xref: /linux/fs/nfs/read.c (revision f24e9f586b377749dff37554696cf3a105540c94)
1 /*
2  * linux/fs/nfs/read.c
3  *
4  * Block I/O for NFS
5  *
6  * Partial copy of Linus' read cache modifications to fs/nfs/file.c
7  * modified for async RPC by okir@monad.swb.de
8  *
9  * We do an ugly hack here in order to return proper error codes to the
10  * user program when a read request failed: since generic_file_read
11  * only checks the return value of inode->i_op->readpage() which is always 0
12  * for async RPC, we set the error bit of the page to 1 when an error occurs,
13  * and make nfs_readpage transmit requests synchronously when encountering this.
14  * This is only a small problem, though, since we now retry all operations
15  * within the RPC code when root squashing is suspected.
16  */
17 
18 #include <linux/time.h>
19 #include <linux/kernel.h>
20 #include <linux/errno.h>
21 #include <linux/fcntl.h>
22 #include <linux/stat.h>
23 #include <linux/mm.h>
24 #include <linux/slab.h>
25 #include <linux/pagemap.h>
26 #include <linux/sunrpc/clnt.h>
27 #include <linux/nfs_fs.h>
28 #include <linux/nfs_page.h>
29 #include <linux/smp_lock.h>
30 
31 #include <asm/system.h>
32 
33 #include "iostat.h"
34 
35 #define NFSDBG_FACILITY		NFSDBG_PAGECACHE
36 
37 static int nfs_pagein_one(struct list_head *, struct inode *);
38 static const struct rpc_call_ops nfs_read_partial_ops;
39 static const struct rpc_call_ops nfs_read_full_ops;
40 
41 static kmem_cache_t *nfs_rdata_cachep;
42 static mempool_t *nfs_rdata_mempool;
43 
44 #define MIN_POOL_READ	(32)
45 
46 struct nfs_read_data *nfs_readdata_alloc(size_t len)
47 {
48 	unsigned int pagecount = (len + PAGE_SIZE - 1) >> PAGE_SHIFT;
49 	struct nfs_read_data *p = mempool_alloc(nfs_rdata_mempool, SLAB_NOFS);
50 
51 	if (p) {
52 		memset(p, 0, sizeof(*p));
53 		INIT_LIST_HEAD(&p->pages);
54 		p->npages = pagecount;
55 		if (pagecount <= ARRAY_SIZE(p->page_array))
56 			p->pagevec = p->page_array;
57 		else {
58 			p->pagevec = kcalloc(pagecount, sizeof(struct page *), GFP_NOFS);
59 			if (!p->pagevec) {
60 				mempool_free(p, nfs_rdata_mempool);
61 				p = NULL;
62 			}
63 		}
64 	}
65 	return p;
66 }
67 
68 static void nfs_readdata_free(struct nfs_read_data *p)
69 {
70 	if (p && (p->pagevec != &p->page_array[0]))
71 		kfree(p->pagevec);
72 	mempool_free(p, nfs_rdata_mempool);
73 }
74 
75 void nfs_readdata_release(void *data)
76 {
77         nfs_readdata_free(data);
78 }
79 
80 static
81 unsigned int nfs_page_length(struct inode *inode, struct page *page)
82 {
83 	loff_t i_size = i_size_read(inode);
84 	unsigned long idx;
85 
86 	if (i_size <= 0)
87 		return 0;
88 	idx = (i_size - 1) >> PAGE_CACHE_SHIFT;
89 	if (page->index > idx)
90 		return 0;
91 	if (page->index != idx)
92 		return PAGE_CACHE_SIZE;
93 	return 1 + ((i_size - 1) & (PAGE_CACHE_SIZE - 1));
94 }
95 
96 static
97 int nfs_return_empty_page(struct page *page)
98 {
99 	memclear_highpage_flush(page, 0, PAGE_CACHE_SIZE);
100 	SetPageUptodate(page);
101 	unlock_page(page);
102 	return 0;
103 }
104 
105 static void nfs_readpage_truncate_uninitialised_page(struct nfs_read_data *data)
106 {
107 	unsigned int remainder = data->args.count - data->res.count;
108 	unsigned int base = data->args.pgbase + data->res.count;
109 	unsigned int pglen;
110 	struct page **pages;
111 
112 	if (data->res.eof == 0 || remainder == 0)
113 		return;
114 	/*
115 	 * Note: "remainder" can never be negative, since we check for
116 	 * 	this in the XDR code.
