xref: /linux/fs/nfs/read.c (revision dfff0fa65ab15db45acd64b3189787d37ab163cd)
1 /*
2  * linux/fs/nfs/read.c
3  *
4  * Block I/O for NFS
5  *
6  * Partial copy of Linus' read cache modifications to fs/nfs/file.c
7  * modified for async RPC by okir@monad.swb.de
8  */
9 
10 #include <linux/time.h>
11 #include <linux/kernel.h>
12 #include <linux/errno.h>
13 #include <linux/fcntl.h>
14 #include <linux/stat.h>
15 #include <linux/mm.h>
16 #include <linux/slab.h>
17 #include <linux/pagemap.h>
18 #include <linux/sunrpc/clnt.h>
19 #include <linux/nfs_fs.h>
20 #include <linux/nfs_page.h>
21 
22 #include <asm/system.h>
23 
24 #include "nfs4_fs.h"
25 #include "internal.h"
26 #include "iostat.h"
27 #include "fscache.h"
28 
29 #define NFSDBG_FACILITY		NFSDBG_PAGECACHE
30 
31 static int nfs_pagein_multi(struct inode *, struct list_head *, unsigned int, size_t, int);
32 static int nfs_pagein_one(struct inode *, struct list_head *, unsigned int, size_t, int);
33 static const struct rpc_call_ops nfs_read_partial_ops;
34 static const struct rpc_call_ops nfs_read_full_ops;
35 
36 static struct kmem_cache *nfs_rdata_cachep;
37 static mempool_t *nfs_rdata_mempool;
38 
39 #define MIN_POOL_READ	(32)
40 
41 struct nfs_read_data *nfs_readdata_alloc(unsigned int pagecount)
42 {
43 	struct nfs_read_data *p = mempool_alloc(nfs_rdata_mempool, GFP_NOFS);
44 
45 	if (p) {
46 		memset(p, 0, sizeof(*p));
47 		INIT_LIST_HEAD(&p->pages);
48 		p->npages = pagecount;
49 		p->res.seq_res.sr_slotid = NFS4_MAX_SLOT_TABLE;
50 		if (pagecount <= ARRAY_SIZE(p->page_array))
51 			p->pagevec = p->page_array;
52 		else {
53 			p->pagevec = kcalloc(pagecount, sizeof(struct page *), GFP_NOFS);
54 			if (!p->pagevec) {
55 				mempool_free(p, nfs_rdata_mempool);
56 				p = NULL;
57 			}
58 		}
59 	}
60 	return p;
61 }
62 
63 static void nfs_readdata_free(struct nfs_read_data *p)
64 {
65 	if (p && (p->pagevec != &p->page_array[0]))
66 		kfree(p->pagevec);
67 	mempool_free(p, nfs_rdata_mempool);
68 }
69 
70 void nfs_readdata_release(void *data)
71 {
72 	struct nfs_read_data *rdata = data;
73 
74 	put_nfs_open_context(rdata->args.context);
75 	nfs_readdata_free(rdata);
76 }
77 
78 static
79 int nfs_return_empty_page(struct page *page)
80 {
81 	zero_user(page, 0, PAGE_CACHE_SIZE);
82 	SetPageUptodate(page);
83 	unlock_page(page);
84 	return 0;
85 }
86 
87 static void nfs_readpage_truncate_uninitialised_page(struct nfs_read_data *data)
88 {
89 	unsigned int remainder = data->args.count - data->res.count;
90 	unsigned int base = data->args.pgbase + data->res.count;
91 	unsigned int pglen;
92 	struct page **pages;
93 
94 	if (data->res.eof == 0 || remainder == 0)
95 		return;
96 	/*
97 	 * Note: "remainder" can never be negative, since we check for
98 	 * 	this in the XDR code.
