xref: /linux/fs/nfs/write.c (revision 520b7aa00d8cd8e411ecc09f63a2acd90feb6d29)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * linux/fs/nfs/write.c
4  *
5  * Write file data over NFS.
6  *
7  * Copyright (C) 1996, 1997, Olaf Kirch <okir@monad.swb.de>
8  */
9 
10 #include <linux/types.h>
11 #include <linux/slab.h>
12 #include <linux/mm.h>
13 #include <linux/pagemap.h>
14 #include <linux/file.h>
15 #include <linux/writeback.h>
16 #include <linux/swap.h>
17 #include <linux/migrate.h>
18 
19 #include <linux/sunrpc/clnt.h>
20 #include <linux/nfs_fs.h>
21 #include <linux/nfs_mount.h>
22 #include <linux/nfs_page.h>
23 #include <linux/backing-dev.h>
24 #include <linux/export.h>
25 #include <linux/freezer.h>
26 #include <linux/wait.h>
27 #include <linux/iversion.h>
28 
29 #include <linux/uaccess.h>
30 #include <linux/sched/mm.h>
31 
32 #include "delegation.h"
33 #include "internal.h"
34 #include "iostat.h"
35 #include "nfs4_fs.h"
36 #include "fscache.h"
37 #include "pnfs.h"
38 
39 #include "nfstrace.h"
40 
41 #define NFSDBG_FACILITY		NFSDBG_PAGECACHE
42 
43 #define MIN_POOL_WRITE		(32)
44 #define MIN_POOL_COMMIT		(4)
45 
46 struct nfs_io_completion {
47 	void (*complete)(void *data);
48 	void *data;
49 	struct kref refcount;
50 };
51 
52 /*
53  * Local function declarations
54  */
55 static void nfs_redirty_request(struct nfs_page *req);
56 static const struct rpc_call_ops nfs_commit_ops;
57 static const struct nfs_pgio_completion_ops nfs_async_write_completion_ops;
58 static const struct nfs_commit_completion_ops nfs_commit_completion_ops;
59 static const struct nfs_rw_ops nfs_rw_write_ops;
60 static void nfs_inode_remove_request(struct nfs_page *req);
61 static void nfs_clear_request_commit(struct nfs_page *req);
62 static void nfs_init_cinfo_from_inode(struct nfs_commit_info *cinfo,
63 				      struct inode *inode);
64 static struct nfs_page *
65 nfs_page_search_commits_for_head_request_locked(struct nfs_inode *nfsi,
66 						struct page *page);
67 
68 static struct kmem_cache *nfs_wdata_cachep;
69 static mempool_t *nfs_wdata_mempool;
70 static struct kmem_cache *nfs_cdata_cachep;
71 static mempool_t *nfs_commit_mempool;
72 
73 struct nfs_commit_data *nfs_commitdata_alloc(bool never_fail)
74 {
75 	struct nfs_commit_data *p;
76 
77 	if (never_fail)
78 		p = mempool_alloc(nfs_commit_mempool, GFP_NOIO);
79 	else {
80 		/* It is OK to do some reclaim, not no safe to wait
81 		 * for anything to be returned to the pool.
82 		 * mempool_alloc() cannot handle that particular combination,
83 		 * so we need two separate attempts.
84 		 */
85 		p = mempool_alloc(nfs_commit_mempool, GFP_NOWAIT);
86 		if (!p)
87 			p = kmem_cache_alloc(nfs_cdata_cachep, GFP_NOIO |
88 					     __GFP_NOWARN | __GFP_NORETRY);
89 		if (!p)
90 			return NULL;
91 	}
92 
93 	memset(p, 0, sizeof(*p));
94 	INIT_LIST_HEAD(&p->pages);
95 	return p;
96 }
97 EXPORT_SYMBOL_GPL(nfs_commitdata_alloc);
98 
99 void nfs_commit_free(struct nfs_commit_data *p)
100 {
101 	mempool_free(p, nfs_commit_mempool);
102 }
103 EXPORT_SYMBOL_GPL(nfs_commit_free);
104 
105 static struct nfs_pgio_header *nfs_writehdr_alloc(void)
106 {
107 	struct nfs_pgio_header *p = mempool_alloc(nfs_wdata_mempool, GFP_KERNEL);
108 
109 	memset(p, 0, sizeof(*p));
110 	p->rw_mode = FMODE_WRITE;
111 	return p;
112 }
113 
114 static void nfs_writehdr_free(struct nfs_pgio_header *hdr)
115 {
116 	mempool_free(hdr, nfs_wdata_mempool);
117 }
118 
119 static struct nfs_io_completion *nfs_io_completion_alloc(gfp_t gfp_flags)
120 {
121 	return kmalloc(sizeof(struct nfs_io_completion), gfp_flags);
122 }
123 
124 static void nfs_io_completion_init(struct nfs_io_completion *ioc,
125 		void (*complete)(void *), void *data)
126 {
127 	ioc->complete = complete;
128 	ioc->data = data;
129 	kref_init(&ioc->refcount);
130 }
131 
132 static void nfs_io_completion_release(struct kref *kref)
133 {
134 	struct nfs_io_completion *ioc = container_of(kref,
135 			struct nfs_io_completion, refcount);
136 	ioc->complete(ioc->data);
137 	kfree(ioc);
138 }
139 
140 static void nfs_io_completion_get(struct nfs_io_completion *ioc)
141 {
142 	if (ioc != NULL)
143 		kref_get(&ioc->refcount);
144 }
145 
146 static void nfs_io_completion_put(struct nfs_io_completion *ioc)
147 {
148 	if (ioc != NULL)
149 		kref_put(&ioc->refcount, nfs_io_completion_release);
150 }
151 
152 static struct nfs_page *
153 nfs_page_private_request(struct page *page)
154 {
155 	if (!PagePrivate(page))
156 		return NULL;
157 	return (struct nfs_page *)page_private(page);
158 }
159 
160 /*
161  * nfs_page_find_head_request_locked - find head request associated with @page
162  *
163  * must be called while holding the inode lock.
164  *
165  * returns matching head request with reference held, or NULL if not found.
166  */
167 static struct nfs_page *
168 nfs_page_find_private_request(struct page *page)
169 {
170 	struct address_space *mapping = page_file_mapping(page);
171 	struct nfs_page *req;
172 
173 	if (!PagePrivate(page))
174 		return NULL;
175 	spin_lock(&mapping->private_lock);
176 	req = nfs_page_private_request(page);
177 	if (req) {
178 		WARN_ON_ONCE(req->wb_head != req);
179 		kref_get(&req->wb_kref);
180 	}
181 	spin_unlock(&mapping->private_lock);
182 	return req;
183 }
184 
185 static struct nfs_page *
186 nfs_page_find_swap_request(struct page *page)
187 {
188 	struct inode *inode = page_file_mapping(page)->host;
189 	struct nfs_inode *nfsi = NFS_I(inode);
190 	struct nfs_page *req = NULL;
191 	if (!PageSwapCache(page))
192 		return NULL;
193 	mutex_lock(&nfsi->commit_mutex);
194 	if (PageSwapCache(page)) {
195 		req = nfs_page_search_commits_for_head_request_locked(nfsi,
196 			page);
197 		if (req) {
198 			WARN_ON_ONCE(req->wb_head != req);
199 			kref_get(&req->wb_kref);
200 		}
201 	}
202 	mutex_unlock(&nfsi->commit_mutex);
203 	return req;
204 }
205 
206 /*
207  * nfs_page_find_head_request - find head request associated with @page
208  *
209  * returns matching head request with reference held, or NULL if not found.
210  */
211 static struct nfs_page *nfs_page_find_head_request(struct page *page)
212 {
213 	struct nfs_page *req;
214 
215 	req = nfs_page_find_private_request(page);
216 	if (!req)
217 		req = nfs_page_find_swap_request(page);
218 	return req;
219 }
220 
221 /* Adjust the file length if we're writing beyond the end */
222 static void nfs_grow_file(struct page *page, unsigned int offset, unsigned int count)
223 {
224 	struct inode *inode = page_file_mapping(page)->host;
225 	loff_t end, i_size;
226 	pgoff_t end_index;
227 
228 	spin_lock(&inode->i_lock);
229 	i_size = i_size_read(inode);
230 	end_index = (i_size - 1) >> PAGE_SHIFT;
231 	if (i_size > 0 && page_index(page) < end_index)
232 		goto out;
233 	end = page_file_offset(page) + ((loff_t)offset+count);
234 	if (i_size >= end)
235 		goto out;
236 	i_size_write(inode, end);
237 	NFS_I(inode)->cache_validity &= ~NFS_INO_INVALID_SIZE;
238 	nfs_inc_stats(inode, NFSIOS_EXTENDWRITE);
239 out:
240 	spin_unlock(&inode->i_lock);
241 }
242 
243 /* A writeback failed: mark the page as bad, and invalidate the page cache */
244 static void nfs_set_pageerror(struct address_space *mapping)
245 {
246 	struct inode *inode = mapping->host;
247 
248 	nfs_zap_mapping(mapping->host, mapping);
249 	/* Force file size revalidation */
250 	spin_lock(&inode->i_lock);
251 	NFS_I(inode)->cache_validity |= NFS_INO_REVAL_FORCED |
252 					NFS_INO_REVAL_PAGECACHE |
253 					NFS_INO_INVALID_SIZE;
254 	spin_unlock(&inode->i_lock);
255 }
256 
257 static void nfs_mapping_set_error(struct page *page, int error)
258 {
259 	struct address_space *mapping = page_file_mapping(page);
260 
261 	SetPageError(page);
262 	mapping_set_error(mapping, error);
263 	nfs_set_pageerror(mapping);
264 }
265 
266 /*
267  * nfs_page_group_search_locked
268  * @head - head request of page group
269  * @page_offset - offset into page
270  *
271  * Search page group with head @head to find a request that contains the
272  * page offset @page_offset.
273  *
274  * Returns a pointer to the first matching nfs request, or NULL if no
275  * match is found.
276  *
277  * Must be called with the page group lock held
278  */
279 static struct nfs_page *
280 nfs_page_group_search_locked(struct nfs_page *head, unsigned int page_offset)
281 {
282 	struct nfs_page *req;
283 
284 	req = head;
285 	do {
286 		if (page_offset >= req->wb_pgbase &&
287 		    page_offset < (req->wb_pgbase + req->wb_bytes))
288 			return req;
289 
290 		req = req->wb_this_page;
291 	} while (req != head);
292 
293 	return NULL;
294 }
295 
296 /*
297  * nfs_page_group_covers_page
298  * @head - head request of page group
299  *
300  * Return true if the page group with head @head covers the whole page,
301  * returns false otherwise
302  */
303 static bool nfs_page_group_covers_page(struct nfs_page *req)
304 {
305 	struct nfs_page *tmp;
306 	unsigned int pos = 0;
307 	unsigned int len = nfs_page_length(req->wb_page);
308 
309 	nfs_page_group_lock(req);
310 
311 	for (;;) {
312 		tmp = nfs_page_group_search_locked(req->wb_head, pos);
313 		if (!tmp)
314 			break;
315 		pos = tmp->wb_pgbase + tmp->wb_bytes;
316 	}
317 
318 	nfs_page_group_unlock(req);
319 	return pos >= len;
320 }
321 
322 /* We can set the PG_uptodate flag if we see that a write request
323  * covers the full page.