117 	 */
118 	pages = &data->args.pages[base >> PAGE_CACHE_SHIFT];
119 	base &= ~PAGE_CACHE_MASK;
120 	pglen = PAGE_CACHE_SIZE - base;
121 	for (;;) {
122 		if (remainder <= pglen) {
123 			memclear_highpage_flush(*pages, base, remainder);
124 			break;
125 		}
126 		memclear_highpage_flush(*pages, base, pglen);
127 		pages++;
128 		remainder -= pglen;
129 		pglen = PAGE_CACHE_SIZE;
130 		base = 0;
131 	}
132 }
133 
134 /*
135  * Read a page synchronously.
136  */
137 static int nfs_readpage_sync(struct nfs_open_context *ctx, struct inode *inode,
138 		struct page *page)
139 {
140 	unsigned int	rsize = NFS_SERVER(inode)->rsize;
141 	unsigned int	count = PAGE_CACHE_SIZE;
142 	int		result;
143 	struct nfs_read_data *rdata;
144 
145 	rdata = nfs_readdata_alloc(count);
146 	if (!rdata)
147 		return -ENOMEM;
148 
149 	memset(rdata, 0, sizeof(*rdata));
150 	rdata->flags = (IS_SWAPFILE(inode)? NFS_RPC_SWAPFLAGS : 0);
151 	rdata->cred = ctx->cred;
152 	rdata->inode = inode;
153 	INIT_LIST_HEAD(&rdata->pages);
154 	rdata->args.fh = NFS_FH(inode);
155 	rdata->args.context = ctx;
156 	rdata->args.pages = &page;
157 	rdata->args.pgbase = 0UL;
158 	rdata->args.count = rsize;
159 	rdata->res.fattr = &rdata->fattr;
160 
161 	dprintk("NFS: nfs_readpage_sync(%p)\n", page);
162 
163 	/*
164 	 * This works now because the socket layer never tries to DMA
165 	 * into this buffer directly.
166 	 */
167 	do {
168 		if (count < rsize)
169 			rdata->args.count = count;
170 		rdata->res.count = rdata->args.count;
171 		rdata->args.offset = page_offset(page) + rdata->args.pgbase;
172 
173 		dprintk("NFS: nfs_proc_read(%s, (%s/%Ld), %Lu, %u)\n",
174 			NFS_SERVER(inode)->hostname,
175 			inode->i_sb->s_id,
176 			(long long)NFS_FILEID(inode),
177 			(unsigned long long)rdata->args.pgbase,
178 			rdata->args.count);
179 
180 		lock_kernel();
181 		result = NFS_PROTO(inode)->read(rdata);
182 		unlock_kernel();
183 
184 		/*
185 		 * Even if we had a partial success we can't mark the page
186 		 * cache valid.
187 		 */
188 		if (result < 0) {
189 			if (result == -EISDIR)
190 				result = -EINVAL;
191 			goto io_error;
192 		}
193 		count -= result;
194 		rdata->args.pgbase += result;
195 		nfs_add_stats(inode, NFSIOS_SERVERREADBYTES, result);
196 
197 		/* Note: result == 0 should only happen if we're caching
198 		 * a write that extends the file and punches a hole.
