1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/fs/nfs/write.c 4 * 5 * Write file data over NFS. 6 * 7 * Copyright (C) 1996, 1997, Olaf Kirch <okir@monad.swb.de> 8 */ 9 10 #include <linux/types.h> 11 #include <linux/slab.h> 12 #include <linux/mm.h> 13 #include <linux/pagemap.h> 14 #include <linux/file.h> 15 #include <linux/writeback.h> 16 #include <linux/swap.h> 17 #include <linux/migrate.h> 18 19 #include <linux/sunrpc/clnt.h> 20 #include <linux/nfs_fs.h> 21 #include <linux/nfs_mount.h> 22 #include <linux/nfs_page.h> 23 #include <linux/backing-dev.h> 24 #include <linux/export.h> 25 #include <linux/freezer.h> 26 #include <linux/wait.h> 27 #include <linux/iversion.h> 28 29 #include <linux/uaccess.h> 30 #include <linux/sched/mm.h> 31 32 #include "delegation.h" 33 #include "internal.h" 34 #include "iostat.h" 35 #include "nfs4_fs.h" 36 #include "fscache.h" 37 #include "pnfs.h" 38 39 #include "nfstrace.h" 40 41 #define NFSDBG_FACILITY NFSDBG_PAGECACHE 42 43 #define MIN_POOL_WRITE (32) 44 #define MIN_POOL_COMMIT (4) 45 46 struct nfs_io_completion { 47 void (*complete)(void *data); 48 void *data; 49 struct kref refcount; 50 }; 51 52 /* 53 * Local function declarations 54 */ 55 static void nfs_redirty_request(struct nfs_page *req); 56 static const struct rpc_call_ops nfs_commit_ops; 57 static const struct nfs_pgio_completion_ops nfs_async_write_completion_ops; 58 static const struct nfs_commit_completion_ops nfs_commit_completion_ops; 59 static const struct nfs_rw_ops nfs_rw_write_ops; 60 static void nfs_inode_remove_request(struct nfs_page *req); 61 static void nfs_clear_request_commit(struct nfs_page *req); 62 static void nfs_init_cinfo_from_inode(struct nfs_commit_info *cinfo, 63 struct inode *inode); 64 static struct nfs_page * 65 nfs_page_search_commits_for_head_request_locked(struct nfs_inode *nfsi, 66 struct page *page); 67 68 static struct kmem_cache *nfs_wdata_cachep; 69 static mempool_t *nfs_wdata_mempool; 70 static struct kmem_cache *nfs_cdata_cachep; 71 static mempool_t *nfs_commit_mempool; 72 73 struct nfs_commit_data *nfs_commitdata_alloc(bool never_fail) 74 { 75 struct nfs_commit_data *p; 76 77 if (never_fail) 78 p = mempool_alloc(nfs_commit_mempool, GFP_NOIO); 79 else { 80 /* It is OK to do some reclaim, not no safe to wait 81 * for anything to be returned to the pool. 82 * mempool_alloc() cannot handle that particular combination, 83 * so we need two separate attempts. 84 */ 85 p = mempool_alloc(nfs_commit_mempool, GFP_NOWAIT); 86 if (!p) 87 p = kmem_cache_alloc(nfs_cdata_cachep, GFP_NOIO | 88 __GFP_NOWARN | __GFP_NORETRY); 89 if (!p) 90 return NULL; 91 } 92 93 memset(p, 0, sizeof(*p)); 94 INIT_LIST_HEAD(&p->pages); 95 return p; 96 } 97 EXPORT_SYMBOL_GPL(nfs_commitdata_alloc); 98 99 void nfs_commit_free(struct nfs_commit_data *p) 100 { 101 mempool_free(p, nfs_commit_mempool); 102 } 103 EXPORT_SYMBOL_GPL(nfs_commit_free); 104 105 static struct nfs_pgio_header *nfs_writehdr_alloc(void) 106 { 107 struct nfs_pgio_header *p = mempool_alloc(nfs_wdata_mempool, GFP_KERNEL); 108 109 memset(p, 0, sizeof(*p)); 110 p->rw_mode = FMODE_WRITE; 111 return p; 112 } 113 114 static void nfs_writehdr_free(struct nfs_pgio_header *hdr) 115 { 116 mempool_free(hdr, nfs_wdata_mempool); 117 } 118 119 static struct nfs_io_completion *nfs_io_completion_alloc(gfp_t gfp_flags) 120 { 121 return kmalloc(sizeof(struct nfs_io_completion), gfp_flags); 122 } 123 124 static void nfs_io_completion_init(struct nfs_io_completion *ioc, 125 void (*complete)(void *), void *data) 126 { 127 ioc->complete = complete; 128 ioc->data = data; 129 kref_init(&ioc->refcount); 130 } 131 132 static void nfs_io_completion_release(struct kref *kref) 133 { 134 struct nfs_io_completion *ioc = container_of(kref, 135 struct nfs_io_completion, refcount); 136 ioc->complete(ioc->data); 137 kfree(ioc); 138 } 139 140 static void nfs_io_completion_get(struct nfs_io_completion *ioc) 141 { 142 if (ioc != NULL) 143 kref_get(&ioc->refcount); 144 } 145 146 static void nfs_io_completion_put(struct nfs_io_completion *ioc) 147 { 148 if (ioc != NULL) 149 kref_put(&ioc->refcount, nfs_io_completion_release); 150 } 151 152 static struct nfs_page * 153 nfs_page_private_request(struct page *page) 154 { 155 if (!PagePrivate(page)) 156 return NULL; 157 return (struct nfs_page *)page_private(page); 158 } 159 160 /* 161 * nfs_page_find_head_request_locked - find head request associated with @page 162 * 163 * must be called while holding the inode lock. 164 * 165 * returns matching head request with reference held, or NULL if not found. 166 */ 167 static struct nfs_page * 168 nfs_page_find_private_request(struct page *page) 169 { 170 struct address_space *mapping = page_file_mapping(page); 171 struct nfs_page *req; 172 173 if (!PagePrivate(page)) 174 return NULL; 175 spin_lock(&mapping->private_lock); 176 req = nfs_page_private_request(page); 177 if (req) { 178 WARN_ON_ONCE(req->wb_head != req); 179 kref_get(&req->wb_kref); 180 } 181 spin_unlock(&mapping->private_lock); 182 return req; 183 } 184 185 static struct nfs_page * 186 nfs_page_find_swap_request(struct page *page) 187 { 188 struct inode *inode = page_file_mapping(page)->host; 189 struct nfs_inode *nfsi = NFS_I(inode); 190 struct nfs_page *req = NULL; 191 if (!PageSwapCache(page)) 192 return NULL; 193 mutex_lock(&nfsi->commit_mutex); 194 if (PageSwapCache(page)) { 195 req = nfs_page_search_commits_for_head_request_locked(nfsi, 196 page); 197 if (req) { 198 WARN_ON_ONCE(req->wb_head != req); 199 kref_get(&req->wb_kref); 200 } 201 } 202 mutex_unlock(&nfsi->commit_mutex); 203 return req; 204 } 205 206 /* 207 * nfs_page_find_head_request - find head request associated with @page 208 * 209 * returns matching head request with reference held, or NULL if not found. 210 */ 211 static struct nfs_page *nfs_page_find_head_request(struct page *page) 212 { 213 struct nfs_page *req; 214 215 req = nfs_page_find_private_request(page); 216 if (!req) 217 req = nfs_page_find_swap_request(page); 218 return req; 219 } 220 221 /* Adjust the file length if we're writing beyond the end */ 222 static void nfs_grow_file(struct page *page, unsigned int offset, unsigned int count) 223 { 224 struct inode *inode = page_file_mapping(page)->host; 225 loff_t end, i_size; 226 pgoff_t end_index; 227 228 spin_lock(&inode->i_lock); 229 i_size = i_size_read(inode); 230 end_index = (i_size - 1) >> PAGE_SHIFT; 231 if (i_size > 0 && page_index(page) < end_index) 232 goto out; 233 end = page_file_offset(page) + ((loff_t)offset+count); 234 if (i_size >= end) 235 goto out; 236 i_size_write(inode, end); 237 NFS_I(inode)->cache_validity &= ~NFS_INO_INVALID_SIZE; 238 nfs_inc_stats(inode, NFSIOS_EXTENDWRITE); 239 out: 240 spin_unlock(&inode->i_lock); 241 } 242 243 /* A writeback failed: mark the page as bad, and invalidate the page cache */ 244 static void nfs_set_pageerror(struct address_space *mapping) 245 { 246 struct inode *inode = mapping->host; 247 248 nfs_zap_mapping(mapping->host, mapping); 249 /* Force file size revalidation */ 250 spin_lock(&inode->i_lock); 251 NFS_I(inode)->cache_validity |= NFS_INO_REVAL_FORCED | 252 NFS_INO_REVAL_PAGECACHE | 253 NFS_INO_INVALID_SIZE; 254 spin_unlock(&inode->i_lock); 255 } 256 257 static void nfs_mapping_set_error(struct page *page, int error) 258 { 259 struct address_space *mapping = page_file_mapping(page); 260 261 SetPageError(page); 262 mapping_set_error(mapping, error); 263 nfs_set_pageerror(mapping); 264 } 265 266 /* 267 * nfs_page_group_search_locked 268 * @head - head request of page group 269 * @page_offset - offset into page 270 * 271 * Search page group with head @head to find a request that contains the 272 * page offset @page_offset. 273 * 274 * Returns a pointer to the first matching nfs request, or NULL if no 275 * match is found. 