xref: /linux/fs/nfs/write.c (revision 42fda66387daa53538ae13a2c858396aaf037158)
1 /*
2  * linux/fs/nfs/write.c
3  *
4  * Write file data over NFS.
5  *
6  * Copyright (C) 1996, 1997, Olaf Kirch <okir@monad.swb.de>
7  */
8 
9 #include <linux/types.h>
10 #include <linux/slab.h>
11 #include <linux/mm.h>
12 #include <linux/pagemap.h>
13 #include <linux/file.h>
14 #include <linux/writeback.h>
15 #include <linux/swap.h>
16 
17 #include <linux/sunrpc/clnt.h>
18 #include <linux/nfs_fs.h>
19 #include <linux/nfs_mount.h>
20 #include <linux/nfs_page.h>
21 #include <linux/backing-dev.h>
22 
23 #include <asm/uaccess.h>
24 
25 #include "delegation.h"
26 #include "internal.h"
27 #include "iostat.h"
28 
29 #define NFSDBG_FACILITY		NFSDBG_PAGECACHE
30 
31 #define MIN_POOL_WRITE		(32)
32 #define MIN_POOL_COMMIT		(4)
33 
34 /*
35  * Local function declarations
36  */
37 static struct nfs_page * nfs_update_request(struct nfs_open_context*,
38 					    struct page *,
39 					    unsigned int, unsigned int);
40 static void nfs_pageio_init_write(struct nfs_pageio_descriptor *desc,
41 				  struct inode *inode, int ioflags);
42 static const struct rpc_call_ops nfs_write_partial_ops;
43 static const struct rpc_call_ops nfs_write_full_ops;
44 static const struct rpc_call_ops nfs_commit_ops;
45 
46 static struct kmem_cache *nfs_wdata_cachep;
47 static mempool_t *nfs_wdata_mempool;
48 static mempool_t *nfs_commit_mempool;
49 
50 struct nfs_write_data *nfs_commit_alloc(void)
51 {
52 	struct nfs_write_data *p = mempool_alloc(nfs_commit_mempool, GFP_NOFS);
53 
54 	if (p) {
55 		memset(p, 0, sizeof(*p));
56 		INIT_LIST_HEAD(&p->pages);
57 	}
58 	return p;
59 }
60 
61 static void nfs_commit_rcu_free(struct rcu_head *head)
62 {
63 	struct nfs_write_data *p = container_of(head, struct nfs_write_data, task.u.tk_rcu);
64 	if (p && (p->pagevec != &p->page_array[0]))
65 		kfree(p->pagevec);
66 	mempool_free(p, nfs_commit_mempool);
67 }
68 
69 void nfs_commit_free(struct nfs_write_data *wdata)
70 {
71 	call_rcu_bh(&wdata->task.u.tk_rcu, nfs_commit_rcu_free);
72 }
73 
74 struct nfs_write_data *nfs_writedata_alloc(unsigned int pagecount)
75 {
76 	struct nfs_write_data *p = mempool_alloc(nfs_wdata_mempool, GFP_NOFS);
77 
78 	if (p) {
79 		memset(p, 0, sizeof(*p));
80 		INIT_LIST_HEAD(&p->pages);
81 		p->npages = pagecount;
82 		if (pagecount <= ARRAY_SIZE(p->page_array))
83 			p->pagevec = p->page_array;
84 		else {
85 			p->pagevec = kcalloc(pagecount, sizeof(struct page *), GFP_NOFS);
86 			if (!p->pagevec) {
87 				mempool_free(p, nfs_wdata_mempool);
88 				p = NULL;
89 			}
90 		}
91 	}
92 	return p;
93 }
94 
95 static void nfs_writedata_rcu_free(struct rcu_head *head)
96 {
97 	struct nfs_write_data *p = container_of(head, struct nfs_write_data, task.u.tk_rcu);
98 	if (p && (p->pagevec != &p->page_array[0]))
99 		kfree(p->pagevec);
100 	mempool_free(p, nfs_wdata_mempool);
101 }
102 
103 static void nfs_writedata_free(struct nfs_write_data *wdata)
104 {
105 	call_rcu_bh(&wdata->task.u.tk_rcu, nfs_writedata_rcu_free);
106 }
107 
108 void nfs_writedata_release(void *wdata)
109 {
110 	nfs_writedata_free(wdata);
111 }
112 
113 static void nfs_context_set_write_error(struct nfs_open_context *ctx, int error)
114 {
115 	ctx->error = error;
116 	smp_wmb();
117 	set_bit(NFS_CONTEXT_ERROR_WRITE, &ctx->flags);
118 }
119 
120 static struct nfs_page *nfs_page_find_request_locked(struct page *page)
121 {
122 	struct nfs_page *req = NULL;
123 
124 	if (PagePrivate(page)) {
125 		req = (struct nfs_page *)page_private(page);
126 		if (req != NULL)
127 			kref_get(&req->wb_kref);
128 	}
129 	return req;
130 }
131 
132 static struct nfs_page *nfs_page_find_request(struct page *page)
133 {
134 	struct inode *inode = page->mapping->host;
135 	struct nfs_page *req = NULL;
136 
137 	spin_lock(&inode->i_lock);
138 	req = nfs_page_find_request_locked(page);
139 	spin_unlock(&inode->i_lock);
140 	return req;
141 }
142 
143 /* Adjust the file length if we're writing beyond the end */
144 static void nfs_grow_file(struct page *page, unsigned int offset, unsigned int count)
145 {
146 	struct inode *inode = page->mapping->host;
147 	loff_t end, i_size = i_size_read(inode);
148 	pgoff_t end_index = (i_size - 1) >> PAGE_CACHE_SHIFT;
149 
150 	if (i_size > 0 && page->index < end_index)
151 		return;
152 	end = ((loff_t)page->index << PAGE_CACHE_SHIFT) + ((loff_t)offset+count);
153 	if (i_size >= end)
154 		return;
155 	nfs_inc_stats(inode, NFSIOS_EXTENDWRITE);
156 	i_size_write(inode, end);
157 }
158 
159 /* A writeback failed: mark the page as bad, and invalidate the page cache */
160 static void nfs_set_pageerror(struct page *page)
161 {
162 	SetPageError(page);
163 	nfs_zap_mapping(page->mapping->host, page->mapping);
164 }
165 
166 /* We can set the PG_uptodate flag if we see that a write request
167  * covers the full page.