199 		 */
200 		if (rdata->res.eof != 0 || result == 0)
201 			break;
202 	} while (count);
203 	spin_lock(&inode->i_lock);
204 	NFS_I(inode)->cache_validity |= NFS_INO_INVALID_ATIME;
205 	spin_unlock(&inode->i_lock);
206 
207 	if (rdata->res.eof || rdata->res.count == rdata->args.count) {
208 		SetPageUptodate(page);
209 		if (rdata->res.eof && count != 0)
210 			memclear_highpage_flush(page, rdata->args.pgbase, count);
211 	}
212 	result = 0;
213 
214 io_error:
215 	unlock_page(page);
216 	nfs_readdata_free(rdata);
217 	return result;
218 }
219 
220 static int nfs_readpage_async(struct nfs_open_context *ctx, struct inode *inode,
221 		struct page *page)
222 {
223 	LIST_HEAD(one_request);
224 	struct nfs_page	*new;
225 	unsigned int len;
226 
227 	len = nfs_page_length(inode, page);
228 	if (len == 0)
229 		return nfs_return_empty_page(page);
230 	new = nfs_create_request(ctx, inode, page, 0, len);
231 	if (IS_ERR(new)) {
232 		unlock_page(page);
233 		return PTR_ERR(new);
234 	}
235 	if (len < PAGE_CACHE_SIZE)
236 		memclear_highpage_flush(page, len, PAGE_CACHE_SIZE - len);
237 
238 	nfs_list_add_request(new, &one_request);
239 	nfs_pagein_one(&one_request, inode);
240 	return 0;
241 }
242 
243 static void nfs_readpage_release(struct nfs_page *req)
244 {
245 	unlock_page(req->wb_page);
246 
247 	dprintk("NFS: read done (%s/%Ld %d@%Ld)\n",
248 			req->wb_context->dentry->d_inode->i_sb->s_id,
249 			(long long)NFS_FILEID(req->wb_context->dentry->d_inode),
250 			req->wb_bytes,
251 			(long long)req_offset(req));
252 	nfs_clear_request(req);
253 	nfs_release_request(req);
254 }
255 
256 /*
257  * Set up the NFS read request struct
258  */
259 static void nfs_read_rpcsetup(struct nfs_page *req, struct nfs_read_data *data,
260 		const struct rpc_call_ops *call_ops,
261 		unsigned int count, unsigned int offset)
262 {
263 	struct inode		*inode;
264 	int flags;
265 
266 	data->req	  = req;
267 	data->inode	  = inode = req->wb_context->dentry->d_inode;
268 	data->cred	  = req->wb_context->cred;
269 
270 	data->args.fh     = NFS_FH(inode);
271 	data->args.offset = req_offset(req) + offset;
272 	data->args.pgbase = req->wb_pgbase + offset;
273 	data->args.pages  = data->pagevec;
274 	data->args.count  = count;
275 	data->args.context = req->wb_context;
276 
277 	data->res.fattr   = &data->fattr;
278 	data->res.count   = count;
279 	data->res.eof     = 0;
280 	nfs_fattr_init(&data->fattr);
281 
282 	/* Set up the initial task struct. */
283 	flags = RPC_TASK_ASYNC | (IS_SWAPFILE(inode)? NFS_RPC_SWAPFLAGS : 0);
284 	rpc_init_task(&data->task, NFS_CLIENT(inode), flags, call_ops, data);
285 	NFS_PROTO(inode)->read_setup(data);
286 
287 	data->task.tk_cookie = (unsigned long)inode;
288 
289 	dprintk("NFS: %4d initiated read call (req %s/%Ld, %u bytes @ offset %Lu)\n",
290 			data->task.tk_pid,
291 			inode->i_sb->s_id,
292 			(long long)NFS_FILEID(inode),
293 			count,
294 			(unsigned long long)data->args.offset);
295 }
296 
297 static void
298 nfs_async_read_error(struct list_head *head)
299 {
300 	struct nfs_page	*req;
301 
302 	while (!list_empty(head)) {
303 		req = nfs_list_entry(head->next);
304 		nfs_list_remove_request(req);
305 		SetPageError(req->wb_page);
306 		nfs_readpage_release(req);
307 	}
308 }
309 
310 /*
311  * Start an async read operation
312  */
313 static void nfs_execute_read(struct nfs_read_data *data)
314 {
315 	struct rpc_clnt *clnt = NFS_CLIENT(data->inode);
316 	sigset_t oldset;
317 
318 	rpc_clnt_sigmask(clnt, &oldset);
319 	lock_kernel();
320 	rpc_execute(&data->task);
321 	unlock_kernel();
322 	rpc_clnt_sigunmask(clnt, &oldset);
323 }
324 
325 /*
326  * Generate multiple requests to fill a single page.