276 * 277 * Must be called with the page group lock held 278 */ 279 static struct nfs_page * 280 nfs_page_group_search_locked(struct nfs_page *head, unsigned int page_offset) 281 { 282 struct nfs_page *req; 283 284 req = head; 285 do { 286 if (page_offset >= req->wb_pgbase && 287 page_offset < (req->wb_pgbase + req->wb_bytes)) 288 return req; 289 290 req = req->wb_this_page; 291 } while (req != head); 292 293 return NULL; 294 } 295 296 /* 297 * nfs_page_group_covers_page 298 * @head - head request of page group 299 * 300 * Return true if the page group with head @head covers the whole page, 301 * returns false otherwise 302 */ 303 static bool nfs_page_group_covers_page(struct nfs_page *req) 304 { 305 struct nfs_page *tmp; 306 unsigned int pos = 0; 307 unsigned int len = nfs_page_length(req->wb_page); 308 309 nfs_page_group_lock(req); 310 311 for (;;) { 312 tmp = nfs_page_group_search_locked(req->wb_head, pos); 313 if (!tmp) 314 break; 315 pos = tmp->wb_pgbase + tmp->wb_bytes; 316 } 317 318 nfs_page_group_unlock(req); 319 return pos >= len; 320 } 321 322 /* We can set the PG_uptodate flag if we see that a write request 323 * covers the full page. 324 */ 325 static void nfs_mark_uptodate(struct nfs_page *req) 326 { 327 if (PageUptodate(req->wb_page)) 328 return; 329 if (!nfs_page_group_covers_page(req)) 330 return; 331 SetPageUptodate(req->wb_page); 332 } 333 334 static int wb_priority(struct writeback_control *wbc) 335 { 336 int ret = 0; 337 338 if (wbc->sync_mode == WB_SYNC_ALL) 339 ret = FLUSH_COND_STABLE; 340 return ret; 341 } 342 343 /* 344 * NFS congestion control 345 */ 346 347 int nfs_congestion_kb; 348 349 #define NFS_CONGESTION_ON_THRESH (nfs_congestion_kb >> (PAGE_SHIFT-10)) 350 #define NFS_CONGESTION_OFF_THRESH \ 351 (NFS_CONGESTION_ON_THRESH - (NFS_CONGESTION_ON_THRESH >> 2)) 352 353 static void nfs_set_page_writeback(struct page *page) 354 { 355 struct inode *inode = page_file_mapping(page)->host; 356 struct nfs_server *nfss = NFS_SERVER(inode); 357 int ret = test_set_page_writeback(page); 358 359 WARN_ON_ONCE(ret != 0); 360 361 if (atomic_long_inc_return(&nfss->writeback) > 362 NFS_CONGESTION_ON_THRESH) 363 set_bdi_congested(inode_to_bdi(inode), BLK_RW_ASYNC); 364 } 365 366 static void nfs_end_page_writeback(struct nfs_page *req) 367 { 368 struct inode *inode = page_file_mapping(req->wb_page)->host; 369 struct nfs_server *nfss = NFS_SERVER(inode); 370 bool is_done; 371 372 is_done = nfs_page_group_sync_on_bit(req, PG_WB_END); 373 nfs_unlock_request(req); 374 if (!is_done) 375 return; 376 377 end_page_writeback(req->wb_page); 378 if (atomic_long_dec_return(&nfss->writeback) < NFS_CONGESTION_OFF_THRESH) 379 clear_bdi_congested(inode_to_bdi(inode), BLK_RW_ASYNC); 380 } 381 382 /* 383 * nfs_unroll_locks_and_wait - unlock all newly locked reqs and wait on @req 384 * 385 * this is a helper function for nfs_lock_and_join_requests 386 * 387 * @inode - inode associated with request page group, must be holding inode lock 388 * @head - head request of page group, must be holding head lock 389 * @req - request that couldn't lock and needs to wait on the req bit lock 390 * 391 * NOTE: this must be called holding page_group bit lock 392 * which will be released before returning. 393 * 394 * returns 0 on success, < 0 on error. 395 */ 396 static void 397 nfs_unroll_locks(struct inode *inode, struct nfs_page *head, 398 struct nfs_page *req) 399 { 400 struct nfs_page *tmp; 401 402 /* relinquish all the locks successfully grabbed this run */ 403 for (tmp = head->wb_this_page ; tmp != req; tmp = tmp->wb_this_page) { 404 if (!kref_read(&tmp->wb_kref)) 405 continue; 406 nfs_unlock_and_release_request(tmp); 407 } 408 } 409 410 /* 411 * nfs_destroy_unlinked_subrequests - destroy recently unlinked subrequests 412 * 413 * @destroy_list - request list (using wb_this_page) terminated by @old_head 414 * @old_head - the old head of the list 415 * 416 * All subrequests must be locked and removed from all lists, so at this point 417 * they are only "active" in this function, and possibly in nfs_wait_on_request 418 * with a reference held by some other context. 419 */ 420 static void 421 nfs_destroy_unlinked_subrequests(struct nfs_page *destroy_list, 422 struct nfs_page *old_head, 423 struct inode *inode) 424 { 425 while (destroy_list) { 426 struct nfs_page *subreq = destroy_list; 427 428 destroy_list = (subreq->wb_this_page == old_head) ? 429 NULL : subreq->wb_this_page; 430 431 WARN_ON_ONCE(old_head != subreq->wb_head); 432 433 /* make sure old group is not used */ 434 subreq->wb_this_page = subreq; 435 436 clear_bit(PG_REMOVE, &subreq->wb_flags); 437 438 /* Note: races with nfs_page_group_destroy() */ 439 if (!kref_read(&subreq->wb_kref)) { 440 /* Check if we raced with nfs_page_group_destroy() */ 441 if (test_and_clear_bit(PG_TEARDOWN, &subreq->wb_flags)) 442 nfs_free_request(subreq); 443 continue; 444 } 445 446 subreq->wb_head = subreq; 447 448 if (test_and_clear_bit(PG_INODE_REF, &subreq->wb_flags)) { 449 nfs_release_request(subreq); 450 atomic_long_dec(&NFS_I(inode)->nrequests); 451 } 452 453 /* subreq is now totally disconnected from page group or any 454 * write / commit lists. last chance to wake any waiters */ 455 nfs_unlock_and_release_request(subreq); 456 } 457 } 458 459 /* 460 * nfs_lock_and_join_requests - join all subreqs to the head req and return 461 * a locked reference, cancelling any pending 462 * operations for this page. 463 * 464 * @page - the page used to lookup the "page group" of nfs_page structures 465 * 466 * This function joins all sub requests to the head request by first 467 * locking all requests in the group, cancelling any pending operations 468 * and finally updating the head request to cover the whole range covered by 469 * the (former) group. All subrequests are removed from any write or commit 470 * lists, unlinked from the group and destroyed. 471 * 472 * Returns a locked, referenced pointer to the head request - which after 473 * this call is guaranteed to be the only request associated with the page. 474 * Returns NULL if no requests are found for @page, or a ERR_PTR if an 475 * error was encountered. 476 */ 477 static struct nfs_page * 478 nfs_lock_and_join_requests(struct page *page) 479 { 480 struct inode *inode = page_file_mapping(page)->host; 481 struct nfs_page *head, *subreq; 482 struct nfs_page *destroy_list = NULL; 483 unsigned int total_bytes; 484 int ret; 485 486 try_again: 487 /* 488 * A reference is taken only on the head request which acts as a 489 * reference to the whole page group - the group will not be destroyed 490 * until the head reference is released. 491 */ 492 head = nfs_page_find_head_request(page); 493 if (!head) 494 return NULL; 495 496 /* lock the page head first in order to avoid an ABBA inefficiency */ 497 if (!nfs_lock_request(head)) { 498 ret = nfs_wait_on_request(head); 499 nfs_release_request(head); 500 if (ret < 0) 501 return ERR_PTR(ret); 502 goto try_again; 503 } 504 505 /* Ensure that nobody removed the request before we locked it */ 506 if (head != nfs_page_private_request(page) && !PageSwapCache(page)) { 507 nfs_unlock_and_release_request(head); 508 goto try_again; 509 } 510 511 ret = nfs_page_group_lock(head); 512 if (ret < 0) 513 goto release_request; 514 515 /* lock each request in the page group */ 516 total_bytes = head->wb_bytes; 517 for (subreq = head->wb_this_page; subreq != head; 518 subreq = subreq->wb_this_page) { 519 520 if (!kref_get_unless_zero(&subreq->wb_kref)) { 521 if (subreq->wb_offset == head->wb_offset + total_bytes) 522 total_bytes += subreq->wb_bytes; 523 continue; 524 } 525 526 while (!nfs_lock_request(subreq)) { 527 /* 528 * Unlock page to allow nfs_page_group_sync_on_bit() 529 * to succeed 530 */ 531 nfs_page_group_unlock(head); 532 ret = nfs_wait_on_request(subreq); 533 if (!ret) 534 ret = nfs_page_group_lock(head); 535 if (ret < 0) { 536 nfs_unroll_locks(inode, head, subreq); 537 nfs_release_request(subreq); 538 goto release_request; 539 } 540 } 541 /* 542 * Subrequests are always contiguous, non overlapping 543 * and in order - but may be repeated (mirrored writes). 