324  */
325 static void nfs_mark_uptodate(struct nfs_page *req)
326 {
327 	if (PageUptodate(req->wb_page))
328 		return;
329 	if (!nfs_page_group_covers_page(req))
330 		return;
331 	SetPageUptodate(req->wb_page);
332 }
333 
334 static int wb_priority(struct writeback_control *wbc)
335 {
336 	int ret = 0;
337 
338 	if (wbc->sync_mode == WB_SYNC_ALL)
339 		ret = FLUSH_COND_STABLE;
340 	return ret;
341 }
342 
343 /*
344  * NFS congestion control
345  */
346 
347 int nfs_congestion_kb;
348 
349 #define NFS_CONGESTION_ON_THRESH 	(nfs_congestion_kb >> (PAGE_SHIFT-10))
350 #define NFS_CONGESTION_OFF_THRESH	\
351 	(NFS_CONGESTION_ON_THRESH - (NFS_CONGESTION_ON_THRESH >> 2))
352 
353 static void nfs_set_page_writeback(struct page *page)
354 {
355 	struct inode *inode = page_file_mapping(page)->host;
356 	struct nfs_server *nfss = NFS_SERVER(inode);
357 	int ret = test_set_page_writeback(page);
358 
359 	WARN_ON_ONCE(ret != 0);
360 
361 	if (atomic_long_inc_return(&nfss->writeback) >
362 			NFS_CONGESTION_ON_THRESH)
363 		set_bdi_congested(inode_to_bdi(inode), BLK_RW_ASYNC);
364 }
365 
366 static void nfs_end_page_writeback(struct nfs_page *req)
367 {
368 	struct inode *inode = page_file_mapping(req->wb_page)->host;
369 	struct nfs_server *nfss = NFS_SERVER(inode);
370 	bool is_done;
371 
372 	is_done = nfs_page_group_sync_on_bit(req, PG_WB_END);
373 	nfs_unlock_request(req);
374 	if (!is_done)
375 		return;
376 
377 	end_page_writeback(req->wb_page);
378 	if (atomic_long_dec_return(&nfss->writeback) < NFS_CONGESTION_OFF_THRESH)
379 		clear_bdi_congested(inode_to_bdi(inode), BLK_RW_ASYNC);
380 }
381 
382 /*
383  * nfs_unroll_locks_and_wait -  unlock all newly locked reqs and wait on @req
384  *
385  * this is a helper function for nfs_lock_and_join_requests
386  *
387  * @inode - inode associated with request page group, must be holding inode lock
388  * @head  - head request of page group, must be holding head lock
389  * @req   - request that couldn't lock and needs to wait on the req bit lock
390  *
391  * NOTE: this must be called holding page_group bit lock
392  *       which will be released before returning.
393  *
394  * returns 0 on success, < 0 on error.
395  */
396 static void
397 nfs_unroll_locks(struct inode *inode, struct nfs_page *head,
398 			  struct nfs_page *req)
399 {
400 	struct nfs_page *tmp;
401 
402 	/* relinquish all the locks successfully grabbed this run */
403 	for (tmp = head->wb_this_page ; tmp != req; tmp = tmp->wb_this_page) {
404 		if (!kref_read(&tmp->wb_kref))
405 			continue;
406 		nfs_unlock_and_release_request(tmp);
407 	}
408 }
409 
410 /*
411  * nfs_destroy_unlinked_subrequests - destroy recently unlinked subrequests
412  *
413  * @destroy_list - request list (using wb_this_page) terminated by @old_head
414  * @old_head - the old head of the list
415  *
416  * All subrequests must be locked and removed from all lists, so at this point
417  * they are only "active" in this function, and possibly in nfs_wait_on_request
418  * with a reference held by some other context.
419  */
420 static void
421 nfs_destroy_unlinked_subrequests(struct nfs_page *destroy_list,
422 				 struct nfs_page *old_head,
423 				 struct inode *inode)
424 {
425 	while (destroy_list) {
426 		struct nfs_page *subreq = destroy_list;
427 
428 		destroy_list = (subreq->wb_this_page == old_head) ?
429 				   NULL : subreq->wb_this_page;
430 
431 		WARN_ON_ONCE(old_head != subreq->wb_head);
432 
433 		/* make sure old group is not used */
434 		subreq->wb_this_page = subreq;
435 
436 		clear_bit(PG_REMOVE, &subreq->wb_flags);
437 
438 		/* Note: races with nfs_page_group_destroy() */
439 		if (!kref_read(&subreq->wb_kref)) {
440 			/* Check if we raced with nfs_page_group_destroy() */
441 			if (test_and_clear_bit(PG_TEARDOWN, &subreq->wb_flags))
442 				nfs_free_request(subreq);
443 			continue;
444 		}
445 
446 		subreq->wb_head = subreq;
447 
448 		if (test_and_clear_bit(PG_INODE_REF, &subreq->wb_flags)) {
449 			nfs_release_request(subreq);
450 			atomic_long_dec(&NFS_I(inode)->nrequests);
451 		}
452 
453 		/* subreq is now totally disconnected from page group or any
454 		 * write / commit lists. last chance to wake any waiters */
455 		nfs_unlock_and_release_request(subreq);
456 	}
457 }
458 
459 /*
460  * nfs_lock_and_join_requests - join all subreqs to the head req and return
461  *                              a locked reference, cancelling any pending
462  *                              operations for this page.
463  *
464  * @page - the page used to lookup the "page group" of nfs_page structures
465  *
466  * This function joins all sub requests to the head request by first
467  * locking all requests in the group, cancelling any pending operations
468  * and finally updating the head request to cover the whole range covered by
469  * the (former) group.  All subrequests are removed from any write or commit
470  * lists, unlinked from the group and destroyed.
471  *
472  * Returns a locked, referenced pointer to the head request - which after
473  * this call is guaranteed to be the only request associated with the page.
474  * Returns NULL if no requests are found for @page, or a ERR_PTR if an
475  * error was encountered.
476  */
477 static struct nfs_page *
478 nfs_lock_and_join_requests(struct page *page)
479 {
480 	struct inode *inode = page_file_mapping(page)->host;
481 	struct nfs_page *head, *subreq;
482 	struct nfs_page *destroy_list = NULL;
483 	unsigned int total_bytes;
484 	int ret;
485 
486 try_again:
487 	/*
488 	 * A reference is taken only on the head request which acts as a
489 	 * reference to the whole page group - the group will not be destroyed
490 	 * until the head reference is released.
491 	 */
492 	head = nfs_page_find_head_request(page);
493 	if (!head)
494 		return NULL;
495 
496 	/* lock the page head first in order to avoid an ABBA inefficiency */
497 	if (!nfs_lock_request(head)) {
498 		ret = nfs_wait_on_request(head);
499 		nfs_release_request(head);
500 		if (ret < 0)
501 			return ERR_PTR(ret);
502 		goto try_again;
503 	}
504 
505 	/* Ensure that nobody removed the request before we locked it */
506 	if (head != nfs_page_private_request(page) && !PageSwapCache(page)) {
507 		nfs_unlock_and_release_request(head);
508 		goto try_again;
509 	}
510 
511 	ret = nfs_page_group_lock(head);
512 	if (ret < 0)
513 		goto release_request;
514 
515 	/* lock each request in the page group */
516 	total_bytes = head->wb_bytes;
517 	for (subreq = head->wb_this_page; subreq != head;
518 			subreq = subreq->wb_this_page) {
519 
520 		if (!kref_get_unless_zero(&subreq->wb_kref)) {
521 			if (subreq->wb_offset == head->wb_offset + total_bytes)
522 				total_bytes += subreq->wb_bytes;
523 			continue;
524 		}
525 
526 		while (!nfs_lock_request(subreq)) {
527 			/*
528 			 * Unlock page to allow nfs_page_group_sync_on_bit()
529 			 * to succeed
530 			 */
531 			nfs_page_group_unlock(head);
532 			ret = nfs_wait_on_request(subreq);
533 			if (!ret)
534 				ret = nfs_page_group_lock(head);
535 			if (ret < 0) {
536 				nfs_unroll_locks(inode, head, subreq);
537 				nfs_release_request(subreq);
538 				goto release_request;
539 			}
540 		}
541 		/*
542 		 * Subrequests are always contiguous, non overlapping
543 		 * and in order - but may be repeated (mirrored writes).
544 		 */
545 		if (subreq->wb_offset == (head->wb_offset + total_bytes)) {
546 			/* keep track of how many bytes this group covers */
547 			total_bytes += subreq->wb_bytes;
548 		} else if (WARN_ON_ONCE(subreq->wb_offset < head->wb_offset ||
549 			    ((subreq->wb_offset + subreq->wb_bytes) >
550 			     (head->wb_offset + total_bytes)))) {
551 			nfs_page_group_unlock(head);
552 			nfs_unroll_locks(inode, head, subreq);
553 			nfs_unlock_and_release_request(subreq);
554 			ret = -EIO;
555 			goto release_request;
556 		}
557 	}
558 
559 	/* Now that all requests are locked, make sure they aren't on any list.
560 	 * Commit list removal accounting is done after locks are dropped */
561 	subreq = head;
562 	do {
563 		nfs_clear_request_commit(subreq);
564 		subreq = subreq->wb_this_page;
565 	} while (subreq != head);
566 
567 	/* unlink subrequests from head, destroy them later */
568 	if (head->wb_this_page != head) {
569 		/* destroy list will be terminated by head */
570 		destroy_list = head->wb_this_page;
571 		head->wb_this_page = head;
572 
573 		/* change head request to cover whole range that
574 		 * the former page group covered */
575 		head->wb_bytes = total_bytes;
576 	}
577 
578 	/* Postpone destruction of this request */
579 	if (test_and_clear_bit(PG_REMOVE, &head->wb_flags)) {
580 		set_bit(PG_INODE_REF, &head->wb_flags);
581 		kref_get(&head->wb_kref);
582 		atomic_long_inc(&NFS_I(inode)->nrequests);
583 	}
584 
585 	nfs_page_group_unlock(head);
586 
587 	nfs_destroy_unlinked_subrequests(destroy_list, head, inode);
588 
589 	/* Did we lose a race with nfs_inode_remove_request()? */
590 	if (!(PagePrivate(page) || PageSwapCache(page))) {
591 		nfs_unlock_and_release_request(head);
592 		return NULL;
593 	}
594 
595 	/* still holds ref on head from nfs_page_find_head_request
596 	 * and still has lock on head from lock loop */
597 	return head;
598 
599 release_request:
600 	nfs_unlock_and_release_request(head);
601 	return ERR_PTR(ret);
602 }
603 
604 static void nfs_write_error(struct nfs_page *req, int error)
605 {
606 	trace_nfs_write_error(req, error);
607 	nfs_mapping_set_error(req->wb_page, error);
608 	nfs_inode_remove_request(req);
609 	nfs_end_page_writeback(req);
610 	nfs_release_request(req);
611 }
612 
613 /*
614  * Find an associated nfs write request, and prepare to flush it out
615  * May return an error if the user signalled nfs_wait_on_request().