168  */
169 static void nfs_mark_uptodate(struct page *page, unsigned int base, unsigned int count)
170 {
171 	if (PageUptodate(page))
172 		return;
173 	if (base != 0)
174 		return;
175 	if (count != nfs_page_length(page))
176 		return;
177 	if (count != PAGE_CACHE_SIZE)
178 		zero_user_page(page, count, PAGE_CACHE_SIZE - count, KM_USER0);
179 	SetPageUptodate(page);
180 }
181 
182 static int nfs_writepage_setup(struct nfs_open_context *ctx, struct page *page,
183 		unsigned int offset, unsigned int count)
184 {
185 	struct nfs_page	*req;
186 	int ret;
187 
188 	for (;;) {
189 		req = nfs_update_request(ctx, page, offset, count);
190 		if (!IS_ERR(req))
191 			break;
192 		ret = PTR_ERR(req);
193 		if (ret != -EBUSY)
194 			return ret;
195 		ret = nfs_wb_page(page->mapping->host, page);
196 		if (ret != 0)
197 			return ret;
198 	}
199 	/* Update file length */
200 	nfs_grow_file(page, offset, count);
201 	nfs_unlock_request(req);
202 	return 0;
203 }
204 
205 static int wb_priority(struct writeback_control *wbc)
206 {
207 	if (wbc->for_reclaim)
208 		return FLUSH_HIGHPRI | FLUSH_STABLE;
209 	if (wbc->for_kupdate)
210 		return FLUSH_LOWPRI;
211 	return 0;
212 }
213 
214 /*
215  * NFS congestion control
216  */
217 
218 int nfs_congestion_kb;
219 
220 #define NFS_CONGESTION_ON_THRESH 	(nfs_congestion_kb >> (PAGE_SHIFT-10))
221 #define NFS_CONGESTION_OFF_THRESH	\
222 	(NFS_CONGESTION_ON_THRESH - (NFS_CONGESTION_ON_THRESH >> 2))
223 
224 static int nfs_set_page_writeback(struct page *page)
225 {
226 	int ret = test_set_page_writeback(page);
227 
228 	if (!ret) {
229 		struct inode *inode = page->mapping->host;
230 		struct nfs_server *nfss = NFS_SERVER(inode);
231 
232 		if (atomic_long_inc_return(&nfss->writeback) >
233 				NFS_CONGESTION_ON_THRESH)
234 			set_bdi_congested(&nfss->backing_dev_info, WRITE);
235 	}
236 	return ret;
237 }
238 
239 static void nfs_end_page_writeback(struct page *page)
240 {
241 	struct inode *inode = page->mapping->host;
242 	struct nfs_server *nfss = NFS_SERVER(inode);
243 
244 	end_page_writeback(page);
245 	if (atomic_long_dec_return(&nfss->writeback) < NFS_CONGESTION_OFF_THRESH) {
246 		clear_bdi_congested(&nfss->backing_dev_info, WRITE);
247 		congestion_end(WRITE);
248 	}
249 }
250 
251 /*
252  * Find an associated nfs write request, and prepare to flush it out
253  * May return an error if the user signalled nfs_wait_on_request().
254  */
255 static int nfs_page_async_flush(struct nfs_pageio_descriptor *pgio,
256 				struct page *page)
257 {
258 	struct inode *inode = page->mapping->host;
259 	struct nfs_inode *nfsi = NFS_I(inode);
260 	struct nfs_page *req;
261 	int ret;
262 
263 	spin_lock(&inode->i_lock);
264 	for(;;) {
265 		req = nfs_page_find_request_locked(page);
266 		if (req == NULL) {
267 			spin_unlock(&inode->i_lock);
268 			return 0;
269 		}
270 		if (nfs_lock_request_dontget(req))
271 			break;
272 		/* Note: If we hold the page lock, as is the case in nfs_writepage,
273 		 *	 then the call to nfs_lock_request_dontget() will always
274 		 *	 succeed provided that someone hasn't already marked the
275 		 *	 request as dirty (in which case we don't care).
276 		 */
277 		spin_unlock(&inode->i_lock);
278 		ret = nfs_wait_on_request(req);
279 		nfs_release_request(req);
280 		if (ret != 0)
281 			return ret;
282 		spin_lock(&inode->i_lock);
283 	}
284 	if (test_bit(PG_NEED_COMMIT, &req->wb_flags)) {
285 		/* This request is marked for commit */
286 		spin_unlock(&inode->i_lock);
287 		nfs_unlock_request(req);
288 		nfs_pageio_complete(pgio);
289 		return 0;
290 	}
291 	if (nfs_set_page_writeback(page) != 0) {
292 		spin_unlock(&inode->i_lock);
293 		BUG();
294 	}
295 	radix_tree_tag_set(&nfsi->nfs_page_tree, req->wb_index,
296 			NFS_PAGE_TAG_LOCKED);
297 	spin_unlock(&inode->i_lock);
298 	nfs_pageio_add_request(pgio, req);
299 	return 0;
300 }
301 
302 static int nfs_do_writepage(struct page *page, struct writeback_control *wbc, struct nfs_pageio_descriptor *pgio)
303 {
304 	struct inode *inode = page->mapping->host;
305 
306 	nfs_inc_stats(inode, NFSIOS_VFSWRITEPAGE);
307 	nfs_add_stats(inode, NFSIOS_WRITEPAGES, 1);
308 
309 	nfs_pageio_cond_complete(pgio, page->index);
310 	return nfs_page_async_flush(pgio, page);
311 }
312 
313 /*
314  * Write an mmapped page to the server.
315  */
316 static int nfs_writepage_locked(struct page *page, struct writeback_control *wbc)
317 {
318 	struct nfs_pageio_descriptor pgio;
319 	int err;
320 
321 	nfs_pageio_init_write(&pgio, page->mapping->host, wb_priority(wbc));
322 	err = nfs_do_writepage(page, wbc, &pgio);
323 	nfs_pageio_complete(&pgio);
324 	if (err < 0)
325 		return err;
326 	if (pgio.pg_error < 0)
327 		return pgio.pg_error;
328 	return 0;
329 }
330 
331 int nfs_writepage(struct page *page, struct writeback_control *wbc)
332 {
333 	int ret;
334 
335 	ret = nfs_writepage_locked(page, wbc);
336 	unlock_page(page);
337 	return ret;
338 }
339 
340 static int nfs_writepages_callback(struct page *page, struct writeback_control *wbc, void *data)
341 {
342 	int ret;
343 
344 	ret = nfs_do_writepage(page, wbc, data);
345 	unlock_page(page);
346 	return ret;
347 }
348 
349 int nfs_writepages(struct address_space *mapping, struct writeback_control *wbc)
350 {
351 	struct inode *inode = mapping->host;
352 	struct nfs_pageio_descriptor pgio;
353 	int err;
354 
355 	nfs_inc_stats(inode, NFSIOS_VFSWRITEPAGES);
356 
357 	nfs_pageio_init_write(&pgio, inode, wb_priority(wbc));
358 	err = write_cache_pages(mapping, wbc, nfs_writepages_callback, &pgio);
359 	nfs_pageio_complete(&pgio);
360 	if (err < 0)
361 		return err;
362 	if (pgio.pg_error < 0)
363 		return pgio.pg_error;
364 	return 0;
365 }
366 
367 /*
368  * Insert a write request into an inode
369  */
370 static int nfs_inode_add_request(struct inode *inode, struct nfs_page *req)
371 {
372 	struct nfs_inode *nfsi = NFS_I(inode);
373 	int error;
374 
375 	error = radix_tree_insert(&nfsi->nfs_page_tree, req->wb_index, req);
376 	BUG_ON(error == -EEXIST);
377 	if (error)
378 		return error;
379 	if (!nfsi->npages) {
380 		igrab(inode);
381 		if (nfs_have_delegation(inode, FMODE_WRITE))
382 			nfsi->change_attr++;
383 	}
384 	SetPagePrivate(req->wb_page);
385 	set_page_private(req->wb_page, (unsigned long)req);
386 	nfsi->npages++;
387 	kref_get(&req->wb_kref);
388 	return 0;
389 }
390 
391 /*
392  * Remove a write request from an inode
393  */
394 static void nfs_inode_remove_request(struct nfs_page *req)
395 {
396 	struct inode *inode = req->wb_context->path.dentry->d_inode;
397 	struct nfs_inode *nfsi = NFS_I(inode);
398 
399 	BUG_ON (!NFS_WBACK_BUSY(req));
400 
401 	spin_lock(&inode->i_lock);
402 	set_page_private(req->wb_page, 0);
403 	ClearPagePrivate(req->wb_page);
404 	radix_tree_delete(&nfsi->nfs_page_tree, req->wb_index);
405 	nfsi->npages--;
406 	if (!nfsi->npages) {
407 		spin_unlock(&inode->i_lock);
408 		iput(inode);
409 	} else
410 		spin_unlock(&inode->i_lock);
411 	nfs_clear_request(req);
412 	nfs_release_request(req);
413 }
414 
415 static void
416 nfs_redirty_request(struct nfs_page *req)
417 {
418 	__set_page_dirty_nobuffers(req->wb_page);
419 }
420 
421 /*
422  * Check if a request is dirty
423  */
424 static inline int
425 nfs_dirty_request(struct nfs_page *req)
426 {
427 	struct page *page = req->wb_page;
428 
429 	if (page == NULL || test_bit(PG_NEED_COMMIT, &req->wb_flags))
430 		return 0;
431 	return !PageWriteback(req->wb_page);
432 }
433 
434 #if defined(CONFIG_NFS_V3) || defined(CONFIG_NFS_V4)
435 /*
436  * Add a request to the inode's commit list.