99 	 */
100 	pages = &data->args.pages[base >> PAGE_CACHE_SHIFT];
101 	base &= ~PAGE_CACHE_MASK;
102 	pglen = PAGE_CACHE_SIZE - base;
103 	for (;;) {
104 		if (remainder <= pglen) {
105 			zero_user(*pages, base, remainder);
106 			break;
107 		}
108 		zero_user(*pages, base, pglen);
109 		pages++;
110 		remainder -= pglen;
111 		pglen = PAGE_CACHE_SIZE;
112 		base = 0;
113 	}
114 }
115 
116 int nfs_readpage_async(struct nfs_open_context *ctx, struct inode *inode,
117 		       struct page *page)
118 {
119 	LIST_HEAD(one_request);
120 	struct nfs_page	*new;
121 	unsigned int len;
122 
123 	len = nfs_page_length(page);
124 	if (len == 0)
125 		return nfs_return_empty_page(page);
126 	new = nfs_create_request(ctx, inode, page, 0, len);
127 	if (IS_ERR(new)) {
128 		unlock_page(page);
129 		return PTR_ERR(new);
130 	}
131 	if (len < PAGE_CACHE_SIZE)
132 		zero_user_segment(page, len, PAGE_CACHE_SIZE);
133 
134 	nfs_list_add_request(new, &one_request);
135 	if (NFS_SERVER(inode)->rsize < PAGE_CACHE_SIZE)
136 		nfs_pagein_multi(inode, &one_request, 1, len, 0);
137 	else
138 		nfs_pagein_one(inode, &one_request, 1, len, 0);
139 	return 0;
140 }
141 
142 static void nfs_readpage_release(struct nfs_page *req)
143 {
144 	struct inode *d_inode = req->wb_context->path.dentry->d_inode;
145 
146 	if (PageUptodate(req->wb_page))
147 		nfs_readpage_to_fscache(d_inode, req->wb_page, 0);
148 
149 	unlock_page(req->wb_page);
150 
151 	dprintk("NFS: read done (%s/%Ld %d@%Ld)\n",
152 			req->wb_context->path.dentry->d_inode->i_sb->s_id,
153 			(long long)NFS_FILEID(req->wb_context->path.dentry->d_inode),
154 			req->wb_bytes,
155 			(long long)req_offset(req));
156 	nfs_clear_request(req);
157 	nfs_release_request(req);
158 }
159 
160 /*
161  * Set up the NFS read request struct
162  */
163 static int nfs_read_rpcsetup(struct nfs_page *req, struct nfs_read_data *data,
164 		const struct rpc_call_ops *call_ops,
165 		unsigned int count, unsigned int offset)
166 {
167 	struct inode *inode = req->wb_context->path.dentry->d_inode;
168 	int swap_flags = IS_SWAPFILE(inode) ? NFS_RPC_SWAPFLAGS : 0;
169 	struct rpc_task *task;
170 	struct rpc_message msg = {
171 		.rpc_argp = &data->args,
172 		.rpc_resp = &data->res,
173 		.rpc_cred = req->wb_context->cred,
174 	};
175 	struct rpc_task_setup task_setup_data = {
176 		.task = &data->task,
177 		.rpc_client = NFS_CLIENT(inode),
178 		.rpc_message = &msg,
179 		.callback_ops = call_ops,
180 		.callback_data = data,
181 		.workqueue = nfsiod_workqueue,
182 		.flags = RPC_TASK_ASYNC | swap_flags,
183 	};
184 
185 	data->req	  = req;
186 	data->inode	  = inode;
187 	data->cred	  = msg.rpc_cred;
188 
189 	data->args.fh     = NFS_FH(inode);
190 	data->args.offset = req_offset(req) + offset;
191 	data->args.pgbase = req->wb_pgbase + offset;
192 	data->args.pages  = data->pagevec;
193 	data->args.count  = count;
194 	data->args.context = get_nfs_open_context(req->wb_context);
195 
196 	data->res.fattr   = &data->fattr;
197 	data->res.count   = count;
198 	data->res.eof     = 0;
199 	nfs_fattr_init(&data->fattr);
200 
201 	/* Set up the initial task struct. */
202 	NFS_PROTO(inode)->read_setup(data, &msg);
203 
204 	dprintk("NFS: %5u initiated read call (req %s/%Ld, %u bytes @ offset %Lu)\n",
205 			data->task.tk_pid,
206 			inode->i_sb->s_id,
207 			(long long)NFS_FILEID(inode),
208 			count,
209 			(unsigned long long)data->args.offset);
210 
211 	task = rpc_run_task(&task_setup_data);
212 	if (IS_ERR(task))
213 		return PTR_ERR(task);
214 	rpc_put_task(task);
215 	return 0;
216 }
217 
218 static void
219 nfs_async_read_error(struct list_head *head)
220 {
221 	struct nfs_page	*req;
222 
223 	while (!list_empty(head)) {
224 		req = nfs_list_entry(head->next);
225 		nfs_list_remove_request(req);
226 		SetPageError(req->wb_page);
227 		nfs_readpage_release(req);
228 	}
229 }
230 
231 /*
232  * Generate multiple requests to fill a single page.