616  */
617 static int nfs_page_async_flush(struct nfs_pageio_descriptor *pgio,
618 				struct page *page)
619 {
620 	struct nfs_page *req;
621 	int ret = 0;
622 
623 	req = nfs_lock_and_join_requests(page);
624 	if (!req)
625 		goto out;
626 	ret = PTR_ERR(req);
627 	if (IS_ERR(req))
628 		goto out;
629 
630 	nfs_set_page_writeback(page);
631 	WARN_ON_ONCE(test_bit(PG_CLEAN, &req->wb_flags));
632 
633 	/* If there is a fatal error that covers this write, just exit */
634 	ret = pgio->pg_error;
635 	if (nfs_error_is_fatal_on_server(ret))
636 		goto out_launder;
637 
638 	ret = 0;
639 	if (!nfs_pageio_add_request(pgio, req)) {
640 		ret = pgio->pg_error;
641 		/*
642 		 * Remove the problematic req upon fatal errors on the server
643 		 */
644 		if (nfs_error_is_fatal(ret)) {
645 			if (nfs_error_is_fatal_on_server(ret))
646 				goto out_launder;
647 		} else
648 			ret = -EAGAIN;
649 		nfs_redirty_request(req);
650 		pgio->pg_error = 0;
651 	} else
652 		nfs_add_stats(page_file_mapping(page)->host,
653 				NFSIOS_WRITEPAGES, 1);
654 out:
655 	return ret;
656 out_launder:
657 	nfs_write_error(req, ret);
658 	return 0;
659 }
660 
661 static int nfs_do_writepage(struct page *page, struct writeback_control *wbc,
662 			    struct nfs_pageio_descriptor *pgio)
663 {
664 	int ret;
665 
666 	nfs_pageio_cond_complete(pgio, page_index(page));
667 	ret = nfs_page_async_flush(pgio, page);
668 	if (ret == -EAGAIN) {
669 		redirty_page_for_writepage(wbc, page);
670 		ret = AOP_WRITEPAGE_ACTIVATE;
671 	}
672 	return ret;
673 }
674 
675 /*
676  * Write an mmapped page to the server.
677  */
678 static int nfs_writepage_locked(struct page *page,
679 				struct writeback_control *wbc)
680 {
681 	struct nfs_pageio_descriptor pgio;
682 	struct inode *inode = page_file_mapping(page)->host;
683 	int err;
684 
685 	nfs_inc_stats(inode, NFSIOS_VFSWRITEPAGE);
686 	nfs_pageio_init_write(&pgio, inode, 0,
687 				false, &nfs_async_write_completion_ops);
688 	err = nfs_do_writepage(page, wbc, &pgio);
689 	pgio.pg_error = 0;
690 	nfs_pageio_complete(&pgio);
691 	if (err < 0)
692 		return err;
693 	if (nfs_error_is_fatal(pgio.pg_error))
694 		return pgio.pg_error;
695 	return 0;
696 }
697 
698 int nfs_writepage(struct page *page, struct writeback_control *wbc)
699 {
700 	int ret;
701 
702 	ret = nfs_writepage_locked(page, wbc);
703 	if (ret != AOP_WRITEPAGE_ACTIVATE)
704 		unlock_page(page);
705 	return ret;
706 }
707 
708 static int nfs_writepages_callback(struct page *page, struct writeback_control *wbc, void *data)
709 {
710 	int ret;
711 
712 	ret = nfs_do_writepage(page, wbc, data);
713 	if (ret != AOP_WRITEPAGE_ACTIVATE)
714 		unlock_page(page);
715 	return ret;
716 }
717 
718 static void nfs_io_completion_commit(void *inode)
719 {
720 	nfs_commit_inode(inode, 0);
721 }
722 
723 int nfs_writepages(struct address_space *mapping, struct writeback_control *wbc)
724 {
725 	struct inode *inode = mapping->host;
726 	struct nfs_pageio_descriptor pgio;
727 	struct nfs_io_completion *ioc;
728 	int err;
729 
730 	nfs_inc_stats(inode, NFSIOS_VFSWRITEPAGES);
731 
732 	ioc = nfs_io_completion_alloc(GFP_KERNEL);
733 	if (ioc)
734 		nfs_io_completion_init(ioc, nfs_io_completion_commit, inode);
735 
736 	nfs_pageio_init_write(&pgio, inode, wb_priority(wbc), false,
737 				&nfs_async_write_completion_ops);
738 	pgio.pg_io_completion = ioc;
739 	err = write_cache_pages(mapping, wbc, nfs_writepages_callback, &pgio);
740 	pgio.pg_error = 0;
741 	nfs_pageio_complete(&pgio);
742 	nfs_io_completion_put(ioc);
743 
744 	if (err < 0)
745 		goto out_err;
746 	err = pgio.pg_error;
747 	if (nfs_error_is_fatal(err))
748 		goto out_err;
749 	return 0;
750 out_err:
751 	return err;
752 }
753 
754 /*
755  * Insert a write request into an inode
756  */
757 static void nfs_inode_add_request(struct inode *inode, struct nfs_page *req)
758 {
759 	struct address_space *mapping = page_file_mapping(req->wb_page);
760 	struct nfs_inode *nfsi = NFS_I(inode);
761 
762 	WARN_ON_ONCE(req->wb_this_page != req);
763 
764 	/* Lock the request! */
765 	nfs_lock_request(req);
766 
767 	/*
768 	 * Swap-space should not get truncated. Hence no need to plug the race
769 	 * with invalidate/truncate.
770 	 */
771 	spin_lock(&mapping->private_lock);
772 	if (!nfs_have_writebacks(inode) &&
773 	    NFS_PROTO(inode)->have_delegation(inode, FMODE_WRITE))
774 		inode_inc_iversion_raw(inode);
775 	if (likely(!PageSwapCache(req->wb_page))) {
776 		set_bit(PG_MAPPED, &req->wb_flags);
777 		SetPagePrivate(req->wb_page);
778 		set_page_private(req->wb_page, (unsigned long)req);
779 	}
780 	spin_unlock(&mapping->private_lock);
781 	atomic_long_inc(&nfsi->nrequests);
782 	/* this a head request for a page group - mark it as having an
783 	 * extra reference so sub groups can follow suit.
784 	 * This flag also informs pgio layer when to bump nrequests when
785 	 * adding subrequests. */
786 	WARN_ON(test_and_set_bit(PG_INODE_REF, &req->wb_flags));
787 	kref_get(&req->wb_kref);
788 }
789 
790 /*
791  * Remove a write request from an inode
792  */
793 static void nfs_inode_remove_request(struct nfs_page *req)
794 {
795 	struct address_space *mapping = page_file_mapping(req->wb_page);
796 	struct inode *inode = mapping->host;
797 	struct nfs_inode *nfsi = NFS_I(inode);
798 	struct nfs_page *head;
799 
800 	if (nfs_page_group_sync_on_bit(req, PG_REMOVE)) {
801 		head = req->wb_head;
802 
803 		spin_lock(&mapping->private_lock);
804 		if (likely(head->wb_page && !PageSwapCache(head->wb_page))) {
805 			set_page_private(head->wb_page, 0);
806 			ClearPagePrivate(head->wb_page);
807 			clear_bit(PG_MAPPED, &head->wb_flags);
808 		}
809 		spin_unlock(&mapping->private_lock);
810 	}
811 
812 	if (test_and_clear_bit(PG_INODE_REF, &req->wb_flags)) {
813 		nfs_release_request(req);
814 		atomic_long_dec(&nfsi->nrequests);
815 	}
816 }
817 
818 static void
819 nfs_mark_request_dirty(struct nfs_page *req)
820 {
821 	if (req->wb_page)
822 		__set_page_dirty_nobuffers(req->wb_page);
823 }
824 
825 /*
826  * nfs_page_search_commits_for_head_request_locked
827  *
828  * Search through commit lists on @inode for the head request for @page.
829  * Must be called while holding the inode (which is cinfo) lock.
830  *
831  * Returns the head request if found, or NULL if not found.
832  */
833 static struct nfs_page *
834 nfs_page_search_commits_for_head_request_locked(struct nfs_inode *nfsi,
835 						struct page *page)
836 {
837 	struct nfs_page *freq, *t;
838 	struct nfs_commit_info cinfo;
839 	struct inode *inode = &nfsi->vfs_inode;
840 
841 	nfs_init_cinfo_from_inode(&cinfo, inode);
842 
843 	/* search through pnfs commit lists */
844 	freq = pnfs_search_commit_reqs(inode, &cinfo, page);
845 	if (freq)
846 		return freq->wb_head;
847 
848 	/* Linearly search the commit list for the correct request */
849 	list_for_each_entry_safe(freq, t, &cinfo.mds->list, wb_list) {
850 		if (freq->wb_page == page)
851 			return freq->wb_head;
852 	}
853 
854 	return NULL;
855 }
856 
857 /**
858  * nfs_request_add_commit_list_locked - add request to a commit list
859  * @req: pointer to a struct nfs_page
860  * @dst: commit list head
861  * @cinfo: holds list lock and accounting info
862  *
863  * This sets the PG_CLEAN bit, updates the cinfo count of
864  * number of outstanding requests requiring a commit as well as
865  * the MM page stats.
866  *
867  * The caller must hold NFS_I(cinfo->inode)->commit_mutex, and the
868  * nfs_page lock.
869  */
870 void
871 nfs_request_add_commit_list_locked(struct nfs_page *req, struct list_head *dst,
872 			    struct nfs_commit_info *cinfo)
873 {
874 	set_bit(PG_CLEAN, &req->wb_flags);
875 	nfs_list_add_request(req, dst);
876 	atomic_long_inc(&cinfo->mds->ncommit);
877 }
878 EXPORT_SYMBOL_GPL(nfs_request_add_commit_list_locked);
879 
880 /**
881  * nfs_request_add_commit_list - add request to a commit list
882  * @req: pointer to a struct nfs_page
883  * @cinfo: holds list lock and accounting info
884  *
885  * This sets the PG_CLEAN bit, updates the cinfo count of
886  * number of outstanding requests requiring a commit as well as
887  * the MM page stats.