327  *
328  * We optimize to reduce the number of read operations on the wire.  If we
329  * detect that we're reading a page, or an area of a page, that is past the
330  * end of file, we do not generate NFS read operations but just clear the
331  * parts of the page that would have come back zero from the server anyway.
332  *
333  * We rely on the cached value of i_size to make this determination; another
334  * client can fill pages on the server past our cached end-of-file, but we
335  * won't see the new data until our attribute cache is updated.  This is more
336  * or less conventional NFS client behavior.
337  */
338 static int nfs_pagein_multi(struct list_head *head, struct inode *inode)
339 {
340 	struct nfs_page *req = nfs_list_entry(head->next);
341 	struct page *page = req->wb_page;
342 	struct nfs_read_data *data;
343 	size_t rsize = NFS_SERVER(inode)->rsize, nbytes;
344 	unsigned int offset;
345 	int requests = 0;
346 	LIST_HEAD(list);
347 
348 	nfs_list_remove_request(req);
349 
350 	nbytes = req->wb_bytes;
351 	do {
352 		size_t len = min(nbytes,rsize);
353 
354 		data = nfs_readdata_alloc(len);
355 		if (!data)
356 			goto out_bad;
357 		INIT_LIST_HEAD(&data->pages);
358 		list_add(&data->pages, &list);
359 		requests++;
360 		nbytes -= len;
361 	} while(nbytes != 0);
362 	atomic_set(&req->wb_complete, requests);
363 
364 	ClearPageError(page);
365 	offset = 0;
366 	nbytes = req->wb_bytes;
367 	do {
368 		data = list_entry(list.next, struct nfs_read_data, pages);
369 		list_del_init(&data->pages);
370 
371 		data->pagevec[0] = page;
372 
373 		if (nbytes > rsize) {
374 			nfs_read_rpcsetup(req, data, &nfs_read_partial_ops,
375 					rsize, offset);
376 			offset += rsize;
377 			nbytes -= rsize;
378 		} else {
379 			nfs_read_rpcsetup(req, data, &nfs_read_partial_ops,
380 					nbytes, offset);
381 			nbytes = 0;
382 		}
383 		nfs_execute_read(data);
384 	} while (nbytes != 0);
385 
386 	return 0;
387 
388 out_bad:
389 	while (!list_empty(&list)) {
390 		data = list_entry(list.next, struct nfs_read_data, pages);
391 		list_del(&data->pages);
392 		nfs_readdata_free(data);
393 	}
394 	SetPageError(page);
395 	nfs_readpage_release(req);
396 	return -ENOMEM;
397 }
398 
399 static int nfs_pagein_one(struct list_head *head, struct inode *inode)
400 {
401 	struct nfs_page		*req;
402 	struct page		**pages;
403 	struct nfs_read_data	*data;
404 	unsigned int		count;
405 
406 	if (NFS_SERVER(inode)->rsize < PAGE_CACHE_SIZE)
407 		return nfs_pagein_multi(head, inode);
408 
409 	data = nfs_readdata_alloc(NFS_SERVER(inode)->rsize);
410 	if (!data)
411 		goto out_bad;
412 
413 	INIT_LIST_HEAD(&data->pages);
414 	pages = data->pagevec;
415 	count = 0;
416 	while (!list_empty(head)) {
417 		req = nfs_list_entry(head->next);
418 		nfs_list_remove_request(req);
419 		nfs_list_add_request(req, &data->pages);
420 		ClearPageError(req->wb_page);
421 		*pages++ = req->wb_page;
422 		count += req->wb_bytes;
423 	}
424 	req = nfs_list_entry(data->pages.next);
425 
426 	nfs_read_rpcsetup(req, data, &nfs_read_full_ops, count, 0);