233  *
234  * We optimize to reduce the number of read operations on the wire.  If we
235  * detect that we're reading a page, or an area of a page, that is past the
236  * end of file, we do not generate NFS read operations but just clear the
237  * parts of the page that would have come back zero from the server anyway.
238  *
239  * We rely on the cached value of i_size to make this determination; another
240  * client can fill pages on the server past our cached end-of-file, but we
241  * won't see the new data until our attribute cache is updated.  This is more
242  * or less conventional NFS client behavior.
243  */
244 static int nfs_pagein_multi(struct inode *inode, struct list_head *head, unsigned int npages, size_t count, int flags)
245 {
246 	struct nfs_page *req = nfs_list_entry(head->next);
247 	struct page *page = req->wb_page;
248 	struct nfs_read_data *data;
249 	size_t rsize = NFS_SERVER(inode)->rsize, nbytes;
250 	unsigned int offset;
251 	int requests = 0;
252 	int ret = 0;
253 	LIST_HEAD(list);
254 
255 	nfs_list_remove_request(req);
256 
257 	nbytes = count;
258 	do {
259 		size_t len = min(nbytes,rsize);
260 
261 		data = nfs_readdata_alloc(1);
262 		if (!data)
263 			goto out_bad;
264 		list_add(&data->pages, &list);
265 		requests++;
266 		nbytes -= len;
267 	} while(nbytes != 0);
268 	atomic_set(&req->wb_complete, requests);
269 
270 	ClearPageError(page);
271 	offset = 0;
272 	nbytes = count;
273 	do {
274 		int ret2;
275 
276 		data = list_entry(list.next, struct nfs_read_data, pages);
277 		list_del_init(&data->pages);
278 
279 		data->pagevec[0] = page;
280 
281 		if (nbytes < rsize)
282 			rsize = nbytes;
283 		ret2 = nfs_read_rpcsetup(req, data, &nfs_read_partial_ops,
284 				  rsize, offset);
285 		if (ret == 0)
286 			ret = ret2;
287 		offset += rsize;
288 		nbytes -= rsize;
289 	} while (nbytes != 0);
290 
291 	return ret;
292 
293 out_bad:
294 	while (!list_empty(&list)) {
295 		data = list_entry(list.next, struct nfs_read_data, pages);
296 		list_del(&data->pages);
297 		nfs_readdata_free(data);
298 	}
299 	SetPageError(page);
300 	nfs_readpage_release(req);
301 	return -ENOMEM;
302 }
303 
304 static int nfs_pagein_one(struct inode *inode, struct list_head *head, unsigned int npages, size_t count, int flags)
305 {
306 	struct nfs_page		*req;
307 	struct page		**pages;
308 	struct nfs_read_data	*data;
309 	int ret = -ENOMEM;
310 
311 	data = nfs_readdata_alloc(npages);
312 	if (!data)
313 		goto out_bad;
314 
315 	pages = data->pagevec;
316 	while (!list_empty(head)) {
317 		req = nfs_list_entry(head->next);
318 		nfs_list_remove_request(req);
319 		nfs_list_add_request(req, &data->pages);
320 		ClearPageError(req->wb_page);
321 		*pages++ = req->wb_page;
322 	}
323 	req = nfs_list_entry(data->pages.next);
324 
325 	return nfs_read_rpcsetup(req, data, &nfs_read_full_ops, count, 0);
326 out_bad:
327 	nfs_async_read_error(head);
328 	return ret;
329 }
330 
331 /*
332  * This is the callback from RPC telling us whether a reply was
333  * received or some error occurred (timeout or socket shutdown).
