1 /* 2 * linux/fs/nfs/write.c 3 * 4 * Writing file data over NFS. 5 * 6 * We do it like this: When a (user) process wishes to write data to an 7 * NFS file, a write request is allocated that contains the RPC task data 8 * plus some info on the page to be written, and added to the inode's 9 * write chain. If the process writes past the end of the page, an async 10 * RPC call to write the page is scheduled immediately; otherwise, the call 11 * is delayed for a few seconds. 12 * 13 * Just like readahead, no async I/O is performed if wsize < PAGE_SIZE. 14 * 15 * Write requests are kept on the inode's writeback list. Each entry in 16 * that list references the page (portion) to be written. When the 17 * cache timeout has expired, the RPC task is woken up, and tries to 18 * lock the page. As soon as it manages to do so, the request is moved 19 * from the writeback list to the writelock list. 20 * 21 * Note: we must make sure never to confuse the inode passed in the 22 * write_page request with the one in page->inode. As far as I understand 23 * it, these are different when doing a swap-out. 24 * 25 * To understand everything that goes on here and in the NFS read code, 26 * one should be aware that a page is locked in exactly one of the following 27 * cases: 28 * 29 * - A write request is in progress. 30 * - A user process is in generic_file_write/nfs_update_page 31 * - A user process is in generic_file_read 32 * 33 * Also note that because of the way pages are invalidated in 34 * nfs_revalidate_inode, the following assertions hold: 35 * 36 * - If a page is dirty, there will be no read requests (a page will 37 * not be re-read unless invalidated by nfs_revalidate_inode). 38 * - If the page is not uptodate, there will be no pending write 39 * requests, and no process will be in nfs_update_page. 40 * 41 * FIXME: Interaction with the vmscan routines is not optimal yet. 42 * Either vmscan must be made nfs-savvy, or we need a different page 43 * reclaim concept that supports something like FS-independent 44 * buffer_heads with a b_ops-> field. 45 * 46 * Copyright (C) 1996, 1997, Olaf Kirch <okir@monad.swb.de> 47 */ 48 49 #include <linux/types.h> 50 #include <linux/slab.h> 51 #include <linux/mm.h> 52 #include <linux/pagemap.h> 53 #include <linux/file.h> 54 #include <linux/mpage.h> 55 #include <linux/writeback.h> 56 57 #include <linux/sunrpc/clnt.h> 58 #include <linux/nfs_fs.h> 59 #include <linux/nfs_mount.h> 60 #include <linux/nfs_page.h> 61 #include <asm/uaccess.h> 62 #include <linux/smp_lock.h> 63 64 #include "delegation.h" 65 #include "iostat.h" 66 67 #define NFSDBG_FACILITY NFSDBG_PAGECACHE 68 69 #define MIN_POOL_WRITE (32) 70 #define MIN_POOL_COMMIT (4) 71 72 /* 73 * Local function declarations 74 */ 75 static struct nfs_page * nfs_update_request(struct nfs_open_context*, 76 struct inode *, 77 struct page *, 78 unsigned int, unsigned int); 79 static int nfs_wait_on_write_congestion(struct address_space *, int); 80 static int nfs_wait_on_requests(struct inode *, unsigned long, unsigned int); 81 static int nfs_flush_inode(struct inode *inode, unsigned long idx_start, 82 unsigned int npages, int how); 83 static const struct rpc_call_ops nfs_write_partial_ops; 84 static const struct rpc_call_ops nfs_write_full_ops; 85 static const struct rpc_call_ops nfs_commit_ops; 86 87 static kmem_cache_t *nfs_wdata_cachep; 88 static mempool_t *nfs_wdata_mempool; 89 static mempool_t *nfs_commit_mempool; 90 91 static DECLARE_WAIT_QUEUE_HEAD(nfs_write_congestion); 92 93 struct nfs_write_data *nfs_commit_alloc(unsigned int pagecount) 94 { 95 struct nfs_write_data *p = mempool_alloc(nfs_commit_mempool, SLAB_NOFS); 96 97 if (p) { 98 memset(p, 0, sizeof(*p)); 99 INIT_LIST_HEAD(&p->pages); 100 if (pagecount <= ARRAY_SIZE(p->page_array)) 101 p->pagevec = p->page_array; 102 else { 103 p->pagevec = kcalloc(pagecount, sizeof(struct page *), GFP_NOFS); 104 if (!p->pagevec) { 105 mempool_free(p, nfs_commit_mempool); 106 p = NULL; 107 } 108 } 109 } 110 return p; 111 } 112 113 void nfs_commit_free(struct nfs_write_data *p) 114 { 115 if (p && (p->pagevec != &p->page_array[0])) 116 kfree(p->pagevec); 117 mempool_free(p, nfs_commit_mempool); 118 } 119 120 struct nfs_write_data *nfs_writedata_alloc(unsigned int pagecount) 121 { 122 struct nfs_write_data *p = mempool_alloc(nfs_wdata_mempool, SLAB_NOFS); 123 124 if (p) { 125 memset(p, 0, sizeof(*p)); 126 INIT_LIST_HEAD(&p->pages); 127 if (pagecount <= ARRAY_SIZE(p->page_array)) 128 p->pagevec = p->page_array; 129 else { 130 p->pagevec = kcalloc(pagecount, sizeof(struct page *), GFP_NOFS); 131 if (!p->pagevec) { 132 mempool_free(p, nfs_wdata_mempool); 133 p = NULL; 134 } 135 } 136 } 137 return p; 138 } 139 140 void nfs_writedata_free(struct nfs_write_data *p) 141 { 142 if (p && (p->pagevec != &p->page_array[0])) 143 kfree(p->pagevec); 144 mempool_free(p, nfs_wdata_mempool); 145 } 146 147 void nfs_writedata_release(void *wdata) 148 { 149 nfs_writedata_free(wdata); 150 } 151 152 /* Adjust the file length if we're writing beyond the end */ 153 static void nfs_grow_file(struct page *page, unsigned int offset, unsigned int count) 154 { 155 struct inode *inode = page->mapping->host; 156 loff_t end, i_size = i_size_read(inode); 157 unsigned long end_index = (i_size - 1) >> PAGE_CACHE_SHIFT; 158 159 if (i_size > 0 && page->index < end_index) 160 return; 161 end = ((loff_t)page->index << PAGE_CACHE_SHIFT) + ((loff_t)offset+count); 162 if (i_size >= end) 163 return; 164 nfs_inc_stats(inode, NFSIOS_EXTENDWRITE); 165 i_size_write(inode, end); 166 } 167 168 /* We can set the PG_uptodate flag if we see that a write request 169 * covers the full page. 170 */ 171 static void nfs_mark_uptodate(struct page *page, unsigned int base, unsigned int count) 172 { 173 loff_t end_offs; 174 175 if (PageUptodate(page)) 176 return; 177 if (base != 0) 178 return; 179 if (count == PAGE_CACHE_SIZE) { 180 SetPageUptodate(page); 181 return; 182 } 183 184 end_offs = i_size_read(page->mapping->host) - 1; 185 if (end_offs < 0) 186 return; 187 /* Is this the last page? */ 188 if (page->index != (unsigned long)(end_offs >> PAGE_CACHE_SHIFT)) 189 return; 190 /* This is the last page: set PG_uptodate if we cover the entire 191 * extent of the data, then zero the rest of the page. 192 */ 193 if (count == (unsigned int)(end_offs & (PAGE_CACHE_SIZE - 1)) + 1) { 194 memclear_highpage_flush(page, count, PAGE_CACHE_SIZE - count); 195 SetPageUptodate(page); 196 } 197 } 198 199 /* 200 * Write a page synchronously. 