427 
428 	nfs_execute_read(data);
429 	return 0;
430 out_bad:
431 	nfs_async_read_error(head);
432 	return -ENOMEM;
433 }
434 
435 static int
436 nfs_pagein_list(struct list_head *head, int rpages)
437 {
438 	LIST_HEAD(one_request);
439 	struct nfs_page		*req;
440 	int			error = 0;
441 	unsigned int		pages = 0;
442 
443 	while (!list_empty(head)) {
444 		pages += nfs_coalesce_requests(head, &one_request, rpages);
445 		req = nfs_list_entry(one_request.next);
446 		error = nfs_pagein_one(&one_request, req->wb_context->dentry->d_inode);
447 		if (error < 0)
448 			break;
449 	}
450 	if (error >= 0)
451 		return pages;
452 
453 	nfs_async_read_error(head);
454 	return error;
455 }
456 
457 /*
458  * Handle a read reply that fills part of a page.
459  */
460 static void nfs_readpage_result_partial(struct rpc_task *task, void *calldata)
461 {
462 	struct nfs_read_data *data = calldata;
463 	struct nfs_page *req = data->req;
464 	struct page *page = req->wb_page;
465 
466 	if (likely(task->tk_status >= 0))
467 		nfs_readpage_truncate_uninitialised_page(data);
468 	else
469 		SetPageError(page);
470 	if (nfs_readpage_result(task, data) != 0)
471 		return;
472 	if (atomic_dec_and_test(&req->wb_complete)) {
473 		if (!PageError(page))
474 			SetPageUptodate(page);
475 		nfs_readpage_release(req);
476 	}
477 }
478 
479 static const struct rpc_call_ops nfs_read_partial_ops = {
480 	.rpc_call_done = nfs_readpage_result_partial,
481 	.rpc_release = nfs_readdata_release,
482 };
483 
484 static void nfs_readpage_set_pages_uptodate(struct nfs_read_data *data)
485 {
486 	unsigned int count = data->res.count;
487 	unsigned int base = data->args.pgbase;
488 	struct page **pages;
489 
490 	if (data->res.eof)
491 		count = data->args.count;
492 	if (unlikely(count == 0))
493 		return;
494 	pages = &data->args.pages[base >> PAGE_CACHE_SHIFT];
495 	base &= ~PAGE_CACHE_MASK;
496 	count += base;
497 	for (;count >= PAGE_CACHE_SIZE; count -= PAGE_CACHE_SIZE, pages++)
498 		SetPageUptodate(*pages);
499 	if (count != 0)
500 		SetPageUptodate(*pages);
501 }
502 
503 static void nfs_readpage_set_pages_error(struct nfs_read_data *data)
504 {
505 	unsigned int count = data->args.count;
506 	unsigned int base = data->args.pgbase;
507 	struct page **pages;
508 
509 	pages = &data->args.pages[base >> PAGE_CACHE_SHIFT];
510 	base &= ~PAGE_CACHE_MASK;
511 	count += base;
512 	for (;count >= PAGE_CACHE_SIZE; count -= PAGE_CACHE_SIZE, pages++)
513 		SetPageError(*pages);
514 	if (count != 0)
515 		SetPageError(*pages);
516 }
517 
518 /*
519  * This is the callback from RPC telling us whether a reply was
520  * received or some error occurred (timeout or socket shutdown).
521  */
522 static void nfs_readpage_result_full(struct rpc_task *task, void *calldata)
523 {
524 	struct nfs_read_data *data = calldata;
525 
526 	/*
527 	 * Note: nfs_readpage_result may change the values of
528 	 * data->args. In the multi-page case, we therefore need
529 	 * to ensure that we call the next nfs_readpage_set_page_uptodate()
530 	 * first in the multi-page case.