888  *
889  * The caller must _not_ hold the cinfo->lock, but must be
890  * holding the nfs_page lock.
891  */
892 void
893 nfs_request_add_commit_list(struct nfs_page *req, struct nfs_commit_info *cinfo)
894 {
895 	mutex_lock(&NFS_I(cinfo->inode)->commit_mutex);
896 	nfs_request_add_commit_list_locked(req, &cinfo->mds->list, cinfo);
897 	mutex_unlock(&NFS_I(cinfo->inode)->commit_mutex);
898 	if (req->wb_page)
899 		nfs_mark_page_unstable(req->wb_page, cinfo);
900 }
901 EXPORT_SYMBOL_GPL(nfs_request_add_commit_list);
902 
903 /**
904  * nfs_request_remove_commit_list - Remove request from a commit list
905  * @req: pointer to a nfs_page
906  * @cinfo: holds list lock and accounting info
907  *
908  * This clears the PG_CLEAN bit, and updates the cinfo's count of
909  * number of outstanding requests requiring a commit
910  * It does not update the MM page stats.
911  *
912  * The caller _must_ hold the cinfo->lock and the nfs_page lock.
913  */
914 void
915 nfs_request_remove_commit_list(struct nfs_page *req,
916 			       struct nfs_commit_info *cinfo)
917 {
918 	if (!test_and_clear_bit(PG_CLEAN, &(req)->wb_flags))
919 		return;
920 	nfs_list_remove_request(req);
921 	atomic_long_dec(&cinfo->mds->ncommit);
922 }
923 EXPORT_SYMBOL_GPL(nfs_request_remove_commit_list);
924 
925 static void nfs_init_cinfo_from_inode(struct nfs_commit_info *cinfo,
926 				      struct inode *inode)
927 {
928 	cinfo->inode = inode;
929 	cinfo->mds = &NFS_I(inode)->commit_info;
930 	cinfo->ds = pnfs_get_ds_info(inode);
931 	cinfo->dreq = NULL;
932 	cinfo->completion_ops = &nfs_commit_completion_ops;
933 }
934 
935 void nfs_init_cinfo(struct nfs_commit_info *cinfo,
936 		    struct inode *inode,
937 		    struct nfs_direct_req *dreq)
938 {
939 	if (dreq)
940 		nfs_init_cinfo_from_dreq(cinfo, dreq);
941 	else
942 		nfs_init_cinfo_from_inode(cinfo, inode);
943 }
944 EXPORT_SYMBOL_GPL(nfs_init_cinfo);
945 
946 /*
947  * Add a request to the inode's commit list.
948  */
949 void
950 nfs_mark_request_commit(struct nfs_page *req, struct pnfs_layout_segment *lseg,
951 			struct nfs_commit_info *cinfo, u32 ds_commit_idx)
952 {
953 	if (pnfs_mark_request_commit(req, lseg, cinfo, ds_commit_idx))
954 		return;
955 	nfs_request_add_commit_list(req, cinfo);
956 }
957 
958 static void
959 nfs_clear_page_commit(struct page *page)
960 {
961 	dec_node_page_state(page, NR_UNSTABLE_NFS);
962 	dec_wb_stat(&inode_to_bdi(page_file_mapping(page)->host)->wb,
963 		    WB_RECLAIMABLE);
964 }
965 
966 /* Called holding the request lock on @req */
967 static void
968 nfs_clear_request_commit(struct nfs_page *req)
969 {
970 	if (test_bit(PG_CLEAN, &req->wb_flags)) {
971 		struct nfs_open_context *ctx = nfs_req_openctx(req);
972 		struct inode *inode = d_inode(ctx->dentry);
973 		struct nfs_commit_info cinfo;
974 
975 		nfs_init_cinfo_from_inode(&cinfo, inode);
976 		mutex_lock(&NFS_I(inode)->commit_mutex);
977 		if (!pnfs_clear_request_commit(req, &cinfo)) {
978 			nfs_request_remove_commit_list(req, &cinfo);
979 		}
980 		mutex_unlock(&NFS_I(inode)->commit_mutex);
981 		nfs_clear_page_commit(req->wb_page);
982 	}
983 }
984 
985 int nfs_write_need_commit(struct nfs_pgio_header *hdr)
986 {
987 	if (hdr->verf.committed == NFS_DATA_SYNC)
988 		return hdr->lseg == NULL;
989 	return hdr->verf.committed != NFS_FILE_SYNC;
990 }
991 
992 static void nfs_async_write_init(struct nfs_pgio_header *hdr)
993 {
994 	nfs_io_completion_get(hdr->io_completion);
995 }
996 
997 static void nfs_write_completion(struct nfs_pgio_header *hdr)
998 {
999 	struct nfs_commit_info cinfo;
1000 	unsigned long bytes = 0;
1001 
1002 	if (test_bit(NFS_IOHDR_REDO, &hdr->flags))
1003 		goto out;
1004 	nfs_init_cinfo_from_inode(&cinfo, hdr->inode);
1005 	while (!list_empty(&hdr->pages)) {
1006 		struct nfs_page *req = nfs_list_entry(hdr->pages.next);
1007 
1008 		bytes += req->wb_bytes;
1009 		nfs_list_remove_request(req);
1010 		if (test_bit(NFS_IOHDR_ERROR, &hdr->flags) &&
1011 		    (hdr->good_bytes < bytes)) {
1012 			trace_nfs_comp_error(req, hdr->error);
1013 			nfs_mapping_set_error(req->wb_page, hdr->error);
1014 			goto remove_req;
1015 		}
1016 		if (nfs_write_need_commit(hdr)) {
1017 			/* Reset wb_nio, since the write was successful. */
1018 			req->wb_nio = 0;
1019 			memcpy(&req->wb_verf, &hdr->verf.verifier, sizeof(req->wb_verf));
1020 			nfs_mark_request_commit(req, hdr->lseg, &cinfo,
1021 				hdr->pgio_mirror_idx);
1022 			goto next;
1023 		}
1024 remove_req:
1025 		nfs_inode_remove_request(req);
1026 next:
1027 		nfs_end_page_writeback(req);
1028 		nfs_release_request(req);
1029 	}
1030 out:
1031 	nfs_io_completion_put(hdr->io_completion);
1032 	hdr->release(hdr);
1033 }
1034 
1035 unsigned long
1036 nfs_reqs_to_commit(struct nfs_commit_info *cinfo)
1037 {
1038 	return atomic_long_read(&cinfo->mds->ncommit);
1039 }
1040 
1041 /* NFS_I(cinfo->inode)->commit_mutex held by caller */
1042 int
1043 nfs_scan_commit_list(struct list_head *src, struct list_head *dst,
1044 		     struct nfs_commit_info *cinfo, int max)
1045 {
1046 	struct nfs_page *req, *tmp;
1047 	int ret = 0;
1048 
1049 restart:
1050 	list_for_each_entry_safe(req, tmp, src, wb_list) {
1051 		kref_get(&req->wb_kref);
1052 		if (!nfs_lock_request(req)) {
1053 			int status;
1054 
1055 			/* Prevent deadlock with nfs_lock_and_join_requests */
1056 			if (!list_empty(dst)) {
1057 				nfs_release_request(req);
1058 				continue;
1059 			}
1060 			/* Ensure we make progress to prevent livelock */
1061 			mutex_unlock(&NFS_I(cinfo->inode)->commit_mutex);
1062 			status = nfs_wait_on_request(req);
1063 			nfs_release_request(req);
1064 			mutex_lock(&NFS_I(cinfo->inode)->commit_mutex);
1065 			if (status < 0)
1066 				break;
1067 			goto restart;
1068 		}
1069 		nfs_request_remove_commit_list(req, cinfo);
1070 		clear_bit(PG_COMMIT_TO_DS, &req->wb_flags);
1071 		nfs_list_add_request(req, dst);
1072 		ret++;
1073 		if ((ret == max) && !cinfo->dreq)
1074 			break;
1075 		cond_resched();
1076 	}
1077 	return ret;
1078 }
1079 EXPORT_SYMBOL_GPL(nfs_scan_commit_list);
1080 
1081 /*
1082  * nfs_scan_commit - Scan an inode for commit requests
1083  * @inode: NFS inode to scan
1084  * @dst: mds destination list
1085  * @cinfo: mds and ds lists of reqs ready to commit
1086  *
1087  * Moves requests from the inode's 'commit' request list.
1088  * The requests are *not* checked to ensure that they form a contiguous set.
1089  */
1090 int
1091 nfs_scan_commit(struct inode *inode, struct list_head *dst,
1092 		struct nfs_commit_info *cinfo)
1093 {
1094 	int ret = 0;
1095 
1096 	if (!atomic_long_read(&cinfo->mds->ncommit))
1097 		return 0;
1098 	mutex_lock(&NFS_I(cinfo->inode)->commit_mutex);
1099 	if (atomic_long_read(&cinfo->mds->ncommit) > 0) {
1100 		const int max = INT_MAX;
1101 
1102 		ret = nfs_scan_commit_list(&cinfo->mds->list, dst,
1103 					   cinfo, max);
1104 		ret += pnfs_scan_commit_lists(inode, cinfo, max - ret);
1105 	}
1106 	mutex_unlock(&NFS_I(cinfo->inode)->commit_mutex);
1107 	return ret;
1108 }
1109 
1110 /*
1111  * Search for an existing write request, and attempt to update
1112  * it to reflect a new dirty region on a given page.
1113  *
1114  * If the attempt fails, then the existing request is flushed out
1115  * to disk.
1116  */
1117 static struct nfs_page *nfs_try_to_update_request(struct inode *inode,
1118 		struct page *page,
1119 		unsigned int offset,
1120 		unsigned int bytes)
1121 {
1122 	struct nfs_page *req;
1123 	unsigned int rqend;
1124 	unsigned int end;
1125 	int error;
1126 
1127 	end = offset + bytes;
1128 
1129 	req = nfs_lock_and_join_requests(page);
1130 	if (IS_ERR_OR_NULL(req))
1131 		return req;
1132 
1133 	rqend = req->wb_offset + req->wb_bytes;
1134 	/*
1135 	 * Tell the caller to flush out the request if
1136 	 * the offsets are non-contiguous.
1137 	 * Note: nfs_flush_incompatible() will already
1138 	 * have flushed out requests having wrong owners.
1139 	 */
1140 	if (offset > rqend || end < req->wb_offset)
1141 		goto out_flushme;
1142 
1143 	/* Okay, the request matches. Update the region */
1144 	if (offset < req->wb_offset) {
1145 		req->wb_offset = offset;
1146 		req->wb_pgbase = offset;
1147 	}
1148 	if (end > rqend)
1149 		req->wb_bytes = end - req->wb_offset;
1150 	else
1151 		req->wb_bytes = rqend - req->wb_offset;
1152 	req->wb_nio = 0;
1153 	return req;
1154 out_flushme:
1155 	/*
1156 	 * Note: we mark the request dirty here because
1157 	 * nfs_lock_and_join_requests() cannot preserve
1158 	 * commit flags, so we have to replay the write.