437  */
438 static void
439 nfs_mark_request_commit(struct nfs_page *req)
440 {
441 	struct inode *inode = req->wb_context->path.dentry->d_inode;
442 	struct nfs_inode *nfsi = NFS_I(inode);
443 
444 	spin_lock(&inode->i_lock);
445 	nfsi->ncommit++;
446 	set_bit(PG_NEED_COMMIT, &(req)->wb_flags);
447 	radix_tree_tag_set(&nfsi->nfs_page_tree,
448 			req->wb_index,
449 			NFS_PAGE_TAG_COMMIT);
450 	spin_unlock(&inode->i_lock);
451 	inc_zone_page_state(req->wb_page, NR_UNSTABLE_NFS);
452 	__mark_inode_dirty(inode, I_DIRTY_DATASYNC);
453 }
454 
455 static inline
456 int nfs_write_need_commit(struct nfs_write_data *data)
457 {
458 	return data->verf.committed != NFS_FILE_SYNC;
459 }
460 
461 static inline
462 int nfs_reschedule_unstable_write(struct nfs_page *req)
463 {
464 	if (test_bit(PG_NEED_COMMIT, &req->wb_flags)) {
465 		nfs_mark_request_commit(req);
466 		return 1;
467 	}
468 	if (test_and_clear_bit(PG_NEED_RESCHED, &req->wb_flags)) {
469 		nfs_redirty_request(req);
470 		return 1;
471 	}
472 	return 0;
473 }
474 #else
475 static inline void
476 nfs_mark_request_commit(struct nfs_page *req)
477 {
478 }
479 
480 static inline
481 int nfs_write_need_commit(struct nfs_write_data *data)
482 {
483 	return 0;
484 }
485 
486 static inline
487 int nfs_reschedule_unstable_write(struct nfs_page *req)
488 {
489 	return 0;
490 }
491 #endif
492 
493 /*
494  * Wait for a request to complete.
495  *
496  * Interruptible by signals only if mounted with intr flag.
497  */
498 static int nfs_wait_on_requests_locked(struct inode *inode, pgoff_t idx_start, unsigned int npages)
499 {
500 	struct nfs_inode *nfsi = NFS_I(inode);
501 	struct nfs_page *req;
502 	pgoff_t idx_end, next;
503 	unsigned int		res = 0;
504 	int			error;
505 
506 	if (npages == 0)
507 		idx_end = ~0;
508 	else
509 		idx_end = idx_start + npages - 1;
510 
511 	next = idx_start;
512 	while (radix_tree_gang_lookup_tag(&nfsi->nfs_page_tree, (void **)&req, next, 1, NFS_PAGE_TAG_LOCKED)) {
513 		if (req->wb_index > idx_end)
514 			break;
515 
516 		next = req->wb_index + 1;
517 		BUG_ON(!NFS_WBACK_BUSY(req));
518 
519 		kref_get(&req->wb_kref);
520 		spin_unlock(&inode->i_lock);
521 		error = nfs_wait_on_request(req);
522 		nfs_release_request(req);
523 		spin_lock(&inode->i_lock);
524 		if (error < 0)
525 			return error;
526 		res++;
527 	}
528 	return res;
529 }
530 
531 static void nfs_cancel_commit_list(struct list_head *head)
532 {
533 	struct nfs_page *req;
534 
535 	while(!list_empty(head)) {
536 		req = nfs_list_entry(head->next);
537 		dec_zone_page_state(req->wb_page, NR_UNSTABLE_NFS);
538 		nfs_list_remove_request(req);
539 		clear_bit(PG_NEED_COMMIT, &(req)->wb_flags);
540 		nfs_inode_remove_request(req);
541 		nfs_unlock_request(req);
542 	}
543 }
544 
545 #if defined(CONFIG_NFS_V3) || defined(CONFIG_NFS_V4)
546 /*
547  * nfs_scan_commit - Scan an inode for commit requests
548  * @inode: NFS inode to scan
549  * @dst: destination list
550  * @idx_start: lower bound of page->index to scan.
551  * @npages: idx_start + npages sets the upper bound to scan.
552  *
553  * Moves requests from the inode's 'commit' request list.
554  * The requests are *not* checked to ensure that they form a contiguous set.
555  */
556 static int
557 nfs_scan_commit(struct inode *inode, struct list_head *dst, pgoff_t idx_start, unsigned int npages)
558 {
559 	struct nfs_inode *nfsi = NFS_I(inode);
560 	int res = 0;
561 
562 	if (nfsi->ncommit != 0) {
563 		res = nfs_scan_list(nfsi, dst, idx_start, npages,
564 				NFS_PAGE_TAG_COMMIT);
565 		nfsi->ncommit -= res;
566 	}
567 	return res;
568 }
569 #else
570 static inline int nfs_scan_commit(struct inode *inode, struct list_head *dst, pgoff_t idx_start, unsigned int npages)
571 {
572 	return 0;
573 }
574 #endif
575 
576 /*
577  * Try to update any existing write request, or create one if there is none.
578  * In order to match, the request's credentials must match those of
579  * the calling process.
580  *
581  * Note: Should always be called with the Page Lock held!