201 * Offset is the data offset within the page. 202 */ 203 static int nfs_writepage_sync(struct nfs_open_context *ctx, struct inode *inode, 204 struct page *page, unsigned int offset, unsigned int count, 205 int how) 206 { 207 unsigned int wsize = NFS_SERVER(inode)->wsize; 208 int result, written = 0; 209 struct nfs_write_data *wdata; 210 211 wdata = nfs_writedata_alloc(1); 212 if (!wdata) 213 return -ENOMEM; 214 215 wdata->flags = how; 216 wdata->cred = ctx->cred; 217 wdata->inode = inode; 218 wdata->args.fh = NFS_FH(inode); 219 wdata->args.context = ctx; 220 wdata->args.pages = &page; 221 wdata->args.stable = NFS_FILE_SYNC; 222 wdata->args.pgbase = offset; 223 wdata->args.count = wsize; 224 wdata->res.fattr = &wdata->fattr; 225 wdata->res.verf = &wdata->verf; 226 227 dprintk("NFS: nfs_writepage_sync(%s/%Ld %d@%Ld)\n", 228 inode->i_sb->s_id, 229 (long long)NFS_FILEID(inode), 230 count, (long long)(page_offset(page) + offset)); 231 232 set_page_writeback(page); 233 nfs_begin_data_update(inode); 234 do { 235 if (count < wsize) 236 wdata->args.count = count; 237 wdata->args.offset = page_offset(page) + wdata->args.pgbase; 238 239 result = NFS_PROTO(inode)->write(wdata); 240 241 if (result < 0) { 242 /* Must mark the page invalid after I/O error */ 243 ClearPageUptodate(page); 244 goto io_error; 245 } 246 if (result < wdata->args.count) 247 printk(KERN_WARNING "NFS: short write, count=%u, result=%d\n", 248 wdata->args.count, result); 249 250 wdata->args.offset += result; 251 wdata->args.pgbase += result; 252 written += result; 253 count -= result; 254 nfs_add_stats(inode, NFSIOS_SERVERWRITTENBYTES, result); 255 } while (count); 256 /* Update file length */ 257 nfs_grow_file(page, offset, written); 258 /* Set the PG_uptodate flag? */ 259 nfs_mark_uptodate(page, offset, written); 260 261 if (PageError(page)) 262 ClearPageError(page); 263 264 io_error: 265 nfs_end_data_update(inode); 266 end_page_writeback(page); 267 nfs_writedata_free(wdata); 268 return written ? written : result; 269 } 270 271 static int nfs_writepage_async(struct nfs_open_context *ctx, 272 struct inode *inode, struct page *page, 273 unsigned int offset, unsigned int count) 274 { 275 struct nfs_page *req; 276 277 req = nfs_update_request(ctx, inode, page, offset, count); 278 if (IS_ERR(req)) 279 return PTR_ERR(req); 280 /* Update file length */ 281 nfs_grow_file(page, offset, count); 282 /* Set the PG_uptodate flag? */ 283 nfs_mark_uptodate(page, offset, count); 284 nfs_unlock_request(req); 285 return 0; 286 } 287 288 static int wb_priority(struct writeback_control *wbc) 289 { 290 if (wbc->for_reclaim) 291 return FLUSH_HIGHPRI; 292 if (wbc->for_kupdate) 293 return FLUSH_LOWPRI; 294 return 0; 295 } 296 297 /* 298 * Write an mmapped page to the server. 299 */ 300 int nfs_writepage(struct page *page, struct writeback_control *wbc) 301 { 302 struct nfs_open_context *ctx; 303 struct inode *inode = page->mapping->host; 304 unsigned long end_index; 305 unsigned offset = PAGE_CACHE_SIZE; 306 loff_t i_size = i_size_read(inode); 307 int inode_referenced = 0; 308 int priority = wb_priority(wbc); 309 int err; 310 311 nfs_inc_stats(inode, NFSIOS_VFSWRITEPAGE); 312 nfs_add_stats(inode, NFSIOS_WRITEPAGES, 1); 313 314 /* 315 * Note: We need to ensure that we have a reference to the inode 316 * if we are to do asynchronous writes. If not, waiting 317 * in nfs_wait_on_request() may deadlock with clear_inode(). 318 * 319 * If igrab() fails here, then it is in any case safe to 320 * call nfs_wb_page(), since there will be no pending writes. 321 */ 322 if (igrab(inode) != 0) 323 inode_referenced = 1; 324 end_index = i_size >> PAGE_CACHE_SHIFT; 325 326 /* Ensure we've flushed out any previous writes */ 327 nfs_wb_page_priority(inode, page, priority); 328 329 /* easy case */ 330 if (page->index < end_index) 331 goto do_it; 332 /* things got complicated... */ 333 offset = i_size & (PAGE_CACHE_SIZE-1); 334 335 /* OK, are we completely out? */ 336 err = 0; /* potential race with truncate - ignore */ 337 if (page->index >= end_index+1 || !offset) 338 goto out; 339 do_it: 340 ctx = nfs_find_open_context(inode, NULL, FMODE_WRITE); 341 if (ctx == NULL) { 342 err = -EBADF; 343 goto out; 344 } 345 lock_kernel(); 346 if (!IS_SYNC(inode) && inode_referenced) { 347 err = nfs_writepage_async(ctx, inode, page, 0, offset); 348 if (!wbc->for_writepages) 349 nfs_flush_inode(inode, 0, 0, wb_priority(wbc)); 350 } else { 351 err = nfs_writepage_sync(ctx, inode, page, 0, 352 offset, priority); 353 if (err >= 0) { 354 if (err != offset) 355 redirty_page_for_writepage(wbc, page); 356 err = 0; 357 } 358 } 359 unlock_kernel(); 360 put_nfs_open_context(ctx); 361 out: 362 unlock_page(page); 363 if (inode_referenced) 364 iput(inode); 365 return err; 366 } 367 368 /* 369 * Note: causes nfs_update_request() to block on the assumption 370 * that the writeback is generated due to memory pressure. 