1159 	 */
1160 	nfs_mark_request_dirty(req);
1161 	nfs_unlock_and_release_request(req);
1162 	error = nfs_wb_page(inode, page);
1163 	return (error < 0) ? ERR_PTR(error) : NULL;
1164 }
1165 
1166 /*
1167  * Try to update an existing write request, or create one if there is none.
1168  *
1169  * Note: Should always be called with the Page Lock held to prevent races
1170  * if we have to add a new request. Also assumes that the caller has
1171  * already called nfs_flush_incompatible() if necessary.
1172  */
1173 static struct nfs_page * nfs_setup_write_request(struct nfs_open_context* ctx,
1174 		struct page *page, unsigned int offset, unsigned int bytes)
1175 {
1176 	struct inode *inode = page_file_mapping(page)->host;
1177 	struct nfs_page	*req;
1178 
1179 	req = nfs_try_to_update_request(inode, page, offset, bytes);
1180 	if (req != NULL)
1181 		goto out;
1182 	req = nfs_create_request(ctx, page, offset, bytes);
1183 	if (IS_ERR(req))
1184 		goto out;
1185 	nfs_inode_add_request(inode, req);
1186 out:
1187 	return req;
1188 }
1189 
1190 static int nfs_writepage_setup(struct nfs_open_context *ctx, struct page *page,
1191 		unsigned int offset, unsigned int count)
1192 {
1193 	struct nfs_page	*req;
1194 
1195 	req = nfs_setup_write_request(ctx, page, offset, count);
1196 	if (IS_ERR(req))
1197 		return PTR_ERR(req);
1198 	/* Update file length */
1199 	nfs_grow_file(page, offset, count);
1200 	nfs_mark_uptodate(req);
1201 	nfs_mark_request_dirty(req);
1202 	nfs_unlock_and_release_request(req);
1203 	return 0;
1204 }
1205 
1206 int nfs_flush_incompatible(struct file *file, struct page *page)
1207 {
1208 	struct nfs_open_context *ctx = nfs_file_open_context(file);
1209 	struct nfs_lock_context *l_ctx;
1210 	struct file_lock_context *flctx = file_inode(file)->i_flctx;
1211 	struct nfs_page	*req;
1212 	int do_flush, status;
1213 	/*
1214 	 * Look for a request corresponding to this page. If there
1215 	 * is one, and it belongs to another file, we flush it out
1216 	 * before we try to copy anything into the page. Do this
1217 	 * due to the lack of an ACCESS-type call in NFSv2.
1218 	 * Also do the same if we find a request from an existing
1219 	 * dropped page.
1220 	 */
1221 	do {
1222 		req = nfs_page_find_head_request(page);
1223 		if (req == NULL)
1224 			return 0;
1225 		l_ctx = req->wb_lock_context;
1226 		do_flush = req->wb_page != page ||
1227 			!nfs_match_open_context(nfs_req_openctx(req), ctx);
1228 		if (l_ctx && flctx &&
1229 		    !(list_empty_careful(&flctx->flc_posix) &&
1230 		      list_empty_careful(&flctx->flc_flock))) {
1231 			do_flush |= l_ctx->lockowner != current->files;
1232 		}
1233 		nfs_release_request(req);
1234 		if (!do_flush)
1235 			return 0;
1236 		status = nfs_wb_page(page_file_mapping(page)->host, page);
1237 	} while (status == 0);
1238 	return status;
1239 }
1240 
1241 /*
1242  * Avoid buffered writes when a open context credential's key would
1243  * expire soon.
1244  *
1245  * Returns -EACCES if the key will expire within RPC_KEY_EXPIRE_FAIL.
1246  *
1247  * Return 0 and set a credential flag which triggers the inode to flush
1248  * and performs  NFS_FILE_SYNC writes if the key will expired within
1249  * RPC_KEY_EXPIRE_TIMEO.
1250  */
1251 int
1252 nfs_key_timeout_notify(struct file *filp, struct inode *inode)
1253 {
1254 	struct nfs_open_context *ctx = nfs_file_open_context(filp);
1255 
1256 	if (nfs_ctx_key_to_expire(ctx, inode) &&
1257 	    !ctx->ll_cred)
1258 		/* Already expired! */
1259 		return -EACCES;
1260 	return 0;
1261 }
1262 
1263 /*
1264  * Test if the open context credential key is marked to expire soon.
1265  */
1266 bool nfs_ctx_key_to_expire(struct nfs_open_context *ctx, struct inode *inode)
1267 {
1268 	struct rpc_auth *auth = NFS_SERVER(inode)->client->cl_auth;
1269 	struct rpc_cred *cred = ctx->ll_cred;
1270 	struct auth_cred acred = {
1271 		.cred = ctx->cred,
1272 	};
1273 
1274 	if (cred && !cred->cr_ops->crmatch(&acred, cred, 0)) {
1275 		put_rpccred(cred);
1276 		ctx->ll_cred = NULL;
1277 		cred = NULL;
1278 	}
1279 	if (!cred)
1280 		cred = auth->au_ops->lookup_cred(auth, &acred, 0);
1281 	if (!cred || IS_ERR(cred))
1282 		return true;
1283 	ctx->ll_cred = cred;
1284 	return !!(cred->cr_ops->crkey_timeout &&
1285 		  cred->cr_ops->crkey_timeout(cred));
1286 }
1287 
1288 /*
1289  * If the page cache is marked as unsafe or invalid, then we can't rely on
1290  * the PageUptodate() flag. In this case, we will need to turn off
1291  * write optimisations that depend on the page contents being correct.
1292  */
1293 static bool nfs_write_pageuptodate(struct page *page, struct inode *inode)
1294 {
1295 	struct nfs_inode *nfsi = NFS_I(inode);
1296 
1297 	if (nfs_have_delegated_attributes(inode))
1298 		goto out;
1299 	if (nfsi->cache_validity & NFS_INO_REVAL_PAGECACHE)
1300 		return false;
1301 	smp_rmb();
1302 	if (test_bit(NFS_INO_INVALIDATING, &nfsi->flags))
1303 		return false;
1304 out:
1305 	if (nfsi->cache_validity & NFS_INO_INVALID_DATA)
1306 		return false;
1307 	return PageUptodate(page) != 0;
1308 }
1309 
1310 static bool
1311 is_whole_file_wrlock(struct file_lock *fl)
1312 {
1313 	return fl->fl_start == 0 && fl->fl_end == OFFSET_MAX &&
1314 			fl->fl_type == F_WRLCK;
1315 }
1316 
1317 /* If we know the page is up to date, and we're not using byte range locks (or
1318  * if we have the whole file locked for writing), it may be more efficient to
1319  * extend the write to cover the entire page in order to avoid fragmentation
1320  * inefficiencies.
1321  *
1322  * If the file is opened for synchronous writes then we can just skip the rest
1323  * of the checks.
1324  */
1325 static int nfs_can_extend_write(struct file *file, struct page *page, struct inode *inode)
1326 {
1327 	int ret;
1328 	struct file_lock_context *flctx = inode->i_flctx;
1329 	struct file_lock *fl;
1330 
1331 	if (file->f_flags & O_DSYNC)
1332 		return 0;
1333 	if (!nfs_write_pageuptodate(page, inode))
1334 		return 0;
1335 	if (NFS_PROTO(inode)->have_delegation(inode, FMODE_WRITE))
1336 		return 1;
1337 	if (!flctx || (list_empty_careful(&flctx->flc_flock) &&
1338 		       list_empty_careful(&flctx->flc_posix)))
1339 		return 1;
1340 
1341 	/* Check to see if there are whole file write locks */
1342 	ret = 0;
1343 	spin_lock(&flctx->flc_lock);
1344 	if (!list_empty(&flctx->flc_posix)) {
1345 		fl = list_first_entry(&flctx->flc_posix, struct file_lock,
1346 					fl_list);
1347 		if (is_whole_file_wrlock(fl))
1348 			ret = 1;
1349 	} else if (!list_empty(&flctx->flc_flock)) {
1350 		fl = list_first_entry(&flctx->flc_flock, struct file_lock,
1351 					fl_list);
1352 		if (fl->fl_type == F_WRLCK)
1353 			ret = 1;
1354 	}
1355 	spin_unlock(&flctx->flc_lock);
1356 	return ret;
1357 }
1358 
1359 /*
1360  * Update and possibly write a cached page of an NFS file.
1361  *
1362  * XXX: Keep an eye on generic_file_read to make sure it doesn't do bad
1363  * things with a page scheduled for an RPC call (e.g. invalidate it).
1364  */
1365 int nfs_updatepage(struct file *file, struct page *page,
1366 		unsigned int offset, unsigned int count)
1367 {
1368 	struct nfs_open_context *ctx = nfs_file_open_context(file);
1369 	struct address_space *mapping = page_file_mapping(page);
1370 	struct inode	*inode = mapping->host;
1371 	int		status = 0;
1372 
1373 	nfs_inc_stats(inode, NFSIOS_VFSUPDATEPAGE);
1374 
1375 	dprintk("NFS:       nfs_updatepage(%pD2 %d@%lld)\n",
1376 		file, count, (long long)(page_file_offset(page) + offset));
1377 
1378 	if (!count)
1379 		goto out;
1380 
1381 	if (nfs_can_extend_write(file, page, inode)) {
1382 		count = max(count + offset, nfs_page_length(page));
1383 		offset = 0;
1384 	}
1385 
1386 	status = nfs_writepage_setup(ctx, page, offset, count);
1387 	if (status < 0)
1388 		nfs_set_pageerror(mapping);
1389 	else
1390 		__set_page_dirty_nobuffers(page);
1391 out:
1392 	dprintk("NFS:       nfs_updatepage returns %d (isize %lld)\n",
1393 			status, (long long)i_size_read(inode));
1394 	return status;
1395 }
1396 
1397 static int flush_task_priority(int how)
1398 {
1399 	switch (how & (FLUSH_HIGHPRI|FLUSH_LOWPRI)) {
1400 		case FLUSH_HIGHPRI:
1401 			return RPC_PRIORITY_HIGH;
1402 		case FLUSH_LOWPRI:
1403 			return RPC_PRIORITY_LOW;
1404 	}
1405 	return RPC_PRIORITY_NORMAL;
1406 }
1407 
1408 static void nfs_initiate_write(struct nfs_pgio_header *hdr,
1409 			       struct rpc_message *msg,
1410 			       const struct nfs_rpc_ops *rpc_ops,
1411 			       struct rpc_task_setup *task_setup_data, int how)
1412 {
1413 	int priority = flush_task_priority(how);
1414 
1415 	task_setup_data->priority = priority;
1416 	rpc_ops->write_setup(hdr, msg, &task_setup_data->rpc_client);
1417 	trace_nfs_initiate_write(hdr);
1418 }
1419 
1420 /* If a nfs_flush_* function fails, it should remove reqs from @head and
1421  * call this on each, which will prepare them to be retried on next
1422  * writeback using standard nfs.