582  */
583 static struct nfs_page * nfs_update_request(struct nfs_open_context* ctx,
584 		struct page *page, unsigned int offset, unsigned int bytes)
585 {
586 	struct address_space *mapping = page->mapping;
587 	struct inode *inode = mapping->host;
588 	struct nfs_page		*req, *new = NULL;
589 	pgoff_t		rqend, end;
590 
591 	end = offset + bytes;
592 
593 	for (;;) {
594 		/* Loop over all inode entries and see if we find
595 		 * A request for the page we wish to update
596 		 */
597 		spin_lock(&inode->i_lock);
598 		req = nfs_page_find_request_locked(page);
599 		if (req) {
600 			if (!nfs_lock_request_dontget(req)) {
601 				int error;
602 
603 				spin_unlock(&inode->i_lock);
604 				error = nfs_wait_on_request(req);
605 				nfs_release_request(req);
606 				if (error < 0) {
607 					if (new)
608 						nfs_release_request(new);
609 					return ERR_PTR(error);
610 				}
611 				continue;
612 			}
613 			spin_unlock(&inode->i_lock);
614 			if (new)
615 				nfs_release_request(new);
616 			break;
617 		}
618 
619 		if (new) {
620 			int error;
621 			nfs_lock_request_dontget(new);
622 			error = nfs_inode_add_request(inode, new);
623 			if (error) {
624 				spin_unlock(&inode->i_lock);
625 				nfs_unlock_request(new);
626 				return ERR_PTR(error);
627 			}
628 			spin_unlock(&inode->i_lock);
629 			return new;
630 		}
631 		spin_unlock(&inode->i_lock);
632 
633 		new = nfs_create_request(ctx, inode, page, offset, bytes);
634 		if (IS_ERR(new))
635 			return new;
636 	}
637 
638 	/* We have a request for our page.
639 	 * If the creds don't match, or the
640 	 * page addresses don't match,
641 	 * tell the caller to wait on the conflicting
642 	 * request.
643 	 */
644 	rqend = req->wb_offset + req->wb_bytes;
645 	if (req->wb_context != ctx
646 	    || req->wb_page != page
647 	    || !nfs_dirty_request(req)
648 	    || offset > rqend || end < req->wb_offset) {
649 		nfs_unlock_request(req);
650 		return ERR_PTR(-EBUSY);
651 	}
652 
653 	/* Okay, the request matches. Update the region */
654 	if (offset < req->wb_offset) {
655 		req->wb_offset = offset;
656 		req->wb_pgbase = offset;
657 		req->wb_bytes = rqend - req->wb_offset;
658 	}
659 
660 	if (end > rqend)
661 		req->wb_bytes = end - req->wb_offset;
662 
663 	return req;
664 }
665 
666 int nfs_flush_incompatible(struct file *file, struct page *page)
667 {
668 	struct nfs_open_context *ctx = nfs_file_open_context(file);
669 	struct nfs_page	*req;
670 	int do_flush, status;
671 	/*
672 	 * Look for a request corresponding to this page. If there
673 	 * is one, and it belongs to another file, we flush it out
674 	 * before we try to copy anything into the page. Do this
675 	 * due to the lack of an ACCESS-type call in NFSv2.
676 	 * Also do the same if we find a request from an existing
677 	 * dropped page.
678 	 */
679 	do {
680 		req = nfs_page_find_request(page);
681 		if (req == NULL)
682 			return 0;
683 		do_flush = req->wb_page != page || req->wb_context != ctx
684 			|| !nfs_dirty_request(req);
685 		nfs_release_request(req);
686 		if (!do_flush)
687 			return 0;
688 		status = nfs_wb_page(page->mapping->host, page);
689 	} while (status == 0);
690 	return status;
691 }
692 
693 /*
694  * Update and possibly write a cached page of an NFS file.
695  *
696  * XXX: Keep an eye on generic_file_read to make sure it doesn't do bad
697  * things with a page scheduled for an RPC call (e.g. invalidate it).
698  */
699 int nfs_updatepage(struct file *file, struct page *page,
700 		unsigned int offset, unsigned int count)
701 {
702 	struct nfs_open_context *ctx = nfs_file_open_context(file);
703 	struct inode	*inode = page->mapping->host;
704 	int		status = 0;
705 
706 	nfs_inc_stats(inode, NFSIOS_VFSUPDATEPAGE);
707 
708 	dprintk("NFS:      nfs_updatepage(%s/%s %d@%Ld)\n",
709 		file->f_path.dentry->d_parent->d_name.name,
710 		file->f_path.dentry->d_name.name, count,
711 		(long long)(page_offset(page) +offset));
712 
713 	/* If we're not using byte range locks, and we know the page
714 	 * is entirely in cache, it may be more efficient to avoid
715 	 * fragmenting write requests.
716 	 */
717 	if (PageUptodate(page) && inode->i_flock == NULL && !(file->f_mode & O_SYNC)) {
718 		count = max(count + offset, nfs_page_length(page));
719 		offset = 0;
720 	}
721 
722 	status = nfs_writepage_setup(ctx, page, offset, count);
723 	__set_page_dirty_nobuffers(page);
724 
725         dprintk("NFS:      nfs_updatepage returns %d (isize %Ld)\n",
726 			status, (long long)i_size_read(inode));
727 	if (status < 0)
728 		nfs_set_pageerror(page);
729 	return status;
730 }
731 
732 static void nfs_writepage_release(struct nfs_page *req)
733 {
734 
735 	if (PageError(req->wb_page)) {
736 		nfs_end_page_writeback(req->wb_page);
737 		nfs_inode_remove_request(req);
738 	} else if (!nfs_reschedule_unstable_write(req)) {
739 		/* Set the PG_uptodate flag */
740 		nfs_mark_uptodate(req->wb_page, req->wb_pgbase, req->wb_bytes);
741 		nfs_end_page_writeback(req->wb_page);
742 		nfs_inode_remove_request(req);
743 	} else
744 		nfs_end_page_writeback(req->wb_page);
745 	nfs_clear_page_tag_locked(req);
746 }
747 
748 static inline int flush_task_priority(int how)
749 {
750 	switch (how & (FLUSH_HIGHPRI|FLUSH_LOWPRI)) {
751 		case FLUSH_HIGHPRI:
752 			return RPC_PRIORITY_HIGH;
753 		case FLUSH_LOWPRI:
754 			return RPC_PRIORITY_LOW;
755 	}
756 	return RPC_PRIORITY_NORMAL;
757 }
758 
759 /*
760  * Set up the argument/result storage required for the RPC call.
