xref: /linux/fs/nfs/nfs4proc.c (revision f3d9478b2ce468c3115b02ecae7e975990697f15)
1 /*
2  *  fs/nfs/nfs4proc.c
3  *
4  *  Client-side procedure declarations for NFSv4.
5  *
6  *  Copyright (c) 2002 The Regents of the University of Michigan.
7  *  All rights reserved.
8  *
9  *  Kendrick Smith <kmsmith@umich.edu>
10  *  Andy Adamson   <andros@umich.edu>
11  *
12  *  Redistribution and use in source and binary forms, with or without
13  *  modification, are permitted provided that the following conditions
14  *  are met:
15  *
16  *  1. Redistributions of source code must retain the above copyright
17  *     notice, this list of conditions and the following disclaimer.
18  *  2. Redistributions in binary form must reproduce the above copyright
19  *     notice, this list of conditions and the following disclaimer in the
20  *     documentation and/or other materials provided with the distribution.
21  *  3. Neither the name of the University nor the names of its
22  *     contributors may be used to endorse or promote products derived
23  *     from this software without specific prior written permission.
24  *
25  *  THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED
26  *  WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
27  *  MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
28  *  DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
29  *  FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
30  *  CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
31  *  SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
32  *  BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
33  *  LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
34  *  NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
35  *  SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
36  */
37 
38 #include <linux/mm.h>
39 #include <linux/utsname.h>
40 #include <linux/delay.h>
41 #include <linux/errno.h>
42 #include <linux/string.h>
43 #include <linux/sunrpc/clnt.h>
44 #include <linux/nfs.h>
45 #include <linux/nfs4.h>
46 #include <linux/nfs_fs.h>
47 #include <linux/nfs_page.h>
48 #include <linux/smp_lock.h>
49 #include <linux/namei.h>
50 #include <linux/mount.h>
51 
52 #include "nfs4_fs.h"
53 #include "delegation.h"
54 #include "iostat.h"
55 
56 #define NFSDBG_FACILITY		NFSDBG_PROC
57 
58 #define NFS4_POLL_RETRY_MIN	(1*HZ)
59 #define NFS4_POLL_RETRY_MAX	(15*HZ)
60 
61 struct nfs4_opendata;
62 static int _nfs4_proc_open(struct nfs4_opendata *data);
63 static int nfs4_do_fsinfo(struct nfs_server *, struct nfs_fh *, struct nfs_fsinfo *);
64 static int nfs4_async_handle_error(struct rpc_task *, const struct nfs_server *);
65 static int _nfs4_proc_access(struct inode *inode, struct nfs_access_entry *entry);
66 static int nfs4_handle_exception(const struct nfs_server *server, int errorcode, struct nfs4_exception *exception);
67 static int nfs4_wait_clnt_recover(struct rpc_clnt *clnt, struct nfs4_client *clp);
68 extern u32 *nfs4_decode_dirent(u32 *p, struct nfs_entry *entry, int plus);
69 extern struct rpc_procinfo nfs4_procedures[];
70 
71 /* Prevent leaks of NFSv4 errors into userland */
72 int nfs4_map_errors(int err)
73 {
74 	if (err < -1000) {
75 		dprintk("%s could not handle NFSv4 error %d\n",
76 				__FUNCTION__, -err);
77 		return -EIO;
78 	}
79 	return err;
80 }
81 
82 /*
83  * This is our standard bitmap for GETATTR requests.
84  */
85 const u32 nfs4_fattr_bitmap[2] = {
86 	FATTR4_WORD0_TYPE
87 	| FATTR4_WORD0_CHANGE
88 	| FATTR4_WORD0_SIZE
89 	| FATTR4_WORD0_FSID
90 	| FATTR4_WORD0_FILEID,
91 	FATTR4_WORD1_MODE
92 	| FATTR4_WORD1_NUMLINKS
93 	| FATTR4_WORD1_OWNER
94 	| FATTR4_WORD1_OWNER_GROUP
95 	| FATTR4_WORD1_RAWDEV
96 	| FATTR4_WORD1_SPACE_USED
97 	| FATTR4_WORD1_TIME_ACCESS
98 	| FATTR4_WORD1_TIME_METADATA
99 	| FATTR4_WORD1_TIME_MODIFY
100 };
101 
102 const u32 nfs4_statfs_bitmap[2] = {
103 	FATTR4_WORD0_FILES_AVAIL
104 	| FATTR4_WORD0_FILES_FREE
105 	| FATTR4_WORD0_FILES_TOTAL,
106 	FATTR4_WORD1_SPACE_AVAIL
107 	| FATTR4_WORD1_SPACE_FREE
108 	| FATTR4_WORD1_SPACE_TOTAL
109 };
110 
111 const u32 nfs4_pathconf_bitmap[2] = {
112 	FATTR4_WORD0_MAXLINK
113 	| FATTR4_WORD0_MAXNAME,
114 	0
115 };
116 
117 const u32 nfs4_fsinfo_bitmap[2] = { FATTR4_WORD0_MAXFILESIZE
118 			| FATTR4_WORD0_MAXREAD
119 			| FATTR4_WORD0_MAXWRITE
120 			| FATTR4_WORD0_LEASE_TIME,
121 			0
122 };
123 
124 static void nfs4_setup_readdir(u64 cookie, u32 *verifier, struct dentry *dentry,
125 		struct nfs4_readdir_arg *readdir)
126 {
127 	u32 *start, *p;
128 
129 	BUG_ON(readdir->count < 80);
130 	if (cookie > 2) {
131 		readdir->cookie = cookie;
132 		memcpy(&readdir->verifier, verifier, sizeof(readdir->verifier));
133 		return;
134 	}
135 
136 	readdir->cookie = 0;
137 	memset(&readdir->verifier, 0, sizeof(readdir->verifier));
138 	if (cookie == 2)
139 		return;
140 
141 	/*
142 	 * NFSv4 servers do not return entries for '.' and '..'
143 	 * Therefore, we fake these entries here.  We let '.'
144 	 * have cookie 0 and '..' have cookie 1.  Note that
145 	 * when talking to the server, we always send cookie 0
146 	 * instead of 1 or 2.
147 	 */
148 	start = p = (u32 *)kmap_atomic(*readdir->pages, KM_USER0);
149 
150 	if (cookie == 0) {
151 		*p++ = xdr_one;                                  /* next */
152 		*p++ = xdr_zero;                   /* cookie, first word */
153 		*p++ = xdr_one;                   /* cookie, second word */
154 		*p++ = xdr_one;                             /* entry len */
155 		memcpy(p, ".\0\0\0", 4);                        /* entry */
156 		p++;
157 		*p++ = xdr_one;                         /* bitmap length */
158 		*p++ = htonl(FATTR4_WORD0_FILEID);             /* bitmap */
159 		*p++ = htonl(8);              /* attribute buffer length */
160 		p = xdr_encode_hyper(p, dentry->d_inode->i_ino);
161 	}
162 
163 	*p++ = xdr_one;                                  /* next */
164 	*p++ = xdr_zero;                   /* cookie, first word */
165 	*p++ = xdr_two;                   /* cookie, second word */
166 	*p++ = xdr_two;                             /* entry len */
167 	memcpy(p, "..\0\0", 4);                         /* entry */
168 	p++;
169 	*p++ = xdr_one;                         /* bitmap length */
170 	*p++ = htonl(FATTR4_WORD0_FILEID);             /* bitmap */
171 	*p++ = htonl(8);              /* attribute buffer length */
172 	p = xdr_encode_hyper(p, dentry->d_parent->d_inode->i_ino);
173 
174 	readdir->pgbase = (char *)p - (char *)start;
175 	readdir->count -= readdir->pgbase;
176 	kunmap_atomic(start, KM_USER0);
177 }
178 
179 static void renew_lease(const struct nfs_server *server, unsigned long timestamp)
180 {
181 	struct nfs4_client *clp = server->nfs4_state;
182 	spin_lock(&clp->cl_lock);
183 	if (time_before(clp->cl_last_renewal,timestamp))
184 		clp->cl_last_renewal = timestamp;
185 	spin_unlock(&clp->cl_lock);
186 }
187 
188 static void update_changeattr(struct inode *inode, struct nfs4_change_info *cinfo)
189 {
190 	struct nfs_inode *nfsi = NFS_I(inode);
191 
192 	spin_lock(&inode->i_lock);
193 	nfsi->cache_validity |= NFS_INO_INVALID_ATTR;
194 	if (cinfo->before == nfsi->change_attr && cinfo->atomic)
195 		nfsi->change_attr = cinfo->after;
196 	spin_unlock(&inode->i_lock);
197 }
198 
199 struct nfs4_opendata {
200 	atomic_t count;
201 	struct nfs_openargs o_arg;
202 	struct nfs_openres o_res;
203 	struct nfs_open_confirmargs c_arg;
