1 /* 2 * linux/fs/nfs/pagelist.c 3 * 4 * A set of helper functions for managing NFS read and write requests. 5 * The main purpose of these routines is to provide support for the 6 * coalescing of several requests into a single RPC call. 7 * 8 * Copyright 2000, 2001 (c) Trond Myklebust <trond.myklebust@fys.uio.no> 9 * 10 */ 11 12 #include <linux/slab.h> 13 #include <linux/file.h> 14 #include <linux/sched.h> 15 #include <linux/sunrpc/clnt.h> 16 #include <linux/nfs3.h> 17 #include <linux/nfs4.h> 18 #include <linux/nfs_page.h> 19 #include <linux/nfs_fs.h> 20 #include <linux/nfs_mount.h> 21 22 #include "internal.h" 23 24 static struct kmem_cache *nfs_page_cachep; 25 26 static inline struct nfs_page * 27 nfs_page_alloc(void) 28 { 29 struct nfs_page *p; 30 p = kmem_cache_alloc(nfs_page_cachep, GFP_KERNEL); 31 if (p) { 32 memset(p, 0, sizeof(*p)); 33 INIT_LIST_HEAD(&p->wb_list); 34 } 35 return p; 36 } 37 38 static inline void 39 nfs_page_free(struct nfs_page *p) 40 { 41 kmem_cache_free(nfs_page_cachep, p); 42 } 43 44 /** 45 * nfs_create_request - Create an NFS read/write request. 46 * @file: file descriptor to use 47 * @inode: inode to which the request is attached 48 * @page: page to write 49 * @offset: starting offset within the page for the write 50 * @count: number of bytes to read/write 51 * 52 * The page must be locked by the caller. This makes sure we never 53 * create two different requests for the same page. 54 * User should ensure it is safe to sleep in this function. 55 */ 56 struct nfs_page * 57 nfs_create_request(struct nfs_open_context *ctx, struct inode *inode, 58 struct page *page, 59 unsigned int offset, unsigned int count) 60 { 61 struct nfs_page *req; 62 63 /* try to allocate the request struct */ 64 req = nfs_page_alloc(); 65 if (req == NULL) 66 return ERR_PTR(-ENOMEM); 67 68 /* Initialize the request struct. Initially, we assume a 69 * long write-back delay. This will be adjusted in 70 * update_nfs_request below if the region is not locked. */ 71 req->wb_page = page; 72 atomic_set(&req->wb_complete, 0); 73 req->wb_index = page->index; 74 page_cache_get(page); 75 BUG_ON(PagePrivate(page)); 76 BUG_ON(!PageLocked(page)); 77 BUG_ON(page->mapping->host != inode); 78 req->wb_offset = offset; 79 req->wb_pgbase = offset; 80 req->wb_bytes = count; 81 req->wb_context = get_nfs_open_context(ctx); 82 req->wb_lock_context = nfs_get_lock_context(ctx); 83 kref_init(&req->wb_kref); 84 return req; 85 } 86 87 /** 88 * nfs_unlock_request - Unlock request and wake up sleepers. 89 * @req: 90 */ 91 void nfs_unlock_request(struct nfs_page *req) 92 { 93 if (!NFS_WBACK_BUSY(req)) { 94 printk(KERN_ERR "NFS: Invalid unlock attempted\n"); 95 BUG(); 96 } 97 smp_mb__before_clear_bit(); 98 clear_bit(PG_BUSY, &req->wb_flags); 99 smp_mb__after_clear_bit(); 100 wake_up_bit(&req->wb_flags, PG_BUSY); 101 nfs_release_request(req); 102 } 103 104 /** 105 * nfs_set_page_tag_locked - Tag a request as locked 106 * @req: 107 */ 108 int nfs_set_page_tag_locked(struct nfs_page *req) 109 { 110 if (!nfs_lock_request_dontget(req)) 111 return 0; 112 if (req->wb_page != NULL) 113 