761  */
762 static void nfs_write_rpcsetup(struct nfs_page *req,
763 		struct nfs_write_data *data,
764 		const struct rpc_call_ops *call_ops,
765 		unsigned int count, unsigned int offset,
766 		int how)
767 {
768 	struct inode		*inode;
769 	int flags;
770 
771 	/* Set up the RPC argument and reply structs
772 	 * NB: take care not to mess about with data->commit et al. */
773 
774 	data->req = req;
775 	data->inode = inode = req->wb_context->path.dentry->d_inode;
776 	data->cred = req->wb_context->cred;
777 
778 	data->args.fh     = NFS_FH(inode);
779 	data->args.offset = req_offset(req) + offset;
780 	data->args.pgbase = req->wb_pgbase + offset;
781 	data->args.pages  = data->pagevec;
782 	data->args.count  = count;
783 	data->args.context = req->wb_context;
784 
785 	data->res.fattr   = &data->fattr;
786 	data->res.count   = count;
787 	data->res.verf    = &data->verf;
788 	nfs_fattr_init(&data->fattr);
789 
790 	/* Set up the initial task struct.  */
791 	flags = (how & FLUSH_SYNC) ? 0 : RPC_TASK_ASYNC;
792 	rpc_init_task(&data->task, NFS_CLIENT(inode), flags, call_ops, data);
793 	NFS_PROTO(inode)->write_setup(data, how);
794 
795 	data->task.tk_priority = flush_task_priority(how);
796 	data->task.tk_cookie = (unsigned long)inode;
797 
798 	dprintk("NFS: %5u initiated write call "
799 		"(req %s/%Ld, %u bytes @ offset %Lu)\n",
800 		data->task.tk_pid,
801 		inode->i_sb->s_id,
802 		(long long)NFS_FILEID(inode),
803 		count,
804 		(unsigned long long)data->args.offset);
805 }
806 
807 static void nfs_execute_write(struct nfs_write_data *data)
808 {
809 	struct rpc_clnt *clnt = NFS_CLIENT(data->inode);
810 	sigset_t oldset;
811 
812 	rpc_clnt_sigmask(clnt, &oldset);
813 	rpc_execute(&data->task);
814 	rpc_clnt_sigunmask(clnt, &oldset);
815 }
816 
817 /*
818  * Generate multiple small requests to write out a single
819  * contiguous dirty area on one page.
820  */
821 static int nfs_flush_multi(struct inode *inode, struct list_head *head, unsigned int npages, size_t count, int how)
822 {
823 	struct nfs_page *req = nfs_list_entry(head->next);
824 	struct page *page = req->wb_page;
825 	struct nfs_write_data *data;
826 	size_t wsize = NFS_SERVER(inode)->wsize, nbytes;
827 	unsigned int offset;
828 	int requests = 0;
829 	LIST_HEAD(list);
830 
831 	nfs_list_remove_request(req);
832 
833 	nbytes = count;
834 	do {
835 		size_t len = min(nbytes, wsize);
836 
837 		data = nfs_writedata_alloc(1);
838 		if (!data)
839 			goto out_bad;
840 		list_add(&data->pages, &list);
841 		requests++;
842 		nbytes -= len;
843 	} while (nbytes != 0);
844 	atomic_set(&req->wb_complete, requests);
845 
846 	ClearPageError(page);
847 	offset = 0;
848 	nbytes = count;
849 	do {
850 		data = list_entry(list.next, struct nfs_write_data, pages);
851 		list_del_init(&data->pages);
852 
853 		data->pagevec[0] = page;
854 
855 		if (nbytes < wsize)
856 			wsize = nbytes;
857 		nfs_write_rpcsetup(req, data, &nfs_write_partial_ops,
858 				   wsize, offset, how);
859 		offset += wsize;
860 		nbytes -= wsize;
861 		nfs_execute_write(data);
862 	} while (nbytes != 0);
863 
864 	return 0;
865 
866 out_bad:
867 	while (!list_empty(&list)) {
868 		data = list_entry(list.next, struct nfs_write_data, pages);
869 		list_del(&data->pages);
870 		nfs_writedata_release(data);
871 	}
872 	nfs_redirty_request(req);
873 	nfs_end_page_writeback(req->wb_page);
874 	nfs_clear_page_tag_locked(req);
875 	return -ENOMEM;
876 }
877 
878 /*
879  * Create an RPC task for the given write request and kick it.
880  * The page must have been locked by the caller.
881  *
882  * It may happen that the page we're passed is not marked dirty.
883  * This is the case if nfs_updatepage detects a conflicting request
884  * that has been written but not committed.
885  */
886 static int nfs_flush_one(struct inode *inode, struct list_head *head, unsigned int npages, size_t count, int how)
887 {
888 	struct nfs_page		*req;
889 	struct page		**pages;
890 	struct nfs_write_data	*data;
891 
892 	data = nfs_writedata_alloc(npages);
893 	if (!data)
894 		goto out_bad;
895 
896 	pages = data->pagevec;
897 	while (!list_empty(head)) {
898 		req = nfs_list_entry(head->next);
899 		nfs_list_remove_request(req);
900 		nfs_list_add_request(req, &data->pages);
901 		ClearPageError(req->wb_page);
902 		*pages++ = req->wb_page;
903 	}
904 	req = nfs_list_entry(data->pages.next);
905 
906 	/* Set up the argument struct */
907 	nfs_write_rpcsetup(req, data, &nfs_write_full_ops, count, 0, how);
908 
909 	nfs_execute_write(data);
910 	return 0;
911  out_bad:
912 	while (!list_empty(head)) {
913 		req = nfs_list_entry(head->next);
914 		nfs_list_remove_request(req);
915 		nfs_redirty_request(req);
916 		nfs_end_page_writeback(req->wb_page);
917 		nfs_clear_page_tag_locked(req);
918 	}
919 	return -ENOMEM;
920 }
921 
922 static void nfs_pageio_init_write(struct nfs_pageio_descriptor *pgio,
923 				  struct inode *inode, int ioflags)
924 {
925 	int wsize = NFS_SERVER(inode)->wsize;
926 
927 	if (wsize < PAGE_CACHE_SIZE)
928 		nfs_pageio_init(pgio, inode, nfs_flush_multi, wsize, ioflags);
929 	else
930 		nfs_pageio_init(pgio, inode, nfs_flush_one, wsize, ioflags);
931 }
932 
933 /*
934  * Handle a write reply that flushed part of a page.
935  */
936 static void nfs_writeback_done_partial(struct rpc_task *task, void *calldata)
937 {
938 	struct nfs_write_data	*data = calldata;
939 	struct nfs_page		*req = data->req;
940 	struct page		*page = req->wb_page;
941 
942 	dprintk("NFS: write (%s/%Ld %d@%Ld)",
943 		req->wb_context->path.dentry->d_inode->i_sb->s_id,
944 		(long long)NFS_FILEID(req->wb_context->path.dentry->d_inode),
945 		req->wb_bytes,
946 		(long long)req_offset(req));
947 
948 	if (nfs_writeback_done(task, data) != 0)
949 		return;
950 
951 	if (task->tk_status < 0) {
952 		nfs_set_pageerror(page);
953 		nfs_context_set_write_error(req->wb_context, task->tk_status);
954 		dprintk(", error = %d\n", task->tk_status);
955 		goto out;
956 	}
957 
958 	if (nfs_write_need_commit(data)) {
959 		struct inode *inode = page->mapping->host;
960 
961 		spin_lock(&inode->i_lock);
962 		if (test_bit(PG_NEED_RESCHED, &req->wb_flags)) {
963 			/* Do nothing we need to resend the writes */
964 		} else if (!test_and_set_bit(PG_NEED_COMMIT, &req->wb_flags)) {
965 			memcpy(&req->wb_verf, &data->verf, sizeof(req->wb_verf));
966 			dprintk(" defer commit\n");
967 		} else if (memcmp(&req->wb_verf, &data->verf, sizeof(req->wb_verf))) {
968 			set_bit(PG_NEED_RESCHED, &req->wb_flags);
969 			clear_bit(PG_NEED_COMMIT, &req->wb_flags);
970 			dprintk(" server reboot detected\n");
971 		}
972 		spin_unlock(&inode->i_lock);
973 	} else
974 		dprintk(" OK\n");
975 
976 out:
977 	if (atomic_dec_and_test(&req->wb_complete))
978 		nfs_writepage_release(req);
979 }
980 
981 static const struct rpc_call_ops nfs_write_partial_ops = {
982 	.rpc_call_done = nfs_writeback_done_partial,
983 	.rpc_release = nfs_writedata_release,
984 };
985 
986 /*
987  * Handle a write reply that flushes a whole page.