334  */
335 int nfs_readpage_result(struct rpc_task *task, struct nfs_read_data *data)
336 {
337 	int status;
338 
339 	dprintk("NFS: %s: %5u, (status %d)\n", __func__, task->tk_pid,
340 			task->tk_status);
341 
342 	status = NFS_PROTO(data->inode)->read_done(task, data);
343 	if (status != 0)
344 		return status;
345 
346 	nfs_add_stats(data->inode, NFSIOS_SERVERREADBYTES, data->res.count);
347 
348 	if (task->tk_status == -ESTALE) {
349 		set_bit(NFS_INO_STALE, &NFS_I(data->inode)->flags);
350 		nfs_mark_for_revalidate(data->inode);
351 	}
352 	return 0;
353 }
354 
355 static void nfs_readpage_retry(struct rpc_task *task, struct nfs_read_data *data)
356 {
357 	struct nfs_readargs *argp = &data->args;
358 	struct nfs_readres *resp = &data->res;
359 
360 	if (resp->eof || resp->count == argp->count)
361 		goto out;
362 
363 	/* This is a short read! */
364 	nfs_inc_stats(data->inode, NFSIOS_SHORTREAD);
365 	/* Has the server at least made some progress? */
366 	if (resp->count == 0)
367 		goto out;
368 
369 	/* Yes, so retry the read at the end of the data */
370 	argp->offset += resp->count;
371 	argp->pgbase += resp->count;
372 	argp->count -= resp->count;
373 	nfs4_restart_rpc(task, NFS_SERVER(data->inode)->nfs_client);
374 	return;
375 out:
376 	nfs4_sequence_free_slot(NFS_SERVER(data->inode)->nfs_client,
377 				&data->res.seq_res);
378 	return;
379 
380 }
381 
382 /*
383  * Handle a read reply that fills part of a page.
384  */
385 static void nfs_readpage_result_partial(struct rpc_task *task, void *calldata)
386 {
387 	struct nfs_read_data *data = calldata;
388 
389 	if (nfs_readpage_result(task, data) != 0)
390 		return;
391 	if (task->tk_status < 0)
392 		return;
393 
394 	nfs_readpage_truncate_uninitialised_page(data);
395 	nfs_readpage_retry(task, data);
396 }
397 
398 static void nfs_readpage_release_partial(void *calldata)
399 {
400 	struct nfs_read_data *data = calldata;
401 	struct nfs_page *req = data->req;
402 	struct page *page = req->wb_page;
403 	int status = data->task.tk_status;
404 
405 	if (status < 0)
406 		SetPageError(page);
407 
408 	if (atomic_dec_and_test(&req->wb_complete)) {
409 		if (!PageError(page))
410 			SetPageUptodate(page);
411 		nfs_readpage_release(req);
412 	}
413 	nfs_readdata_release(calldata);
414 }
415 
416 #if defined(CONFIG_NFS_V4_1)
417 void nfs_read_prepare(struct rpc_task *task, void *calldata)
418 {
419 	struct nfs_read_data *data = calldata;
420 
421 	if (nfs4_setup_sequence(NFS_SERVER(data->inode)->nfs_client,
422 				&data->args.seq_args, &data->res.seq_res,
423 				0, task))
424 		return;
425 	rpc_call_start(task);
426 }
427 #endif /* CONFIG_NFS_V4_1 */
428 
429 static const struct rpc_call_ops nfs_read_partial_ops = {
430 #if defined(CONFIG_NFS_V4_1)
431 	.rpc_call_prepare = nfs_read_prepare,
432 #endif /* CONFIG_NFS_V4_1 */
433 	.rpc_call_done = nfs_readpage_result_partial,
434 	.rpc_release = nfs_readpage_release_partial,
435 };
436 
437 static void nfs_readpage_set_pages_uptodate(struct nfs_read_data *data)
438 {
439 	unsigned int count = data->res.count;
440 	unsigned int base = data->args.pgbase;
441 	struct page **pages;
442 
443 	if (data->res.eof)
444 		count = data->args.count;
445 	if (unlikely(count == 0))
446 		return;
447 	pages = &data->args.pages[base >> PAGE_CACHE_SHIFT];
448 	base &= ~PAGE_CACHE_MASK;
449 	count += base;
450 	for (;count >= PAGE_CACHE_SIZE; count -= PAGE_CACHE_SIZE, pages++)
451 		SetPageUptodate(*pages);
452 	if (count == 0)
453 		return;
454 	/* Was this a short read? */
455 	if (data->res.eof || data->res.count == data->args.count)
456 		SetPageUptodate(*pages);
457 }
458 
459 /*
460  * This is the callback from RPC telling us whether a reply was
461  * received or some error occurred (timeout or socket shutdown).