544 */ 545 if (subreq->wb_offset == (head->wb_offset + total_bytes)) { 546 /* keep track of how many bytes this group covers */ 547 total_bytes += subreq->wb_bytes; 548 } else if (WARN_ON_ONCE(subreq->wb_offset < head->wb_offset || 549 ((subreq->wb_offset + subreq->wb_bytes) > 550 (head->wb_offset + total_bytes)))) { 551 nfs_page_group_unlock(head); 552 nfs_unroll_locks(inode, head, subreq); 553 nfs_unlock_and_release_request(subreq); 554 ret = -EIO; 555 goto release_request; 556 } 557 } 558 559 /* Now that all requests are locked, make sure they aren't on any list. 560 * Commit list removal accounting is done after locks are dropped */ 561 subreq = head; 562 do { 563 nfs_clear_request_commit(subreq); 564 subreq = subreq->wb_this_page; 565 } while (subreq != head); 566 567 /* unlink subrequests from head, destroy them later */ 568 if (head->wb_this_page != head) { 569 /* destroy list will be terminated by head */ 570 destroy_list = head->wb_this_page; 571 head->wb_this_page = head; 572 573 /* change head request to cover whole range that 574 * the former page group covered */ 575 head->wb_bytes = total_bytes; 576 } 577 578 /* Postpone destruction of this request */ 579 if (test_and_clear_bit(PG_REMOVE, &head->wb_flags)) { 580 set_bit(PG_INODE_REF, &head->wb_flags); 581 kref_get(&head->wb_kref); 582 atomic_long_inc(&NFS_I(inode)->nrequests); 583 } 584 585 nfs_page_group_unlock(head); 586 587 nfs_destroy_unlinked_subrequests(destroy_list, head, inode); 588 589 /* Did we lose a race with nfs_inode_remove_request()? */ 590 if (!(PagePrivate(page) || PageSwapCache(page))) { 591 nfs_unlock_and_release_request(head); 592 return NULL; 593 } 594 595 /* still holds ref on head from nfs_page_find_head_request 596 * and still has lock on head from lock loop */ 597 return head; 598 599 release_request: 600 nfs_unlock_and_release_request(head); 601 return ERR_PTR(ret); 602 } 603 604 static void nfs_write_error(struct nfs_page *req, int error) 605 { 606 trace_nfs_write_error(req, error); 607 nfs_mapping_set_error(req->wb_page, error); 608 nfs_inode_remove_request(req); 609 nfs_end_page_writeback(req); 610 nfs_release_request(req); 611 } 612 613 /* 614 * Find an associated nfs write request, and prepare to flush it out 615 * May return an error if the user signalled nfs_wait_on_request(). 616 */ 617 static int nfs_page_async_flush(struct nfs_pageio_descriptor *pgio, 618 struct page *page) 619 { 620 struct nfs_page *req; 621 int ret = 0; 622 623 req = nfs_lock_and_join_requests(page); 624 if (!req) 625 goto out; 626 ret = PTR_ERR(req); 627 if (IS_ERR(req)) 628 goto out; 629 630 nfs_set_page_writeback(page); 631 WARN_ON_ONCE(test_bit(PG_CLEAN, &req->wb_flags)); 632 633 /* If there is a fatal error that covers this write, just exit */ 634 ret = pgio->pg_error; 635 if (nfs_error_is_fatal_on_server(ret)) 636 goto out_launder; 637 638 ret = 0; 639 if (!nfs_pageio_add_request(pgio, req)) { 640 ret = pgio->pg_error; 641 /* 642 * Remove the problematic req upon fatal errors on the server 643 */ 644 if (nfs_error_is_fatal(ret)) { 645 if (nfs_error_is_fatal_on_server(ret)) 646 goto out_launder; 647 } else 648 ret = -EAGAIN; 649 nfs_redirty_request(req); 650 pgio->pg_error = 0; 651 } else 652 nfs_add_stats(page_file_mapping(page)->host, 653 NFSIOS_WRITEPAGES, 1); 654 out: 655 return ret; 656 out_launder: 657 nfs_write_error(req, ret); 658 return 0; 659 } 660 661 static int nfs_do_writepage(struct page *page, struct writeback_control *wbc, 662 struct nfs_pageio_descriptor *pgio) 663 { 664 int ret; 665 666 nfs_pageio_cond_complete(pgio, page_index(page)); 667 ret = nfs_page_async_flush(pgio, page); 668 if (ret == -EAGAIN) { 669 redirty_page_for_writepage(wbc, page); 670 ret = AOP_WRITEPAGE_ACTIVATE; 671 } 672 return ret; 673 } 674 675 /* 676 * Write an mmapped page to the server. 677 */ 678 static int nfs_writepage_locked(struct page *page, 679 struct writeback_control *wbc) 680 { 681 struct nfs_pageio_descriptor pgio; 682 struct inode *inode = page_file_mapping(page)->host; 683 int err; 684 685 nfs_inc_stats(inode, NFSIOS_VFSWRITEPAGE); 686 nfs_pageio_init_write(&pgio, inode, 0, 687 false, &nfs_async_write_completion_ops); 688 err = nfs_do_writepage(page, wbc, &pgio); 689 pgio.pg_error = 0; 690 nfs_pageio_complete(&pgio); 691 if (err < 0) 692 return err; 693 if (nfs_error_is_fatal(pgio.pg_error)) 694 return pgio.pg_error; 695 return 0; 696 } 697 698 int nfs_writepage(struct page *page, struct writeback_control *wbc) 699 { 700 int ret; 701 702 ret = nfs_writepage_locked(page, wbc); 703 if (ret != AOP_WRITEPAGE_ACTIVATE) 704 unlock_page(page); 705 return ret; 706 } 707 708 static int nfs_writepages_callback(struct page *page, struct writeback_control *wbc, void *data) 709 { 710 int ret; 711 712 ret = nfs_do_writepage(page, wbc, data); 713 if (ret != AOP_WRITEPAGE_ACTIVATE) 714 unlock_page(page); 715 return ret; 716 } 717 718 static void nfs_io_completion_commit(void *inode) 719 { 720 nfs_commit_inode(inode, 0); 721 } 722 723 int nfs_writepages(struct address_space *mapping, struct writeback_control *wbc) 724 { 725 struct inode *inode = mapping->host; 726 struct nfs_pageio_descriptor pgio; 727 struct nfs_io_completion *ioc; 728 int err; 729 730 nfs_inc_stats(inode, NFSIOS_VFSWRITEPAGES); 731 732 ioc = nfs_io_completion_alloc(GFP_KERNEL); 733 if (ioc) 734 nfs_io_completion_init(ioc, nfs_io_completion_commit, inode); 735 736 nfs_pageio_init_write(&pgio, inode, wb_priority(wbc), false, 737 &nfs_async_write_completion_ops); 738 pgio.pg_io_completion = ioc; 739 err = write_cache_pages(mapping, wbc, nfs_writepages_callback, &pgio); 740 pgio.pg_error = 0; 741 nfs_pageio_complete(&pgio); 742 nfs_io_completion_put(ioc); 743 744 if (err < 0) 745 goto out_err; 746 err = pgio.pg_error; 747 if (nfs_error_is_fatal(err)) 748 goto out_err; 749 return 0; 750 out_err: 751 return err; 752 } 753 754 /* 755 * Insert a write request into an inode 756 */ 757 static void nfs_inode_add_request(struct inode *inode, struct nfs_page *req) 758 { 759 struct address_space *mapping = page_file_mapping(req->wb_page); 760 struct nfs_inode *nfsi = NFS_I(inode); 761 762 WARN_ON_ONCE(req->wb_this_page != req); 763 764 /* Lock the request! */ 765 nfs_lock_request(req); 766 767 /* 768 * Swap-space should not get truncated. Hence no need to plug the race 769 * with invalidate/truncate. 770 */ 771 spin_lock(&mapping->private_lock); 772 if (!nfs_have_writebacks(inode) && 773 NFS_PROTO(inode)->have_delegation(inode, FMODE_WRITE)) 774 inode_inc_iversion_raw(inode); 775 if (likely(!PageSwapCache(req->wb_page))) { 776 set_bit(PG_MAPPED, &req->wb_flags); 777 SetPagePrivate(req->wb_page); 778 set_page_private(req->wb_page, (unsigned long)req); 779 } 780 spin_unlock(&mapping->private_lock); 781 atomic_long_inc(&nfsi->nrequests); 782 /* this a head request for a page group - mark it as having an 783 * extra reference so sub groups can follow suit. 784 * This flag also informs pgio layer when to bump nrequests when 785 * adding subrequests. */ 786 WARN_ON(test_and_set_bit(PG_INODE_REF, &req->wb_flags)); 787 kref_get(&req->wb_kref); 788 } 789 790 /* 791 * Remove a write request from an inode 792 */ 793 static void nfs_inode_remove_request(struct nfs_page *req) 794 { 795 struct address_space *mapping = page_file_mapping(req->wb_page); 796 struct inode *inode = mapping->host; 797 struct nfs_inode *nfsi = NFS_I(inode); 798 struct nfs_page *head; 799 800 if (nfs_page_group_sync_on_bit(req, PG_REMOVE)) { 801 head = req->wb_head; 802 803 spin_lock(&mapping->private_lock); 804 if (likely(head->wb_page && !PageSwapCache(head->wb_page))) { 805 set_page_private(head->wb_page, 0); 806 ClearPagePrivate(head->wb_page); 807 clear_bit(PG_MAPPED, &head->wb_flags); 808 } 809 spin_unlock(&mapping->private_lock); 810 } 811 812 if (test_and_clear_bit(PG_INODE_REF, &req->wb_flags)) { 813 nfs_release_request(req); 814 atomic_long_dec(&nfsi->nrequests); 815 } 816 } 817 818 static void 819 nfs_mark_request_dirty(struct nfs_page *req) 820 { 821 if (req->wb_page) 822 __set_page_dirty_nobuffers(req->wb_page); 823 } 824 825 /* 826 * nfs_page_search_commits_for_head_request_locked 827 * 828 * Search through commit lists on @inode for the head request for @page. 829 * Must be called while holding the inode (which is cinfo) lock. 830 * 831 * Returns the head request if found, or NULL if not found. 