988  *
989  * FIXME: There is an inherent race with invalidate_inode_pages and
990  *	  writebacks since the page->count is kept > 1 for as long
991  *	  as the page has a write request pending.
992  */
993 static void nfs_writeback_done_full(struct rpc_task *task, void *calldata)
994 {
995 	struct nfs_write_data	*data = calldata;
996 	struct nfs_page		*req;
997 	struct page		*page;
998 
999 	if (nfs_writeback_done(task, data) != 0)
1000 		return;
1001 
1002 	/* Update attributes as result of writeback. */
1003 	while (!list_empty(&data->pages)) {
1004 		req = nfs_list_entry(data->pages.next);
1005 		nfs_list_remove_request(req);
1006 		page = req->wb_page;
1007 
1008 		dprintk("NFS: write (%s/%Ld %d@%Ld)",
1009 			req->wb_context->path.dentry->d_inode->i_sb->s_id,
1010 			(long long)NFS_FILEID(req->wb_context->path.dentry->d_inode),
1011 			req->wb_bytes,
1012 			(long long)req_offset(req));
1013 
1014 		if (task->tk_status < 0) {
1015 			nfs_set_pageerror(page);
1016 			nfs_context_set_write_error(req->wb_context, task->tk_status);
1017 			dprintk(", error = %d\n", task->tk_status);
1018 			goto remove_request;
1019 		}
1020 
1021 		if (nfs_write_need_commit(data)) {
1022 			memcpy(&req->wb_verf, &data->verf, sizeof(req->wb_verf));
1023 			nfs_mark_request_commit(req);
1024 			nfs_end_page_writeback(page);
1025 			dprintk(" marked for commit\n");
1026 			goto next;
1027 		}
1028 		/* Set the PG_uptodate flag? */
1029 		nfs_mark_uptodate(page, req->wb_pgbase, req->wb_bytes);
1030 		dprintk(" OK\n");
1031 remove_request:
1032 		nfs_end_page_writeback(page);
1033 		nfs_inode_remove_request(req);
1034 	next:
1035 		nfs_clear_page_tag_locked(req);
1036 	}
1037 }
1038 
1039 static const struct rpc_call_ops nfs_write_full_ops = {
1040 	.rpc_call_done = nfs_writeback_done_full,
1041 	.rpc_release = nfs_writedata_release,
1042 };
1043 
1044 
1045 /*
1046  * This function is called when the WRITE call is complete.
1047  */
1048 int nfs_writeback_done(struct rpc_task *task, struct nfs_write_data *data)
1049 {
1050 	struct nfs_writeargs	*argp = &data->args;
1051 	struct nfs_writeres	*resp = &data->res;
1052 	int status;
1053 
1054 	dprintk("NFS: %5u nfs_writeback_done (status %d)\n",
1055 		task->tk_pid, task->tk_status);
1056 
1057 	/*
1058 	 * ->write_done will attempt to use post-op attributes to detect
1059 	 * conflicting writes by other clients.  A strict interpretation
1060 	 * of close-to-open would allow us to continue caching even if
1061 	 * another writer had changed the file, but some applications
1062 	 * depend on tighter cache coherency when writing.
1063 	 */
1064 	status = NFS_PROTO(data->inode)->write_done(task, data);
1065 	if (status != 0)
1066 		return status;
1067 	nfs_add_stats(data->inode, NFSIOS_SERVERWRITTENBYTES, resp->count);
1068 
1069 #if defined(CONFIG_NFS_V3) || defined(CONFIG_NFS_V4)
1070 	if (resp->verf->committed < argp->stable && task->tk_status >= 0) {
1071 		/* We tried a write call, but the server did not
1072 		 * commit data to stable storage even though we
1073 		 * requested it.
1074 		 * Note: There is a known bug in Tru64 < 5.0 in which
1075 		 *	 the server reports NFS_DATA_SYNC, but performs
1076 		 *	 NFS_FILE_SYNC. We therefore implement this checking
1077 		 *	 as a dprintk() in order to avoid filling syslog.
1078 		 */
1079 		static unsigned long    complain;
1080 
1081 		if (time_before(complain, jiffies)) {
1082 			dprintk("NFS: faulty NFS server %s:"
1083 				" (committed = %d) != (stable = %d)\n",
1084 				NFS_SERVER(data->inode)->nfs_client->cl_hostname,
1085 				resp->verf->committed, argp->stable);
1086 			complain = jiffies + 300 * HZ;
1087 		}
1088 	}
1089 #endif
1090 	/* Is this a short write? */
1091 	if (task->tk_status >= 0 && resp->count < argp->count) {
1092 		static unsigned long    complain;
1093 
1094 		nfs_inc_stats(data->inode, NFSIOS_SHORTWRITE);
1095 
1096 		/* Has the server at least made some progress? */
1097 		if (resp->count != 0) {
1098 			/* Was this an NFSv2 write or an NFSv3 stable write? */
1099 			if (resp->verf->committed != NFS_UNSTABLE) {
1100 				/* Resend from where the server left off */
1101 				argp->offset += resp->count;
1102 				argp->pgbase += resp->count;
1103 				argp->count -= resp->count;
1104 			} else {
1105 				/* Resend as a stable write in order to avoid
1106 				 * headaches in the case of a server crash.
1107 				 */
1108 				argp->stable = NFS_FILE_SYNC;
1109 			}
1110 			rpc_restart_call(task);
1111 			return -EAGAIN;
1112 		}
1113 		if (time_before(complain, jiffies)) {
1114 			printk(KERN_WARNING
1115 			       "NFS: Server wrote zero bytes, expected %u.\n",
1116 					argp->count);
1117 			complain = jiffies + 300 * HZ;
1118 		}
1119 		/* Can't do anything about it except throw an error. */
1120 		task->tk_status = -EIO;
1121 	}
1122 	return 0;
1123 }
1124 
1125 
1126 #if defined(CONFIG_NFS_V3) || defined(CONFIG_NFS_V4)
1127 void nfs_commit_release(void *wdata)
1128 {
1129 	nfs_commit_free(wdata);
1130 }
1131 
1132 /*
1133  * Set up the argument/result storage required for the RPC call.