radix_tree_tag_set(&NFS_I(req->wb_context->path.dentry->d_inode)->nfs_page_tree, req->wb_index, NFS_PAGE_TAG_LOCKED); 114 return 1; 115 } 116 117 /** 118 * nfs_clear_page_tag_locked - Clear request tag and wake up sleepers 119 */ 120 void nfs_clear_page_tag_locked(struct nfs_page *req) 121 { 122 if (req->wb_page != NULL) { 123 struct inode *inode = req->wb_context->path.dentry->d_inode; 124 struct nfs_inode *nfsi = NFS_I(inode); 125 126 spin_lock(&inode->i_lock); 127 radix_tree_tag_clear(&nfsi->nfs_page_tree, req->wb_index, NFS_PAGE_TAG_LOCKED); 128 nfs_unlock_request(req); 129 spin_unlock(&inode->i_lock); 130 } else 131 nfs_unlock_request(req); 132 } 133 134 /** 135 * nfs_clear_request - Free up all resources allocated to the request 136 * @req: 137 * 138 * Release page and open context resources associated with a read/write 139 * request after it has completed. 140 */ 141 void nfs_clear_request(struct nfs_page *req) 142 { 143 struct page *page = req->wb_page; 144 struct nfs_open_context *ctx = req->wb_context; 145 struct nfs_lock_context *l_ctx = req->wb_lock_context; 146 147 if (page != NULL) { 148 page_cache_release(page); 149 req->wb_page = NULL; 150 } 151 if (l_ctx != NULL) { 152 nfs_put_lock_context(l_ctx); 153 req->wb_lock_context = NULL; 154 } 155 if (ctx != NULL) { 156 put_nfs_open_context(ctx); 157 req->wb_context = NULL; 158 } 159 } 160 161 162 /** 163 * nfs_release_request - Release the count on an NFS read/write request 164 * @req: request to release 165 * 166 * Note: Should never be called with the spinlock held! 167 */ 168 static void nfs_free_request(struct kref *kref) 169 { 170 struct nfs_page *req = container_of(kref, struct nfs_page, wb_kref); 171 172 /* Release struct file and open context */ 173 nfs_clear_request(req); 174 nfs_page_free(req); 175 } 176 177 void nfs_release_request(struct nfs_page *req) 178 { 179 kref_put(&req->wb_kref, nfs_free_request); 180 } 181 182 static int nfs_wait_bit_uninterruptible(void *word) 183 { 184 io_schedule(); 185 return 0; 186 } 187 188 /** 189 * nfs_wait_on_request - Wait for a request to complete. 190 * @req: request to wait upon. 191 * 192 * Interruptible by fatal signals only. 193 * The user is responsible for holding a count on the request. 194 */ 195 int 196 nfs_wait_on_request(struct nfs_page *req) 197 { 198 return wait_on_bit(&req->wb_flags, PG_BUSY, 199 nfs_wait_bit_uninterruptible, 200 TASK_UNINTERRUPTIBLE); 201 } 202 203 /** 204 * nfs_pageio_init - initialise a page io descriptor 205 * @desc: pointer to descriptor 206 * @inode: pointer to inode 207 * @doio: pointer to io function 208 * @bsize: io block size 209 * @io_flags: extra parameters for the io function 210 */ 211 void nfs_pageio_init(struct nfs_pageio_descriptor *desc, 212 struct inode *inode, 213 int (*doio)(struct inode *, struct list_head *, unsigned int, size_t, int), 214 size_t bsize, 215 int io_flags) 216 { 217 INIT_LIST_HEAD(&desc->pg_list); 218 desc->pg_bytes_written = 0; 219 desc->pg_count = 0; 220 desc->pg_bsize = bsize; 221 desc->pg_base = 0; 222 desc->pg_inode = inode; 223 desc->pg_doio = doio; 224 desc->pg_ioflags = io_flags; 225 desc->pg_error = 0; 226 } 227 228 /** 229 * nfs_can_coalesce_requests - test two requests for compatibility 230 * @prev: pointer to nfs_page 231 * @req: pointer to nfs_page 232 * 233 * The nfs_page structures 'prev' and 'req' are compared to ensure that the 234 * page data area they describe is contiguous, and that their RPC 235 * credentials, NFSv4 open state, and lockowners are the same. 236 * 237 * Return 'true' if this is the case, else return 'false'. 