1423  */
1424 static void nfs_redirty_request(struct nfs_page *req)
1425 {
1426 	/* Bump the transmission count */
1427 	req->wb_nio++;
1428 	nfs_mark_request_dirty(req);
1429 	set_bit(NFS_CONTEXT_RESEND_WRITES, &nfs_req_openctx(req)->flags);
1430 	nfs_end_page_writeback(req);
1431 	nfs_release_request(req);
1432 }
1433 
1434 static void nfs_async_write_error(struct list_head *head, int error)
1435 {
1436 	struct nfs_page	*req;
1437 
1438 	while (!list_empty(head)) {
1439 		req = nfs_list_entry(head->next);
1440 		nfs_list_remove_request(req);
1441 		if (nfs_error_is_fatal(error))
1442 			nfs_write_error(req, error);
1443 		else
1444 			nfs_redirty_request(req);
1445 	}
1446 }
1447 
1448 static void nfs_async_write_reschedule_io(struct nfs_pgio_header *hdr)
1449 {
1450 	nfs_async_write_error(&hdr->pages, 0);
1451 	filemap_fdatawrite_range(hdr->inode->i_mapping, hdr->args.offset,
1452 			hdr->args.offset + hdr->args.count - 1);
1453 }
1454 
1455 static const struct nfs_pgio_completion_ops nfs_async_write_completion_ops = {
1456 	.init_hdr = nfs_async_write_init,
1457 	.error_cleanup = nfs_async_write_error,
1458 	.completion = nfs_write_completion,
1459 	.reschedule_io = nfs_async_write_reschedule_io,
1460 };
1461 
1462 void nfs_pageio_init_write(struct nfs_pageio_descriptor *pgio,
1463 			       struct inode *inode, int ioflags, bool force_mds,
1464 			       const struct nfs_pgio_completion_ops *compl_ops)
1465 {
1466 	struct nfs_server *server = NFS_SERVER(inode);
1467 	const struct nfs_pageio_ops *pg_ops = &nfs_pgio_rw_ops;
1468 
1469 #ifdef CONFIG_NFS_V4_1
1470 	if (server->pnfs_curr_ld && !force_mds)
1471 		pg_ops = server->pnfs_curr_ld->pg_write_ops;
1472 #endif
1473 	nfs_pageio_init(pgio, inode, pg_ops, compl_ops, &nfs_rw_write_ops,
1474 			server->wsize, ioflags);
1475 }
1476 EXPORT_SYMBOL_GPL(nfs_pageio_init_write);
1477 
1478 void nfs_pageio_reset_write_mds(struct nfs_pageio_descriptor *pgio)
1479 {
1480 	struct nfs_pgio_mirror *mirror;
1481 
1482 	if (pgio->pg_ops && pgio->pg_ops->pg_cleanup)
1483 		pgio->pg_ops->pg_cleanup(pgio);
1484 
1485 	pgio->pg_ops = &nfs_pgio_rw_ops;
1486 
1487 	nfs_pageio_stop_mirroring(pgio);
1488 
1489 	mirror = &pgio->pg_mirrors[0];
1490 	mirror->pg_bsize = NFS_SERVER(pgio->pg_inode)->wsize;
1491 }
1492 EXPORT_SYMBOL_GPL(nfs_pageio_reset_write_mds);
1493 
1494 
1495 void nfs_commit_prepare(struct rpc_task *task, void *calldata)
1496 {
1497 	struct nfs_commit_data *data = calldata;
1498 
1499 	NFS_PROTO(data->inode)->commit_rpc_prepare(task, data);
1500 }
1501 
1502 /*
1503  * Special version of should_remove_suid() that ignores capabilities.
1504  */
1505 static int nfs_should_remove_suid(const struct inode *inode)
1506 {
1507 	umode_t mode = inode->i_mode;
1508 	int kill = 0;
1509 
1510 	/* suid always must be killed */
1511 	if (unlikely(mode & S_ISUID))
1512 		kill = ATTR_KILL_SUID;
1513 
1514 	/*
1515 	 * sgid without any exec bits is just a mandatory locking mark; leave
1516 	 * it alone.  If some exec bits are set, it's a real sgid; kill it.
1517 	 */
1518 	if (unlikely((mode & S_ISGID) && (mode & S_IXGRP)))
1519 		kill |= ATTR_KILL_SGID;
1520 
1521 	if (unlikely(kill && S_ISREG(mode)))
1522 		return kill;
1523 
1524 	return 0;
1525 }
1526 
1527 static void nfs_writeback_check_extend(struct nfs_pgio_header *hdr,
1528 		struct nfs_fattr *fattr)
1529 {
1530 	struct nfs_pgio_args *argp = &hdr->args;
1531 	struct nfs_pgio_res *resp = &hdr->res;
1532 	u64 size = argp->offset + resp->count;
1533 
1534 	if (!(fattr->valid & NFS_ATTR_FATTR_SIZE))
1535 		fattr->size = size;
1536 	if (nfs_size_to_loff_t(fattr->size) < i_size_read(hdr->inode)) {
1537 		fattr->valid &= ~NFS_ATTR_FATTR_SIZE;
1538 		return;
1539 	}
1540 	if (size != fattr->size)
1541 		return;
1542 	/* Set attribute barrier */
1543 	nfs_fattr_set_barrier(fattr);
1544 	/* ...and update size */
1545 	fattr->valid |= NFS_ATTR_FATTR_SIZE;
1546 }
1547 
1548 void nfs_writeback_update_inode(struct nfs_pgio_header *hdr)
1549 {
1550 	struct nfs_fattr *fattr = &hdr->fattr;
1551 	struct inode *inode = hdr->inode;
1552 
1553 	spin_lock(&inode->i_lock);
1554 	nfs_writeback_check_extend(hdr, fattr);
1555 	nfs_post_op_update_inode_force_wcc_locked(inode, fattr);
1556 	spin_unlock(&inode->i_lock);
1557 }
1558 EXPORT_SYMBOL_GPL(nfs_writeback_update_inode);
1559 
1560 /*
1561  * This function is called when the WRITE call is complete.
1562  */
1563 static int nfs_writeback_done(struct rpc_task *task,
1564 			      struct nfs_pgio_header *hdr,
1565 			      struct inode *inode)
1566 {
1567 	int status;
1568 
1569 	/*
1570 	 * ->write_done will attempt to use post-op attributes to detect
1571 	 * conflicting writes by other clients.  A strict interpretation
1572 	 * of close-to-open would allow us to continue caching even if
1573 	 * another writer had changed the file, but some applications
1574 	 * depend on tighter cache coherency when writing.
1575 	 */
1576 	status = NFS_PROTO(inode)->write_done(task, hdr);
1577 	if (status != 0)
1578 		return status;
1579 
1580 	nfs_add_stats(inode, NFSIOS_SERVERWRITTENBYTES, hdr->res.count);
1581 	trace_nfs_writeback_done(task, hdr);
1582 
1583 	if (hdr->res.verf->committed < hdr->args.stable &&
1584 	    task->tk_status >= 0) {
1585 		/* We tried a write call, but the server did not
1586 		 * commit data to stable storage even though we
1587 		 * requested it.
1588 		 * Note: There is a known bug in Tru64 < 5.0 in which
1589 		 *	 the server reports NFS_DATA_SYNC, but performs
1590 		 *	 NFS_FILE_SYNC. We therefore implement this checking
1591 		 *	 as a dprintk() in order to avoid filling syslog.
1592 		 */
1593 		static unsigned long    complain;
1594 
1595 		/* Note this will print the MDS for a DS write */
1596 		if (time_before(complain, jiffies)) {
1597 			dprintk("NFS:       faulty NFS server %s:"
1598 				" (committed = %d) != (stable = %d)\n",
1599 				NFS_SERVER(inode)->nfs_client->cl_hostname,
1600 				hdr->res.verf->committed, hdr->args.stable);
1601 			complain = jiffies + 300 * HZ;
1602 		}
1603 	}
1604 
1605 	/* Deal with the suid/sgid bit corner case */
1606 	if (nfs_should_remove_suid(inode)) {
1607 		spin_lock(&inode->i_lock);
1608 		NFS_I(inode)->cache_validity |= NFS_INO_INVALID_OTHER;
1609 		spin_unlock(&inode->i_lock);
1610 	}
1611 	return 0;
1612 }
1613 
1614 /*
1615  * This function is called when the WRITE call is complete.
1616  */
1617 static void nfs_writeback_result(struct rpc_task *task,
1618 				 struct nfs_pgio_header *hdr)
1619 {
1620 	struct nfs_pgio_args	*argp = &hdr->args;
1621 	struct nfs_pgio_res	*resp = &hdr->res;
1622 
1623 	if (resp->count < argp->count) {
1624 		static unsigned long    complain;
1625 
1626 		/* This a short write! */
1627 		nfs_inc_stats(hdr->inode, NFSIOS_SHORTWRITE);
1628 
1629 		/* Has the server at least made some progress? */
1630 		if (resp->count == 0) {
1631 			if (time_before(complain, jiffies)) {
1632 				printk(KERN_WARNING
1633 				       "NFS: Server wrote zero bytes, expected %u.\n",
1634 				       argp->count);
1635 				complain = jiffies + 300 * HZ;
1636 			}
1637 			nfs_set_pgio_error(hdr, -EIO, argp->offset);
1638 			task->tk_status = -EIO;
1639 			return;
1640 		}
1641 
1642 		/* For non rpc-based layout drivers, retry-through-MDS */
1643 		if (!task->tk_ops) {
1644 			hdr->pnfs_error = -EAGAIN;
1645 			return;
1646 		}
1647 
1648 		/* Was this an NFSv2 write or an NFSv3 stable write? */
1649 		if (resp->verf->committed != NFS_UNSTABLE) {
1650 			/* Resend from where the server left off */
1651 			hdr->mds_offset += resp->count;
1652 			argp->offset += resp->count;
1653 			argp->pgbase += resp->count;
1654 			argp->count -= resp->count;
1655 		} else {
1656 			/* Resend as a stable write in order to avoid
1657 			 * headaches in the case of a server crash.