832 */ 833 static struct nfs_page * 834 nfs_page_search_commits_for_head_request_locked(struct nfs_inode *nfsi, 835 struct page *page) 836 { 837 struct nfs_page *freq, *t; 838 struct nfs_commit_info cinfo; 839 struct inode *inode = &nfsi->vfs_inode; 840 841 nfs_init_cinfo_from_inode(&cinfo, inode); 842 843 /* search through pnfs commit lists */ 844 freq = pnfs_search_commit_reqs(inode, &cinfo, page); 845 if (freq) 846 return freq->wb_head; 847 848 /* Linearly search the commit list for the correct request */ 849 list_for_each_entry_safe(freq, t, &cinfo.mds->list, wb_list) { 850 if (freq->wb_page == page) 851 return freq->wb_head; 852 } 853 854 return NULL; 855 } 856 857 /** 858 * nfs_request_add_commit_list_locked - add request to a commit list 859 * @req: pointer to a struct nfs_page 860 * @dst: commit list head 861 * @cinfo: holds list lock and accounting info 862 * 863 * This sets the PG_CLEAN bit, updates the cinfo count of 864 * number of outstanding requests requiring a commit as well as 865 * the MM page stats. 866 * 867 * The caller must hold NFS_I(cinfo->inode)->commit_mutex, and the 868 * nfs_page lock. 869 */ 870 void 871 nfs_request_add_commit_list_locked(struct nfs_page *req, struct list_head *dst, 872 struct nfs_commit_info *cinfo) 873 { 874 set_bit(PG_CLEAN, &req->wb_flags); 875 nfs_list_add_request(req, dst); 876 atomic_long_inc(&cinfo->mds->ncommit); 877 } 878 EXPORT_SYMBOL_GPL(nfs_request_add_commit_list_locked); 879 880 /** 881 * nfs_request_add_commit_list - add request to a commit list 882 * @req: pointer to a struct nfs_page 883 * @cinfo: holds list lock and accounting info 884 * 885 * This sets the PG_CLEAN bit, updates the cinfo count of 886 * number of outstanding requests requiring a commit as well as 887 * the MM page stats. 888 * 889 * The caller must _not_ hold the cinfo->lock, but must be 890 * holding the nfs_page lock. 891 */ 892 void 893 nfs_request_add_commit_list(struct nfs_page *req, struct nfs_commit_info *cinfo) 894 { 895 mutex_lock(&NFS_I(cinfo->inode)->commit_mutex); 896 nfs_request_add_commit_list_locked(req, &cinfo->mds->list, cinfo); 897 mutex_unlock(&NFS_I(cinfo->inode)->commit_mutex); 898 if (req->wb_page) 899 nfs_mark_page_unstable(req->wb_page, cinfo); 900 } 901 EXPORT_SYMBOL_GPL(nfs_request_add_commit_list); 902 903 /** 904 * nfs_request_remove_commit_list - Remove request from a commit list 905 * @req: pointer to a nfs_page 906 * @cinfo: holds list lock and accounting info 907 * 908 * This clears the PG_CLEAN bit, and updates the cinfo's count of 909 * number of outstanding requests requiring a commit 910 * It does not update the MM page stats. 911 * 912 * The caller _must_ hold the cinfo->lock and the nfs_page lock. 913 */ 914 void 915 nfs_request_remove_commit_list(struct nfs_page *req, 916 struct nfs_commit_info *cinfo) 917 { 918 if (!test_and_clear_bit(PG_CLEAN, &(req)->wb_flags)) 919 return; 920 nfs_list_remove_request(req); 921 atomic_long_dec(&cinfo->mds->ncommit); 922 } 923 EXPORT_SYMBOL_GPL(nfs_request_remove_commit_list); 924 925 static void nfs_init_cinfo_from_inode(struct nfs_commit_info *cinfo, 926 struct inode *inode) 927 { 928 cinfo->inode = inode; 929 cinfo->mds = &NFS_I(inode)->commit_info; 930 cinfo->ds = pnfs_get_ds_info(inode); 931 cinfo->dreq = NULL; 932 cinfo->completion_ops = &nfs_commit_completion_ops; 933 } 934 935 void nfs_init_cinfo(struct nfs_commit_info *cinfo, 936 struct inode *inode, 937 struct nfs_direct_req *dreq) 938 { 939 if (dreq) 940 nfs_init_cinfo_from_dreq(cinfo, dreq); 941 else 942 nfs_init_cinfo_from_inode(cinfo, inode); 943 } 944 EXPORT_SYMBOL_GPL(nfs_init_cinfo); 945 946 /* 947 * Add a request to the inode's commit list. 948 */ 949 void 950 nfs_mark_request_commit(struct nfs_page *req, struct pnfs_layout_segment *lseg, 951 struct nfs_commit_info *cinfo, u32 ds_commit_idx) 952 { 953 if (pnfs_mark_request_commit(req, lseg, cinfo, ds_commit_idx)) 954 return; 955 nfs_request_add_commit_list(req, cinfo); 956 } 957 958 static void 959 nfs_clear_page_commit(struct page *page) 960 { 961 dec_node_page_state(page, NR_UNSTABLE_NFS); 962 dec_wb_stat(&inode_to_bdi(page_file_mapping(page)->host)->wb, 963 WB_RECLAIMABLE); 964 } 965 966 /* Called holding the request lock on @req */ 967 static void 968 nfs_clear_request_commit(struct nfs_page *req) 969 { 970 if (test_bit(PG_CLEAN, &req->wb_flags)) { 971 struct nfs_open_context *ctx = nfs_req_openctx(req); 972 struct inode *inode = d_inode(ctx->dentry); 973 struct nfs_commit_info cinfo; 974 975 nfs_init_cinfo_from_inode(&cinfo, inode); 976 mutex_lock(&NFS_I(inode)->commit_mutex); 977 if (!pnfs_clear_request_commit(req, &cinfo)) { 978 nfs_request_remove_commit_list(req, &cinfo); 979 } 980 mutex_unlock(&NFS_I(inode)->commit_mutex); 981 nfs_clear_page_commit(req->wb_page); 982 } 983 } 984 985 int nfs_write_need_commit(struct nfs_pgio_header *hdr) 986 { 987 if (hdr->verf.committed == NFS_DATA_SYNC) 988 return hdr->lseg == NULL; 989 return hdr->verf.committed != NFS_FILE_SYNC; 990 } 991 992 static void nfs_async_write_init(struct nfs_pgio_header *hdr) 993 { 994 nfs_io_completion_get(hdr->io_completion); 995 } 996 997 static void nfs_write_completion(struct nfs_pgio_header *hdr) 998 { 999 struct nfs_commit_info cinfo; 1000 unsigned long bytes = 0; 1001 1002 if (test_bit(NFS_IOHDR_REDO, &hdr->flags)) 1003 goto out; 1004 nfs_init_cinfo_from_inode(&cinfo, hdr->inode); 1005 while (!list_empty(&hdr->pages)) { 1006 struct nfs_page *req = nfs_list_entry(hdr->pages.next); 1007 1008 bytes += req->wb_bytes; 1009 nfs_list_remove_request(req); 1010 if (test_bit(NFS_IOHDR_ERROR, &hdr->flags) && 1011 (hdr->good_bytes < bytes)) { 1012 trace_nfs_comp_error(req, hdr->error); 1013 nfs_mapping_set_error(req->wb_page, hdr->error); 1014 goto remove_req; 1015 } 1016 if (nfs_write_need_commit(hdr)) { 1017 /* Reset wb_nio, since the write was successful. */ 1018 req->wb_nio = 0; 1019 memcpy(&req->wb_verf, &hdr->verf.verifier, sizeof(req->wb_verf)); 1020 nfs_mark_request_commit(req, hdr->lseg, &cinfo, 1021 hdr->pgio_mirror_idx); 1022 goto next; 1023 } 1024 remove_req: 1025 nfs_inode_remove_request(req); 1026 next: 1027 nfs_end_page_writeback(req); 1028 nfs_release_request(req); 1029 } 1030 out: 1031 nfs_io_completion_put(hdr->io_completion); 1032 hdr->release(hdr); 1033 } 1034 1035 unsigned long 1036 nfs_reqs_to_commit(struct nfs_commit_info *cinfo) 1037 { 1038 return atomic_long_read(&cinfo->mds->ncommit); 1039 } 1040 1041 /* NFS_I(cinfo->inode)->commit_mutex held by caller */ 1042 int 1043 nfs_scan_commit_list(struct list_head *src, struct list_head *dst, 1044 struct nfs_commit_info *cinfo, int max) 1045 { 1046 struct nfs_page *req, *tmp; 1047 int ret = 0; 1048 1049 restart: 1050 list_for_each_entry_safe(req, tmp, src, wb_list) { 1051 kref_get(&req->wb_kref); 1052 if (!nfs_lock_request(req)) { 1053 int status; 1054 1055 /* Prevent deadlock with nfs_lock_and_join_requests */ 1056 if (!list_empty(dst)) { 1057 nfs_release_request(req); 1058 continue; 1059 } 1060 /* Ensure we make progress to prevent livelock */ 1061 mutex_unlock(&NFS_I(cinfo->inode)->commit_mutex); 1062 status = nfs_wait_on_request(req); 1063 nfs_release_request(req); 1064 mutex_lock(&NFS_I(cinfo->inode)->commit_mutex); 1065 if (status < 0) 1066 break; 1067 goto restart; 1068 } 1069 nfs_request_remove_commit_list(req, cinfo); 1070 clear_bit(PG_COMMIT_TO_DS, &req->wb_flags); 1071 nfs_list_add_request(req, dst); 1072 ret++; 1073 if ((ret == max) && !cinfo->dreq) 1074 break; 1075 cond_resched(); 1076 } 1077 return ret; 1078 } 1079 EXPORT_SYMBOL_GPL(nfs_scan_commit_list); 1080 1081 /* 1082 * nfs_scan_commit - Scan an inode for commit requests 1083 * @inode: NFS inode to scan 1084 * @dst: mds destination list 1085 * @cinfo: mds and ds lists of reqs ready to commit 1086 * 1087 * Moves requests from the inode's 'commit' request list. 1088 * The requests are *not* checked to ensure that they form a contiguous set. 1089 */ 1090 int 1091 nfs_scan_commit(struct inode *inode, struct list_head *dst, 1092 struct nfs_commit_info *cinfo) 1093 { 1094 int ret = 0; 1095 1096 if (!atomic_long_read(&cinfo->mds->ncommit)) 1097 return 0; 1098 mutex_lock(&NFS_I(cinfo->inode)->commit_mutex); 1099 if (atomic_long_read(&cinfo->mds->ncommit) > 0) { 1100 const int max = INT_MAX; 1101 1102 ret = nfs_scan_commit_list(&cinfo->mds->list, dst, 1103 cinfo, max); 1104 ret += pnfs_scan_commit_lists(inode, cinfo, max - ret); 1105 } 1106 mutex_unlock(&NFS_I(cinfo->inode)->commit_mutex); 1107 return ret; 1108 } 1109 1110 /* 1111 * Search for an existing write request, and attempt to update 1112 * it to reflect a new dirty region on a given page. 1113 * 1114 * If the attempt fails, then the existing request is flushed out 1115 * to disk. 1116 */ 1117 static struct nfs_page *nfs_try_to_update_request(struct inode *inode, 1118 struct page *page, 1119 unsigned int offset, 1120 unsigned int bytes) 1121 { 1122 struct nfs_page *req; 1123 unsigned int rqend; 1124 unsigned int end; 1125 int error; 1126 1127 end = offset + bytes; 1128 1129 req = nfs_lock_and_join_requests(page); 1130 if (IS_ERR_OR_NULL(req)) 1131 return req; 1132 1133 rqend = req->wb_offset + req->wb_bytes; 1134 /* 1135 * Tell the caller to flush out the request if 1136 * the offsets are non-contiguous. 