531 	 */
532 	if (likely(task->tk_status >= 0)) {
533 		nfs_readpage_truncate_uninitialised_page(data);
534 		nfs_readpage_set_pages_uptodate(data);
535 	} else
536 		nfs_readpage_set_pages_error(data);
537 	if (nfs_readpage_result(task, data) != 0)
538 		return;
539 	while (!list_empty(&data->pages)) {
540 		struct nfs_page *req = nfs_list_entry(data->pages.next);
541 
542 		nfs_list_remove_request(req);
543 		nfs_readpage_release(req);
544 	}
545 }
546 
547 static const struct rpc_call_ops nfs_read_full_ops = {
548 	.rpc_call_done = nfs_readpage_result_full,
549 	.rpc_release = nfs_readdata_release,
550 };
551 
552 /*
553  * This is the callback from RPC telling us whether a reply was
554  * received or some error occurred (timeout or socket shutdown).
555  */
556 int nfs_readpage_result(struct rpc_task *task, struct nfs_read_data *data)
557 {
558 	struct nfs_readargs *argp = &data->args;
559 	struct nfs_readres *resp = &data->res;
560 	int status;
561 
562 	dprintk("NFS: %4d nfs_readpage_result, (status %d)\n",
563 		task->tk_pid, task->tk_status);
564 
565 	status = NFS_PROTO(data->inode)->read_done(task, data);
566 	if (status != 0)
567 		return status;
568 
569 	nfs_add_stats(data->inode, NFSIOS_SERVERREADBYTES, resp->count);
570 
571 	/* Is this a short read? */
572 	if (task->tk_status >= 0 && resp->count < argp->count && !resp->eof) {
573 		nfs_inc_stats(data->inode, NFSIOS_SHORTREAD);
574 		/* Has the server at least made some progress? */
575 		if (resp->count != 0) {
576 			/* Yes, so retry the read at the end of the data */
577 			argp->offset += resp->count;
578 			argp->pgbase += resp->count;
579 			argp->count -= resp->count;
580 			rpc_restart_call(task);
581 			return -EAGAIN;
582 		}
583 		task->tk_status = -EIO;
584 	}
585 	spin_lock(&data->inode->i_lock);
586 	NFS_I(data->inode)->cache_validity |= NFS_INO_INVALID_ATIME;
587 	spin_unlock(&data->inode->i_lock);
588 	return 0;
589 }
590 
591 /*
592  * Read a page over NFS.
593  * We read the page synchronously in the following case:
594  *  -	The error flag is set for this page. This happens only when a
595  *	previous async read operation failed.
596  */
597 int nfs_readpage(struct file *file, struct page *page)
598 {
599 	struct nfs_open_context *ctx;
600 	struct inode *inode = page->mapping->host;
601 	int		error;
602 
603 	dprintk("NFS: nfs_readpage (%p %ld@%lu)\n",
604 		page, PAGE_CACHE_SIZE, page->index);
605 	nfs_inc_stats(inode, NFSIOS_VFSREADPAGE);
606 	nfs_add_stats(inode, NFSIOS_READPAGES, 1);
607 
608 	/*
609 	 * Try to flush any pending writes to the file..
610 	 *
611 	 * NOTE! Because we own the page lock, there cannot
612 	 * be any new pending writes generated at this point
613 	 * for this page (other pages can be written to).