371 */ 372 int nfs_writepages(struct address_space *mapping, struct writeback_control *wbc) 373 { 374 struct backing_dev_info *bdi = mapping->backing_dev_info; 375 struct inode *inode = mapping->host; 376 int err; 377 378 nfs_inc_stats(inode, NFSIOS_VFSWRITEPAGES); 379 380 err = generic_writepages(mapping, wbc); 381 if (err) 382 return err; 383 while (test_and_set_bit(BDI_write_congested, &bdi->state) != 0) { 384 if (wbc->nonblocking) 385 return 0; 386 nfs_wait_on_write_congestion(mapping, 0); 387 } 388 err = nfs_flush_inode(inode, 0, 0, wb_priority(wbc)); 389 if (err < 0) 390 goto out; 391 nfs_add_stats(inode, NFSIOS_WRITEPAGES, err); 392 wbc->nr_to_write -= err; 393 if (!wbc->nonblocking && wbc->sync_mode == WB_SYNC_ALL) { 394 err = nfs_wait_on_requests(inode, 0, 0); 395 if (err < 0) 396 goto out; 397 } 398 err = nfs_commit_inode(inode, wb_priority(wbc)); 399 if (err > 0) { 400 wbc->nr_to_write -= err; 401 err = 0; 402 } 403 out: 404 clear_bit(BDI_write_congested, &bdi->state); 405 wake_up_all(&nfs_write_congestion); 406 return err; 407 } 408 409 /* 410 * Insert a write request into an inode 411 */ 412 static int nfs_inode_add_request(struct inode *inode, struct nfs_page *req) 413 { 414 struct nfs_inode *nfsi = NFS_I(inode); 415 int error; 416 417 error = radix_tree_insert(&nfsi->nfs_page_tree, req->wb_index, req); 418 BUG_ON(error == -EEXIST); 419 if (error) 420 return error; 421 if (!nfsi->npages) { 422 igrab(inode); 423 nfs_begin_data_update(inode); 424 if (nfs_have_delegation(inode, FMODE_WRITE)) 425 nfsi->change_attr++; 426 } 427 SetPagePrivate(req->wb_page); 428 nfsi->npages++; 429 atomic_inc(&req->wb_count); 430 return 0; 431 } 432 433 /* 434 * Insert a write request into an inode 435 */ 436 static void nfs_inode_remove_request(struct nfs_page *req) 437 { 438 struct inode *inode = req->wb_context->dentry->d_inode; 439 struct nfs_inode *nfsi = NFS_I(inode); 440 441 BUG_ON (!NFS_WBACK_BUSY(req)); 442 443 spin_lock(&nfsi->req_lock); 444 ClearPagePrivate(req->wb_page); 445 radix_tree_delete(&nfsi->nfs_page_tree, req->wb_index); 446 nfsi->npages--; 447 if (!nfsi->npages) { 448 spin_unlock(&nfsi->req_lock); 449 nfs_end_data_update(inode); 450 iput(inode); 451 } else 452 spin_unlock(&nfsi->req_lock); 453 nfs_clear_request(req); 454 nfs_release_request(req); 455 } 456 457 /* 458 * Find a request 459 */ 460 static inline struct nfs_page * 461 _nfs_find_request(struct inode *inode, unsigned long index) 462 { 463 struct nfs_inode *nfsi = NFS_I(inode); 464 struct nfs_page *req; 465 466 req = (struct nfs_page*)radix_tree_lookup(&nfsi->nfs_page_tree, index); 467 if (req) 468 atomic_inc(&req->wb_count); 469 return req; 470 } 471 472 static struct nfs_page * 473 nfs_find_request(struct inode *inode, unsigned long index) 474 { 475 struct nfs_page *req; 476 struct nfs_inode *nfsi = NFS_I(inode); 477 478 spin_lock(&nfsi->req_lock); 479 req = _nfs_find_request(inode, index); 480 spin_unlock(&nfsi->req_lock); 481 return req; 482 } 483 484 /* 485 * Add a request to the inode's dirty list. 486 */ 487 static void 488 nfs_mark_request_dirty(struct nfs_page *req) 489 { 490 struct inode *inode = req->wb_context->dentry->d_inode; 491 struct nfs_inode *nfsi = NFS_I(inode); 492 493 spin_lock(&nfsi->req_lock); 494 radix_tree_tag_set(&nfsi->nfs_page_tree, 495 req->wb_index, NFS_PAGE_TAG_DIRTY); 496 nfs_list_add_request(req, &nfsi->dirty); 497 nfsi->ndirty++; 498 spin_unlock(&nfsi->req_lock); 499 inc_zone_page_state(req->wb_page, NR_FILE_DIRTY); 500 mark_inode_dirty(inode); 501 } 502 503 /* 504 * Check if a request is dirty 505 */ 506 static inline int 507 nfs_dirty_request(struct nfs_page *req) 508 { 509 struct nfs_inode *nfsi = NFS_I(req->wb_context->dentry->d_inode); 510 return !list_empty(&req->wb_list) && req->wb_list_head == &nfsi->dirty; 511 } 512 513 #if defined(CONFIG_NFS_V3) || defined(CONFIG_NFS_V4) 514 /* 515 * Add a request to the inode's commit list. 516 */ 517 static void 518 nfs_mark_request_commit(struct nfs_page *req) 519 { 520 struct inode *inode = req->wb_context->dentry->d_inode; 521 struct nfs_inode *nfsi = NFS_I(inode); 522 523 spin_lock(&nfsi->req_lock); 524 nfs_list_add_request(req, &nfsi->commit); 525 nfsi->ncommit++; 526 spin_unlock(&nfsi->req_lock); 527 inc_zone_page_state(req->wb_page, NR_UNSTABLE_NFS); 528 mark_inode_dirty(inode); 529 } 530 #endif 531 532 /* 533 * Wait for a request to complete. 534 * 535 * Interruptible by signals only if mounted with intr flag. 536 */ 537 static int nfs_wait_on_requests_locked(struct inode *inode, unsigned long idx_start, unsigned int npages) 538 { 539 struct nfs_inode *nfsi = NFS_I(inode); 540 struct nfs_page *req; 541 unsigned long idx_end, next; 542 unsigned int res = 0; 543 int error; 544 545 if (npages == 0) 546 idx_end = ~0; 547 else 548 idx_end = idx_start + npages - 1; 549 550 next = idx_start; 551 while (radix_tree_gang_lookup_tag(&nfsi->nfs_page_tree, (void **)&req, next, 1, NFS_PAGE_TAG_WRITEBACK)) { 552 if (req->wb_index > idx_end) 553 break; 554 555 next = req->wb_index + 1; 556 BUG_ON(!NFS_WBACK_BUSY(req)); 557 558 atomic_inc(&req->wb_count); 559 spin_unlock(&nfsi->req_lock); 560 error = nfs_wait_on_request(req); 561 nfs_release_request(req); 562 spin_lock(&nfsi->req_lock); 563 if (error < 0) 564 return error; 565 res++; 566 } 567 return res; 568 } 569 570 static int nfs_wait_on_requests(struct inode *inode, unsigned long idx_start, unsigned int npages) 571 { 572 struct nfs_inode *nfsi = NFS_I(inode); 573 int ret; 574 575 spin_lock(&nfsi->req_lock); 576 ret = nfs_wait_on_requests_locked(inode, idx_start, npages); 577 spin_unlock(&nfsi->req_lock); 578 return ret; 579 } 580 581 static void nfs_cancel_dirty_list(struct list_head *head) 582 { 583 struct nfs_page *req; 584 while(!list_empty(head)) { 585 req = nfs_list_entry(head->next); 586 nfs_list_remove_request(req); 587 nfs_inode_remove_request(req); 588 nfs_clear_page_writeback(req); 589 } 590 } 591 592 static void nfs_cancel_commit_list(struct list_head *head) 593 { 594 struct nfs_page *req; 595 596 