1137 * Note: nfs_flush_incompatible() will already 1138 * have flushed out requests having wrong owners. 1139 */ 1140 if (offset > rqend || end < req->wb_offset) 1141 goto out_flushme; 1142 1143 /* Okay, the request matches. Update the region */ 1144 if (offset < req->wb_offset) { 1145 req->wb_offset = offset; 1146 req->wb_pgbase = offset; 1147 } 1148 if (end > rqend) 1149 req->wb_bytes = end - req->wb_offset; 1150 else 1151 req->wb_bytes = rqend - req->wb_offset; 1152 req->wb_nio = 0; 1153 return req; 1154 out_flushme: 1155 /* 1156 * Note: we mark the request dirty here because 1157 * nfs_lock_and_join_requests() cannot preserve 1158 * commit flags, so we have to replay the write. 1159 */ 1160 nfs_mark_request_dirty(req); 1161 nfs_unlock_and_release_request(req); 1162 error = nfs_wb_page(inode, page); 1163 return (error < 0) ? ERR_PTR(error) : NULL; 1164 } 1165 1166 /* 1167 * Try to update an existing write request, or create one if there is none. 1168 * 1169 * Note: Should always be called with the Page Lock held to prevent races 1170 * if we have to add a new request. Also assumes that the caller has 1171 * already called nfs_flush_incompatible() if necessary. 1172 */ 1173 static struct nfs_page * nfs_setup_write_request(struct nfs_open_context* ctx, 1174 struct page *page, unsigned int offset, unsigned int bytes) 1175 { 1176 struct inode *inode = page_file_mapping(page)->host; 1177 struct nfs_page *req; 1178 1179 req = nfs_try_to_update_request(inode, page, offset, bytes); 1180 if (req != NULL) 1181 goto out; 1182 req = nfs_create_request(ctx, page, offset, bytes); 1183 if (IS_ERR(req)) 1184 goto out; 1185 nfs_inode_add_request(inode, req); 1186 out: 1187 return req; 1188 } 1189 1190 static int nfs_writepage_setup(struct nfs_open_context *ctx, struct page *page, 1191 unsigned int offset, unsigned int count) 1192 { 1193 struct nfs_page *req; 1194 1195 req = nfs_setup_write_request(ctx, page, offset, count); 1196 if (IS_ERR(req)) 1197 return PTR_ERR(req); 1198 /* Update file length */ 1199 nfs_grow_file(page, offset, count); 1200 nfs_mark_uptodate(req); 1201 nfs_mark_request_dirty(req); 1202 nfs_unlock_and_release_request(req); 1203 return 0; 1204 } 1205 1206 int nfs_flush_incompatible(struct file *file, struct page *page) 1207 { 1208 struct nfs_open_context *ctx = nfs_file_open_context(file); 1209 struct nfs_lock_context *l_ctx; 1210 struct file_lock_context *flctx = file_inode(file)->i_flctx; 1211 struct nfs_page *req; 1212 int do_flush, status; 1213 /* 1214 * Look for a request corresponding to this page. If there 1215 * is one, and it belongs to another file, we flush it out 1216 * before we try to copy anything into the page. Do this 1217 * due to the lack of an ACCESS-type call in NFSv2. 1218 * Also do the same if we find a request from an existing 1219 * dropped page. 1220 */ 1221 do { 1222 req = nfs_page_find_head_request(page); 1223 if (req == NULL) 1224 return 0; 1225 l_ctx = req->wb_lock_context; 1226 do_flush = req->wb_page != page || 1227 !nfs_match_open_context(nfs_req_openctx(req), ctx); 1228 if (l_ctx && flctx && 1229 !(list_empty_careful(&flctx->flc_posix) && 1230 list_empty_careful(&flctx->flc_flock))) { 1231 do_flush |= l_ctx->lockowner != current->files; 1232 } 1233 nfs_release_request(req); 1234 if (!do_flush) 1235 return 0; 1236 status = nfs_wb_page(page_file_mapping(page)->host, page); 1237 } while (status == 0); 1238 return status; 1239 } 1240 1241 /* 1242 * Avoid buffered writes when a open context credential's key would 1243 * expire soon. 1244 * 1245 * Returns -EACCES if the key will expire within RPC_KEY_EXPIRE_FAIL. 1246 * 1247 * Return 0 and set a credential flag which triggers the inode to flush 1248 * and performs NFS_FILE_SYNC writes if the key will expired within 1249 * RPC_KEY_EXPIRE_TIMEO. 1250 */ 1251 int 1252 nfs_key_timeout_notify(struct file *filp, struct inode *inode) 1253 { 1254 struct nfs_open_context *ctx = nfs_file_open_context(filp); 1255 1256 if (nfs_ctx_key_to_expire(ctx, inode) && 1257 !ctx->ll_cred) 1258 /* Already expired! */ 1259 return -EACCES; 1260 return 0; 1261 } 1262 1263 /* 1264 * Test if the open context credential key is marked to expire soon. 1265 */ 1266 bool nfs_ctx_key_to_expire(struct nfs_open_context *ctx, struct inode *inode) 1267 { 1268 struct rpc_auth *auth = NFS_SERVER(inode)->client->cl_auth; 1269 struct rpc_cred *cred = ctx->ll_cred; 1270 struct auth_cred acred = { 1271 .cred = ctx->cred, 1272 }; 1273 1274 if (cred && !cred->cr_ops->crmatch(&acred, cred, 0)) { 1275 put_rpccred(cred); 1276 ctx->ll_cred = NULL; 1277 cred = NULL; 1278 } 1279 if (!cred) 1280 cred = auth->au_ops->lookup_cred(auth, &acred, 0); 1281 if (!cred || IS_ERR(cred)) 1282 return true; 1283 ctx->ll_cred = cred; 1284 return !!(cred->cr_ops->crkey_timeout && 1285 cred->cr_ops->crkey_timeout(cred)); 1286 } 1287 1288 /* 1289 * If the page cache is marked as unsafe or invalid, then we can't rely on 1290 * the PageUptodate() flag. In this case, we will need to turn off 1291 * write optimisations that depend on the page contents being correct. 1292 */ 1293 static bool nfs_write_pageuptodate(struct page *page, struct inode *inode) 1294 { 1295 struct nfs_inode *nfsi = NFS_I(inode); 1296 1297 if (nfs_have_delegated_attributes(inode)) 1298 goto out; 1299 if (nfsi->cache_validity & NFS_INO_REVAL_PAGECACHE) 1300 return false; 1301 smp_rmb(); 1302 if (test_bit(NFS_INO_INVALIDATING, &nfsi->flags)) 1303 return false; 1304 out: 1305 if (nfsi->cache_validity & NFS_INO_INVALID_DATA) 1306 return false; 1307 return PageUptodate(page) != 0; 1308 } 1309 1310 static bool 1311 is_whole_file_wrlock(struct file_lock *fl) 1312 { 1313 return fl->fl_start == 0 && fl->fl_end == OFFSET_MAX && 1314 fl->fl_type == F_WRLCK; 1315 } 1316 1317 /* If we know the page is up to date, and we're not using byte range locks (or 1318 * if we have the whole file locked for writing), it may be more efficient to 1319 * extend the write to cover the entire page in order to avoid fragmentation 1320 * inefficiencies. 1321 * 1322 * If the file is opened for synchronous writes then we can just skip the rest 1323 * of the checks. 1324 */ 1325 static int nfs_can_extend_write(struct file *file, struct page *page, struct inode *inode) 1326 { 1327 int ret; 1328 struct file_lock_context *flctx = inode->i_flctx; 1329 struct file_lock *fl; 1330 1331 if (file->f_flags & O_DSYNC) 1332 return 0; 1333 if (!nfs_write_pageuptodate(page, inode)) 1334 return 0; 1335 if (NFS_PROTO(inode)->have_delegation(inode, FMODE_WRITE)) 1336 return 1; 1337 if (!flctx || (list_empty_careful(&flctx->flc_flock) && 1338 list_empty_careful(&flctx->flc_posix))) 1339 return 1; 1340 1341 /* Check to see if there are whole file write locks */ 1342 ret = 0; 1343 spin_lock(&flctx->flc_lock); 1344 if (!list_empty(&flctx->flc_posix)) { 1345 fl = list_first_entry(&flctx->flc_posix, struct file_lock, 1346 fl_list); 1347 if (is_whole_file_wrlock(fl)) 1348 ret = 1; 1349 } else if (!list_empty(&flctx->flc_flock)) { 1350 fl = list_first_entry(&flctx->flc_flock, struct file_lock, 1351 fl_list); 1352 if (fl->fl_type == F_WRLCK) 1353 ret = 1; 1354 } 1355 spin_unlock(&flctx->flc_lock); 1356 return ret; 1357 } 1358 1359 /* 1360 * Update and possibly write a cached page of an NFS file. 1361 * 1362 * XXX: Keep an eye on generic_file_read to make sure it doesn't do bad 1363 * things with a page scheduled for an RPC call (e.g. invalidate it). 