462  */
463 static void nfs_readpage_result_full(struct rpc_task *task, void *calldata)
464 {
465 	struct nfs_read_data *data = calldata;
466 
467 	if (nfs_readpage_result(task, data) != 0)
468 		return;
469 	if (task->tk_status < 0)
470 		return;
471 	/*
472 	 * Note: nfs_readpage_retry may change the values of
473 	 * data->args. In the multi-page case, we therefore need
474 	 * to ensure that we call nfs_readpage_set_pages_uptodate()
475 	 * first.
476 	 */
477 	nfs_readpage_truncate_uninitialised_page(data);
478 	nfs_readpage_set_pages_uptodate(data);
479 	nfs_readpage_retry(task, data);
480 }
481 
482 static void nfs_readpage_release_full(void *calldata)
483 {
484 	struct nfs_read_data *data = calldata;
485 
486 	while (!list_empty(&data->pages)) {
487 		struct nfs_page *req = nfs_list_entry(data->pages.next);
488 
489 		nfs_list_remove_request(req);
490 		nfs_readpage_release(req);
491 	}
492 	nfs_readdata_release(calldata);
493 }
494 
495 static const struct rpc_call_ops nfs_read_full_ops = {
496 #if defined(CONFIG_NFS_V4_1)
497 	.rpc_call_prepare = nfs_read_prepare,
498 #endif /* CONFIG_NFS_V4_1 */
499 	.rpc_call_done = nfs_readpage_result_full,
500 	.rpc_release = nfs_readpage_release_full,
501 };
502 
503 /*
504  * Read a page over NFS.
505  * We read the page synchronously in the following case:
506  *  -	The error flag is set for this page. This happens only when a
507  *	previous async read operation failed.
508  */
509 int nfs_readpage(struct file *file, struct page *page)
510 {
511 	struct nfs_open_context *ctx;
512 	struct inode *inode = page->mapping->host;
513 	int		error;
514 
515 	dprintk("NFS: nfs_readpage (%p %ld@%lu)\n",
516 		page, PAGE_CACHE_SIZE, page->index);
517 	nfs_inc_stats(inode, NFSIOS_VFSREADPAGE);
518 	nfs_add_stats(inode, NFSIOS_READPAGES, 1);
519 
520 	/*
521 	 * Try to flush any pending writes to the file..
522 	 *
523 	 * NOTE! Because we own the page lock, there cannot
524 	 * be any new pending writes generated at this point
525 	 * for this page (other pages can be written to).