while(!list_empty(head)) { 597 req = nfs_list_entry(head->next); 598 nfs_list_remove_request(req); 599 nfs_inode_remove_request(req); 600 nfs_clear_page_writeback(req); 601 dec_zone_page_state(req->wb_page, NR_UNSTABLE_NFS); 602 } 603 } 604 605 /* 606 * nfs_scan_dirty - Scan an inode for dirty requests 607 * @inode: NFS inode to scan 608 * @dst: destination list 609 * @idx_start: lower bound of page->index to scan. 610 * @npages: idx_start + npages sets the upper bound to scan. 611 * 612 * Moves requests from the inode's dirty page list. 613 * The requests are *not* checked to ensure that they form a contiguous set. 614 */ 615 static int 616 nfs_scan_dirty(struct inode *inode, struct list_head *dst, unsigned long idx_start, unsigned int npages) 617 { 618 struct nfs_inode *nfsi = NFS_I(inode); 619 int res = 0; 620 621 if (nfsi->ndirty != 0) { 622 res = nfs_scan_lock_dirty(nfsi, dst, idx_start, npages); 623 nfsi->ndirty -= res; 624 if ((nfsi->ndirty == 0) != list_empty(&nfsi->dirty)) 625 printk(KERN_ERR "NFS: desynchronized value of nfs_i.ndirty.\n"); 626 } 627 return res; 628 } 629 630 #if defined(CONFIG_NFS_V3) || defined(CONFIG_NFS_V4) 631 /* 632 * nfs_scan_commit - Scan an inode for commit requests 633 * @inode: NFS inode to scan 634 * @dst: destination list 635 * @idx_start: lower bound of page->index to scan. 636 * @npages: idx_start + npages sets the upper bound to scan. 637 * 638 * Moves requests from the inode's 'commit' request list. 639 * The requests are *not* checked to ensure that they form a contiguous set. 640 */ 641 static int 642 nfs_scan_commit(struct inode *inode, struct list_head *dst, unsigned long idx_start, unsigned int npages) 643 { 644 struct nfs_inode *nfsi = NFS_I(inode); 645 int res = 0; 646 647 if (nfsi->ncommit != 0) { 648 res = nfs_scan_list(nfsi, &nfsi->commit, dst, idx_start, npages); 649 nfsi->ncommit -= res; 650 if ((nfsi->ncommit == 0) != list_empty(&nfsi->commit)) 651 printk(KERN_ERR "NFS: desynchronized value of nfs_i.ncommit.\n"); 652 } 653 return res; 654 } 655 #else 656 static inline int nfs_scan_commit(struct inode *inode, struct list_head *dst, unsigned long idx_start, unsigned int npages) 657 { 658 return 0; 659 } 660 #endif 661 662 static int nfs_wait_on_write_congestion(struct address_space *mapping, int intr) 663 { 664 struct backing_dev_info *bdi = mapping->backing_dev_info; 665 DEFINE_WAIT(wait); 666 int ret = 0; 667 668 might_sleep(); 669 670 if (!bdi_write_congested(bdi)) 671 return 0; 672 673 nfs_inc_stats(mapping->host, NFSIOS_CONGESTIONWAIT); 674 675 if (intr) { 676 struct rpc_clnt *clnt = NFS_CLIENT(mapping->host); 677 sigset_t oldset; 678 679 rpc_clnt_sigmask(clnt, &oldset); 680 prepare_to_wait(&nfs_write_congestion, &wait, TASK_INTERRUPTIBLE); 681 if (bdi_write_congested(bdi)) { 682 if (signalled()) 683 ret = -ERESTARTSYS; 684 else 685 schedule(); 686 } 687 rpc_clnt_sigunmask(clnt, &oldset); 688 } else { 689 prepare_to_wait(&nfs_write_congestion, &wait, TASK_UNINTERRUPTIBLE); 690 if (bdi_write_congested(bdi)) 691 schedule(); 692 } 693 finish_wait(&nfs_write_congestion, &wait); 694 return ret; 695 } 696 697 698 /* 699 * Try to update any existing write request, or create one if there is none. 700 * In order to match, the request's credentials must match those of 701 * the calling process. 702 * 703 * Note: Should always be called with the Page Lock held! 704 */ 705 static struct nfs_page * nfs_update_request(struct nfs_open_context* ctx, 706 struct inode *inode, struct page *page, 707 unsigned int offset, unsigned int bytes) 708 { 709 struct nfs_server *server = NFS_SERVER(inode); 710 struct nfs_inode *nfsi = NFS_I(inode); 711 struct nfs_page *req, *new = NULL; 712 unsigned long rqend, end; 713 714 end = offset + bytes; 715 716 if (nfs_wait_on_write_congestion(page->mapping, server->flags & NFS_MOUNT_INTR)) 717 return ERR_PTR(-ERESTARTSYS); 718 for (;;) { 719 /* Loop over all inode entries and see if we find 720 * A request for the page we wish to update 721 */ 722 spin_lock(&nfsi->req_lock); 723 req = _nfs_find_request(inode, page->index); 724 if (req) { 725 if (!nfs_lock_request_dontget(req)) { 726 int error; 727 spin_unlock(&nfsi->req_lock); 728 error = nfs_wait_on_request(req); 729 nfs_release_request(req); 730 if (error < 0) { 731 if (new) 732 nfs_release_request(new); 733 return ERR_PTR(error); 734 } 735 continue; 736 } 737 spin_unlock(&nfsi->req_lock); 738 if (new) 739 nfs_release_request(new); 740 break; 741 } 742 743 if (new) { 744 int error; 745 nfs_lock_request_dontget(new); 746 error = nfs_inode_add_request(inode, new); 747 if (error) { 748 spin_unlock(&nfsi->req_lock); 749 nfs_unlock_request(new); 750 return ERR_PTR(error); 751 } 752 spin_unlock(&nfsi->req_lock); 753 nfs_mark_request_dirty(new); 754 return new; 755 } 756 spin_unlock(&nfsi->req_lock); 757 758 new = nfs_create_request(ctx, inode, page, offset, bytes); 759 if (IS_ERR(new)) 760 return new; 761 } 762 763 /* We have a request for our page. 764 * If the creds don't match, or the 765 * page addresses don't match, 766 * tell the caller to wait on the conflicting 767 * request. 768 */ 769 rqend = req->wb_offset + req->wb_bytes; 770 if (req->wb_context != ctx 771 || req->wb_page != page 772 || !nfs_dirty_request(req) 773 || offset > rqend || end < req->wb_offset) { 774 nfs_unlock_request(req); 775 return ERR_PTR(-EBUSY); 776 } 777 778 /* Okay, the request matches. Update the region */ 779 if (offset < req->wb_offset) { 780 req->wb_offset = offset; 781 req->wb_pgbase = offset; 782 req->wb_bytes = rqend - req->wb_offset; 783 } 784 785 if (end > rqend) 786 req->wb_bytes = end - req->wb_offset; 787 788 return req; 789 } 790 791 int nfs_flush_incompatible(struct file *file, struct page *page) 792 { 793 struct nfs_open_context *ctx = (struct nfs_open_context *)file->private_data; 794 struct inode *inode = page->mapping->host; 795 struct nfs_page *req; 796 int status = 0; 797 /* 798 * Look for a request corresponding to this page. If there 799 * is one, and it belongs to another file, we flush it out 800 * before we try to copy anything into the page. Do this 801 * due to the lack of an ACCESS-type call in NFSv2. 