1364 */ 1365 int nfs_updatepage(struct file *file, struct page *page, 1366 unsigned int offset, unsigned int count) 1367 { 1368 struct nfs_open_context *ctx = nfs_file_open_context(file); 1369 struct address_space *mapping = page_file_mapping(page); 1370 struct inode *inode = mapping->host; 1371 int status = 0; 1372 1373 nfs_inc_stats(inode, NFSIOS_VFSUPDATEPAGE); 1374 1375 dprintk("NFS: nfs_updatepage(%pD2 %d@%lld)\n", 1376 file, count, (long long)(page_file_offset(page) + offset)); 1377 1378 if (!count) 1379 goto out; 1380 1381 if (nfs_can_extend_write(file, page, inode)) { 1382 count = max(count + offset, nfs_page_length(page)); 1383 offset = 0; 1384 } 1385 1386 status = nfs_writepage_setup(ctx, page, offset, count); 1387 if (status < 0) 1388 nfs_set_pageerror(mapping); 1389 else 1390 __set_page_dirty_nobuffers(page); 1391 out: 1392 dprintk("NFS: nfs_updatepage returns %d (isize %lld)\n", 1393 status, (long long)i_size_read(inode)); 1394 return status; 1395 } 1396 1397 static int flush_task_priority(int how) 1398 { 1399 switch (how & (FLUSH_HIGHPRI|FLUSH_LOWPRI)) { 1400 case FLUSH_HIGHPRI: 1401 return RPC_PRIORITY_HIGH; 1402 case FLUSH_LOWPRI: 1403 return RPC_PRIORITY_LOW; 1404 } 1405 return RPC_PRIORITY_NORMAL; 1406 } 1407 1408 static void nfs_initiate_write(struct nfs_pgio_header *hdr, 1409 struct rpc_message *msg, 1410 const struct nfs_rpc_ops *rpc_ops, 1411 struct rpc_task_setup *task_setup_data, int how) 1412 { 1413 int priority = flush_task_priority(how); 1414 1415 task_setup_data->priority = priority; 1416 rpc_ops->write_setup(hdr, msg, &task_setup_data->rpc_client); 1417 trace_nfs_initiate_write(hdr); 1418 } 1419 1420 /* If a nfs_flush_* function fails, it should remove reqs from @head and 1421 * call this on each, which will prepare them to be retried on next 1422 * writeback using standard nfs. 1423 */ 1424 static void nfs_redirty_request(struct nfs_page *req) 1425 { 1426 /* Bump the transmission count */ 1427 req->wb_nio++; 1428 nfs_mark_request_dirty(req); 1429 set_bit(NFS_CONTEXT_RESEND_WRITES, &nfs_req_openctx(req)->flags); 1430 nfs_end_page_writeback(req); 1431 nfs_release_request(req); 1432 } 1433 1434 static void nfs_async_write_error(struct list_head *head, int error) 1435 { 1436 struct nfs_page *req; 1437 1438 while (!list_empty(head)) { 1439 req = nfs_list_entry(head->next); 1440 nfs_list_remove_request(req); 1441 if (nfs_error_is_fatal(error)) 1442 nfs_write_error(req, error); 1443 else 1444 nfs_redirty_request(req); 1445 } 1446 } 1447 1448 static void nfs_async_write_reschedule_io(struct nfs_pgio_header *hdr) 1449 { 1450 nfs_async_write_error(&hdr->pages, 0); 1451 filemap_fdatawrite_range(hdr->inode->i_mapping, hdr->args.offset, 1452 hdr->args.offset + hdr->args.count - 1); 1453 } 1454 1455 static const struct nfs_pgio_completion_ops nfs_async_write_completion_ops = { 1456 .init_hdr = nfs_async_write_init, 1457 .error_cleanup = nfs_async_write_error, 1458 .completion = nfs_write_completion, 1459 .reschedule_io = nfs_async_write_reschedule_io, 1460 }; 1461 1462 void nfs_pageio_init_write(struct nfs_pageio_descriptor *pgio, 1463 struct inode *inode, int ioflags, bool force_mds, 1464 const struct nfs_pgio_completion_ops *compl_ops) 1465 { 1466 struct nfs_server *server = NFS_SERVER(inode); 1467 const struct nfs_pageio_ops *pg_ops = &nfs_pgio_rw_ops; 1468 1469 #ifdef CONFIG_NFS_V4_1 1470 if (server->pnfs_curr_ld && !force_mds) 1471 pg_ops = server->pnfs_curr_ld->pg_write_ops; 1472 #endif 1473 nfs_pageio_init(pgio, inode, pg_ops, compl_ops, &nfs_rw_write_ops, 1474 server->wsize, ioflags); 1475 } 1476 EXPORT_SYMBOL_GPL(nfs_pageio_init_write); 1477 1478 void nfs_pageio_reset_write_mds(struct nfs_pageio_descriptor *pgio) 1479 { 1480 struct nfs_pgio_mirror *mirror; 1481 1482 if (pgio->pg_ops && pgio->pg_ops->pg_cleanup) 1483 pgio->pg_ops->pg_cleanup(pgio); 1484 1485 pgio->pg_ops = &nfs_pgio_rw_ops; 1486 1487 nfs_pageio_stop_mirroring(pgio); 1488 1489 mirror = &pgio->pg_mirrors[0]; 1490 mirror->pg_bsize = NFS_SERVER(pgio->pg_inode)->wsize; 1491 } 1492 EXPORT_SYMBOL_GPL(nfs_pageio_reset_write_mds); 1493 1494 1495 void nfs_commit_prepare(struct rpc_task *task, void *calldata) 1496 { 1497 struct nfs_commit_data *data = calldata; 1498 1499 NFS_PROTO(data->inode)->commit_rpc_prepare(task, data); 1500 } 1501 1502 /* 1503 * Special version of should_remove_suid() that ignores capabilities. 1504 */ 1505 static int nfs_should_remove_suid(const struct inode *inode) 1506 { 1507 umode_t mode = inode->i_mode; 1508 int kill = 0; 1509 1510 /* suid always must be killed */ 1511 if (unlikely(mode & S_ISUID)) 1512 kill = ATTR_KILL_SUID; 1513 1514 /* 1515 * sgid without any exec bits is just a mandatory locking mark; leave 1516 * it alone. If some exec bits are set, it's a real sgid; kill it. 1517 */ 1518 if (unlikely((mode & S_ISGID) && (mode & S_IXGRP))) 1519 kill |= ATTR_KILL_SGID; 1520 1521 if (unlikely(kill && S_ISREG(mode))) 1522 return kill; 1523 1524 return 0; 1525 } 1526 1527 static void nfs_writeback_check_extend(struct nfs_pgio_header *hdr, 1528 struct nfs_fattr *fattr) 1529 { 1530 struct nfs_pgio_args *argp = &hdr->args; 1531 struct nfs_pgio_res *resp = &hdr->res; 1532 u64 size = argp->offset + resp->count; 1533 1534 if (!(fattr->valid & NFS_ATTR_FATTR_SIZE)) 1535 fattr->size = size; 1536 if (nfs_size_to_loff_t(fattr->size) < i_size_read(hdr->inode)) { 1537 fattr->valid &= ~NFS_ATTR_FATTR_SIZE; 1538 return; 1539 } 1540 if (size != fattr->size) 1541 return; 1542 /* Set attribute barrier */ 1543 nfs_fattr_set_barrier(fattr); 1544 /* ...and update size */ 1545 fattr->valid |= NFS_ATTR_FATTR_SIZE; 1546 } 1547 1548 void nfs_writeback_update_inode(struct nfs_pgio_header *hdr) 1549 { 1550 struct nfs_fattr *fattr = &hdr->fattr; 1551 struct inode *inode = hdr->inode; 1552 1553 spin_lock(&inode->i_lock); 1554 nfs_writeback_check_extend(hdr, fattr); 1555 nfs_post_op_update_inode_force_wcc_locked(inode, fattr); 1556 spin_unlock(&inode->i_lock); 1557 } 1558 EXPORT_SYMBOL_GPL(nfs_writeback_update_inode); 1559 1560 /* 1561 * This function is called when the WRITE call is complete. 1562 */ 1563 static int nfs_writeback_done(struct rpc_task *task, 1564 struct nfs_pgio_header *hdr, 1565 struct inode *inode) 1566 { 1567 int status; 1568 1569 /* 1570 * ->write_done will attempt to use post-op attributes to detect 1571 * conflicting writes by other clients. A strict interpretation 1572 * of close-to-open would allow us to continue caching even if 1573 * another writer had changed the file, but some applications 1574 * depend on tighter cache coherency when writing. 1575 */ 1576 status = NFS_PROTO(inode)->write_done(task, hdr); 1577 if (status != 0) 1578 return status; 1579 1580 nfs_add_stats(inode, NFSIOS_SERVERWRITTENBYTES, hdr->res.count); 1581 trace_nfs_writeback_done(task, hdr); 1582 1583 if (hdr->res.verf->committed < hdr->args.stable && 1584 task->tk_status >= 0) { 1585 /* We tried a write call, but the server did not 1586 * commit data to stable storage even though we 1587 * requested it. 1588 * Note: There is a known bug in Tru64 < 5.0 in which 1589 * the server reports NFS_DATA_SYNC, but performs 1590 * NFS_FILE_SYNC. We therefore implement this checking 1591 * as a dprintk() in order to avoid filling syslog. 1592 */ 1593 static unsigned long complain; 1594 1595 /* Note this will print the MDS for a DS write */ 1596 if (time_before(complain, jiffies)) { 1597 dprintk("NFS: faulty NFS server %s:" 1598 " (committed = %d) != (stable = %d)\n", 1599 NFS_SERVER(inode)->nfs_client->cl_hostname, 1600 hdr->res.verf->committed, hdr->args.stable); 1601 complain = jiffies + 300 * HZ; 1602 } 1603 } 1604 1605 /* Deal with the suid/sgid bit corner case */ 1606 if (nfs_should_remove_suid(inode)) { 1607 spin_lock(&inode->i_lock); 1608 NFS_I(inode)->cache_validity |= NFS_INO_INVALID_OTHER; 1609 spin_unlock(&inode->i_lock); 1610 } 1611 return 0; 1612 } 1613 1614 /* 1615 * This function is called when the WRITE call is complete. 1616 */ 1617 static void nfs_writeback_result(struct rpc_task *task, 1618 struct nfs_pgio_header *hdr) 1619 { 1620 struct nfs_pgio_args *argp = &hdr->args; 1621 struct nfs_pgio_res *resp = &hdr->res; 1622 1623 if (resp->count < argp->count) { 1624 static unsigned long complain; 1625 1626 /* This a short write! */ 1627 nfs_inc_stats(hdr->inode, NFSIOS_SHORTWRITE); 1628 1629 /* Has the server at least made some progress? */ 1630 if (resp->count == 0) { 1631 if (time_before(complain, jiffies)) { 1632 printk(KERN_WARNING 1633 "NFS: Server wrote zero bytes, expected %u.