526 	 */
527 	error = nfs_wb_page(inode, page);
528 	if (error)
529 		goto out_unlock;
530 	if (PageUptodate(page))
531 		goto out_unlock;
532 
533 	error = -ESTALE;
534 	if (NFS_STALE(inode))
535 		goto out_unlock;
536 
537 	if (file == NULL) {
538 		error = -EBADF;
539 		ctx = nfs_find_open_context(inode, NULL, FMODE_READ);
540 		if (ctx == NULL)
541 			goto out_unlock;
542 	} else
543 		ctx = get_nfs_open_context(nfs_file_open_context(file));
544 
545 	if (!IS_SYNC(inode)) {
546 		error = nfs_readpage_from_fscache(ctx, inode, page);
547 		if (error == 0)
548 			goto out;
549 	}
550 
551 	error = nfs_readpage_async(ctx, inode, page);
552 
553 out:
554 	put_nfs_open_context(ctx);
555 	return error;
556 out_unlock:
557 	unlock_page(page);
558 	return error;
559 }
560 
561 struct nfs_readdesc {
562 	struct nfs_pageio_descriptor *pgio;
563 	struct nfs_open_context *ctx;
564 };
565 
566 static int
567 readpage_async_filler(void *data, struct page *page)
568 {
569 	struct nfs_readdesc *desc = (struct nfs_readdesc *)data;
570 	struct inode *inode = page->mapping->host;
571 	struct nfs_page *new;
572 	unsigned int len;
573 	int error;
574 
575 	len = nfs_page_length(page);
576 	if (len == 0)
577 		return nfs_return_empty_page(page);
578 
579 	new = nfs_create_request(desc->ctx, inode, page, 0, len);
580 	if (IS_ERR(new))
581 		goto out_error;
582 
583 	if (len < PAGE_CACHE_SIZE)
584 		zero_user_segment(page, len, PAGE_CACHE_SIZE);
585 	if (!nfs_pageio_add_request(desc->pgio, new)) {
586 		error = desc->pgio->pg_error;
587 		goto out_unlock;
588 	}
589 	return 0;
590 out_error:
591 	error = PTR_ERR(new);
592 	SetPageError(page);
593 out_unlock:
594 	unlock_page(page);
595 	return error;
596 }
597 
598 int nfs_readpages(struct file *filp, struct address_space *mapping,
599 		struct list_head *pages, unsigned nr_pages)
600 {
601 	struct nfs_pageio_descriptor pgio;
602 	struct nfs_readdesc desc = {
603 		.pgio = &pgio,
604 	};
605 	struct inode *inode = mapping->host;
606 	struct nfs_server *server = NFS_SERVER(inode);
607 	size_t rsize = server->rsize;
608 	unsigned long npages;
609 	int ret = -ESTALE;
610 
611 	dprintk("NFS: nfs_readpages (%s/%Ld %d)\n",
612 			inode->i_sb->s_id,
613 			(long long)NFS_FILEID(inode),
614 			nr_pages);
615 	nfs_inc_stats(inode, NFSIOS_VFSREADPAGES);
616 
617 	if (NFS_STALE(inode))
618 		goto out;
619 
620 	if (filp == NULL) {
621 		desc.ctx = nfs_find_open_context(inode, NULL, FMODE_READ);
622 		if (desc.ctx == NULL)
623 			return -EBADF;
624 	} else
625 		desc.ctx = get_nfs_open_context(nfs_file_open_context(filp));
626 
627 	/* attempt to read as many of the pages as possible from the cache
628 	 * - this returns -ENOBUFS immediately if the cookie is negative
629 	 */
630 	ret = nfs_readpages_from_fscache(desc.ctx, inode, mapping,
631 					 pages, &nr_pages);
632 	if (ret == 0)
633 		goto read_complete; /* all pages were read */
634 
635 	if (rsize < PAGE_CACHE_SIZE)
636 		nfs_pageio_init(&pgio, inode, nfs_pagein_multi, rsize, 0);
637 	else
638 		nfs_pageio_init(&pgio, inode, nfs_pagein_one, rsize, 0);
639 
640 	ret = read_cache_pages(mapping, pages, readpage_async_filler, &desc);
641 
642 	nfs_pageio_complete(&pgio);
643 	npages = (pgio.pg_bytes_written + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
644 	nfs_add_stats(inode, NFSIOS_READPAGES, npages);
645 read_complete:
646 	put_nfs_open_context(desc.ctx);
647 out:
648 	return ret;
649 }
650 
651 int __init nfs_init_readpagecache(void)
652 {
653 	nfs_rdata_cachep = kmem_cache_create("nfs_read_data",
654 					     sizeof(struct nfs_read_data),
655 					     0, SLAB_HWCACHE_ALIGN,
656 					     NULL);
657 	if (nfs_rdata_cachep == NULL)
658 		return -ENOMEM;
659 
660 	nfs_rdata_mempool = mempool_create_slab_pool(MIN_POOL_READ,
661 						     nfs_rdata_cachep);
662 	if (nfs_rdata_mempool == NULL)
663 		return -ENOMEM;
664 
665 	return 0;
666 }
667 
668 void nfs_destroy_readpagecache(void)
669 {
670 	mempool_destroy(nfs_rdata_mempool);
671 	kmem_cache_destroy(nfs_rdata_cachep);
672 }
673