802 * Also do the same if we find a request from an existing 803 * dropped page. 804 */ 805 req = nfs_find_request(inode, page->index); 806 if (req) { 807 if (req->wb_page != page || ctx != req->wb_context) 808 status = nfs_wb_page(inode, page); 809 nfs_release_request(req); 810 } 811 return (status < 0) ? status : 0; 812 } 813 814 /* 815 * Update and possibly write a cached page of an NFS file. 816 * 817 * XXX: Keep an eye on generic_file_read to make sure it doesn't do bad 818 * things with a page scheduled for an RPC call (e.g. invalidate it). 819 */ 820 int nfs_updatepage(struct file *file, struct page *page, 821 unsigned int offset, unsigned int count) 822 { 823 struct nfs_open_context *ctx = (struct nfs_open_context *)file->private_data; 824 struct inode *inode = page->mapping->host; 825 struct nfs_page *req; 826 int status = 0; 827 828 nfs_inc_stats(inode, NFSIOS_VFSUPDATEPAGE); 829 830 dprintk("NFS: nfs_updatepage(%s/%s %d@%Ld)\n", 831 file->f_dentry->d_parent->d_name.name, 832 file->f_dentry->d_name.name, count, 833 (long long)(page_offset(page) +offset)); 834 835 if (IS_SYNC(inode)) { 836 status = nfs_writepage_sync(ctx, inode, page, offset, count, 0); 837 if (status > 0) { 838 if (offset == 0 && status == PAGE_CACHE_SIZE) 839 SetPageUptodate(page); 840 return 0; 841 } 842 return status; 843 } 844 845 /* If we're not using byte range locks, and we know the page 846 * is entirely in cache, it may be more efficient to avoid 847 * fragmenting write requests. 848 */ 849 if (PageUptodate(page) && inode->i_flock == NULL && !(file->f_mode & O_SYNC)) { 850 loff_t end_offs = i_size_read(inode) - 1; 851 unsigned long end_index = end_offs >> PAGE_CACHE_SHIFT; 852 853 count += offset; 854 offset = 0; 855 if (unlikely(end_offs < 0)) { 856 /* Do nothing */ 857 } else if (page->index == end_index) { 858 unsigned int pglen; 859 pglen = (unsigned int)(end_offs & (PAGE_CACHE_SIZE-1)) + 1; 860 if (count < pglen) 861 count = pglen; 862 } else if (page->index < end_index) 863 count = PAGE_CACHE_SIZE; 864 } 865 866 /* 867 * Try to find an NFS request corresponding to this page 868 * and update it. 869 * If the existing request cannot be updated, we must flush 870 * it out now. 871 */ 872 do { 873 req = nfs_update_request(ctx, inode, page, offset, count); 874 status = (IS_ERR(req)) ? PTR_ERR(req) : 0; 875 if (status != -EBUSY) 876 break; 877 /* Request could not be updated. Flush it out and try again */ 878 status = nfs_wb_page(inode, page); 879 } while (status >= 0); 880 if (status < 0) 881 goto done; 882 883 status = 0; 884 885 /* Update file length */ 886 nfs_grow_file(page, offset, count); 887 /* Set the PG_uptodate flag? */ 888 nfs_mark_uptodate(page, req->wb_pgbase, req->wb_bytes); 889 nfs_unlock_request(req); 890 done: 891 dprintk("NFS: nfs_updatepage returns %d (isize %Ld)\n", 892 status, (long long)i_size_read(inode)); 893 if (status < 0) 894 ClearPageUptodate(page); 895 return status; 896 } 897 898 static void nfs_writepage_release(struct nfs_page *req) 899 { 900 end_page_writeback(req->wb_page); 901 902 #if defined(CONFIG_NFS_V3) || defined(CONFIG_NFS_V4) 903 if (!PageError(req->wb_page)) { 904 if (NFS_NEED_RESCHED(req)) { 905 nfs_mark_request_dirty(req); 906 goto out; 907 } else if (NFS_NEED_COMMIT(req)) { 908 nfs_mark_request_commit(req); 909 goto out; 910 } 911 } 912 nfs_inode_remove_request(req); 913 914 out: 915 nfs_clear_commit(req); 916 nfs_clear_reschedule(req); 917 #else 918 nfs_inode_remove_request(req); 919 #endif 920 nfs_clear_page_writeback(req); 921 } 922 923 static inline int flush_task_priority(int how) 924 { 925 switch (how & (FLUSH_HIGHPRI|FLUSH_LOWPRI)) { 926 case FLUSH_HIGHPRI: 927 return RPC_PRIORITY_HIGH; 928 case FLUSH_LOWPRI: 929 return RPC_PRIORITY_LOW; 930 } 931 return RPC_PRIORITY_NORMAL; 932 } 933 934 /* 935 * Set up the argument/result storage required for the RPC call. 936 */ 937 static void nfs_write_rpcsetup(struct nfs_page *req, 938 struct nfs_write_data *data, 939 const struct rpc_call_ops *call_ops, 940 unsigned int count, unsigned int offset, 941 int how) 942 { 943 struct inode *inode; 944 int flags; 945 946 /* Set up the RPC argument and reply structs 947 * NB: take care not to mess about with data->commit et al. */ 948 949 data->req = req; 950 data->inode = inode = req->wb_context->dentry->d_inode; 951 data->cred = req->wb_context->cred; 952 953 data->args.fh = NFS_FH(inode); 954 data->args.offset = req_offset(req) + offset; 955 data->args.pgbase = req->wb_pgbase + offset; 956 data->args.pages = data->pagevec; 957 data->args.count = count; 958 data->args.context = req->wb_context; 959 960 data->res.fattr = &data->fattr; 961 data->res.count = count; 962 data->res.verf = &data->verf; 963 nfs_fattr_init(&data->fattr); 964 965 /* Set up the initial task struct. */ 966 flags = (how & FLUSH_SYNC) ? 