204 	struct nfs_open_confirmres c_res;
205 	struct nfs_fattr f_attr;
206 	struct nfs_fattr dir_attr;
207 	struct dentry *dentry;
208 	struct dentry *dir;
209 	struct nfs4_state_owner *owner;
210 	struct iattr attrs;
211 	unsigned long timestamp;
212 	int rpc_status;
213 	int cancelled;
214 };
215 
216 static struct nfs4_opendata *nfs4_opendata_alloc(struct dentry *dentry,
217 		struct nfs4_state_owner *sp, int flags,
218 		const struct iattr *attrs)
219 {
220 	struct dentry *parent = dget_parent(dentry);
221 	struct inode *dir = parent->d_inode;
222 	struct nfs_server *server = NFS_SERVER(dir);
223 	struct nfs4_opendata *p;
224 
225 	p = kzalloc(sizeof(*p), GFP_KERNEL);
226 	if (p == NULL)
227 		goto err;
228 	p->o_arg.seqid = nfs_alloc_seqid(&sp->so_seqid);
229 	if (p->o_arg.seqid == NULL)
230 		goto err_free;
231 	atomic_set(&p->count, 1);
232 	p->dentry = dget(dentry);
233 	p->dir = parent;
234 	p->owner = sp;
235 	atomic_inc(&sp->so_count);
236 	p->o_arg.fh = NFS_FH(dir);
237 	p->o_arg.open_flags = flags,
238 	p->o_arg.clientid = server->nfs4_state->cl_clientid;
239 	p->o_arg.id = sp->so_id;
240 	p->o_arg.name = &dentry->d_name;
241 	p->o_arg.server = server;
242 	p->o_arg.bitmask = server->attr_bitmask;
243 	p->o_arg.claim = NFS4_OPEN_CLAIM_NULL;
244 	p->o_res.f_attr = &p->f_attr;
245 	p->o_res.dir_attr = &p->dir_attr;
246 	p->o_res.server = server;
247 	nfs_fattr_init(&p->f_attr);
248 	nfs_fattr_init(&p->dir_attr);
249 	if (flags & O_EXCL) {
250 		u32 *s = (u32 *) p->o_arg.u.verifier.data;
251 		s[0] = jiffies;
252 		s[1] = current->pid;
253 	} else if (flags & O_CREAT) {
254 		p->o_arg.u.attrs = &p->attrs;
255 		memcpy(&p->attrs, attrs, sizeof(p->attrs));
256 	}
257 	p->c_arg.fh = &p->o_res.fh;
258 	p->c_arg.stateid = &p->o_res.stateid;
259 	p->c_arg.seqid = p->o_arg.seqid;
260 	return p;
261 err_free:
262 	kfree(p);
263 err:
264 	dput(parent);
265 	return NULL;
266 }
267 
268 static void nfs4_opendata_free(struct nfs4_opendata *p)
269 {
270 	if (p != NULL && atomic_dec_and_test(&p->count)) {
271 		nfs_free_seqid(p->o_arg.seqid);
272 		nfs4_put_state_owner(p->owner);
273 		dput(p->dir);
274 		dput(p->dentry);
275 		kfree(p);
276 	}
277 }
278 
279 /* Helper for asynchronous RPC calls */
280 static int nfs4_call_async(struct rpc_clnt *clnt,
281 		const struct rpc_call_ops *tk_ops, void *calldata)
282 {
283 	struct rpc_task *task;
284 
285 	if (!(task = rpc_new_task(clnt, RPC_TASK_ASYNC, tk_ops, calldata)))
286 		return -ENOMEM;
287 	rpc_execute(task);
288 	return 0;
289 }
290 
291 static int nfs4_wait_for_completion_rpc_task(struct rpc_task *task)
292 {
293 	sigset_t oldset;
294 	int ret;
295 
296 	rpc_clnt_sigmask(task->tk_client, &oldset);
297 	ret = rpc_wait_for_completion_task(task);
298 	rpc_clnt_sigunmask(task->tk_client, &oldset);
299 	return ret;
300 }
301 
302 static inline void update_open_stateflags(struct nfs4_state *state, mode_t open_flags)
303 {
304 	switch (open_flags) {
305 		case FMODE_WRITE:
306 			state->n_wronly++;
307 			break;
308 		case FMODE_READ:
309 			state->n_rdonly++;
310 			break;
311 		case FMODE_READ|FMODE_WRITE:
312 			state->n_rdwr++;
313 	}
314 }
315 
316 static void update_open_stateid(struct nfs4_state *state, nfs4_stateid *stateid, int open_flags)
317 {
318 	struct inode *inode = state->inode;
319 
320 	open_flags &= (FMODE_READ|FMODE_WRITE);
321 	/* Protect against nfs4_find_state_byowner() */
322 	spin_lock(&state->owner->so_lock);
323 	spin_lock(&inode->i_lock);
324 	memcpy(&state->stateid, stateid, sizeof(state->stateid));
325 	update_open_stateflags(state, open_flags);
326 	nfs4_state_set_mode_locked(state, state->state | open_flags);
327 	spin_unlock(&inode->i_lock);
328 	spin_unlock(&state->owner->so_lock);
329 }
330 
331 static struct nfs4_state *nfs4_opendata_to_nfs4_state(struct nfs4_opendata *data)
332 {
333 	struct inode *inode;
334 	struct nfs4_state *state = NULL;
335 
336 	if (!(data->f_attr.valid & NFS_ATTR_FATTR))
337 		goto out;
338 	inode = nfs_fhget(data->dir->d_sb, &data->o_res.fh, &data->f_attr);
339 	if (IS_ERR(inode))
340 		goto out;
341 	state = nfs4_get_open_state(inode, data->owner);
342 	if (state == NULL)
343 		goto put_inode;
344 	update_open_stateid(state, &data->o_res.stateid, data->o_arg.open_flags);
345 put_inode:
346 	iput(inode);
347 out:
348 	return state;
349 }
350 
351 static struct nfs_open_context *nfs4_state_find_open_context(struct nfs4_state *state)
352 {
353 	struct nfs_inode *nfsi = NFS_I(state->inode);
354 	struct nfs_open_context *ctx;
355 
356 	spin_lock(&state->inode->i_lock);
357 	list_for_each_entry(ctx, &nfsi->open_files, list) {
358 		if (ctx->state != state)
359 			continue;
360 		get_nfs_open_context(ctx);
361 		spin_unlock(&state->inode->i_lock);
362 		return ctx;
363 	}
364 	spin_unlock(&state->inode->i_lock);
365 	return ERR_PTR(-ENOENT);
366 }
367 
368 static int nfs4_open_recover_helper(struct nfs4_opendata *opendata, mode_t openflags, nfs4_stateid *stateid)
369 {
370 	int ret;
371 
372 	opendata->o_arg.open_flags = openflags;
373 	ret = _nfs4_proc_open(opendata);
374 	if (ret != 0)
375 		return ret;
376 	memcpy(stateid->data, opendata->o_res.stateid.data,
377 			sizeof(stateid->data));
378 	return 0;
379 }
380 
381 static int nfs4_open_recover(struct nfs4_opendata *opendata, struct nfs4_state *state)
382 {
383 	nfs4_stateid stateid;
384 	struct nfs4_state *newstate;
385 	int mode = 0;
386 	int delegation = 0;
387 	int ret;
388 
389 	/* memory barrier prior to reading state->n_* */
390 	smp_rmb();
391 	if (state->n_rdwr != 0) {
392 		ret = nfs4_open_recover_helper(opendata, FMODE_READ|FMODE_WRITE, &stateid);
393 		if (ret != 0)
394 			return ret;
395 		mode |= FMODE_READ|FMODE_WRITE;
396 		if (opendata->o_res.delegation_type != 0)
397 			delegation = opendata->o_res.delegation_type;
398 		smp_rmb();
399 	}
400 	if (state->n_wronly != 0) {
401 		ret = nfs4_open_recover_helper(opendata, FMODE_WRITE, &stateid);
402 		if (ret != 0)
403 			return ret;
404 		mode |= FMODE_WRITE;
405 		if (opendata->o_res.delegation_type != 0)
406 			delegation = opendata->o_res.delegation_type;
407 		smp_rmb();
408 	}
409 	if (state->n_rdonly != 0) {
410 		ret = nfs4_open_recover_helper(opendata, FMODE_READ, &stateid);
411 		if (ret != 0)
412 			return ret;
413 		mode |= FMODE_READ;
414 	}
415 	clear_bit(NFS_DELEGATED_STATE, &state->flags);
416 	if (mode == 0)
417 		return 0;
418 	if (opendata->o_res.delegation_type == 0)
419 		opendata->o_res.delegation_type = delegation;
420 	opendata->o_arg.open_flags |= mode;
421 	newstate = nfs4_opendata_to_nfs4_state(opendata);
422 	if (newstate != NULL) {
423 		if (opendata->o_res.delegation_type != 0) {
424 			struct nfs_inode *nfsi = NFS_I(newstate->inode);
425 			int delegation_flags = 0;
426 			if (nfsi->delegation)
427 				delegation_flags = nfsi->delegation->flags;
428 			if (!(delegation_flags & NFS_DELEGATION_NEED_RECLAIM))
429 				nfs_inode_set_delegation(newstate->inode,
430 						opendata->owner->so_cred,
431 						&opendata->o_res);
432 			else
433 				nfs_inode_reclaim_delegation(newstate->inode,
434 						opendata->owner->so_cred,
435 						&opendata->o_res);
436 		}
437 		nfs4_close_state(newstate, opendata->o_arg.open_flags);
438 	}
439 	if (newstate != state)
440 		return -ESTALE;
441 	return 0;
442 }
443 
444 /*
445  * OPEN_RECLAIM:
446  * 	reclaim state on the server after a reboot.
