434 for (;;) { 1435 req = nfs_page_find_request(page); 1436 if (req == NULL) 1437 break; 1438 if (nfs_lock_request_dontget(req)) { 1439 nfs_inode_remove_request(req); 1440 /* 1441 * In case nfs_inode_remove_request has marked the 1442 * page as being dirty 1443 */ 1444 cancel_dirty_page(page, PAGE_CACHE_SIZE); 1445 nfs_unlock_request(req); 1446 break; 1447 } 1448 ret = nfs_wait_on_request(req); 1449 nfs_release_request(req); 1450 if (ret < 0) 1451 break; 1452 } 1453 return ret; 1454 } 1455 1456 /* 1457 * Write back all requests on one page - we do this before reading it. 1458 */ 1459 int nfs_wb_page(struct inode *inode, struct page *page) 1460 { 1461 loff_t range_start = page_offset(page); 1462 loff_t range_end = range_start + (loff_t)(PAGE_CACHE_SIZE - 1); 1463 struct writeback_control wbc = { 1464 .sync_mode = WB_SYNC_ALL, 1465 .nr_to_write = 0, 1466 .range_start = range_start, 1467 .range_end = range_end, 1468 }; 1469 struct nfs_page *req; 1470 int need_commit; 1471 int ret; 1472 1473 while(PagePrivate(page)) { 1474 if (clear_page_dirty_for_io(page)) { 1475 ret = nfs_writepage_locked(page, &wbc); 1476 if (ret < 0) 1477 goto out_error; 1478 } 1479 req = nfs_find_and_lock_request(page); 1480 if (!req) 1481 break; 1482 if (IS_ERR(req)) { 1483 ret = PTR_ERR(req); 1484 goto out_error; 1485 } 1486 need_commit = test_bit(PG_CLEAN, &req->wb_flags); 1487 nfs_clear_page_tag_locked(req); 1488 if (need_commit) { 1489 ret = nfs_commit_inode(inode, FLUSH_SYNC); 1490 if (ret < 0) 1491 goto out_error; 1492 } 1493 } 1494 return 0; 1495 out_error: 1496 return ret; 1497 } 1498 1499 #ifdef CONFIG_MIGRATION 1500 int nfs_migrate_page(struct address_space *mapping, struct page *newpage, 1501 struct page *page) 1502 { 1503 struct nfs_page *req; 1504 int ret; 1505 1506 nfs_fscache_release_page(page, GFP_KERNEL); 1507 1508 req = nfs_find_and_lock_request(page); 1509 ret = PTR_ERR(req); 1510 if (IS_ERR(req)) 1511 goto out; 1512 1513 ret = migrate_page(mapping, newpage, page); 1514 if (!req) 1515 goto out; 1516 if (ret) 1517 goto out_unlock; 1518 page_cache_get(newpage); 1519 spin_lock(&mapping->host->i_lock); 1520 req->wb_page = newpage; 1521 SetPagePrivate(newpage); 1522 set_page_private(newpage, (unsigned long)req); 1523 ClearPagePrivate(page); 1524 set_page_private(page, 0); 1525 spin_unlock(&mapping->host->i_lock); 1526 page_cache_release(page); 1527 out_unlock: 1528 nfs_clear_page_tag_locked(req); 1529 out: 1530 return ret; 1531 } 1532 #endif 1533 1534 int __init nfs_init_writepagecache(void) 1535 { 1536 nfs_wdata_cachep = kmem_cache_create("nfs_write_data", 1537 sizeof(struct nfs_write_data), 1538 0, SLAB_HWCACHE_ALIGN, 1539 NULL); 1540 if (nfs_wdata_cachep == NULL) 1541 return -ENOMEM; 1542 1543 nfs_wdata_mempool = mempool_create_slab_pool(MIN_POOL_WRITE, 1544 nfs_wdata_cachep); 1545 if (nfs_wdata_mempool == NULL) 1546 return -ENOMEM; 1547 1548 nfs_commit_mempool = mempool_create_slab_pool(MIN_POOL_COMMIT, 1549 nfs_wdata_cachep); 1550 if (nfs_commit_mempool == NULL) 1551 return -ENOMEM; 1552 1553 /* 1554 * NFS congestion size, scale with available memory. 1555 * 1556 * 64MB: 8192k 1557 * 128MB: 11585k 1558 * 256MB: 16384k 1559 * 512MB: 23170k 1560 * 1GB: 32768k 1561 * 2GB: 46340k 1562 * 4GB: 65536k 1563 * 8GB: 92681k 1564 * 16GB: 131072k 1565 * 1566 * This allows larger machines to have larger/more transfers. 1567 * Limit the default to 256M 1568 */ 1569 nfs_congestion_kb = (16*int_sqrt(totalram_pages)) << (PAGE_SHIFT-10); 1570 if (nfs_congestion_kb > 256*1024) 1571 nfs_congestion_kb = 256*1024; 1572 1573 return 0; 1574 } 1575 1576 void nfs_destroy_writepagecache(void) 1577 { 1578 mempool_destroy(nfs_commit_mempool); 1579 mempool_destroy(nfs_wdata_mempool); 1580 kmem_cache_destroy(nfs_wdata_cachep); 1581 } 1582 1583