0 : RPC_TASK_ASYNC; 967 rpc_init_task(&data->task, NFS_CLIENT(inode), flags, call_ops, data); 968 NFS_PROTO(inode)->write_setup(data, how); 969 970 data->task.tk_priority = flush_task_priority(how); 971 data->task.tk_cookie = (unsigned long)inode; 972 973 dprintk("NFS: %4d initiated write call (req %s/%Ld, %u bytes @ offset %Lu)\n", 974 data->task.tk_pid, 975 inode->i_sb->s_id, 976 (long long)NFS_FILEID(inode), 977 count, 978 (unsigned long long)data->args.offset); 979 } 980 981 static void nfs_execute_write(struct nfs_write_data *data) 982 { 983 struct rpc_clnt *clnt = NFS_CLIENT(data->inode); 984 sigset_t oldset; 985 986 rpc_clnt_sigmask(clnt, &oldset); 987 lock_kernel(); 988 rpc_execute(&data->task); 989 unlock_kernel(); 990 rpc_clnt_sigunmask(clnt, &oldset); 991 } 992 993 /* 994 * Generate multiple small requests to write out a single 995 * contiguous dirty area on one page. 996 */ 997 static int nfs_flush_multi(struct inode *inode, struct list_head *head, int how) 998 { 999 struct nfs_page *req = nfs_list_entry(head->next); 1000 struct page *page = req->wb_page; 1001 struct nfs_write_data *data; 1002 unsigned int wsize = NFS_SERVER(inode)->wsize; 1003 unsigned int nbytes, offset; 1004 int requests = 0; 1005 LIST_HEAD(list); 1006 1007 nfs_list_remove_request(req); 1008 1009 nbytes = req->wb_bytes; 1010 for (;;) { 1011 data = nfs_writedata_alloc(1); 1012 if (!data) 1013 goto out_bad; 1014 list_add(&data->pages, &list); 1015 requests++; 1016 if (nbytes <= wsize) 1017 break; 1018 nbytes -= wsize; 1019 } 1020 atomic_set(&req->wb_complete, requests); 1021 1022 ClearPageError(page); 1023 set_page_writeback(page); 1024 offset = 0; 1025 nbytes = req->wb_bytes; 1026 do { 1027 data = list_entry(list.next, struct nfs_write_data, pages); 1028 list_del_init(&data->pages); 1029 1030 data->pagevec[0] = page; 1031 1032 if (nbytes > wsize) { 1033 nfs_write_rpcsetup(req, data, &nfs_write_partial_ops, 1034 wsize, offset, how); 1035 offset += wsize; 1036 nbytes -= wsize; 1037 } else { 1038 nfs_write_rpcsetup(req, data, &nfs_write_partial_ops, 1039 nbytes, offset, how); 1040 nbytes = 0; 1041 } 1042 nfs_execute_write(data); 1043 } while (nbytes != 0); 1044 1045 return 0; 1046 1047 out_bad: 1048 while (!list_empty(&list)) { 1049 data = list_entry(list.next, struct nfs_write_data, pages); 1050 list_del(&data->pages); 1051 nfs_writedata_free(data); 1052 } 1053 nfs_mark_request_dirty(req); 1054 nfs_clear_page_writeback(req); 1055 return -ENOMEM; 1056 } 1057 1058 /* 1059 * Create an RPC task for the given write request and kick it. 1060 * The page must have been locked by the caller. 1061 * 1062 * It may happen that the page we're passed is not marked dirty. 1063 * This is the case if nfs_updatepage detects a conflicting request 1064 * that has been written but not committed. 1065 */ 1066 static int nfs_flush_one(struct inode *inode, struct list_head *head, int how) 1067 { 1068 struct nfs_page *req; 1069 struct page **pages; 1070 struct nfs_write_data *data; 1071 unsigned int count; 1072 1073 data = nfs_writedata_alloc(NFS_SERVER(inode)->wpages); 1074 if (!data) 1075 goto out_bad; 1076 1077 pages = data->pagevec; 1078 count = 0; 1079 while (!list_empty(head)) { 1080 req = nfs_list_entry(head->next); 1081 nfs_list_remove_request(req); 1082 nfs_list_add_request(req, &data->pages); 1083 ClearPageError(req->wb_page); 1084 set_page_writeback(req->wb_page); 1085 *pages++ = req->wb_page; 1086 count += req->wb_bytes; 1087 } 1088 req = nfs_list_entry(data->pages.next); 1089 1090 /* Set up the argument struct */ 1091 nfs_write_rpcsetup(req, data, &nfs_write_full_ops, count, 0, how); 1092 1093 nfs_execute_write(data); 1094 return 0; 1095 out_bad: 1096 while (!list_empty(head)) { 1097 struct nfs_page *req = nfs_list_entry(head->next); 1098 nfs_list_remove_request(req); 1099 nfs_mark_request_dirty(req); 1100 nfs_clear_page_writeback(req); 1101 } 1102 return -ENOMEM; 1103 } 1104 1105 static int nfs_flush_list(struct inode *inode, struct list_head *head, int npages, int how) 1106 { 1107 LIST_HEAD(one_request); 1108 int (*flush_one)(struct inode *, struct list_head *, int); 1109 struct nfs_page *req; 1110 int wpages = NFS_SERVER(inode)->wpages; 1111 int wsize = NFS_SERVER(inode)->wsize; 1112 int error; 1113 1114 flush_one = nfs_flush_one; 1115 if (wsize < PAGE_CACHE_SIZE) 1116 flush_one = nfs_flush_multi; 1117 /* For single writes, FLUSH_STABLE is more efficient */ 1118 if (npages <= wpages && npages == NFS_I(inode)->npages 1119 && nfs_list_entry(head->next)->wb_bytes <= wsize) 1120 how |= FLUSH_STABLE; 1121 1122 do { 1123 nfs_coalesce_requests(head, &one_request, wpages); 1124 req = nfs_list_entry(one_request.next); 1125 error = flush_one(inode, &one_request, how); 1126 if (error < 0) 1127 goto out_err; 1128 } while (!list_empty(head)); 1129 return 0; 1130 out_err: 1131 while (!list_empty(head)) { 1132 req = nfs_list_entry(head->next); 1133 nfs_list_remove_request(req); 1134 nfs_mark_request_dirty(req); 1135 nfs_clear_page_writeback(req); 1136 } 1137 return error; 1138 } 1139 1140 /* 1141 * Handle a write reply that flushed part of a page. 1142 */ 1143 static void nfs_writeback_done_partial(struct rpc_task *task, void *calldata) 1144 { 1145 struct nfs_write_data *data = calldata; 1146 struct nfs_page *req = data->req; 1147 struct page *page = req->wb_page; 1148 1149 dprintk("NFS: write (%s/%Ld %d@%Ld)", 1150 req->wb_context->dentry->d_inode->i_sb->s_id, 1151 (long long)NFS_FILEID(req->wb_context->dentry->d_inode), 1152 req->wb_bytes, 1153 (long long)req_offset(req)); 1154 1155 if (nfs_writeback_done(task, data) != 0) 1156 return; 1157 1158 if (task->tk_status < 0) { 1159 ClearPageUptodate(page); 1160 SetPageError(page); 1161 req->wb_context->error = task->tk_status; 1162 dprintk(", error = %d\n", task->tk_status); 1163 } else { 1164 #if defined(CONFIG_NFS_V3) || defined(CONFIG_NFS_V4) 1165 if (data->verf.committed < NFS_FILE_SYNC) { 1166 if (!NFS_NEED_COMMIT(req)) { 1167 nfs_defer_commit(req); 1168 memcpy(&req->wb_verf, &data->verf, sizeof(req->wb_verf)); 1169 dprintk(" defer commit\n"); 1170 } else if (memcmp(&req->wb_verf, &data->verf, sizeof(req->wb_verf))) { 1171 nfs_defer_reschedule(req); 1172 dprintk(" server reboot detected\n"); 1173 } 1174 } else 1175 #endif 1176 dprintk(" OK\n"); 1177 } 1178 1179 if (atomic_dec_and_test(&req->wb_complete)) 1180 nfs_writepage_release(req); 1181 } 1182 1183 static const struct rpc_call_ops nfs_write_partial_ops = { 1184 .rpc_call_done = nfs_writeback_done_partial, 1185 .rpc_release = nfs_writedata_release, 1186 }; 1187 1188 /* 1189 * Handle a write reply that flushes a whole page. 1190 * 1191 * FIXME: There is an inherent race with invalidate_inode_pages and 1192 * writebacks since the page->count is kept > 1 for as long 1193 * as the page has a write request pending. 