447  */
448 static int _nfs4_do_open_reclaim(struct nfs4_state_owner *sp, struct nfs4_state *state, struct dentry *dentry)
449 {
450 	struct nfs_delegation *delegation = NFS_I(state->inode)->delegation;
451 	struct nfs4_opendata *opendata;
452 	int delegation_type = 0;
453 	int status;
454 
455 	if (delegation != NULL) {
456 		if (!(delegation->flags & NFS_DELEGATION_NEED_RECLAIM)) {
457 			memcpy(&state->stateid, &delegation->stateid,
458 					sizeof(state->stateid));
459 			set_bit(NFS_DELEGATED_STATE, &state->flags);
460 			return 0;
461 		}
462 		delegation_type = delegation->type;
463 	}
464 	opendata = nfs4_opendata_alloc(dentry, sp, 0, NULL);
465 	if (opendata == NULL)
466 		return -ENOMEM;
467 	opendata->o_arg.claim = NFS4_OPEN_CLAIM_PREVIOUS;
468 	opendata->o_arg.fh = NFS_FH(state->inode);
469 	nfs_copy_fh(&opendata->o_res.fh, opendata->o_arg.fh);
470 	opendata->o_arg.u.delegation_type = delegation_type;
471 	status = nfs4_open_recover(opendata, state);
472 	nfs4_opendata_free(opendata);
473 	return status;
474 }
475 
476 static int nfs4_do_open_reclaim(struct nfs4_state_owner *sp, struct nfs4_state *state, struct dentry *dentry)
477 {
478 	struct nfs_server *server = NFS_SERVER(state->inode);
479 	struct nfs4_exception exception = { };
480 	int err;
481 	do {
482 		err = _nfs4_do_open_reclaim(sp, state, dentry);
483 		if (err != -NFS4ERR_DELAY)
484 			break;
485 		nfs4_handle_exception(server, err, &exception);
486 	} while (exception.retry);
487 	return err;
488 }
489 
490 static int nfs4_open_reclaim(struct nfs4_state_owner *sp, struct nfs4_state *state)
491 {
492 	struct nfs_open_context *ctx;
493 	int ret;
494 
495 	ctx = nfs4_state_find_open_context(state);
496 	if (IS_ERR(ctx))
497 		return PTR_ERR(ctx);
498 	ret = nfs4_do_open_reclaim(sp, state, ctx->dentry);
499 	put_nfs_open_context(ctx);
500 	return ret;
501 }
502 
503 static int _nfs4_open_delegation_recall(struct dentry *dentry, struct nfs4_state *state)
504 {
505 	struct nfs4_state_owner  *sp  = state->owner;
506 	struct nfs4_opendata *opendata;
507 	int ret;
508 
509 	if (!test_bit(NFS_DELEGATED_STATE, &state->flags))
510 		return 0;
511 	opendata = nfs4_opendata_alloc(dentry, sp, 0, NULL);
512 	if (opendata == NULL)
513 		return -ENOMEM;
514 	opendata->o_arg.claim = NFS4_OPEN_CLAIM_DELEGATE_CUR;
515 	memcpy(opendata->o_arg.u.delegation.data, state->stateid.data,
516 			sizeof(opendata->o_arg.u.delegation.data));
517 	ret = nfs4_open_recover(opendata, state);
518 	nfs4_opendata_free(opendata);
519 	return ret;
520 }
521 
522 int nfs4_open_delegation_recall(struct dentry *dentry, struct nfs4_state *state)
523 {
524 	struct nfs4_exception exception = { };
525 	struct nfs_server *server = NFS_SERVER(dentry->d_inode);
526 	int err;
527 	do {
528 		err = _nfs4_open_delegation_recall(dentry, state);
529 		switch (err) {
530 			case 0:
531 				return err;
532 			case -NFS4ERR_STALE_CLIENTID:
533 			case -NFS4ERR_STALE_STATEID:
534 			case -NFS4ERR_EXPIRED:
535 				/* Don't recall a delegation if it was lost */
536 				nfs4_schedule_state_recovery(server->nfs4_state);
537 				return err;
538 		}
539 		err = nfs4_handle_exception(server, err, &exception);
540 	} while (exception.retry);
541 	return err;
542 }
543 
544 static void nfs4_open_confirm_prepare(struct rpc_task *task, void *calldata)
545 {
546 	struct nfs4_opendata *data = calldata;
547 	struct  rpc_message msg = {
548 		.rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_OPEN_CONFIRM],
549 		.rpc_argp = &data->c_arg,
550 		.rpc_resp = &data->c_res,
551 		.rpc_cred = data->owner->so_cred,
552 	};
553 	data->timestamp = jiffies;
554 	rpc_call_setup(task, &msg, 0);
555 }
556 
557 static void nfs4_open_confirm_done(struct rpc_task *task, void *calldata)
558 {
559 	struct nfs4_opendata *data = calldata;
560 
561 	data->rpc_status = task->tk_status;
562 	if (RPC_ASSASSINATED(task))
563 		return;
564 	if (data->rpc_status == 0) {
565 		memcpy(data->o_res.stateid.data, data->c_res.stateid.data,
566 				sizeof(data->o_res.stateid.data));
567 		renew_lease(data->o_res.server, data->timestamp);
568 	}
569 	nfs_increment_open_seqid(data->rpc_status, data->c_arg.seqid);
570 	nfs_confirm_seqid(&data->owner->so_seqid, data->rpc_status);
571 }
572 
573 static void nfs4_open_confirm_release(void *calldata)
574 {
575 	struct nfs4_opendata *data = calldata;
576 	struct nfs4_state *state = NULL;
577 
578 	/* If this request hasn't been cancelled, do nothing */
579 	if (data->cancelled == 0)
580 		goto out_free;
581 	/* In case of error, no cleanup! */
582 	if (data->rpc_status != 0)
583 		goto out_free;
584 	nfs_confirm_seqid(&data->owner->so_seqid, 0);
585 	state = nfs4_opendata_to_nfs4_state(data);
586 	if (state != NULL)
587 		nfs4_close_state(state, data->o_arg.open_flags);
588 out_free:
589 	nfs4_opendata_free(data);
590 }
591 
592 static const struct rpc_call_ops nfs4_open_confirm_ops = {
593 	.rpc_call_prepare = nfs4_open_confirm_prepare,
594 	.rpc_call_done = nfs4_open_confirm_done,
595 	.rpc_release = nfs4_open_confirm_release,
596 };
597 
598 /*
599  * Note: On error, nfs4_proc_open_confirm will free the struct nfs4_opendata
600  */
601 static int _nfs4_proc_open_confirm(struct nfs4_opendata *data)
602 {
603 	struct nfs_server *server = NFS_SERVER(data->dir->d_inode);
604 	struct rpc_task *task;
605 	int status;
606 
607 	atomic_inc(&data->count);
608 	/*
609 	 * If rpc_run_task() ends up calling ->rpc_release(), we
610 	 * want to ensure that it takes the 'error' code path.
611 	 */
612 	data->rpc_status = -ENOMEM;
613 	task = rpc_run_task(server->client, RPC_TASK_ASYNC, &nfs4_open_confirm_ops, data);
614 	if (IS_ERR(task))
615 		return PTR_ERR(task);
616 	status = nfs4_wait_for_completion_rpc_task(task);
617 	if (status != 0) {
618 		data->cancelled = 1;
619 		smp_wmb();
620 	} else
621 		status = data->rpc_status;
622 	rpc_release_task(task);
623 	return status;
624 }
625 
626 static void nfs4_open_prepare(struct rpc_task *task, void *calldata)
627 {
628 	struct nfs4_opendata *data = calldata;
629 	struct nfs4_state_owner *sp = data->owner;
630 	struct rpc_message msg = {
631 		.rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_OPEN],
632 		.rpc_argp = &data->o_arg,
633 		.rpc_resp = &data->o_res,
634 		.rpc_cred = sp->so_cred,
635 	};
636 
637 	if (nfs_wait_on_sequence(data->o_arg.seqid, task) != 0)
638 		return;
639 	/* Update sequence id. */
640 	data->o_arg.id = sp->so_id;
641 	data->o_arg.clientid = sp->so_client->cl_clientid;
642 	if (data->o_arg.claim == NFS4_OPEN_CLAIM_PREVIOUS)
643 		msg.rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_OPEN_NOATTR];
644 	data->timestamp = jiffies;
645 	rpc_call_setup(task, &msg, 0);
646 }
647 
648 static void nfs4_open_done(struct rpc_task *task, void *calldata)
649 {
650 	struct nfs4_opendata *data = calldata;
651 
652 	data->rpc_status = task->tk_status;
653 	if (RPC_ASSASSINATED(task))
654 		return;
655 	if (task->tk_status == 0) {
656 		switch (data->o_res.f_attr->mode & S_IFMT) {
657 			case S_IFREG:
658 				break;
659 			case S_IFLNK:
660 				data->rpc_status = -ELOOP;
661 				break;
662 			case S_IFDIR:
663 				data->rpc_status = -EISDIR;
664 				break;
665 			default:
666 				data->rpc_status = -ENOTDIR;
667 		}
668 		renew_lease(data->o_res.server, data->timestamp);
669 	}
670 	nfs_increment_open_seqid(data->rpc_status, data->o_arg.seqid);
671 }
672 
673 static void nfs4_open_release(void *calldata)
674 {
675 	struct nfs4_opendata *data = calldata;
676 	struct nfs4_state *state = NULL;
677 
678 	/* If this request hasn't been cancelled, do nothing */
679 	if (data->cancelled == 0)
680 		goto out_free;
681 	/* In case of error, no cleanup! */
682 	if (data->rpc_status != 0)
683 		goto out_free;
684 	/* In case we need an open_confirm, no cleanup! */
685 	if (data->o_res.rflags & NFS4_OPEN_RESULT_CONFIRM)
686 		goto out_free;
687 	nfs_confirm_seqid(&data->owner->so_seqid, 0);
688 	state = nfs4_opendata_to_nfs4_state(data);
689 	if (state != NULL)
690 		nfs4_close_state(state, data->o_arg.open_flags);
691 out_free:
692 	nfs4_opendata_free(data);
693 }
694 
695 static const struct rpc_call_ops nfs4_open_ops = {
696 	.rpc_call_prepare = nfs4_open_prepare,
697 	.rpc_call_done = nfs4_open_done,
698 	.rpc_release = nfs4_open_release,
699 };
700 
701 /*
702  * Note: On error, nfs4_proc_open will free the struct nfs4_opendata
703  */
704 static int _nfs4_proc_open(struct nfs4_opendata *data)
705 {
706 	struct inode *dir = data->dir->d_inode;
707 	struct nfs_server *server = NFS_SERVER(dir);
708 	struct nfs_openargs *o_arg = &data->o_arg;
709 	struct nfs_openres *o_res = &data->o_res;
710 	struct rpc_task *task;
711 	int status;
712 
713 	atomic_inc(&data->count);
714 	/*
715 	 * If rpc_run_task() ends up calling ->rpc_release(), we
716 	 * want to ensure that it takes the 'error' code path.