1658 			 */
1659 			argp->stable = NFS_FILE_SYNC;
1660 		}
1661 		resp->count = 0;
1662 		resp->verf->committed = 0;
1663 		rpc_restart_call_prepare(task);
1664 	}
1665 }
1666 
1667 static int wait_on_commit(struct nfs_mds_commit_info *cinfo)
1668 {
1669 	return wait_var_event_killable(&cinfo->rpcs_out,
1670 				       !atomic_read(&cinfo->rpcs_out));
1671 }
1672 
1673 static void nfs_commit_begin(struct nfs_mds_commit_info *cinfo)
1674 {
1675 	atomic_inc(&cinfo->rpcs_out);
1676 }
1677 
1678 static void nfs_commit_end(struct nfs_mds_commit_info *cinfo)
1679 {
1680 	if (atomic_dec_and_test(&cinfo->rpcs_out))
1681 		wake_up_var(&cinfo->rpcs_out);
1682 }
1683 
1684 void nfs_commitdata_release(struct nfs_commit_data *data)
1685 {
1686 	put_nfs_open_context(data->context);
1687 	nfs_commit_free(data);
1688 }
1689 EXPORT_SYMBOL_GPL(nfs_commitdata_release);
1690 
1691 int nfs_initiate_commit(struct rpc_clnt *clnt, struct nfs_commit_data *data,
1692 			const struct nfs_rpc_ops *nfs_ops,
1693 			const struct rpc_call_ops *call_ops,
1694 			int how, int flags)
1695 {
1696 	struct rpc_task *task;
1697 	int priority = flush_task_priority(how);
1698 	struct rpc_message msg = {
1699 		.rpc_argp = &data->args,
1700 		.rpc_resp = &data->res,
1701 		.rpc_cred = data->cred,
1702 	};
1703 	struct rpc_task_setup task_setup_data = {
1704 		.task = &data->task,
1705 		.rpc_client = clnt,
1706 		.rpc_message = &msg,
1707 		.callback_ops = call_ops,
1708 		.callback_data = data,
1709 		.workqueue = nfsiod_workqueue,
1710 		.flags = RPC_TASK_ASYNC | flags,
1711 		.priority = priority,
1712 	};
1713 	/* Set up the initial task struct.  */
1714 	nfs_ops->commit_setup(data, &msg, &task_setup_data.rpc_client);
1715 	trace_nfs_initiate_commit(data);
1716 
1717 	dprintk("NFS: initiated commit call\n");
1718 
1719 	task = rpc_run_task(&task_setup_data);
1720 	if (IS_ERR(task))
1721 		return PTR_ERR(task);
1722 	if (how & FLUSH_SYNC)
1723 		rpc_wait_for_completion_task(task);
1724 	rpc_put_task(task);
1725 	return 0;
1726 }
1727 EXPORT_SYMBOL_GPL(nfs_initiate_commit);
1728 
1729 static loff_t nfs_get_lwb(struct list_head *head)
1730 {
1731 	loff_t lwb = 0;
1732 	struct nfs_page *req;
1733 
1734 	list_for_each_entry(req, head, wb_list)
1735 		if (lwb < (req_offset(req) + req->wb_bytes))
1736 			lwb = req_offset(req) + req->wb_bytes;
1737 
1738 	return lwb;
1739 }
1740 
1741 /*
1742  * Set up the argument/result storage required for the RPC call.
1743  */
1744 void nfs_init_commit(struct nfs_commit_data *data,
1745 		     struct list_head *head,
1746 		     struct pnfs_layout_segment *lseg,
1747 		     struct nfs_commit_info *cinfo)
1748 {
1749 	struct nfs_page *first = nfs_list_entry(head->next);
1750 	struct nfs_open_context *ctx = nfs_req_openctx(first);
1751 	struct inode *inode = d_inode(ctx->dentry);
1752 
1753 	/* Set up the RPC argument and reply structs
1754 	 * NB: take care not to mess about with data->commit et al. */
1755 
1756 	list_splice_init(head, &data->pages);
1757 
1758 	data->inode	  = inode;
1759 	data->cred	  = ctx->cred;
1760 	data->lseg	  = lseg; /* reference transferred */
1761 	/* only set lwb for pnfs commit */
1762 	if (lseg)
1763 		data->lwb = nfs_get_lwb(&data->pages);
1764 	data->mds_ops     = &nfs_commit_ops;
1765 	data->completion_ops = cinfo->completion_ops;
1766 	data->dreq	  = cinfo->dreq;
1767 
1768 	data->args.fh     = NFS_FH(data->inode);
1769 	/* Note: we always request a commit of the entire inode */
1770 	data->args.offset = 0;
1771 	data->args.count  = 0;
1772 	data->context     = get_nfs_open_context(ctx);
1773 	data->res.fattr   = &data->fattr;
1774 	data->res.verf    = &data->verf;
1775 	nfs_fattr_init(&data->fattr);
1776 }
1777 EXPORT_SYMBOL_GPL(nfs_init_commit);
1778 
1779 void nfs_retry_commit(struct list_head *page_list,
1780 		      struct pnfs_layout_segment *lseg,
1781 		      struct nfs_commit_info *cinfo,
1782 		      u32 ds_commit_idx)
1783 {
1784 	struct nfs_page *req;
1785 
1786 	while (!list_empty(page_list)) {
1787 		req = nfs_list_entry(page_list->next);
1788 		nfs_list_remove_request(req);
1789 		nfs_mark_request_commit(req, lseg, cinfo, ds_commit_idx);
1790 		if (!cinfo->dreq)
1791 			nfs_clear_page_commit(req->wb_page);
1792 		nfs_unlock_and_release_request(req);
1793 	}
1794 }
1795 EXPORT_SYMBOL_GPL(nfs_retry_commit);
1796 
1797 static void
1798 nfs_commit_resched_write(struct nfs_commit_info *cinfo,
1799 		struct nfs_page *req)
1800 {
1801 	__set_page_dirty_nobuffers(req->wb_page);
1802 }
1803 
1804 /*
1805  * Commit dirty pages
1806  */
1807 static int
1808 nfs_commit_list(struct inode *inode, struct list_head *head, int how,
1809 		struct nfs_commit_info *cinfo)
1810 {
1811 	struct nfs_commit_data	*data;
1812 
1813 	/* another commit raced with us */
1814 	if (list_empty(head))
1815 		return 0;
1816 
1817 	data = nfs_commitdata_alloc(true);
1818 
1819 	/* Set up the argument struct */
1820 	nfs_init_commit(data, head, NULL, cinfo);
1821 	atomic_inc(&cinfo->mds->rpcs_out);
1822 	return nfs_initiate_commit(NFS_CLIENT(inode), data, NFS_PROTO(inode),
1823 				   data->mds_ops, how, 0);
1824 }
1825 
1826 /*
1827  * COMMIT call returned
1828  */
1829 static void nfs_commit_done(struct rpc_task *task, void *calldata)
1830 {
1831 	struct nfs_commit_data	*data = calldata;
1832 
1833         dprintk("NFS: %5u nfs_commit_done (status %d)\n",
1834                                 task->tk_pid, task->tk_status);
1835 
1836 	/* Call the NFS version-specific code */
1837 	NFS_PROTO(data->inode)->commit_done(task, data);
1838 	trace_nfs_commit_done(task, data);
1839 }
1840 
1841 static void nfs_commit_release_pages(struct nfs_commit_data *data)
1842 {
1843 	const struct nfs_writeverf *verf = data->res.verf;
1844 	struct nfs_page	*req;
1845 	int status = data->task.tk_status;
1846 	struct nfs_commit_info cinfo;
1847 	struct nfs_server *nfss;
1848 
1849 	while (!list_empty(&data->pages)) {
1850 		req = nfs_list_entry(data->pages.next);
1851 		nfs_list_remove_request(req);
1852 		if (req->wb_page)
1853 			nfs_clear_page_commit(req->wb_page);
1854 
1855 		dprintk("NFS:       commit (%s/%llu %d@%lld)",
1856 			nfs_req_openctx(req)->dentry->d_sb->s_id,
1857 			(unsigned long long)NFS_FILEID(d_inode(nfs_req_openctx(req)->dentry)),
1858 			req->wb_bytes,
1859 			(long long)req_offset(req));
1860 		if (status < 0) {
1861 			if (req->wb_page) {
1862 				trace_nfs_commit_error(req, status);
1863 				nfs_mapping_set_error(req->wb_page, status);
1864 				nfs_inode_remove_request(req);
1865 			}
1866 			dprintk_cont(", error = %d\n", status);
1867 			goto next;
1868 		}
1869 
1870 		/* Okay, COMMIT succeeded, apparently. Check the verifier
1871 		 * returned by the server against all stored verfs. */
1872 		if (verf->committed > NFS_UNSTABLE &&
1873 		    !nfs_write_verifier_cmp(&req->wb_verf, &verf->verifier)) {
1874 			/* We have a match */
1875 			if (req->wb_page)
1876 				nfs_inode_remove_request(req);
1877 			dprintk_cont(" OK\n");
1878 			goto next;
1879 		}
1880 		/* We have a mismatch. Write the page again */
1881 		dprintk_cont(" mismatch\n");
1882 		nfs_mark_request_dirty(req);
1883 		set_bit(NFS_CONTEXT_RESEND_WRITES, &nfs_req_openctx(req)->flags);
1884 	next:
1885 		nfs_unlock_and_release_request(req);
1886 		/* Latency breaker */
1887 		cond_resched();
1888 	}
1889 	nfss = NFS_SERVER(data->inode);
1890 	if (atomic_long_read(&nfss->writeback) < NFS_CONGESTION_OFF_THRESH)
1891 		clear_bdi_congested(inode_to_bdi(data->inode), BLK_RW_ASYNC);
1892 
1893 	nfs_init_cinfo(&cinfo, data->inode, data->dreq);
1894 	nfs_commit_end(cinfo.mds);
1895 }
1896 
1897 static void nfs_commit_release(void *calldata)
1898 {
1899 	struct nfs_commit_data *data = calldata;
1900 
1901 	data->completion_ops->completion(data);
1902 	nfs_commitdata_release(calldata);
1903 }
1904 
1905 static const struct rpc_call_ops nfs_commit_ops = {
1906 	.rpc_call_prepare = nfs_commit_prepare,
1907 	.rpc_call_done = nfs_commit_done,
1908 	.rpc_release = nfs_commit_release,
1909 };
1910 
1911 static const struct nfs_commit_completion_ops nfs_commit_completion_ops = {
1912 	.completion = nfs_commit_release_pages,
1913 	.resched_write = nfs_commit_resched_write,
1914 };
1915 
1916 int nfs_generic_commit_list(struct inode *inode, struct list_head *head,
1917 			    int how, struct nfs_commit_info *cinfo)
1918 {
1919 	int status;
1920 
1921 	status = pnfs_commit_list(inode, head, how, cinfo);
1922 	if (status == PNFS_NOT_ATTEMPTED)
1923 		status = nfs_commit_list(inode, head, how, cinfo);
1924 	return status;
1925 }
1926 
1927 static int __nfs_commit_inode(struct inode *inode, int how,
1928 		struct writeback_control *wbc)
1929 {
1930 	LIST_HEAD(head);
1931 	struct nfs_commit_info cinfo;
1932 	int may_wait = how & FLUSH_SYNC;
1933 	int ret, nscan;
1934 
1935 	nfs_init_cinfo_from_inode(&cinfo, inode);
1936 	nfs_commit_begin(cinfo.mds);
1937 	for (;;) {
1938 		ret = nscan = nfs_scan_commit(inode, &head, &cinfo);
1939 		if (ret <= 0)
1940 			break;
1941 		ret = nfs_generic_commit_list(inode, &head, how, &cinfo);
1942 		if (ret < 0)
1943 			break;
1944 		ret = 0;
1945 		if (wbc && wbc->sync_mode == WB_SYNC_NONE) {
1946 			if (nscan < wbc->nr_to_write)
1947 				wbc->nr_to_write -= nscan;
1948 			else
1949 				wbc->nr_to_write = 0;
1950 		}
1951 		if (nscan < INT_MAX)
1952 			break;
1953 		cond_resched();
1954 	}
1955 	nfs_commit_end(cinfo.mds);
1956 	if (ret || !may_wait)
1957 		return ret;
1958 	return wait_on_commit(cinfo.mds);
1959 }
1960 
1961 int nfs_commit_inode(struct inode *inode, int how)
1962 {
1963 	return __nfs_commit_inode(inode, how, NULL);
1964 }
1965 EXPORT_SYMBOL_GPL(nfs_commit_inode);
1966 
1967 int nfs_write_inode(struct inode *inode, struct writeback_control *wbc)
1968 {
1969 	struct nfs_inode *nfsi = NFS_I(inode);
1970 	int flags = FLUSH_SYNC;
1971 	int ret = 0;
1972 
1973 	if (wbc->sync_mode == WB_SYNC_NONE) {
1974 		/* no commits means nothing needs to be done */
1975 		if (!atomic_long_read(&nfsi->commit_info.ncommit))
1976 			goto check_requests_outstanding;
1977 
1978 		/* Don't commit yet if this is a non-blocking flush and there
1979 		 * are a lot of outstanding writes for this mapping.