1194 */ 1195 static void nfs_writeback_done_full(struct rpc_task *task, void *calldata) 1196 { 1197 struct nfs_write_data *data = calldata; 1198 struct nfs_page *req; 1199 struct page *page; 1200 1201 if (nfs_writeback_done(task, data) != 0) 1202 return; 1203 1204 /* Update attributes as result of writeback. */ 1205 while (!list_empty(&data->pages)) { 1206 req = nfs_list_entry(data->pages.next); 1207 nfs_list_remove_request(req); 1208 page = req->wb_page; 1209 1210 dprintk("NFS: write (%s/%Ld %d@%Ld)", 1211 req->wb_context->dentry->d_inode->i_sb->s_id, 1212 (long long)NFS_FILEID(req->wb_context->dentry->d_inode), 1213 req->wb_bytes, 1214 (long long)req_offset(req)); 1215 1216 if (task->tk_status < 0) { 1217 ClearPageUptodate(page); 1218 SetPageError(page); 1219 req->wb_context->error = task->tk_status; 1220 end_page_writeback(page); 1221 nfs_inode_remove_request(req); 1222 dprintk(", error = %d\n", task->tk_status); 1223 goto next; 1224 } 1225 end_page_writeback(page); 1226 1227 #if defined(CONFIG_NFS_V3) || defined(CONFIG_NFS_V4) 1228 if (data->args.stable != NFS_UNSTABLE || data->verf.committed == NFS_FILE_SYNC) { 1229 nfs_inode_remove_request(req); 1230 dprintk(" OK\n"); 1231 goto next; 1232 } 1233 memcpy(&req->wb_verf, &data->verf, sizeof(req->wb_verf)); 1234 nfs_mark_request_commit(req); 1235 dprintk(" marked for commit\n"); 1236 #else 1237 nfs_inode_remove_request(req); 1238 #endif 1239 next: 1240 nfs_clear_page_writeback(req); 1241 } 1242 } 1243 1244 static const struct rpc_call_ops nfs_write_full_ops = { 1245 .rpc_call_done = nfs_writeback_done_full, 1246 .rpc_release = nfs_writedata_release, 1247 }; 1248 1249 1250 /* 1251 * This function is called when the WRITE call is complete. 1252 */ 1253 int nfs_writeback_done(struct rpc_task *task, struct nfs_write_data *data) 1254 { 1255 struct nfs_writeargs *argp = &data->args; 1256 struct nfs_writeres *resp = &data->res; 1257 int status; 1258 1259 dprintk("NFS: %4d nfs_writeback_done (status %d)\n", 1260 task->tk_pid, task->tk_status); 1261 1262 /* Call the NFS version-specific code */ 1263 status = NFS_PROTO(data->inode)->write_done(task, data); 1264 if (status != 0) 1265 return status; 1266 nfs_add_stats(data->inode, NFSIOS_SERVERWRITTENBYTES, resp->count); 1267 1268 #if defined(CONFIG_NFS_V3) || defined(CONFIG_NFS_V4) 1269 if (resp->verf->committed < argp->stable && task->tk_status >= 0) { 1270 /* We tried a write call, but the server did not 1271 * commit data to stable storage even though we 1272 * requested it. 1273 * Note: There is a known bug in Tru64 < 5.0 in which 1274 * the server reports NFS_DATA_SYNC, but performs 1275 * NFS_FILE_SYNC. We therefore implement this checking 1276 * as a dprintk() in order to avoid filling syslog. 1277 */ 1278 static unsigned long complain; 1279 1280 if (time_before(complain, jiffies)) { 1281 dprintk("NFS: faulty NFS server %s:" 1282 " (committed = %d) != (stable = %d)\n", 1283 NFS_SERVER(data->inode)->hostname, 1284 resp->verf->committed, argp->stable); 1285 complain = jiffies + 300 * HZ; 1286 } 1287 } 1288 #endif 1289 /* Is this a short write? */ 1290 if (task->tk_status >= 0 && resp->count < argp->count) { 1291 static unsigned long complain; 1292 1293 nfs_inc_stats(data->inode, NFSIOS_SHORTWRITE); 1294 1295 /* Has the server at least made some progress? */ 1296 if (resp->count != 0) { 1297 /* Was this an NFSv2 write or an NFSv3 stable write? */ 1298 if (resp->verf->committed != NFS_UNSTABLE) { 1299 /* Resend from where the server left off */ 1300 argp->offset += resp->count; 1301 argp->pgbase += resp->count; 1302 argp->count -= resp->count; 1303 } else { 1304 /* Resend as a stable write in order to avoid 1305 * headaches in the case of a server crash. 1306 */ 1307 argp->stable = NFS_FILE_SYNC; 1308 } 1309 rpc_restart_call(task); 1310 return -EAGAIN; 1311 } 1312 if (time_before(complain, jiffies)) { 1313 printk(KERN_WARNING 1314 "NFS: Server wrote zero bytes, expected %u.\n", 1315 argp->count); 1316 complain = jiffies + 300 * HZ; 1317 } 1318 /* Can't do anything about it except throw an error. */ 1319 task->tk_status = -EIO; 1320 } 1321 return 0; 1322 } 1323 1324 1325 #if defined(CONFIG_NFS_V3) || defined(CONFIG_NFS_V4) 1326 void nfs_commit_release(void *wdata) 1327 { 1328 nfs_commit_free(wdata); 1329 } 1330 1331 /* 1332 * Set up the argument/result storage required for the RPC call. 1333 */ 1334 static void nfs_commit_rpcsetup(struct list_head *head, 1335 struct nfs_write_data *data, 1336 int how) 1337 { 1338 struct nfs_page *first; 1339 struct inode *inode; 1340 int flags; 1341 1342 /* Set up the RPC argument and reply structs 1343 * NB: take care not to mess about with data->commit et al. */ 1344 1345 list_splice_init(head, &data->pages); 1346 first = nfs_list_entry(data->pages.next); 1347 inode = first->wb_context->dentry->d_inode; 1348 1349 data->inode = inode; 1350 data->cred = first->wb_context->cred; 1351 1352 data->args.fh = NFS_FH(data->inode); 1353 /* Note: we always request a commit of the entire inode */ 1354 data->args.offset = 0; 1355 data->args.count = 0; 1356 data->res.count = 0; 1357 data->res.fattr = &data->fattr; 1358 data->res.verf = &data->verf; 1359 nfs_fattr_init(&data->fattr); 1360 1361 /* Set up the initial task struct. */ 1362 flags = (how & FLUSH_SYNC) ? 