717 	 */
718 	data->rpc_status = -ENOMEM;
719 	task = rpc_run_task(server->client, RPC_TASK_ASYNC, &nfs4_open_ops, data);
720 	if (IS_ERR(task))
721 		return PTR_ERR(task);
722 	status = nfs4_wait_for_completion_rpc_task(task);
723 	if (status != 0) {
724 		data->cancelled = 1;
725 		smp_wmb();
726 	} else
727 		status = data->rpc_status;
728 	rpc_release_task(task);
729 	if (status != 0)
730 		return status;
731 
732 	if (o_arg->open_flags & O_CREAT) {
733 		update_changeattr(dir, &o_res->cinfo);
734 		nfs_post_op_update_inode(dir, o_res->dir_attr);
735 	} else
736 		nfs_refresh_inode(dir, o_res->dir_attr);
737 	if(o_res->rflags & NFS4_OPEN_RESULT_CONFIRM) {
738 		status = _nfs4_proc_open_confirm(data);
739 		if (status != 0)
740 			return status;
741 	}
742 	nfs_confirm_seqid(&data->owner->so_seqid, 0);
743 	if (!(o_res->f_attr->valid & NFS_ATTR_FATTR))
744 		return server->rpc_ops->getattr(server, &o_res->fh, o_res->f_attr);
745 	return 0;
746 }
747 
748 static int _nfs4_do_access(struct inode *inode, struct rpc_cred *cred, int openflags)
749 {
750 	struct nfs_access_entry cache;
751 	int mask = 0;
752 	int status;
753 
754 	if (openflags & FMODE_READ)
755 		mask |= MAY_READ;
756 	if (openflags & FMODE_WRITE)
757 		mask |= MAY_WRITE;
758 	status = nfs_access_get_cached(inode, cred, &cache);
759 	if (status == 0)
760 		goto out;
761 
762 	/* Be clever: ask server to check for all possible rights */
763 	cache.mask = MAY_EXEC | MAY_WRITE | MAY_READ;
764 	cache.cred = cred;
765 	cache.jiffies = jiffies;
766 	status = _nfs4_proc_access(inode, &cache);
767 	if (status != 0)
768 		return status;
769 	nfs_access_add_cache(inode, &cache);
770 out:
771 	if ((cache.mask & mask) == mask)
772 		return 0;
773 	return -EACCES;
774 }
775 
776 int nfs4_recover_expired_lease(struct nfs_server *server)
777 {
778 	struct nfs4_client *clp = server->nfs4_state;
779 
780 	if (test_and_clear_bit(NFS4CLNT_LEASE_EXPIRED, &clp->cl_state))
781 		nfs4_schedule_state_recovery(clp);
782 	return nfs4_wait_clnt_recover(server->client, clp);
783 }
784 
785 /*
786  * OPEN_EXPIRED:
787  * 	reclaim state on the server after a network partition.
788  * 	Assumes caller holds the appropriate lock
789  */
790 static int _nfs4_open_expired(struct nfs4_state_owner *sp, struct nfs4_state *state, struct dentry *dentry)
791 {
792 	struct inode *inode = state->inode;
793 	struct nfs_delegation *delegation = NFS_I(inode)->delegation;
794 	struct nfs4_opendata *opendata;
795 	int openflags = state->state & (FMODE_READ|FMODE_WRITE);
796 	int ret;
797 
798 	if (delegation != NULL && !(delegation->flags & NFS_DELEGATION_NEED_RECLAIM)) {
799 		ret = _nfs4_do_access(inode, sp->so_cred, openflags);
800 		if (ret < 0)
801 			return ret;
802 		memcpy(&state->stateid, &delegation->stateid, sizeof(state->stateid));
803 		set_bit(NFS_DELEGATED_STATE, &state->flags);
804 		return 0;
805 	}
806 	opendata = nfs4_opendata_alloc(dentry, sp, openflags, NULL);
807 	if (opendata == NULL)
808 		return -ENOMEM;
809 	ret = nfs4_open_recover(opendata, state);
810 	if (ret == -ESTALE) {
811 		/* Invalidate the state owner so we don't ever use it again */
812 		nfs4_drop_state_owner(sp);
813 		d_drop(dentry);
814 	}
815 	nfs4_opendata_free(opendata);
816 	return ret;
817 }
818 
819 static inline int nfs4_do_open_expired(struct nfs4_state_owner *sp, struct nfs4_state *state, struct dentry *dentry)
820 {
821 	struct nfs_server *server = NFS_SERVER(dentry->d_inode);
822 	struct nfs4_exception exception = { };
823 	int err;
824 
825 	do {
826 		err = _nfs4_open_expired(sp, state, dentry);
827 		if (err == -NFS4ERR_DELAY)
828 			nfs4_handle_exception(server, err, &exception);
829 	} while (exception.retry);
830 	return err;
831 }
832 
833 static int nfs4_open_expired(struct nfs4_state_owner *sp, struct nfs4_state *state)
834 {
835 	struct nfs_open_context *ctx;
836 	int ret;
837 
838 	ctx = nfs4_state_find_open_context(state);
839 	if (IS_ERR(ctx))
840 		return PTR_ERR(ctx);
841 	ret = nfs4_do_open_expired(sp, state, ctx->dentry);
842 	put_nfs_open_context(ctx);
843 	return ret;
844 }
845 
846 /*
847  * Returns a referenced nfs4_state if there is an open delegation on the file
848  */
849 static int _nfs4_open_delegated(struct inode *inode, int flags, struct rpc_cred *cred, struct nfs4_state **res)
850 {
851 	struct nfs_delegation *delegation;
852 	struct nfs_server *server = NFS_SERVER(inode);
853 	struct nfs4_client *clp = server->nfs4_state;
854 	struct nfs_inode *nfsi = NFS_I(inode);
855 	struct nfs4_state_owner *sp = NULL;
856 	struct nfs4_state *state = NULL;
857 	int open_flags = flags & (FMODE_READ|FMODE_WRITE);
858 	int err;
859 
860 	err = -ENOMEM;
861 	if (!(sp = nfs4_get_state_owner(server, cred))) {
862 		dprintk("%s: nfs4_get_state_owner failed!\n", __FUNCTION__);
863 		return err;
864 	}
865 	err = nfs4_recover_expired_lease(server);
866 	if (err != 0)
867 		goto out_put_state_owner;
868 	/* Protect against reboot recovery - NOTE ORDER! */
869 	down_read(&clp->cl_sem);
870 	/* Protect against delegation recall */
871 	down_read(&nfsi->rwsem);
872 	delegation = NFS_I(inode)->delegation;
873 	err = -ENOENT;
874 	if (delegation == NULL || (delegation->type & open_flags) != open_flags)
875 		goto out_err;
876 	err = -ENOMEM;
877 	state = nfs4_get_open_state(inode, sp);
878 	if (state == NULL)
879 		goto out_err;
880 
881 	err = -ENOENT;
882 	if ((state->state & open_flags) == open_flags) {
883 		spin_lock(&inode->i_lock);
884 		update_open_stateflags(state, open_flags);
885 		spin_unlock(&inode->i_lock);
886 		goto out_ok;
887 	} else if (state->state != 0)
888 		goto out_put_open_state;
889 
890 	lock_kernel();
891 	err = _nfs4_do_access(inode, cred, open_flags);
892 	unlock_kernel();
893 	if (err != 0)
894 		goto out_put_open_state;
895 	set_bit(NFS_DELEGATED_STATE, &state->flags);
896 	update_open_stateid(state, &delegation->stateid, open_flags);
897 out_ok:
898 	nfs4_put_state_owner(sp);
899 	up_read(&nfsi->rwsem);
900 	up_read(&clp->cl_sem);
901 	*res = state;
902 	return 0;
903 out_put_open_state:
904 	nfs4_put_open_state(state);
905 out_err:
906 	up_read(&nfsi->rwsem);
907 	up_read(&clp->cl_sem);
908 	if (err != -EACCES)
909 		nfs_inode_return_delegation(inode);
910 out_put_state_owner:
911 	nfs4_put_state_owner(sp);
912 	return err;
913 }
914 
915 static struct nfs4_state *nfs4_open_delegated(struct inode *inode, int flags, struct rpc_cred *cred)
916 {
917 	struct nfs4_exception exception = { };
918 	struct nfs4_state *res = ERR_PTR(-EIO);
919 	int err;
920 
921 	do {
922 		err = _nfs4_open_delegated(inode, flags, cred, &res);
923 		if (err == 0)
924 			break;
925 		res = ERR_PTR(nfs4_handle_exception(NFS_SERVER(inode),
926 					err, &exception));
927 	} while (exception.retry);
928 	return res;
929 }
930 
931 /*
932  * Returns a referenced nfs4_state
933  */
934 static int _nfs4_do_open(struct inode *dir, struct dentry *dentry, int flags, struct iattr *sattr, struct rpc_cred *cred, struct nfs4_state **res)
935 {
936 	struct nfs4_state_owner  *sp;
937 	struct nfs4_state     *state = NULL;
938 	struct nfs_server       *server = NFS_SERVER(dir);
939 	struct nfs4_client *clp = server->nfs4_state;
940 	struct nfs4_opendata *opendata;
941 	int                     status;
942 
943 	/* Protect against reboot recovery conflicts */
944 	status = -ENOMEM;
945 	if (!(sp = nfs4_get_state_owner(server, cred))) {
946 		dprintk("nfs4_do_open: nfs4_get_state_owner failed!\n");
947 		goto out_err;
948 	}
949 	status = nfs4_recover_expired_lease(server);
950 	if (status != 0)
951 		goto err_put_state_owner;
952 	down_read(&clp->cl_sem);
953 	status = -ENOMEM;
954 	opendata = nfs4_opendata_alloc(dentry, sp, flags, sattr);
955 	if (opendata == NULL)
956 		goto err_put_state_owner;
957 
958 	status = _nfs4_proc_open(opendata);
959 	if (status != 0)
960 		goto err_opendata_free;
961 
962 	status = -ENOMEM;
963 	state = nfs4_opendata_to_nfs4_state(opendata);
964 	if (state == NULL)
965 		goto err_opendata_free;
966 	if (opendata->o_res.delegation_type != 0)
967 		nfs_inode_set_delegation(state->inode, cred, &opendata->o_res);
968 	nfs4_opendata_free(opendata);
969 	nfs4_put_state_owner(sp);
970 	up_read(&clp->cl_sem);
971 	*res = state;
972 	return 0;
973 err_opendata_free:
974 	nfs4_opendata_free(opendata);
975 err_put_state_owner:
976 	nfs4_put_state_owner(sp);
977 out_err:
978 	/* Note: clp->cl_sem must be released before nfs4_put_open_state()! */
979 	up_read(&clp->cl_sem);
980 	*res = NULL;
981 	return status;
982 }
983 
984 
985 static struct nfs4_state *nfs4_do_open(struct inode *dir, struct dentry *dentry, int flags, struct iattr *sattr, struct rpc_cred *cred)
986 {
987 	struct nfs4_exception exception = { };
988 	struct nfs4_state *res;
989 	int status;
990 
991 	do {
992 		status = _nfs4_do_open(dir, dentry, flags, sattr, cred, &res);
993 		if (status == 0)
994 			break;
995 		/* NOTE: BAD_SEQID means the server and client disagree about the
996 		 * book-keeping w.r.t. state-changing operations
997 		 * (OPEN/CLOSE/LOCK/LOCKU...)