1980 		 */
1981 		if (mapping_tagged(inode->i_mapping, PAGECACHE_TAG_WRITEBACK))
1982 			goto out_mark_dirty;
1983 
1984 		/* don't wait for the COMMIT response */
1985 		flags = 0;
1986 	}
1987 
1988 	ret = __nfs_commit_inode(inode, flags, wbc);
1989 	if (!ret) {
1990 		if (flags & FLUSH_SYNC)
1991 			return 0;
1992 	} else if (atomic_long_read(&nfsi->commit_info.ncommit))
1993 		goto out_mark_dirty;
1994 
1995 check_requests_outstanding:
1996 	if (!atomic_read(&nfsi->commit_info.rpcs_out))
1997 		return ret;
1998 out_mark_dirty:
1999 	__mark_inode_dirty(inode, I_DIRTY_DATASYNC);
2000 	return ret;
2001 }
2002 EXPORT_SYMBOL_GPL(nfs_write_inode);
2003 
2004 /*
2005  * Wrapper for filemap_write_and_wait_range()
2006  *
2007  * Needed for pNFS in order to ensure data becomes visible to the
2008  * client.
2009  */
2010 int nfs_filemap_write_and_wait_range(struct address_space *mapping,
2011 		loff_t lstart, loff_t lend)
2012 {
2013 	int ret;
2014 
2015 	ret = filemap_write_and_wait_range(mapping, lstart, lend);
2016 	if (ret == 0)
2017 		ret = pnfs_sync_inode(mapping->host, true);
2018 	return ret;
2019 }
2020 EXPORT_SYMBOL_GPL(nfs_filemap_write_and_wait_range);
2021 
2022 /*
2023  * flush the inode to disk.
2024  */
2025 int nfs_wb_all(struct inode *inode)
2026 {
2027 	int ret;
2028 
2029 	trace_nfs_writeback_inode_enter(inode);
2030 
2031 	ret = filemap_write_and_wait(inode->i_mapping);
2032 	if (ret)
2033 		goto out;
2034 	ret = nfs_commit_inode(inode, FLUSH_SYNC);
2035 	if (ret < 0)
2036 		goto out;
2037 	pnfs_sync_inode(inode, true);
2038 	ret = 0;
2039 
2040 out:
2041 	trace_nfs_writeback_inode_exit(inode, ret);
2042 	return ret;
2043 }
2044 EXPORT_SYMBOL_GPL(nfs_wb_all);
2045 
2046 int nfs_wb_page_cancel(struct inode *inode, struct page *page)
2047 {
2048 	struct nfs_page *req;
2049 	int ret = 0;
2050 
2051 	wait_on_page_writeback(page);
2052 
2053 	/* blocking call to cancel all requests and join to a single (head)
2054 	 * request */
2055 	req = nfs_lock_and_join_requests(page);
2056 
2057 	if (IS_ERR(req)) {
2058 		ret = PTR_ERR(req);
2059 	} else if (req) {
2060 		/* all requests from this page have been cancelled by
2061 		 * nfs_lock_and_join_requests, so just remove the head
2062 		 * request from the inode / page_private pointer and
2063 		 * release it */
2064 		nfs_inode_remove_request(req);
2065 		nfs_unlock_and_release_request(req);
2066 	}
2067 
2068 	return ret;
2069 }
2070 
2071 /*
2072  * Write back all requests on one page - we do this before reading it.
2073  */
2074 int nfs_wb_page(struct inode *inode, struct page *page)
2075 {
2076 	loff_t range_start = page_file_offset(page);
2077 	loff_t range_end = range_start + (loff_t)(PAGE_SIZE - 1);
2078 	struct writeback_control wbc = {
2079 		.sync_mode = WB_SYNC_ALL,
2080 		.nr_to_write = 0,
2081 		.range_start = range_start,
2082 		.range_end = range_end,
2083 	};
2084 	int ret;
2085 
2086 	trace_nfs_writeback_page_enter(inode);
2087 
2088 	for (;;) {
2089 		wait_on_page_writeback(page);
2090 		if (clear_page_dirty_for_io(page)) {
2091 			ret = nfs_writepage_locked(page, &wbc);
2092 			if (ret < 0)
2093 				goto out_error;
2094 			continue;
2095 		}
2096 		ret = 0;
2097 		if (!PagePrivate(page))
2098 			break;
2099 		ret = nfs_commit_inode(inode, FLUSH_SYNC);
2100 		if (ret < 0)
2101 			goto out_error;
2102 	}
2103 out_error:
2104 	trace_nfs_writeback_page_exit(inode, ret);
2105 	return ret;
2106 }
2107 
2108 #ifdef CONFIG_MIGRATION
2109 int nfs_migrate_page(struct address_space *mapping, struct page *newpage,
2110 		struct page *page, enum migrate_mode mode)
2111 {
2112 	/*
2113 	 * If PagePrivate is set, then the page is currently associated with
2114 	 * an in-progress read or write request. Don't try to migrate it.
2115 	 *
2116 	 * FIXME: we could do this in principle, but we'll need a way to ensure
2117 	 *        that we can safely release the inode reference while holding
2118 	 *        the page lock.
2119 	 */
2120 	if (PagePrivate(page))
2121 		return -EBUSY;
2122 
2123 	if (!nfs_fscache_release_page(page, GFP_KERNEL))
2124 		return -EBUSY;
2125 
2126 	return migrate_page(mapping, newpage, page, mode);
2127 }
2128 #endif
2129 
2130 int __init nfs_init_writepagecache(void)
2131 {
2132 	nfs_wdata_cachep = kmem_cache_create("nfs_write_data",
2133 					     sizeof(struct nfs_pgio_header),
2134 					     0, SLAB_HWCACHE_ALIGN,
2135 					     NULL);
2136 	if (nfs_wdata_cachep == NULL)
2137 		return -ENOMEM;
2138 
2139 	nfs_wdata_mempool = mempool_create_slab_pool(MIN_POOL_WRITE,
2140 						     nfs_wdata_cachep);
2141 	if (nfs_wdata_mempool == NULL)
2142 		goto out_destroy_write_cache;
2143 
2144 	nfs_cdata_cachep = kmem_cache_create("nfs_commit_data",
2145 					     sizeof(struct nfs_commit_data),
2146 					     0, SLAB_HWCACHE_ALIGN,
2147 					     NULL);
2148 	if (nfs_cdata_cachep == NULL)
2149 		goto out_destroy_write_mempool;
2150 
2151 	nfs_commit_mempool = mempool_create_slab_pool(MIN_POOL_COMMIT,
2152 						      nfs_cdata_cachep);
2153 	if (nfs_commit_mempool == NULL)
2154 		goto out_destroy_commit_cache;
2155 
2156 	/*
2157 	 * NFS congestion size, scale with available memory.
2158 	 *
2159 	 *  64MB:    8192k
2160 	 * 128MB:   11585k
2161 	 * 256MB:   16384k
2162 	 * 512MB:   23170k
2163 	 *   1GB:   32768k
2164 	 *   2GB:   46340k
2165 	 *   4GB:   65536k
2166 	 *   8GB:   92681k
2167 	 *  16GB:  131072k
2168 	 *
2169 	 * This allows larger machines to have larger/more transfers.
2170 	 * Limit the default to 256M
2171 	 */
2172 	nfs_congestion_kb = (16*int_sqrt(totalram_pages())) << (PAGE_SHIFT-10);
2173 	if (nfs_congestion_kb > 256*1024)
2174 		nfs_congestion_kb = 256*1024;
2175 
2176 	return 0;
2177 
2178 out_destroy_commit_cache:
2179 	kmem_cache_destroy(nfs_cdata_cachep);
2180 out_destroy_write_mempool:
2181 	mempool_destroy(nfs_wdata_mempool);
2182 out_destroy_write_cache:
2183 	kmem_cache_destroy(nfs_wdata_cachep);
2184 	return -ENOMEM;
2185 }
2186 
2187 void nfs_destroy_writepagecache(void)
2188 {
2189 	mempool_destroy(nfs_commit_mempool);
2190 	kmem_cache_destroy(nfs_cdata_cachep);
2191 	mempool_destroy(nfs_wdata_mempool);
2192 	kmem_cache_destroy(nfs_wdata_cachep);
2193 }
2194 
2195 static const struct nfs_rw_ops nfs_rw_write_ops = {
2196 	.rw_alloc_header	= nfs_writehdr_alloc,
2197 	.rw_free_header		= nfs_writehdr_free,
2198 	.rw_done		= nfs_writeback_done,
2199 	.rw_result		= nfs_writeback_result,
2200 	.rw_initiate		= nfs_initiate_write,
2201 };
2202