\n", 1634 argp->count); 1635 complain = jiffies + 300 * HZ; 1636 } 1637 nfs_set_pgio_error(hdr, -EIO, argp->offset); 1638 task->tk_status = -EIO; 1639 return; 1640 } 1641 1642 /* For non rpc-based layout drivers, retry-through-MDS */ 1643 if (!task->tk_ops) { 1644 hdr->pnfs_error = -EAGAIN; 1645 return; 1646 } 1647 1648 /* Was this an NFSv2 write or an NFSv3 stable write? */ 1649 if (resp->verf->committed != NFS_UNSTABLE) { 1650 /* Resend from where the server left off */ 1651 hdr->mds_offset += resp->count; 1652 argp->offset += resp->count; 1653 argp->pgbase += resp->count; 1654 argp->count -= resp->count; 1655 } else { 1656 /* Resend as a stable write in order to avoid 1657 * headaches in the case of a server crash. 1658 */ 1659 argp->stable = NFS_FILE_SYNC; 1660 } 1661 resp->count = 0; 1662 resp->verf->committed = 0; 1663 rpc_restart_call_prepare(task); 1664 } 1665 } 1666 1667 static int wait_on_commit(struct nfs_mds_commit_info *cinfo) 1668 { 1669 return wait_var_event_killable(&cinfo->rpcs_out, 1670 !atomic_read(&cinfo->rpcs_out)); 1671 } 1672 1673 static void nfs_commit_begin(struct nfs_mds_commit_info *cinfo) 1674 { 1675 atomic_inc(&cinfo->rpcs_out); 1676 } 1677 1678 static void nfs_commit_end(struct nfs_mds_commit_info *cinfo) 1679 { 1680 if (atomic_dec_and_test(&cinfo->rpcs_out)) 1681 wake_up_var(&cinfo->rpcs_out); 1682 } 1683 1684 void nfs_commitdata_release(struct nfs_commit_data *data) 1685 { 1686 put_nfs_open_context(data->context); 1687 nfs_commit_free(data); 1688 } 1689 EXPORT_SYMBOL_GPL(nfs_commitdata_release); 1690 1691 int nfs_initiate_commit(struct rpc_clnt *clnt, struct nfs_commit_data *data, 1692 const struct nfs_rpc_ops *nfs_ops, 1693 const struct rpc_call_ops *call_ops, 1694 int how, int flags) 1695 { 1696 struct rpc_task *task; 1697 int priority = flush_task_priority(how); 1698 struct rpc_message msg = { 1699 .rpc_argp = &data->args, 1700 .rpc_resp = &data->res, 1701 .rpc_cred = data->cred, 1702 }; 1703 struct rpc_task_setup task_setup_data = { 1704 .task = &data->task, 1705 .rpc_client = clnt, 1706 .rpc_message = &msg, 1707 .callback_ops = call_ops, 1708 .callback_data = data, 1709 .workqueue = nfsiod_workqueue, 1710 .flags = RPC_TASK_ASYNC | flags, 1711 .priority = priority, 1712 }; 1713 /* Set up the initial task struct. */ 1714 nfs_ops->commit_setup(data, &msg, &task_setup_data.rpc_client); 1715 trace_nfs_initiate_commit(data); 1716 1717 dprintk("NFS: initiated commit call\n"); 1718 1719 task = rpc_run_task(&task_setup_data); 1720 if (IS_ERR(task)) 1721 return PTR_ERR(task); 1722 if (how & FLUSH_SYNC) 1723 rpc_wait_for_completion_task(task); 1724 rpc_put_task(task); 1725 return 0; 1726 } 1727 EXPORT_SYMBOL_GPL(nfs_initiate_commit); 1728 1729 static loff_t nfs_get_lwb(struct list_head *head) 1730 { 1731 loff_t lwb = 0; 1732 struct nfs_page *req; 1733 1734 list_for_each_entry(req, head, wb_list) 1735 if (lwb < (req_offset(req) + req->wb_bytes)) 1736 lwb = req_offset(req) + req->wb_bytes; 1737 1738 return lwb; 1739 } 1740 1741 /* 1742 * Set up the argument/result storage required for the RPC call. 1743 */ 1744 void nfs_init_commit(struct nfs_commit_data *data, 1745 struct list_head *head, 1746 struct pnfs_layout_segment *lseg, 1747 struct nfs_commit_info *cinfo) 1748 { 1749 struct nfs_page *first = nfs_list_entry(head->next); 1750 struct nfs_open_context *ctx = nfs_req_openctx(first); 1751 struct inode *inode = d_inode(ctx->dentry); 1752 1753 /* Set up the RPC argument and reply structs 1754 * NB: take care not to mess about with data->commit et al. */ 1755 1756 list_splice_init(head, &data->pages); 1757 1758 data->inode = inode; 1759 data->cred = ctx->cred; 1760 data->lseg = lseg; /* reference transferred */ 1761 /* only set lwb for pnfs commit */ 1762 if (lseg) 1763 data->lwb = nfs_get_lwb(&data->pages); 1764 data->mds_ops = &nfs_commit_ops; 1765 data->completion_ops = cinfo->completion_ops; 1766 data->dreq = cinfo->dreq; 1767 1768 data->args.fh = NFS_FH(data->inode); 1769 /* Note: we always request a commit of the entire inode */ 1770 data->args.offset = 0; 1771 data->args.count = 0; 1772 data->context = get_nfs_open_context(ctx); 1773 data->res.fattr = &data->fattr; 1774 data->res.verf = &data->verf; 1775 nfs_fattr_init(&data->fattr); 1776 } 1777 EXPORT_SYMBOL_GPL(nfs_init_commit); 1778 1779 void nfs_retry_commit(struct list_head *page_list, 1780 struct pnfs_layout_segment *lseg, 1781 struct nfs_commit_info *cinfo, 1782 u32 ds_commit_idx) 1783 { 1784 struct nfs_page *req; 1785 1786 while (!list_empty(page_list)) { 1787 req = nfs_list_entry(page_list->next); 1788 nfs_list_remove_request(req); 1789 nfs_mark_request_commit(req, lseg, cinfo, ds_commit_idx); 1790 if (!cinfo->dreq) 1791 nfs_clear_page_commit(req->wb_page); 1792 nfs_unlock_and_release_request(req); 1793 } 1794 } 1795 EXPORT_SYMBOL_GPL(nfs_retry_commit); 1796 1797 static void 1798 nfs_commit_resched_write(struct nfs_commit_info *cinfo, 1799 struct nfs_page *req) 1800 { 1801 __set_page_dirty_nobuffers(req->wb_page); 1802 } 1803 1804 /* 1805 * Commit dirty pages 1806 */ 1807 static int 1808 nfs_commit_list(struct inode *inode, struct list_head *head, int how, 1809 struct nfs_commit_info *cinfo) 1810 { 1811 struct nfs_commit_data *data; 1812 1813 /* another commit raced with us */ 1814 if (list_empty(head)) 1815 return 0; 1816 1817 data = nfs_commitdata_alloc(true); 1818 1819 /* Set up the argument struct */ 1820 nfs_init_commit(data, head, NULL, cinfo); 1821 atomic_inc(&cinfo->mds->rpcs_out); 1822 return nfs_initiate_commit(NFS_CLIENT(inode), data, NFS_PROTO(inode), 1823 data->mds_ops, how, 0); 1824 } 1825 1826 /* 1827 * COMMIT call returned 1828 */ 1829 static void nfs_commit_done(struct rpc_task *task, void *calldata) 1830 { 1831 struct nfs_commit_data *data = calldata; 1832 1833 dprintk("NFS: %5u nfs_commit_done (status %d)\n", 1834 task->tk_pid, task->tk_status); 1835 1836 /* Call the NFS version-specific code */ 1837 NFS_PROTO(data->inode)->commit_done(task, data); 1838 trace_nfs_commit_done(task, data); 1839 } 1840 1841 static void nfs_commit_release_pages(struct nfs_commit_data *data) 1842 { 1843 const struct nfs_writeverf *verf = data->res.verf; 1844 struct nfs_page *req; 1845 int status = data->task.tk_status; 1846 struct nfs_commit_info cinfo; 1847 struct nfs_server *nfss; 1848 1849 while (!list_empty(&data->pages)) { 1850 req = nfs_list_entry(data->pages.next); 1851 nfs_list_remove_request(req); 1852 if (req->wb_page) 1853 nfs_clear_page_commit(req->wb_page); 1854 1855 dprintk("NFS: commit (%s/%llu %d@%lld)", 1856 nfs_req_openctx(req)->dentry->d_sb->s_id, 1857 (unsigned long long)NFS_FILEID(d_inode(nfs_req_openctx(req)->dentry)), 1858 req->wb_bytes, 1859 (long long)req_offset(req)); 1860 if (status < 0) { 1861 if (req->wb_page) { 1862 trace_nfs_commit_error(req, status); 1863 nfs_mapping_set_error(req->wb_page, status); 1864 nfs_inode_remove_request(req); 1865 } 1866 dprintk_cont(", error = %d\n", status); 1867 goto next; 1868 } 1869 1870 /* Okay, COMMIT succeeded, apparently. Check the verifier 1871 * returned by the server against all stored verfs. */ 1872 if (verf->committed > NFS_UNSTABLE && 1873 !nfs_write_verifier_cmp(&req->wb_verf, &verf->verifier)) { 1874 /* We have a match */ 1875 if (req->wb_page) 1876 nfs_inode_remove_request(req); 1877 dprintk_cont(" OK\n"); 1878 goto next; 1879 } 1880 /* We have a mismatch. Write the page again */ 1881 dprintk_cont(" mismatch\n"); 1882 nfs_mark_request_dirty(req); 1883 set_bit(NFS_CONTEXT_RESEND_WRITES, &nfs_req_openctx(req)->flags); 1884 next: 1885 nfs_unlock_and_release_request(req); 1886 /* Latency breaker */ 1887 cond_resched(); 1888 } 1889 nfss = NFS_SERVER(data->inode); 1890 if (atomic_long_read(&nfss->writeback) < NFS_CONGESTION_OFF_THRESH) 1891 clear_bdi_congested(inode_to_bdi(data->inode), BLK_RW_ASYNC); 1892 1893 nfs_init_cinfo(&cinfo, data->inode, data->dreq); 1894 nfs_commit_end(cinfo.mds); 1895 } 1896 1897 static void nfs_commit_release(void *calldata) 1898 { 1899 struct nfs_commit_data *data = calldata; 1900 1901 data->completion_ops->completion(data); 1902 nfs_commitdata_release(calldata); 1903 } 1904 1905 static const struct rpc_call_ops nfs_commit_ops = { 1906 .rpc_call_prepare = nfs_commit_prepare, 1907 .rpc_call_done = nfs_commit_done, 1908 .rpc_release = nfs_commit_release, 1909 }; 1910 1911 static const struct nfs_commit_completion_ops nfs_commit_completion_ops = { 1912 .completion = nfs_commit_release_pages, 1913 .resched_write = nfs_commit_resched_write, 1914 }; 1915 1916 int nfs_generic_commit_list(struct inode *inode, struct list_head *head, 1917 int how, struct nfs_commit_info *cinfo) 1918 { 1919 int status; 1920 1921 status = pnfs_commit_list(inode, head, how, cinfo); 1922 if (status == PNFS_NOT_ATTEMPTED) 1923 status = nfs_commit_list(inode, head, how, cinfo); 1924 return status; 1925 } 1926 1927 static int __nfs_commit_inode(struct inode *inode, int how, 1928 struct writeback_control *wbc) 1929 { 1930 LIST_HEAD(head); 1931 struct nfs_commit_info cinfo; 1932 int may_wait = how & FLUSH_SYNC; 1933 int ret, nscan; 1934 1935 nfs_init_cinfo_from_inode(&cinfo, inode); 1936 nfs_commit_begin(cinfo.mds); 1937 for (;;) { 1938 ret = nscan = nfs_scan_commit(inode, &head, &cinfo); 1939 if (ret <= 0) 1940 break; 1941 ret = nfs_generic_commit_list(inode, &head, how, &cinfo); 1942 if (ret < 0) 1943 break; 1944 ret = 0; 1945 if (wbc && wbc->sync_mode == WB_SYNC_NONE) { 1946 if (nscan < wbc->nr_to_write) 1947 wbc->nr_to_write -= nscan; 1948 else 1949 wbc->nr_to_write = 0; 1950 } 1951 if (nscan < INT_MAX) 1952 break; 1953 cond_resched(); 1954 } 1955 nfs_commit_end(cinfo.mds); 1956 if (ret || !may_wait) 1957 return ret; 1958 return wait_on_commit(cinfo.mds); 1959 } 1960 1961 int nfs_commit_inode(struct inode *inode, int how) 1962 { 1963 return __nfs_commit_inode(inode, how, NULL); 1964 } 1965 EXPORT_SYMBOL_GPL(nfs_commit_inode); 1966 1967 int nfs_write_inode(struct inode *inode, struct writeback_control *wbc) 1968 { 1969 struct nfs_inode *nfsi = NFS_I(inode); 1970 int flags = FLUSH_SYNC; 1971 int ret = 0; 1972 1973 if (wbc->sync_mode == WB_SYNC_NONE) { 1974 /* no commits means nothing needs to be done */ 1975 if (!atomic_long_read(&nfsi->commit_info.ncommit)) 1976 goto check_requests_outstanding; 1977 1978 /* Don't commit yet if this is a non-blocking flush and there 1979 * are a lot of outstanding writes for this mapping. 1980 */ 1981 if (mapping_tagged(inode->i_mapping, PAGECACHE_TAG_WRITEBACK)) 1982 goto out_mark_dirty; 1983 1984 /* don't wait for the COMMIT response */ 1985 flags = 0; 1986 } 1987 1988 ret = __nfs_commit_inode(inode, flags, wbc); 1989 if (!ret) { 1990 if (flags & FLUSH_SYNC) 1991 return 0; 1992 } else if (atomic_long_read(&nfsi->commit_info.ncommit)) 1993 goto out_mark_dirty; 1994 1995 check_requests_outstanding: 1996 if (!atomic_read(&nfsi->commit_info.rpcs_out)) 1997 return ret; 1998 out_mark_dirty: 1999 __mark_inode_dirty(inode, I_DIRTY_DATASYNC); 2000 return ret; 2001 } 2002 EXPORT_SYMBOL_GPL(nfs_write_inode); 2003 2004 /* 2005 * Wrapper for filemap_write_and_wait_range() 2006 * 2007 * Needed for pNFS in order to ensure data becomes visible to the 2008 * client. 2009 */ 2010 int nfs_filemap_write_and_wait_range(struct address_space *mapping, 2011 loff_t lstart, loff_t lend) 2012 { 2013 int ret; 2014 2015 ret = filemap_write_and_wait_range(mapping, lstart, lend); 2016 if (ret == 0) 2017 ret = pnfs_sync_inode(mapping->host, true); 2018 return ret; 2019 } 2020 EXPORT_SYMBOL_GPL(nfs_filemap_write_and_wait_range); 2021 2022 /* 2023 * flush the inode to disk. 2024 */ 2025 int nfs_wb_all(struct inode *inode) 2026 { 2027 int ret; 2028 2029 trace_nfs_writeback_inode_enter(inode); 2030 2031 ret = filemap_write_and_wait(inode->i_mapping); 2032 if (ret) 2033 goto out; 2034 ret = nfs_commit_inode(inode, FLUSH_SYNC); 2035 if (ret < 0) 2036 goto out; 2037 pnfs_sync_inode(inode, true); 2038 ret = 0; 2039 2040 out: 2041 trace_nfs_writeback_inode_exit(inode, ret); 2042 return ret; 2043 } 2044 EXPORT_SYMBOL_GPL(nfs_wb_all); 2045 2046 int nfs_wb_page_cancel(struct inode *inode, struct page *page) 2047 { 2048 struct nfs_page *req; 2049 int ret = 0; 2050 2051 wait_on_page_writeback(page); 2052 2053 /* blocking call to cancel all requests and join to a single (head) 2054 * request */ 2055 req = nfs_lock_and_join_requests(page); 2056 2057 if (IS_ERR(req)) { 2058 ret = PTR_ERR(req); 2059 } else if (req) { 2060 /* all requests from this page have been cancelled by 2061 * nfs_lock_and_join_requests, so just remove the head 2062 * request from the inode / page_private pointer and 2063 * release it */ 2064 nfs_inode_remove_request(req); 2065 nfs_unlock_and_release_request(req); 2066 } 2067 2068 return ret; 2069 } 2070 2071 /* 2072 * Write back all requests on one page - we do this before reading it. 2073 */ 2074 int nfs_wb_page(struct inode *inode, struct page *page) 2075 { 2076 loff_t range_start = page_file_offset(page); 2077 loff_t range_end = range_start + (loff_t)(PAGE_SIZE - 1); 2078 struct writeback_control wbc = { 2079 .sync_mode = WB_SYNC_ALL, 2080 .nr_to_write = 0, 2081 .range_start = range_start, 2082 .range_end = range_end, 2083 }; 2084 int ret; 2085 2086 trace_nfs_writeback_page_enter(inode); 2087 2088 for (;;) { 2089 wait_on_page_writeback(page); 2090 if (clear_page_dirty_for_io(page)) { 2091 ret = nfs_writepage_locked(page, &wbc); 2092 if (ret < 0) 2093 goto out_error; 2094 continue; 2095 } 2096 ret = 0; 2097 if (!PagePrivate(page)) 2098 break; 2099 ret = nfs_commit_inode(inode, FLUSH_SYNC); 2100 if (ret < 0) 2101 goto out_error; 2102 } 2103 out_error: 2104 trace_nfs_writeback_page_exit(inode, ret); 2105 return ret; 2106 } 2107 2108 #ifdef CONFIG_MIGRATION 2109 int nfs_migrate_page(struct address_space *mapping, struct page *newpage, 2110 struct page *page, enum migrate_mode mode) 2111 { 2112 /* 2113 * If PagePrivate is set, then the page is currently associated with 2114 * an in-progress read or write request. Don't try to migrate it. 2115 * 2116 * FIXME: we could do this in principle, but we'll need a way to ensure 2117 * that we can safely release the inode reference while holding 2118 * the page lock. 2119 */ 2120 if (PagePrivate(page)) 2121 return -EBUSY; 2122 2123 if (!nfs_fscache_release_page(page, GFP_KERNEL)) 2124 return -EBUSY; 2125 2126 return migrate_page(mapping, newpage, page, mode); 2127 } 2128 #endif 2129 2130 int __init nfs_init_writepagecache(void) 2131 { 2132 nfs_wdata_cachep = kmem_cache_create("nfs_write_data", 2133 sizeof(struct nfs_pgio_header), 2134 0, SLAB_HWCACHE_ALIGN, 2135 NULL); 2136 if (nfs_wdata_cachep == NULL) 2137 return -ENOMEM; 2138 2139 nfs_wdata_mempool = mempool_create_slab_pool(MIN_POOL_WRITE, 2140 nfs_wdata_cachep); 2141 if (nfs_wdata_mempool == NULL) 2142 goto out_destroy_write_cache; 2143 2144 nfs_cdata_cachep = kmem_cache_create("nfs_commit_data", 2145 sizeof(struct nfs_commit_data), 2146 0, SLAB_HWCACHE_ALIGN, 2147 NULL); 2148 if (nfs_cdata_cachep == NULL) 2149 goto out_destroy_write_mempool; 2150 2151 nfs_commit_mempool = mempool_create_slab_pool(MIN_POOL_COMMIT, 2152 nfs_cdata_cachep); 2153 if (nfs_commit_mempool == NULL) 2154 goto out_destroy_commit_cache; 2155 2156 /* 2157 * NFS congestion size, scale with available memory. 2158 * 2159 * 64MB: 8192k 2160 * 128MB: 11585k 2161 * 256MB: 16384k 2162 * 512MB: 23170k 2163 * 1GB: 32768k 2164 * 2GB: 46340k 2165 * 4GB: 65536k 2166 * 8GB: 92681k 2167 * 16GB: 131072k 2168 * 2169 * This allows larger machines to have larger/more transfers. 2170 * Limit the default to 256M 2171 */ 2172 nfs_congestion_kb = (16*int_sqrt(totalram_pages())) << (PAGE_SHIFT-10); 2173 if (nfs_congestion_kb > 256*1024) 2174 nfs_congestion_kb = 256*1024; 2175 2176 return 0; 2177 2178 out_destroy_commit_cache: 2179 kmem_cache_destroy(nfs_cdata_cachep); 2180 out_destroy_write_mempool: 2181 mempool_destroy(nfs_wdata_mempool); 2182 out_destroy_write_cache: 2183 kmem_cache_destroy(nfs_wdata_cachep); 2184 return -ENOMEM; 2185 } 2186 2187 void nfs_destroy_writepagecache(void) 2188 { 2189 mempool_destroy(nfs_commit_mempool); 2190 kmem_cache_destroy(nfs_cdata_cachep); 2191 mempool_destroy(nfs_wdata_mempool); 2192 kmem_cache_destroy(nfs_wdata_cachep); 2193 } 2194 2195 static const struct nfs_rw_ops nfs_rw_write_ops = { 2196 .rw_alloc_header = nfs_writehdr_alloc, 2197 .rw_free_header = nfs_writehdr_free, 2198 .rw_done = nfs_writeback_done, 2199 .rw_result = nfs_writeback_result, 2200 .rw_initiate = nfs_initiate_write, 2201 }; 2202