1134  */
1135 static void nfs_commit_rpcsetup(struct list_head *head,
1136 		struct nfs_write_data *data,
1137 		int how)
1138 {
1139 	struct nfs_page		*first;
1140 	struct inode		*inode;
1141 	int flags;
1142 
1143 	/* Set up the RPC argument and reply structs
1144 	 * NB: take care not to mess about with data->commit et al. */
1145 
1146 	list_splice_init(head, &data->pages);
1147 	first = nfs_list_entry(data->pages.next);
1148 	inode = first->wb_context->path.dentry->d_inode;
1149 
1150 	data->inode	  = inode;
1151 	data->cred	  = first->wb_context->cred;
1152 
1153 	data->args.fh     = NFS_FH(data->inode);
1154 	/* Note: we always request a commit of the entire inode */
1155 	data->args.offset = 0;
1156 	data->args.count  = 0;
1157 	data->res.count   = 0;
1158 	data->res.fattr   = &data->fattr;
1159 	data->res.verf    = &data->verf;
1160 	nfs_fattr_init(&data->fattr);
1161 
1162 	/* Set up the initial task struct.  */
1163 	flags = (how & FLUSH_SYNC) ? 0 : RPC_TASK_ASYNC;
1164 	rpc_init_task(&data->task, NFS_CLIENT(inode), flags, &nfs_commit_ops, data);
1165 	NFS_PROTO(inode)->commit_setup(data, how);
1166 
1167 	data->task.tk_priority = flush_task_priority(how);
1168 	data->task.tk_cookie = (unsigned long)inode;
1169 
1170 	dprintk("NFS: %5u initiated commit call\n", data->task.tk_pid);
1171 }
1172 
1173 /*
1174  * Commit dirty pages
1175  */
1176 static int
1177 nfs_commit_list(struct inode *inode, struct list_head *head, int how)
1178 {
1179 	struct nfs_write_data	*data;
1180 	struct nfs_page         *req;
1181 
1182 	data = nfs_commit_alloc();
1183 
1184 	if (!data)
1185 		goto out_bad;
1186 
1187 	/* Set up the argument struct */
1188 	nfs_commit_rpcsetup(head, data, how);
1189 
1190 	nfs_execute_write(data);
1191 	return 0;
1192  out_bad:
1193 	while (!list_empty(head)) {
1194 		req = nfs_list_entry(head->next);
1195 		nfs_list_remove_request(req);
1196 		nfs_mark_request_commit(req);
1197 		dec_zone_page_state(req->wb_page, NR_UNSTABLE_NFS);
1198 		nfs_clear_page_tag_locked(req);
1199 	}
1200 	return -ENOMEM;
1201 }
1202 
1203 /*
1204  * COMMIT call returned
1205  */
1206 static void nfs_commit_done(struct rpc_task *task, void *calldata)
1207 {
1208 	struct nfs_write_data	*data = calldata;
1209 	struct nfs_page		*req;
1210 
1211         dprintk("NFS: %5u nfs_commit_done (status %d)\n",
1212                                 task->tk_pid, task->tk_status);
1213 
1214 	/* Call the NFS version-specific code */
1215 	if (NFS_PROTO(data->inode)->commit_done(task, data) != 0)
1216 		return;
1217 
1218 	while (!list_empty(&data->pages)) {
1219 		req = nfs_list_entry(data->pages.next);
1220 		nfs_list_remove_request(req);
1221 		clear_bit(PG_NEED_COMMIT, &(req)->wb_flags);
1222 		dec_zone_page_state(req->wb_page, NR_UNSTABLE_NFS);
1223 
1224 		dprintk("NFS: commit (%s/%Ld %d@%Ld)",
1225 			req->wb_context->path.dentry->d_inode->i_sb->s_id,
1226 			(long long)NFS_FILEID(req->wb_context->path.dentry->d_inode),
1227 			req->wb_bytes,
1228 			(long long)req_offset(req));
1229 		if (task->tk_status < 0) {
1230 			nfs_context_set_write_error(req->wb_context, task->tk_status);
1231 			nfs_inode_remove_request(req);
1232 			dprintk(", error = %d\n", task->tk_status);
1233 			goto next;
1234 		}
1235 
1236 		/* Okay, COMMIT succeeded, apparently. Check the verifier
1237 		 * returned by the server against all stored verfs. */
1238 		if (!memcmp(req->wb_verf.verifier, data->verf.verifier, sizeof(data->verf.verifier))) {
1239 			/* We have a match */
1240 			/* Set the PG_uptodate flag */
1241 			nfs_mark_uptodate(req->wb_page, req->wb_pgbase,
1242 					req->wb_bytes);
1243 			nfs_inode_remove_request(req);
1244 			dprintk(" OK\n");
1245 			goto next;
1246 		}
1247 		/* We have a mismatch. Write the page again */
1248 		dprintk(" mismatch\n");
1249 		nfs_redirty_request(req);
1250 	next:
1251 		nfs_clear_page_tag_locked(req);
1252 	}
1253 }
1254 
1255 static const struct rpc_call_ops nfs_commit_ops = {
1256 	.rpc_call_done = nfs_commit_done,
1257 	.rpc_release = nfs_commit_release,
1258 };
1259 
1260 int nfs_commit_inode(struct inode *inode, int how)
1261 {
1262 	LIST_HEAD(head);
1263 	int res;
1264 
1265 	spin_lock(&inode->i_lock);
1266 	res = nfs_scan_commit(inode, &head, 0, 0);
1267 	spin_unlock(&inode->i_lock);
1268 	if (res) {
1269 		int error = nfs_commit_list(inode, &head, how);
1270 		if (error < 0)
1271 			return error;
1272 	}
1273 	return res;
1274 }
1275 #else
1276 static inline int nfs_commit_list(struct inode *inode, struct list_head *head, int how)
1277 {
1278 	return 0;
1279 }
1280 #endif
1281 
1282 long nfs_sync_mapping_wait(struct address_space *mapping, struct writeback_control *wbc, int how)
1283 {
1284 	struct inode *inode = mapping->host;
1285 	pgoff_t idx_start, idx_end;
1286 	unsigned int npages = 0;
1287 	LIST_HEAD(head);
1288 	int nocommit = how & FLUSH_NOCOMMIT;
1289 	long pages, ret;
1290 
1291 	/* FIXME */
1292 	if (wbc->range_cyclic)
1293 		idx_start = 0;
1294 	else {
1295 		idx_start = wbc->range_start >> PAGE_CACHE_SHIFT;
1296 		idx_end = wbc->range_end >> PAGE_CACHE_SHIFT;
1297 		if (idx_end > idx_start) {
1298 			pgoff_t l_npages = 1 + idx_end - idx_start;
1299 			npages = l_npages;
1300 			if (sizeof(npages) != sizeof(l_npages) &&
1301 					(pgoff_t)npages != l_npages)
1302 				npages = 0;
1303 		}
1304 	}
1305 	how &= ~FLUSH_NOCOMMIT;
1306 	spin_lock(&inode->i_lock);
1307 	do {
1308 		ret = nfs_wait_on_requests_locked(inode, idx_start, npages);
1309 		if (ret != 0)
1310 			continue;
1311 		if (nocommit)
1312 			break;
1313 		pages = nfs_scan_commit(inode, &head, idx_start, npages);
1314 		if (pages == 0)
1315 			break;
1316 		if (how & FLUSH_INVALIDATE) {
1317 			spin_unlock(&inode->i_lock);
1318 			nfs_cancel_commit_list(&head);
1319 			ret = pages;
1320 			spin_lock(&inode->i_lock);
1321 			continue;
1322 		}
1323 		pages += nfs_scan_commit(inode, &head, 0, 0);
1324 		spin_unlock(&inode->i_lock);
1325 		ret = nfs_commit_list(inode, &head, how);
1326 		spin_lock(&inode->i_lock);
1327 
1328 	} while (ret >= 0);
1329 	spin_unlock(&inode->i_lock);
1330 	return ret;
1331 }
1332 
1333 static int __nfs_write_mapping(struct address_space *mapping, struct writeback_control *wbc, int how)
1334 {
1335 	int ret;
1336 
1337 	ret = nfs_writepages(mapping, wbc);
1338 	if (ret < 0)
1339 		goto out;
1340 	ret = nfs_sync_mapping_wait(mapping, wbc, how);
1341 	if (ret < 0)
1342 		goto out;
1343 	return 0;
1344 out:
1345 	__mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
1346 	return ret;
1347 }
1348 
1349 /* Two pass sync: first using WB_SYNC_NONE, then WB_SYNC_ALL */
1350 static int nfs_write_mapping(struct address_space *mapping, int how)
1351 {
1352 	struct writeback_control wbc = {
1353 		.bdi = mapping->backing_dev_info,
1354 		.sync_mode = WB_SYNC_NONE,
1355 		.nr_to_write = LONG_MAX,
1356 		.for_writepages = 1,
1357 		.range_cyclic = 1,
1358 	};
1359 	int ret;
1360 
1361 	ret = __nfs_write_mapping(mapping, &wbc, how);
1362 	if (ret < 0)
1363 		return ret;
1364 	wbc.sync_mode = WB_SYNC_ALL;
1365 	return __nfs_write_mapping(mapping, &wbc, how);
1366 }
1367 
1368 /*
1369  * flush the inode to disk.