998 		 * It is actually a sign of a bug on the client or on the server.
999 		 *
1000 		 * If we receive a BAD_SEQID error in the particular case of
1001 		 * doing an OPEN, we assume that nfs_increment_open_seqid() will
1002 		 * have unhashed the old state_owner for us, and that we can
1003 		 * therefore safely retry using a new one. We should still warn
1004 		 * the user though...
1005 		 */
1006 		if (status == -NFS4ERR_BAD_SEQID) {
1007 			printk(KERN_WARNING "NFS: v4 server returned a bad sequence-id error!\n");
1008 			exception.retry = 1;
1009 			continue;
1010 		}
1011 		/*
1012 		 * BAD_STATEID on OPEN means that the server cancelled our
1013 		 * state before it received the OPEN_CONFIRM.
1014 		 * Recover by retrying the request as per the discussion
1015 		 * on Page 181 of RFC3530.
1016 		 */
1017 		if (status == -NFS4ERR_BAD_STATEID) {
1018 			exception.retry = 1;
1019 			continue;
1020 		}
1021 		res = ERR_PTR(nfs4_handle_exception(NFS_SERVER(dir),
1022 					status, &exception));
1023 	} while (exception.retry);
1024 	return res;
1025 }
1026 
1027 static int _nfs4_do_setattr(struct inode *inode, struct nfs_fattr *fattr,
1028                 struct iattr *sattr, struct nfs4_state *state)
1029 {
1030 	struct nfs_server *server = NFS_SERVER(inode);
1031         struct nfs_setattrargs  arg = {
1032                 .fh             = NFS_FH(inode),
1033                 .iap            = sattr,
1034 		.server		= server,
1035 		.bitmask = server->attr_bitmask,
1036         };
1037         struct nfs_setattrres  res = {
1038 		.fattr		= fattr,
1039 		.server		= server,
1040         };
1041         struct rpc_message msg = {
1042                 .rpc_proc       = &nfs4_procedures[NFSPROC4_CLNT_SETATTR],
1043                 .rpc_argp       = &arg,
1044                 .rpc_resp       = &res,
1045         };
1046 	unsigned long timestamp = jiffies;
1047 	int status;
1048 
1049 	nfs_fattr_init(fattr);
1050 
1051 	if (nfs4_copy_delegation_stateid(&arg.stateid, inode)) {
1052 		/* Use that stateid */
1053 	} else if (state != NULL) {
1054 		msg.rpc_cred = state->owner->so_cred;
1055 		nfs4_copy_stateid(&arg.stateid, state, current->files);
1056 	} else
1057 		memcpy(&arg.stateid, &zero_stateid, sizeof(arg.stateid));
1058 
1059 	status = rpc_call_sync(server->client, &msg, 0);
1060 	if (status == 0 && state != NULL)
1061 		renew_lease(server, timestamp);
1062 	return status;
1063 }
1064 
1065 static int nfs4_do_setattr(struct inode *inode, struct nfs_fattr *fattr,
1066                 struct iattr *sattr, struct nfs4_state *state)
1067 {
1068 	struct nfs_server *server = NFS_SERVER(inode);
1069 	struct nfs4_exception exception = { };
1070 	int err;
1071 	do {
1072 		err = nfs4_handle_exception(server,
1073 				_nfs4_do_setattr(inode, fattr, sattr, state),
1074 				&exception);
1075 	} while (exception.retry);
1076 	return err;
1077 }
1078 
1079 struct nfs4_closedata {
1080 	struct inode *inode;
1081 	struct nfs4_state *state;
1082 	struct nfs_closeargs arg;
1083 	struct nfs_closeres res;
1084 	struct nfs_fattr fattr;
1085 	unsigned long timestamp;
1086 };
1087 
1088 static void nfs4_free_closedata(void *data)
1089 {
1090 	struct nfs4_closedata *calldata = data;
1091 	struct nfs4_state_owner *sp = calldata->state->owner;
1092 
1093 	nfs4_put_open_state(calldata->state);
1094 	nfs_free_seqid(calldata->arg.seqid);
1095 	nfs4_put_state_owner(sp);
1096 	kfree(calldata);
1097 }
1098 
1099 static void nfs4_close_done(struct rpc_task *task, void *data)
1100 {
1101 	struct nfs4_closedata *calldata = data;
1102 	struct nfs4_state *state = calldata->state;
1103 	struct nfs_server *server = NFS_SERVER(calldata->inode);
1104 
1105 	if (RPC_ASSASSINATED(task))
1106 		return;
1107         /* hmm. we are done with the inode, and in the process of freeing
1108 	 * the state_owner. we keep this around to process errors
1109 	 */
1110 	nfs_increment_open_seqid(task->tk_status, calldata->arg.seqid);
1111 	switch (task->tk_status) {
1112 		case 0:
1113 			memcpy(&state->stateid, &calldata->res.stateid,
1114 					sizeof(state->stateid));
1115 			renew_lease(server, calldata->timestamp);
1116 			break;
1117 		case -NFS4ERR_STALE_STATEID:
1118 		case -NFS4ERR_EXPIRED:
1119 			nfs4_schedule_state_recovery(server->nfs4_state);
1120 			break;
1121 		default:
1122 			if (nfs4_async_handle_error(task, server) == -EAGAIN) {
1123 				rpc_restart_call(task);
1124 				return;
1125 			}
1126 	}
1127 	nfs_refresh_inode(calldata->inode, calldata->res.fattr);
1128 }
1129 
1130 static void nfs4_close_prepare(struct rpc_task *task, void *data)
1131 {
1132 	struct nfs4_closedata *calldata = data;
1133 	struct nfs4_state *state = calldata->state;
1134 	struct rpc_message msg = {
1135 		.rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_CLOSE],
1136 		.rpc_argp = &calldata->arg,
1137 		.rpc_resp = &calldata->res,
1138 		.rpc_cred = state->owner->so_cred,
1139 	};
1140 	int mode = 0, old_mode;
1141 
1142 	if (nfs_wait_on_sequence(calldata->arg.seqid, task) != 0)
1143 		return;
1144 	/* Recalculate the new open mode in case someone reopened the file
1145 	 * while we were waiting in line to be scheduled.
1146 	 */
1147 	spin_lock(&state->owner->so_lock);
1148 	spin_lock(&calldata->inode->i_lock);
1149 	mode = old_mode = state->state;
1150 	if (state->n_rdwr == 0) {
1151 		if (state->n_rdonly == 0)
1152 			mode &= ~FMODE_READ;
1153 		if (state->n_wronly == 0)
1154 			mode &= ~FMODE_WRITE;
1155 	}
1156 	nfs4_state_set_mode_locked(state, mode);
1157 	spin_unlock(&calldata->inode->i_lock);
1158 	spin_unlock(&state->owner->so_lock);
1159 	if (mode == old_mode || test_bit(NFS_DELEGATED_STATE, &state->flags)) {
1160 		/* Note: exit _without_ calling nfs4_close_done */
1161 		task->tk_action = NULL;
1162 		return;
1163 	}
1164 	nfs_fattr_init(calldata->res.fattr);
1165 	if (mode != 0)
1166 		msg.rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_OPEN_DOWNGRADE];
1167 	calldata->arg.open_flags = mode;
1168 	calldata->timestamp = jiffies;
1169 	rpc_call_setup(task, &msg, 0);
1170 }
1171 
1172 static const struct rpc_call_ops nfs4_close_ops = {
1173 	.rpc_call_prepare = nfs4_close_prepare,
1174 	.rpc_call_done = nfs4_close_done,
1175 	.rpc_release = nfs4_free_closedata,
1176 };
1177 
1178 /*
1179  * It is possible for data to be read/written from a mem-mapped file
1180  * after the sys_close call (which hits the vfs layer as a flush).
1181  * This means that we can't safely call nfsv4 close on a file until
1182  * the inode is cleared. This in turn means that we are not good
1183  * NFSv4 citizens - we do not indicate to the server to update the file's
1184  * share state even when we are done with one of the three share
1185  * stateid's in the inode.
1186  *
1187  * NOTE: Caller must be holding the sp->so_owner semaphore!