614 	 */
615 	error = nfs_wb_page(inode, page);
616 	if (error)
617 		goto out_error;
618 
619 	if (file == NULL) {
620 		ctx = nfs_find_open_context(inode, NULL, FMODE_READ);
621 		if (ctx == NULL)
622 			return -EBADF;
623 	} else
624 		ctx = get_nfs_open_context((struct nfs_open_context *)
625 				file->private_data);
626 	if (!IS_SYNC(inode)) {
627 		error = nfs_readpage_async(ctx, inode, page);
628 		goto out;
629 	}
630 
631 	error = nfs_readpage_sync(ctx, inode, page);
632 	if (error < 0 && IS_SWAPFILE(inode))
633 		printk("Aiee.. nfs swap-in of page failed!\n");
634 out:
635 	put_nfs_open_context(ctx);
636 	return error;
637 
638 out_error:
639 	unlock_page(page);
640 	return error;
641 }
642 
643 struct nfs_readdesc {
644 	struct list_head *head;
645 	struct nfs_open_context *ctx;
646 };
647 
648 static int
649 readpage_async_filler(void *data, struct page *page)
650 {
651 	struct nfs_readdesc *desc = (struct nfs_readdesc *)data;
652 	struct inode *inode = page->mapping->host;
653 	struct nfs_page *new;
654 	unsigned int len;
655 
656 	nfs_wb_page(inode, page);
657 	len = nfs_page_length(inode, page);
658 	if (len == 0)
659 		return nfs_return_empty_page(page);
660 	new = nfs_create_request(desc->ctx, inode, page, 0, len);
661 	if (IS_ERR(new)) {
662 			SetPageError(page);
663 			unlock_page(page);
664 			return PTR_ERR(new);
665 	}
666 	if (len < PAGE_CACHE_SIZE)
667 		memclear_highpage_flush(page, len, PAGE_CACHE_SIZE - len);
668 	nfs_list_add_request(new, desc->head);
669 	return 0;
670 }
671 
672 int nfs_readpages(struct file *filp, struct address_space *mapping,
673 		struct list_head *pages, unsigned nr_pages)
674 {
675 	LIST_HEAD(head);
676 	struct nfs_readdesc desc = {
677 		.head		= &head,
678 	};
679 	struct inode *inode = mapping->host;
680 	struct nfs_server *server = NFS_SERVER(inode);
681 	int ret;
682 
683 	dprintk("NFS: nfs_readpages (%s/%Ld %d)\n",
684 			inode->i_sb->s_id,
685 			(long long)NFS_FILEID(inode),
686 			nr_pages);
687 	nfs_inc_stats(inode, NFSIOS_VFSREADPAGES);
688 
689 	if (filp == NULL) {
690 		desc.ctx = nfs_find_open_context(inode, NULL, FMODE_READ);
691 		if (desc.ctx == NULL)
692 			return -EBADF;
693 	} else
694 		desc.ctx = get_nfs_open_context((struct nfs_open_context *)
695 				filp->private_data);
696 	ret = read_cache_pages(mapping, pages, readpage_async_filler, &desc);
697 	if (!list_empty(&head)) {
698 		int err = nfs_pagein_list(&head, server->rpages);
699 		if (!ret)
700 			nfs_add_stats(inode, NFSIOS_READPAGES, err);
701 			ret = err;
702 	}
703 	put_nfs_open_context(desc.ctx);
704 	return ret;
705 }
706 
707 int __init nfs_init_readpagecache(void)
708 {
709 	nfs_rdata_cachep = kmem_cache_create("nfs_read_data",
710 					     sizeof(struct nfs_read_data),
711 					     0, SLAB_HWCACHE_ALIGN,
712 					     NULL, NULL);
713 	if (nfs_rdata_cachep == NULL)
714 		return -ENOMEM;
715 
716 	nfs_rdata_mempool = mempool_create_slab_pool(MIN_POOL_READ,
717 						     nfs_rdata_cachep);
718 	if (nfs_rdata_mempool == NULL)
719 		return -ENOMEM;
720 
721 	return 0;
722 }
723 
724 void nfs_destroy_readpagecache(void)
725 {
726 	mempool_destroy(nfs_rdata_mempool);
727 	if (kmem_cache_destroy(nfs_rdata_cachep))
728 		printk(KERN_INFO "nfs_read_data: not all structures were freed\n");
729 }
730