238 */ 239 static int nfs_can_coalesce_requests(struct nfs_page *prev, 240 struct nfs_page *req) 241 { 242 if (req->wb_context->cred != prev->wb_context->cred) 243 return 0; 244 if (req->wb_lock_context->lockowner != prev->wb_lock_context->lockowner) 245 return 0; 246 if (req->wb_context->state != prev->wb_context->state) 247 return 0; 248 if (req->wb_index != (prev->wb_index + 1)) 249 return 0; 250 if (req->wb_pgbase != 0) 251 return 0; 252 if (prev->wb_pgbase + prev->wb_bytes != PAGE_CACHE_SIZE) 253 return 0; 254 return 1; 255 } 256 257 /** 258 * nfs_pageio_do_add_request - Attempt to coalesce a request into a page list. 259 * @desc: destination io descriptor 260 * @req: request 261 * 262 * Returns true if the request 'req' was successfully coalesced into the 263 * existing list of pages 'desc'. 264 */ 265 static int nfs_pageio_do_add_request(struct nfs_pageio_descriptor *desc, 266 struct nfs_page *req) 267 { 268 size_t newlen = req->wb_bytes; 269 270 if (desc->pg_count != 0) { 271 struct nfs_page *prev; 272 273 /* 274 * FIXME: ideally we should be able to coalesce all requests 275 * that are not block boundary aligned, but currently this 276 * is problematic for the case of bsize < PAGE_CACHE_SIZE, 277 * since nfs_flush_multi and nfs_pagein_multi assume you 278 * can have only one struct nfs_page. 279 */ 280 if (desc->pg_bsize < PAGE_SIZE) 281 return 0; 282 newlen += desc->pg_count; 283 if (newlen > desc->pg_bsize) 284 return 0; 285 prev = nfs_list_entry(desc->pg_list.prev); 286 if (!nfs_can_coalesce_requests(prev, req)) 287 return 0; 288 } else 289 desc->pg_base = req->wb_pgbase; 290 nfs_list_remove_request(req); 291 nfs_list_add_request(req, &desc->pg_list); 292 desc->pg_count = newlen; 293 return 1; 294 } 295 296 /* 297 * Helper for nfs_pageio_add_request and nfs_pageio_complete 298 */ 299 static void nfs_pageio_doio(struct nfs_pageio_descriptor *desc) 300 { 301 if (!list_empty(&desc->pg_list)) { 302 int error = desc->pg_doio(desc->pg_inode, 303 &desc->pg_list, 304 nfs_page_array_len(desc->pg_base, 305 desc->pg_count), 306 desc->pg_count, 307 desc->pg_ioflags); 308 if (error < 0) 309 desc->pg_error = error; 310 else 311 desc->pg_bytes_written += desc->pg_count; 312 } 313 if (list_empty(&desc->pg_list)) { 314 desc->pg_count = 0; 315 desc->pg_base = 0; 316 } 317 } 318 319 /** 320 * nfs_pageio_add_request - Attempt to coalesce a request into a page list. 321 * @desc: destination io descriptor 322 * @req: request 323 * 324 * Returns true if the request 'req' was successfully coalesced into the 325 * existing list of pages 'desc'. 