1188  */
1189 int nfs4_do_close(struct inode *inode, struct nfs4_state *state)
1190 {
1191 	struct nfs_server *server = NFS_SERVER(inode);
1192 	struct nfs4_closedata *calldata;
1193 	int status = -ENOMEM;
1194 
1195 	calldata = kmalloc(sizeof(*calldata), GFP_KERNEL);
1196 	if (calldata == NULL)
1197 		goto out;
1198 	calldata->inode = inode;
1199 	calldata->state = state;
1200 	calldata->arg.fh = NFS_FH(inode);
1201 	calldata->arg.stateid = &state->stateid;
1202 	/* Serialization for the sequence id */
1203 	calldata->arg.seqid = nfs_alloc_seqid(&state->owner->so_seqid);
1204 	if (calldata->arg.seqid == NULL)
1205 		goto out_free_calldata;
1206 	calldata->arg.bitmask = server->attr_bitmask;
1207 	calldata->res.fattr = &calldata->fattr;
1208 	calldata->res.server = server;
1209 
1210 	status = nfs4_call_async(server->client, &nfs4_close_ops, calldata);
1211 	if (status == 0)
1212 		goto out;
1213 
1214 	nfs_free_seqid(calldata->arg.seqid);
1215 out_free_calldata:
1216 	kfree(calldata);
1217 out:
1218 	return status;
1219 }
1220 
1221 static int nfs4_intent_set_file(struct nameidata *nd, struct dentry *dentry, struct nfs4_state *state)
1222 {
1223 	struct file *filp;
1224 
1225 	filp = lookup_instantiate_filp(nd, dentry, NULL);
1226 	if (!IS_ERR(filp)) {
1227 		struct nfs_open_context *ctx;
1228 		ctx = (struct nfs_open_context *)filp->private_data;
1229 		ctx->state = state;
1230 		return 0;
1231 	}
1232 	nfs4_close_state(state, nd->intent.open.flags);
1233 	return PTR_ERR(filp);
1234 }
1235 
1236 struct dentry *
1237 nfs4_atomic_open(struct inode *dir, struct dentry *dentry, struct nameidata *nd)
1238 {
1239 	struct iattr attr;
1240 	struct rpc_cred *cred;
1241 	struct nfs4_state *state;
1242 	struct dentry *res;
1243 
1244 	if (nd->flags & LOOKUP_CREATE) {
1245 		attr.ia_mode = nd->intent.open.create_mode;
1246 		attr.ia_valid = ATTR_MODE;
1247 		if (!IS_POSIXACL(dir))
1248 			attr.ia_mode &= ~current->fs->umask;
1249 	} else {
1250 		attr.ia_valid = 0;
1251 		BUG_ON(nd->intent.open.flags & O_CREAT);
1252 	}
1253 
1254 	cred = rpcauth_lookupcred(NFS_SERVER(dir)->client->cl_auth, 0);
1255 	if (IS_ERR(cred))
1256 		return (struct dentry *)cred;
1257 	state = nfs4_do_open(dir, dentry, nd->intent.open.flags, &attr, cred);
1258 	put_rpccred(cred);
1259 	if (IS_ERR(state)) {
1260 		if (PTR_ERR(state) == -ENOENT)
1261 			d_add(dentry, NULL);
1262 		return (struct dentry *)state;
1263 	}
1264 	res = d_add_unique(dentry, igrab(state->inode));
1265 	if (res != NULL)
1266 		dentry = res;
1267 	nfs4_intent_set_file(nd, dentry, state);
1268 	return res;
1269 }
1270 
1271 int
1272 nfs4_open_revalidate(struct inode *dir, struct dentry *dentry, int openflags, struct nameidata *nd)
1273 {
1274 	struct rpc_cred *cred;
1275 	struct nfs4_state *state;
1276 
1277 	cred = rpcauth_lookupcred(NFS_SERVER(dir)->client->cl_auth, 0);
1278 	if (IS_ERR(cred))
1279 		return PTR_ERR(cred);
1280 	state = nfs4_open_delegated(dentry->d_inode, openflags, cred);
1281 	if (IS_ERR(state))
1282 		state = nfs4_do_open(dir, dentry, openflags, NULL, cred);
1283 	put_rpccred(cred);
1284 	if (IS_ERR(state)) {
1285 		switch (PTR_ERR(state)) {
1286 			case -EPERM:
1287 			case -EACCES:
1288 			case -EDQUOT:
1289 			case -ENOSPC:
1290 			case -EROFS:
1291 				lookup_instantiate_filp(nd, (struct dentry *)state, NULL);
1292 				return 1;
1293 			case -ENOENT:
1294 				if (dentry->d_inode == NULL)
1295 					return 1;
1296 		}
1297 		goto out_drop;
1298 	}
1299 	if (state->inode == dentry->d_inode) {
1300 		nfs4_intent_set_file(nd, dentry, state);
1301 		return 1;
1302 	}
1303 	nfs4_close_state(state, openflags);
1304 out_drop:
1305 	d_drop(dentry);
1306 	return 0;
1307 }
1308 
1309 
1310 static int _nfs4_server_capabilities(struct nfs_server *server, struct nfs_fh *fhandle)
1311 {
1312 	struct nfs4_server_caps_res res = {};
1313 	struct rpc_message msg = {
1314 		.rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_SERVER_CAPS],
1315 		.rpc_argp = fhandle,
1316 		.rpc_resp = &res,
1317 	};
1318 	int status;
1319 
1320 	status = rpc_call_sync(server->client, &msg, 0);
1321 	if (status == 0) {
1322 		memcpy(server->attr_bitmask, res.attr_bitmask, sizeof(server->attr_bitmask));
1323 		if (res.attr_bitmask[0] & FATTR4_WORD0_ACL)
1324 			server->caps |= NFS_CAP_ACLS;
1325 		if (res.has_links != 0)
1326 			server->caps |= NFS_CAP_HARDLINKS;
1327 		if (res.has_symlinks != 0)
1328 			server->caps |= NFS_CAP_SYMLINKS;
1329 		server->acl_bitmask = res.acl_bitmask;
1330 	}
1331 	return status;
1332 }
1333 
1334 static int nfs4_server_capabilities(struct nfs_server *server, struct nfs_fh *fhandle)
1335 {
1336 	struct nfs4_exception exception = { };
1337 	int err;
1338 	do {
1339 		err = nfs4_handle_exception(server,
1340 				_nfs4_server_capabilities(server, fhandle),
1341 				&exception);
1342 	} while (exception.retry);
1343 	return err;
1344 }
1345 
1346 static int _nfs4_lookup_root(struct nfs_server *server, struct nfs_fh *fhandle,
1347 		struct nfs_fsinfo *info)
1348 {
1349 	struct nfs4_lookup_root_arg args = {
1350 		.bitmask = nfs4_fattr_bitmap,
1351 	};
1352 	struct nfs4_lookup_res res = {
1353 		.server = server,
1354 		.fattr = info->fattr,
1355 		.fh = fhandle,
1356 	};
1357 	struct rpc_message msg = {
1358 		.rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_LOOKUP_ROOT],
1359 		.rpc_argp = &args,
1360 		.rpc_resp = &res,
1361 	};
1362 	nfs_fattr_init(info->fattr);
1363 	return rpc_call_sync(server->client, &msg, 0);
1364 }
1365 
1366 static int nfs4_lookup_root(struct nfs_server *server, struct nfs_fh *fhandle,
1367 		struct nfs_fsinfo *info)
1368 {
1369 	struct nfs4_exception exception = { };
1370 	int err;
1371 	do {
1372 		err = nfs4_handle_exception(server,
1373 				_nfs4_lookup_root(server, fhandle, info),
1374 				&exception);
1375 	} while (exception.retry);
1376 	return err;
1377 }
1378 
1379 static int nfs4_proc_get_root(struct nfs_server *server, struct nfs_fh *fhandle,
1380 		struct nfs_fsinfo *info)
1381 {
1382 	struct nfs_fattr *	fattr = info->fattr;
1383 	unsigned char *		p;
1384 	struct qstr		q;
1385 	struct nfs4_lookup_arg args = {
1386 		.dir_fh = fhandle,
1387 		.name = &q,
1388 		.bitmask = nfs4_fattr_bitmap,
1389 	};
1390 	struct nfs4_lookup_res res = {
1391 		.server = server,
1392 		.fattr = fattr,
1393 		.fh = fhandle,
1394 	};
1395 	struct rpc_message msg = {
1396 		.rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_LOOKUP],
1397 		.rpc_argp = &args,
1398 		.rpc_resp = &res,
1399 	};
1400 	int status;
1401 
1402 	/*
1403 	 * Now we do a separate LOOKUP for each component of the mount path.
1404 	 * The LOOKUPs are done separately so that we can conveniently
1405 	 * catch an ERR_WRONGSEC if it occurs along the way...
1406 	 */
1407 	status = nfs4_lookup_root(server, fhandle, info);
1408 	if (status)
1409 		goto out;
1410 
1411 	p = server->mnt_path;
1412 	for (;;) {
1413 		struct nfs4_exception exception = { };
1414 
1415 		while (*p == '/')
1416 			p++;
1417 		if (!*p)
1418 			break;
1419 		q.name = p;
1420 		while (*p && (*p != '/'))
1421 			p++;
1422 		q.len = p - q.name;
1423 
1424 		do {
1425 			nfs_fattr_init(fattr);
1426 			status = nfs4_handle_exception(server,
1427 					rpc_call_sync(server->client, &msg, 0),
1428 					&exception);
1429 		} while (exception.retry);
1430 		if (status == 0)
1431 			continue;
1432 		if (status == -ENOENT) {
1433 			printk(KERN_NOTICE "NFS: mount path %s does not exist!\n", server->mnt_path);
1434 			printk(KERN_NOTICE "NFS: suggestion: try mounting '/' instead.\n");
1435 		}
1436 		break;
1437 	}
1438 	if (status == 0)
1439 		status = nfs4_server_capabilities(server, fhandle);
1440 	if (status == 0)
1441 		status = nfs4_do_fsinfo(server, fhandle, info);
1442 out:
1443 	return nfs4_map_errors(status);
1444 }
1445 
1446 static int _nfs4_proc_getattr(struct nfs_server *server, struct nfs_fh *fhandle, struct nfs_fattr *fattr)
1447 {
1448 	struct nfs4_getattr_arg args = {
1449 		.fh = fhandle,
1450 		.bitmask = server->attr_bitmask,
1451 	};
1452 	struct nfs4_getattr_res res = {
1453 		.fattr = fattr,
1454 		.server = server,
1455 	};
1456 	struct rpc_message msg = {
1457 		.rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_GETATTR],
1458 		.rpc_argp = &args,
1459 		.rpc_resp = &res,
1460 	};
1461 
1462 	nfs_fattr_init(fattr);
1463 	return rpc_call_sync(server->client, &msg, 0);
1464 }
1465 
1466 static int nfs4_proc_getattr(struct nfs_server *server, struct nfs_fh *fhandle, struct nfs_fattr *fattr)
1467 {
1468 	struct nfs4_exception exception = { };
1469 	int err;
1470 	do {
1471 		err = nfs4_handle_exception(server,
1472 				_nfs4_proc_getattr(server, fhandle, fattr),
1473 				&exception);
1474 	} while (exception.retry);
1475 	return err;
1476 }
1477 
1478 /*
1479  * The file is not closed if it is opened due to the a request to change
1480  * the size of the file. The open call will not be needed once the
1481  * VFS layer lookup-intents are implemented.
1482  *
1483  * Close is called when the inode is destroyed.
1484  * If we haven't opened the file for O_WRONLY, we
1485  * need to in the size_change case to obtain a stateid.