1370  */
1371 int nfs_wb_all(struct inode *inode)
1372 {
1373 	return nfs_write_mapping(inode->i_mapping, 0);
1374 }
1375 
1376 int nfs_wb_nocommit(struct inode *inode)
1377 {
1378 	return nfs_write_mapping(inode->i_mapping, FLUSH_NOCOMMIT);
1379 }
1380 
1381 int nfs_wb_page_cancel(struct inode *inode, struct page *page)
1382 {
1383 	struct nfs_page *req;
1384 	loff_t range_start = page_offset(page);
1385 	loff_t range_end = range_start + (loff_t)(PAGE_CACHE_SIZE - 1);
1386 	struct writeback_control wbc = {
1387 		.bdi = page->mapping->backing_dev_info,
1388 		.sync_mode = WB_SYNC_ALL,
1389 		.nr_to_write = LONG_MAX,
1390 		.range_start = range_start,
1391 		.range_end = range_end,
1392 	};
1393 	int ret = 0;
1394 
1395 	BUG_ON(!PageLocked(page));
1396 	for (;;) {
1397 		req = nfs_page_find_request(page);
1398 		if (req == NULL)
1399 			goto out;
1400 		if (test_bit(PG_NEED_COMMIT, &req->wb_flags)) {
1401 			nfs_release_request(req);
1402 			break;
1403 		}
1404 		if (nfs_lock_request_dontget(req)) {
1405 			nfs_inode_remove_request(req);
1406 			/*
1407 			 * In case nfs_inode_remove_request has marked the
1408 			 * page as being dirty
1409 			 */
1410 			cancel_dirty_page(page, PAGE_CACHE_SIZE);
1411 			nfs_unlock_request(req);
1412 			break;
1413 		}
1414 		ret = nfs_wait_on_request(req);
1415 		if (ret < 0)
1416 			goto out;
1417 	}
1418 	if (!PagePrivate(page))
1419 		return 0;
1420 	ret = nfs_sync_mapping_wait(page->mapping, &wbc, FLUSH_INVALIDATE);
1421 out:
1422 	return ret;
1423 }
1424 
1425 int nfs_wb_page_priority(struct inode *inode, struct page *page, int how)
1426 {
1427 	loff_t range_start = page_offset(page);
1428 	loff_t range_end = range_start + (loff_t)(PAGE_CACHE_SIZE - 1);
1429 	struct writeback_control wbc = {
1430 		.bdi = page->mapping->backing_dev_info,
1431 		.sync_mode = WB_SYNC_ALL,
1432 		.nr_to_write = LONG_MAX,
1433 		.range_start = range_start,
1434 		.range_end = range_end,
1435 	};
1436 	int ret;
1437 
1438 	BUG_ON(!PageLocked(page));
1439 	if (clear_page_dirty_for_io(page)) {
1440 		ret = nfs_writepage_locked(page, &wbc);
1441 		if (ret < 0)
1442 			goto out;
1443 	}
1444 	if (!PagePrivate(page))
1445 		return 0;
1446 	ret = nfs_sync_mapping_wait(page->mapping, &wbc, how);
1447 	if (ret >= 0)
1448 		return 0;
1449 out:
1450 	__mark_inode_dirty(inode, I_DIRTY_PAGES);
1451 	return ret;
1452 }
1453 
1454 /*
1455  * Write back all requests on one page - we do this before reading it.
1456  */
1457 int nfs_wb_page(struct inode *inode, struct page* page)
1458 {
1459 	return nfs_wb_page_priority(inode, page, FLUSH_STABLE);
1460 }
1461 
1462 int __init nfs_init_writepagecache(void)
1463 {
1464 	nfs_wdata_cachep = kmem_cache_create("nfs_write_data",
1465 					     sizeof(struct nfs_write_data),
1466 					     0, SLAB_HWCACHE_ALIGN,
1467 					     NULL);
1468 	if (nfs_wdata_cachep == NULL)
1469 		return -ENOMEM;
1470 
1471 	nfs_wdata_mempool = mempool_create_slab_pool(MIN_POOL_WRITE,
1472 						     nfs_wdata_cachep);
1473 	if (nfs_wdata_mempool == NULL)
1474 		return -ENOMEM;
1475 
1476 	nfs_commit_mempool = mempool_create_slab_pool(MIN_POOL_COMMIT,
1477 						      nfs_wdata_cachep);
1478 	if (nfs_commit_mempool == NULL)
1479 		return -ENOMEM;
1480 
1481 	/*
1482 	 * NFS congestion size, scale with available memory.
1483 	 *
1484 	 *  64MB:    8192k
1485 	 * 128MB:   11585k
1486 	 * 256MB:   16384k
1487 	 * 512MB:   23170k
1488 	 *   1GB:   32768k
1489 	 *   2GB:   46340k
1490 	 *   4GB:   65536k
1491 	 *   8GB:   92681k
1492 	 *  16GB:  131072k
1493 	 *
1494 	 * This allows larger machines to have larger/more transfers.
1495 	 * Limit the default to 256M
1496 	 */
1497 	nfs_congestion_kb = (16*int_sqrt(totalram_pages)) << (PAGE_SHIFT-10);
1498 	if (nfs_congestion_kb > 256*1024)
1499 		nfs_congestion_kb = 256*1024;
1500 
1501 	return 0;
1502 }
1503 
1504 void nfs_destroy_writepagecache(void)
1505 {
1506 	mempool_destroy(nfs_commit_mempool);
1507 	mempool_destroy(nfs_wdata_mempool);
1508 	kmem_cache_destroy(nfs_wdata_cachep);
1509 }
1510 
1511