326 */ 327 int nfs_pageio_add_request(struct nfs_pageio_descriptor *desc, 328 struct nfs_page *req) 329 { 330 while (!nfs_pageio_do_add_request(desc, req)) { 331 nfs_pageio_doio(desc); 332 if (desc->pg_error < 0) 333 return 0; 334 } 335 return 1; 336 } 337 338 /** 339 * nfs_pageio_complete - Complete I/O on an nfs_pageio_descriptor 340 * @desc: pointer to io descriptor 341 */ 342 void nfs_pageio_complete(struct nfs_pageio_descriptor *desc) 343 { 344 nfs_pageio_doio(desc); 345 } 346 347 /** 348 * nfs_pageio_cond_complete - Conditional I/O completion 349 * @desc: pointer to io descriptor 350 * @index: page index 351 * 352 * It is important to ensure that processes don't try to take locks 353 * on non-contiguous ranges of pages as that might deadlock. This 354 * function should be called before attempting to wait on a locked 355 * nfs_page. It will complete the I/O if the page index 'index' 356 * is not contiguous with the existing list of pages in 'desc'. 357 */ 358 void nfs_pageio_cond_complete(struct nfs_pageio_descriptor *desc, pgoff_t index) 359 { 360 if (!list_empty(&desc->pg_list)) { 361 struct nfs_page *prev = nfs_list_entry(desc->pg_list.prev); 362 if (index != prev->wb_index + 1) 363 nfs_pageio_doio(desc); 364 } 365 } 366 367 #define NFS_SCAN_MAXENTRIES 16 368 /** 369 * nfs_scan_list - Scan a list for matching requests 370 * @nfsi: NFS inode 371 * @dst: Destination list 372 * @idx_start: lower bound of page->index to scan 373 * @npages: idx_start + npages sets the upper bound to scan. 374 * @tag: tag to scan for 375 * 376 * Moves elements from one of the inode request lists. 377 * If the number of requests is set to 0, the entire address_space 378 * starting at index idx_start, is scanned. 379 * The requests are *not* checked to ensure that they form a contiguous set. 380 * You must be holding the inode's i_lock when calling this function 381 */ 382 int nfs_scan_list(struct nfs_inode *nfsi, 383 struct list_head *dst, pgoff_t idx_start, 384 unsigned int npages, int tag) 385 { 386 struct nfs_page *pgvec[NFS_SCAN_MAXENTRIES]; 387 struct nfs_page *req; 388 pgoff_t idx_end; 389 int found, i; 390 int res; 391 392 res = 0; 393 if (npages == 0) 394 idx_end = ~0; 395 else 396 idx_end = idx_start + npages - 1; 397 398 for (;;) { 399 found = radix_tree_gang_lookup_tag(&nfsi->nfs_page_tree, 400 (void **)&pgvec[0], idx_start, 401 NFS_SCAN_MAXENTRIES, tag); 402 if (found <= 0) 403 break; 404 for (i = 0; i < found; i++) { 405 req = pgvec[i]; 406 if (req->wb_index > idx_end) 407 goto out; 408 idx_start = req->wb_index + 1; 409 if (nfs_set_page_tag_locked(req)) { 410 kref_get(&req->wb_kref); 411 nfs_list_remove_request(req); 412 radix_tree_tag_clear(&nfsi->nfs_page_tree, 413 req->wb_index, tag); 414 nfs_list_add_request(req, dst); 415 res++; 416 if (res == INT_MAX) 417 goto out; 418 } 419 } 420 /* for latency reduction */ 421 cond_resched_lock(&nfsi->vfs_inode.i_lock); 422 } 423 out: 424 return res; 425 } 426 427 int __init nfs_init_nfspagecache(void) 428 { 429 nfs_page_cachep = kmem_cache_create("nfs_page", 430 sizeof(struct nfs_page), 431 0, SLAB_HWCACHE_ALIGN, 432 NULL); 433 if (nfs_page_cachep == NULL) 434 return -ENOMEM; 435 436 return 0; 437 } 438 439 void nfs_destroy_nfspagecache(void) 440 { 441 kmem_cache_destroy(nfs_page_cachep); 442 } 443 444