1486  *
1487  * Got race?
1488  * Because OPEN is always done by name in nfsv4, it is
1489  * possible that we opened a different file by the same
1490  * name.  We can recognize this race condition, but we
1491  * can't do anything about it besides returning an error.
1492  *
1493  * This will be fixed with VFS changes (lookup-intent).
1494  */
1495 static int
1496 nfs4_proc_setattr(struct dentry *dentry, struct nfs_fattr *fattr,
1497 		  struct iattr *sattr)
1498 {
1499 	struct rpc_cred *cred;
1500 	struct inode *inode = dentry->d_inode;
1501 	struct nfs_open_context *ctx;
1502 	struct nfs4_state *state = NULL;
1503 	int status;
1504 
1505 	nfs_fattr_init(fattr);
1506 
1507 	cred = rpcauth_lookupcred(NFS_SERVER(inode)->client->cl_auth, 0);
1508 	if (IS_ERR(cred))
1509 		return PTR_ERR(cred);
1510 
1511 	/* Search for an existing open(O_WRITE) file */
1512 	ctx = nfs_find_open_context(inode, cred, FMODE_WRITE);
1513 	if (ctx != NULL)
1514 		state = ctx->state;
1515 
1516 	status = nfs4_do_setattr(inode, fattr, sattr, state);
1517 	if (status == 0)
1518 		nfs_setattr_update_inode(inode, sattr);
1519 	if (ctx != NULL)
1520 		put_nfs_open_context(ctx);
1521 	put_rpccred(cred);
1522 	return status;
1523 }
1524 
1525 static int _nfs4_proc_lookup(struct inode *dir, struct qstr *name,
1526 		struct nfs_fh *fhandle, struct nfs_fattr *fattr)
1527 {
1528 	int		       status;
1529 	struct nfs_server *server = NFS_SERVER(dir);
1530 	struct nfs4_lookup_arg args = {
1531 		.bitmask = server->attr_bitmask,
1532 		.dir_fh = NFS_FH(dir),
1533 		.name = name,
1534 	};
1535 	struct nfs4_lookup_res res = {
1536 		.server = server,
1537 		.fattr = fattr,
1538 		.fh = fhandle,
1539 	};
1540 	struct rpc_message msg = {
1541 		.rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_LOOKUP],
1542 		.rpc_argp = &args,
1543 		.rpc_resp = &res,
1544 	};
1545 
1546 	nfs_fattr_init(fattr);
1547 
1548 	dprintk("NFS call  lookup %s\n", name->name);
1549 	status = rpc_call_sync(NFS_CLIENT(dir), &msg, 0);
1550 	dprintk("NFS reply lookup: %d\n", status);
1551 	return status;
1552 }
1553 
1554 static int nfs4_proc_lookup(struct inode *dir, struct qstr *name, struct nfs_fh *fhandle, struct nfs_fattr *fattr)
1555 {
1556 	struct nfs4_exception exception = { };
1557 	int err;
1558 	do {
1559 		err = nfs4_handle_exception(NFS_SERVER(dir),
1560 				_nfs4_proc_lookup(dir, name, fhandle, fattr),
1561 				&exception);
1562 	} while (exception.retry);
1563 	return err;
1564 }
1565 
1566 static int _nfs4_proc_access(struct inode *inode, struct nfs_access_entry *entry)
1567 {
1568 	struct nfs4_accessargs args = {
1569 		.fh = NFS_FH(inode),
1570 	};
1571 	struct nfs4_accessres res = { 0 };
1572 	struct rpc_message msg = {
1573 		.rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_ACCESS],
1574 		.rpc_argp = &args,
1575 		.rpc_resp = &res,
1576 		.rpc_cred = entry->cred,
1577 	};
1578 	int mode = entry->mask;
1579 	int status;
1580 
1581 	/*
1582 	 * Determine which access bits we want to ask for...
1583 	 */
1584 	if (mode & MAY_READ)
1585 		args.access |= NFS4_ACCESS_READ;
1586 	if (S_ISDIR(inode->i_mode)) {
1587 		if (mode & MAY_WRITE)
1588 			args.access |= NFS4_ACCESS_MODIFY | NFS4_ACCESS_EXTEND | NFS4_ACCESS_DELETE;
1589 		if (mode & MAY_EXEC)
1590 			args.access |= NFS4_ACCESS_LOOKUP;
1591 	} else {
1592 		if (mode & MAY_WRITE)
1593 			args.access |= NFS4_ACCESS_MODIFY | NFS4_ACCESS_EXTEND;
1594 		if (mode & MAY_EXEC)
1595 			args.access |= NFS4_ACCESS_EXECUTE;
1596 	}
1597 	status = rpc_call_sync(NFS_CLIENT(inode), &msg, 0);
1598 	if (!status) {
1599 		entry->mask = 0;
1600 		if (res.access & NFS4_ACCESS_READ)
1601 			entry->mask |= MAY_READ;
1602 		if (res.access & (NFS4_ACCESS_MODIFY | NFS4_ACCESS_EXTEND | NFS4_ACCESS_DELETE))
1603 			entry->mask |= MAY_WRITE;
1604 		if (res.access & (NFS4_ACCESS_LOOKUP|NFS4_ACCESS_EXECUTE))
1605 			entry->mask |= MAY_EXEC;
1606 	}
1607 	return status;
1608 }
1609 
1610 static int nfs4_proc_access(struct inode *inode, struct nfs_access_entry *entry)
1611 {
1612 	struct nfs4_exception exception = { };
1613 	int err;
1614 	do {
1615 		err = nfs4_handle_exception(NFS_SERVER(inode),
1616 				_nfs4_proc_access(inode, entry),
1617 				&exception);
1618 	} while (exception.retry);
1619 	return err;
1620 }
1621 
1622 /*
1623  * TODO: For the time being, we don't try to get any attributes
1624  * along with any of the zero-copy operations READ, READDIR,
1625  * READLINK, WRITE.
1626  *
1627  * In the case of the first three, we want to put the GETATTR
1628  * after the read-type operation -- this is because it is hard
1629  * to predict the length of a GETATTR response in v4, and thus
1630  * align the READ data correctly.  This means that the GETATTR
1631  * may end up partially falling into the page cache, and we should
1632  * shift it into the 'tail' of the xdr_buf before processing.
1633  * To do this efficiently, we need to know the total length
1634  * of data received, which doesn't seem to be available outside
1635  * of the RPC layer.
1636  *
1637  * In the case of WRITE, we also want to put the GETATTR after
1638  * the operation -- in this case because we want to make sure
1639  * we get the post-operation mtime and size.  This means that
1640  * we can't use xdr_encode_pages() as written: we need a variant
1641  * of it which would leave room in the 'tail' iovec.
1642  *
1643  * Both of these changes to the XDR layer would in fact be quite
1644  * minor, but I decided to leave them for a subsequent patch.
1645  */
1646 static int _nfs4_proc_readlink(struct inode *inode, struct page *page,
1647 		unsigned int pgbase, unsigned int pglen)
1648 {
1649 	struct nfs4_readlink args = {
1650 		.fh       = NFS_FH(inode),
1651 		.pgbase	  = pgbase,
1652 		.pglen    = pglen,
1653 		.pages    = &page,
1654 	};
1655 	struct rpc_message msg = {
1656 		.rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_READLINK],
1657 		.rpc_argp = &args,
1658 		.rpc_resp = NULL,
1659 	};
1660 
1661 	return rpc_call_sync(NFS_CLIENT(inode), &msg, 0);
1662 }
1663 
1664 static int nfs4_proc_readlink(struct inode *inode, struct page *page,
1665 		unsigned int pgbase, unsigned int pglen)
1666 {
1667 	struct nfs4_exception exception = { };
1668 	int err;
1669 	do {
1670 		err = nfs4_handle_exception(NFS_SERVER(inode),
1671 				_nfs4_proc_readlink(inode, page, pgbase, pglen),
1672 				&exception);
1673 	} while (exception.retry);
1674 	return err;
1675 }
1676 
1677 static int _nfs4_proc_read(struct nfs_read_data *rdata)
1678 {
1679 	int flags = rdata->flags;
1680 	struct inode *inode = rdata->inode;
1681 	struct nfs_fattr *fattr = rdata->res.fattr;
1682 	struct nfs_server *server = NFS_SERVER(inode);
1683 	struct rpc_message msg = {
1684 		.rpc_proc	= &nfs4_procedures[NFSPROC4_CLNT_READ],
1685 		.rpc_argp	= &rdata->args,
1686 		.rpc_resp	= &rdata->res,
1687 		.rpc_cred	= rdata->cred,
1688 	};
1689 	unsigned long timestamp = jiffies;
1690 	int status;
1691 
1692 	dprintk("NFS call  read %d @ %Ld\n", rdata->args.count,
1693 			(long long) rdata->args.offset);
1694 
1695 	nfs_fattr_init(fattr);
1696 	status = rpc_call_sync(server->client, &msg, flags);
1697 	if (!status)
1698 		renew_lease(server, timestamp);
1699 	dprintk("NFS reply read: %d\n", status);
1700 	return status;
1701 }
1702 
1703 static int nfs4_proc_read(struct nfs_read_data *rdata)
1704 {
1705 	struct nfs4_exception exception = { };
1706 	int err;
1707 	do {
1708 		err = nfs4_handle_exception(NFS_SERVER(rdata->inode),
1709 				_nfs4_proc_read(rdata),
1710 				&exception);
1711 	} while (exception.retry);
1712 	return err;
1713 }
1714 
1715 static int _nfs4_proc_write(struct nfs_write_data *wdata)
1716 {
1717 	int rpcflags = wdata->flags;
1718 	struct inode *inode = wdata->inode;
1719 	struct nfs_fattr *fattr = wdata->res.fattr;
1720 	struct nfs_server *server = NFS_SERVER(inode);
1721 	struct rpc_message msg = {
1722 		.rpc_proc	= &nfs4_procedures[NFSPROC4_CLNT_WRITE],
1723 		.rpc_argp	= &wdata->args,
1724 		.rpc_resp	= &wdata->res,
1725 		.rpc_cred	= wdata->cred,
1726 	};
1727 	int status;
1728 
1729 	dprintk("NFS call  write %d @ %Ld\n", wdata->args.count,
1730 			(long long) wdata->args.offset);
1731 
1732 	wdata->args.bitmask = server->attr_bitmask;
1733 	wdata->res.server = server;
1734 	wdata->timestamp = jiffies;
1735 	nfs_fattr_init(fattr);
1736 	status = rpc_call_sync(server->client, &msg, rpcflags);
1737 	dprintk("NFS reply write: %d\n", status);
1738 	if (status < 0)
1739 		return status;
1740 	renew_lease(server, wdata->timestamp);
1741 	nfs_post_op_update_inode(inode, fattr);
1742 	return wdata->res.count;
1743 }
1744 
1745 static int nfs4_proc_write(struct nfs_write_data *wdata)
1746 {
1747 	struct nfs4_exception exception = { };
1748 	int err;
1749 	do {
1750 		err = nfs4_handle_exception(NFS_SERVER(wdata->inode),
1751 				_nfs4_proc_write(wdata),
1752 				&exception);
1753 	} while (exception.retry);
1754 	return err;
1755 }
1756 
1757 static int _nfs4_proc_commit(struct nfs_write_data *cdata)
1758 {
1759 	struct inode *inode = cdata->inode;
1760 	struct nfs_fattr *fattr = cdata->res.fattr;
1761 	struct nfs_server *server = NFS_SERVER(inode);
1762 	struct rpc_message msg = {
1763 		.rpc_proc	= &nfs4_procedures[NFSPROC4_CLNT_COMMIT],
1764 		.rpc_argp	= &cdata->args,
1765 		.rpc_resp	= &cdata->res,
1766 		.rpc_cred	= cdata->cred,
1767 	};
1768 	int status;
1769 
1770 	dprintk("NFS call  commit %d @ %Ld\n", cdata->args.count,
1771 			(long long) cdata->args.offset);
1772 
1773 	cdata->args.bitmask = server->attr_bitmask;
1774 	cdata->res.server = server;
1775 	cdata->timestamp = jiffies;
1776 	nfs_fattr_init(fattr);
1777 	status = rpc_call_sync(server->client, &msg, 0);
1778 	if (status >= 0)
1779 		renew_lease(server, cdata->timestamp);
1780 	dprintk("NFS reply commit: %d\n", status);
1781 	if (status >= 0)
1782 		nfs_post_op_update_inode(inode, fattr);
1783 	return status;
1784 }
1785 
1786 static int nfs4_proc_commit(struct nfs_write_data *cdata)
1787 {
1788 	struct nfs4_exception exception = { };
1789 	int err;
1790 	do {
1791 		err = nfs4_handle_exception(NFS_SERVER(cdata->inode),
1792 				_nfs4_proc_commit(cdata),
1793 				&exception);
1794 	} while (exception.retry);
1795 	return err;
1796 }
1797 
1798 /*
1799  * Got race?