0 : RPC_TASK_ASYNC; 1363 rpc_init_task(&data->task, NFS_CLIENT(inode), flags, &nfs_commit_ops, data); 1364 NFS_PROTO(inode)->commit_setup(data, how); 1365 1366 data->task.tk_priority = flush_task_priority(how); 1367 data->task.tk_cookie = (unsigned long)inode; 1368 1369 dprintk("NFS: %4d initiated commit call\n", data->task.tk_pid); 1370 } 1371 1372 /* 1373 * Commit dirty pages 1374 */ 1375 static int 1376 nfs_commit_list(struct inode *inode, struct list_head *head, int how) 1377 { 1378 struct nfs_write_data *data; 1379 struct nfs_page *req; 1380 1381 data = nfs_commit_alloc(NFS_SERVER(inode)->wpages); 1382 1383 if (!data) 1384 goto out_bad; 1385 1386 /* Set up the argument struct */ 1387 nfs_commit_rpcsetup(head, data, how); 1388 1389 nfs_execute_write(data); 1390 return 0; 1391 out_bad: 1392 while (!list_empty(head)) { 1393 req = nfs_list_entry(head->next); 1394 nfs_list_remove_request(req); 1395 nfs_mark_request_commit(req); 1396 nfs_clear_page_writeback(req); 1397 dec_zone_page_state(req->wb_page, NR_UNSTABLE_NFS); 1398 } 1399 return -ENOMEM; 1400 } 1401 1402 /* 1403 * COMMIT call returned 1404 */ 1405 static void nfs_commit_done(struct rpc_task *task, void *calldata) 1406 { 1407 struct nfs_write_data *data = calldata; 1408 struct nfs_page *req; 1409 1410 dprintk("NFS: %4d nfs_commit_done (status %d)\n", 1411 task->tk_pid, task->tk_status); 1412 1413 /* Call the NFS version-specific code */ 1414 if (NFS_PROTO(data->inode)->commit_done(task, data) != 0) 1415 return; 1416 1417 while (!list_empty(&data->pages)) { 1418 req = nfs_list_entry(data->pages.next); 1419 nfs_list_remove_request(req); 1420 dec_zone_page_state(req->wb_page, NR_UNSTABLE_NFS); 1421 1422 dprintk("NFS: commit (%s/%Ld %d@%Ld)", 1423 req->wb_context->dentry->d_inode->i_sb->s_id, 1424 (long long)NFS_FILEID(req->wb_context->dentry->d_inode), 1425 req->wb_bytes, 1426 (long long)req_offset(req)); 1427 if (task->tk_status < 0) { 1428 req->wb_context->error = task->tk_status; 1429 nfs_inode_remove_request(req); 1430 dprintk(", error = %d\n", task->tk_status); 1431 goto next; 1432 } 1433 1434 /* Okay, COMMIT succeeded, apparently. Check the verifier 1435 * returned by the server against all stored verfs. */ 1436 if (!memcmp(req->wb_verf.verifier, data->verf.verifier, sizeof(data->verf.verifier))) { 1437 /* We have a match */ 1438 nfs_inode_remove_request(req); 1439 dprintk(" OK\n"); 1440 goto next; 1441 } 1442 /* We have a mismatch. Write the page again */ 1443 dprintk(" mismatch\n"); 1444 nfs_mark_request_dirty(req); 1445 next: 1446 nfs_clear_page_writeback(req); 1447 } 1448 } 1449 1450 static const struct rpc_call_ops nfs_commit_ops = { 1451 .rpc_call_done = nfs_commit_done, 1452 .rpc_release = nfs_commit_release, 1453 }; 1454 #else 1455 static inline int nfs_commit_list(struct inode *inode, struct list_head *head, int how) 1456 { 1457 return 0; 1458 } 1459 #endif 1460 1461 static int nfs_flush_inode(struct inode *inode, unsigned long idx_start, 1462 unsigned int npages, int how) 1463 { 1464 struct nfs_inode *nfsi = NFS_I(inode); 1465 LIST_HEAD(head); 1466 int res; 1467 1468 spin_lock(&nfsi->req_lock); 1469 res = nfs_scan_dirty(inode, &head, idx_start, npages); 1470 spin_unlock(&nfsi->req_lock); 1471 if (res) { 1472 int error = nfs_flush_list(inode, &head, res, how); 1473 if (error < 0) 1474 return error; 1475 } 1476 return res; 1477 } 1478 1479 #if defined(CONFIG_NFS_V3) || defined(CONFIG_NFS_V4) 1480 int nfs_commit_inode(struct inode *inode, int how) 1481 { 1482 struct nfs_inode *nfsi = NFS_I(inode); 1483 LIST_HEAD(head); 1484 int res; 1485 1486 spin_lock(&nfsi->req_lock); 1487 res = nfs_scan_commit(inode, &head, 0, 0); 1488 spin_unlock(&nfsi->req_lock); 1489 if (res) { 1490 int error = nfs_commit_list(inode, &head, how); 1491 if (error < 0) 1492 return error; 1493 } 1494 return res; 1495 } 1496 #endif 1497 1498 int nfs_sync_inode_wait(struct inode *inode, unsigned long idx_start, 1499 unsigned int npages, int how) 1500 { 1501 struct nfs_inode *nfsi = NFS_I(inode); 1502 LIST_HEAD(head); 1503 int nocommit = how & FLUSH_NOCOMMIT; 1504 int pages, ret; 1505 1506 how &= ~FLUSH_NOCOMMIT; 1507 spin_lock(&nfsi->req_lock); 1508 do { 1509 ret = nfs_wait_on_requests_locked(inode, idx_start, npages); 1510 if (ret != 0) 1511 continue; 1512 pages = nfs_scan_dirty(inode, &head, idx_start, npages); 1513 if (pages != 0) { 1514 spin_unlock(&nfsi->req_lock); 1515 if (how & FLUSH_INVALIDATE) 1516 nfs_cancel_dirty_list(&head); 1517 else 1518 ret = nfs_flush_list(inode, &head, pages, how); 1519 spin_lock(&nfsi->req_lock); 1520 continue; 1521 } 1522 if (nocommit) 1523 break; 1524 pages = nfs_scan_commit(inode, &head, idx_start, npages); 1525 if (pages == 0) 1526 break; 1527 if (how & FLUSH_INVALIDATE) { 1528 spin_unlock(&nfsi->req_lock); 1529 nfs_cancel_commit_list(&head); 1530 spin_lock(&nfsi->req_lock); 1531 continue; 1532 } 1533 pages += nfs_scan_commit(inode, &head, 0, 0); 1534 spin_unlock(&nfsi->req_lock); 1535 ret = nfs_commit_list(inode, &head, how); 1536 spin_lock(&nfsi->req_lock); 1537 } while (ret >= 0); 1538 spin_unlock(&nfsi->req_lock); 1539 return ret; 1540 } 1541 1542 int __init nfs_init_writepagecache(void) 1543 { 1544 nfs_wdata_cachep = kmem_cache_create("nfs_write_data", 1545 sizeof(struct nfs_write_data), 1546 0, SLAB_HWCACHE_ALIGN, 1547 NULL, NULL); 1548 if (nfs_wdata_cachep == NULL) 1549 return -ENOMEM; 1550 1551 nfs_wdata_mempool = mempool_create_slab_pool(MIN_POOL_WRITE, 1552 nfs_wdata_cachep); 1553 if (nfs_wdata_mempool == NULL) 1554 return -ENOMEM; 1555 1556 nfs_commit_mempool = mempool_create_slab_pool(MIN_POOL_COMMIT, 1557 nfs_wdata_cachep); 1558 if (nfs_commit_mempool == NULL) 1559 return -ENOMEM; 1560 1561 return 0; 1562 } 1563 1564 void nfs_destroy_writepagecache(void) 1565 { 1566 mempool_destroy(nfs_commit_mempool); 1567 mempool_destroy(nfs_wdata_mempool); 1568 if (kmem_cache_destroy(nfs_wdata_cachep)) 1569 printk(KERN_INFO "nfs_write_data: not all structures were freed\n"); 1570 } 1571 1572