1800  * We will need to arrange for the VFS layer to provide an atomic open.
1801  * Until then, this create/open method is prone to inefficiency and race
1802  * conditions due to the lookup, create, and open VFS calls from sys_open()
1803  * placed on the wire.
1804  *
1805  * Given the above sorry state of affairs, I'm simply sending an OPEN.
1806  * The file will be opened again in the subsequent VFS open call
1807  * (nfs4_proc_file_open).
1808  *
1809  * The open for read will just hang around to be used by any process that
1810  * opens the file O_RDONLY. This will all be resolved with the VFS changes.
1811  */
1812 
1813 static int
1814 nfs4_proc_create(struct inode *dir, struct dentry *dentry, struct iattr *sattr,
1815                  int flags, struct nameidata *nd)
1816 {
1817 	struct nfs4_state *state;
1818 	struct rpc_cred *cred;
1819 	int status = 0;
1820 
1821 	cred = rpcauth_lookupcred(NFS_SERVER(dir)->client->cl_auth, 0);
1822 	if (IS_ERR(cred)) {
1823 		status = PTR_ERR(cred);
1824 		goto out;
1825 	}
1826 	state = nfs4_do_open(dir, dentry, flags, sattr, cred);
1827 	put_rpccred(cred);
1828 	if (IS_ERR(state)) {
1829 		status = PTR_ERR(state);
1830 		goto out;
1831 	}
1832 	d_instantiate(dentry, igrab(state->inode));
1833 	if (flags & O_EXCL) {
1834 		struct nfs_fattr fattr;
1835 		status = nfs4_do_setattr(state->inode, &fattr, sattr, state);
1836 		if (status == 0)
1837 			nfs_setattr_update_inode(state->inode, sattr);
1838 	}
1839 	if (status == 0 && nd != NULL && (nd->flags & LOOKUP_OPEN))
1840 		status = nfs4_intent_set_file(nd, dentry, state);
1841 	else
1842 		nfs4_close_state(state, flags);
1843 out:
1844 	return status;
1845 }
1846 
1847 static int _nfs4_proc_remove(struct inode *dir, struct qstr *name)
1848 {
1849 	struct nfs_server *server = NFS_SERVER(dir);
1850 	struct nfs4_remove_arg args = {
1851 		.fh = NFS_FH(dir),
1852 		.name = name,
1853 		.bitmask = server->attr_bitmask,
1854 	};
1855 	struct nfs_fattr dir_attr;
1856 	struct nfs4_remove_res	res = {
1857 		.server = server,
1858 		.dir_attr = &dir_attr,
1859 	};
1860 	struct rpc_message msg = {
1861 		.rpc_proc	= &nfs4_procedures[NFSPROC4_CLNT_REMOVE],
1862 		.rpc_argp	= &args,
1863 		.rpc_resp	= &res,
1864 	};
1865 	int			status;
1866 
1867 	nfs_fattr_init(res.dir_attr);
1868 	status = rpc_call_sync(server->client, &msg, 0);
1869 	if (status == 0) {
1870 		update_changeattr(dir, &res.cinfo);
1871 		nfs_post_op_update_inode(dir, res.dir_attr);
1872 	}
1873 	return status;
1874 }
1875 
1876 static int nfs4_proc_remove(struct inode *dir, struct qstr *name)
1877 {
1878 	struct nfs4_exception exception = { };
1879 	int err;
1880 	do {
1881 		err = nfs4_handle_exception(NFS_SERVER(dir),
1882 				_nfs4_proc_remove(dir, name),
1883 				&exception);
1884 	} while (exception.retry);
1885 	return err;
1886 }
1887 
1888 struct unlink_desc {
1889 	struct nfs4_remove_arg	args;
1890 	struct nfs4_remove_res	res;
1891 	struct nfs_fattr dir_attr;
1892 };
1893 
1894 static int nfs4_proc_unlink_setup(struct rpc_message *msg, struct dentry *dir,
1895 		struct qstr *name)
1896 {
1897 	struct nfs_server *server = NFS_SERVER(dir->d_inode);
1898 	struct unlink_desc *up;
1899 
1900 	up = (struct unlink_desc *) kmalloc(sizeof(*up), GFP_KERNEL);
1901 	if (!up)
1902 		return -ENOMEM;
1903 
1904 	up->args.fh = NFS_FH(dir->d_inode);
1905 	up->args.name = name;
1906 	up->args.bitmask = server->attr_bitmask;
1907 	up->res.server = server;
1908 	up->res.dir_attr = &up->dir_attr;
1909 
1910 	msg->rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_REMOVE];
1911 	msg->rpc_argp = &up->args;
1912 	msg->rpc_resp = &up->res;
1913 	return 0;
1914 }
1915 
1916 static int nfs4_proc_unlink_done(struct dentry *dir, struct rpc_task *task)
1917 {
1918 	struct rpc_message *msg = &task->tk_msg;
1919 	struct unlink_desc *up;
1920 
1921 	if (msg->rpc_resp != NULL) {
1922 		up = container_of(msg->rpc_resp, struct unlink_desc, res);
1923 		update_changeattr(dir->d_inode, &up->res.cinfo);
1924 		nfs_post_op_update_inode(dir->d_inode, up->res.dir_attr);
1925 		kfree(up);
1926 		msg->rpc_resp = NULL;
1927 		msg->rpc_argp = NULL;
1928 	}
1929 	return 0;
1930 }
1931 
1932 static int _nfs4_proc_rename(struct inode *old_dir, struct qstr *old_name,
1933 		struct inode *new_dir, struct qstr *new_name)
1934 {
1935 	struct nfs_server *server = NFS_SERVER(old_dir);
1936 	struct nfs4_rename_arg arg = {
1937 		.old_dir = NFS_FH(old_dir),
1938 		.new_dir = NFS_FH(new_dir),
1939 		.old_name = old_name,
1940 		.new_name = new_name,
1941 		.bitmask = server->attr_bitmask,
1942 	};
1943 	struct nfs_fattr old_fattr, new_fattr;
1944 	struct nfs4_rename_res res = {
1945 		.server = server,
1946 		.old_fattr = &old_fattr,
1947 		.new_fattr = &new_fattr,
1948 	};
1949 	struct rpc_message msg = {
1950 		.rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_RENAME],
1951 		.rpc_argp = &arg,
1952 		.rpc_resp = &res,
1953 	};
1954 	int			status;
1955 
1956 	nfs_fattr_init(res.old_fattr);
1957 	nfs_fattr_init(res.new_fattr);
1958 	status = rpc_call_sync(server->client, &msg, 0);
1959 
1960 	if (!status) {
1961 		update_changeattr(old_dir, &res.old_cinfo);
1962 		nfs_post_op_update_inode(old_dir, res.old_fattr);
1963 		update_changeattr(new_dir, &res.new_cinfo);
1964 		nfs_post_op_update_inode(new_dir, res.new_fattr);
1965 	}
1966 	return status;
1967 }
1968 
1969 static int nfs4_proc_rename(struct inode *old_dir, struct qstr *old_name,
1970 		struct inode *new_dir, struct qstr *new_name)
1971 {
1972 	struct nfs4_exception exception = { };
1973 	int err;
1974 	do {
1975 		err = nfs4_handle_exception(NFS_SERVER(old_dir),
1976 				_nfs4_proc_rename(old_dir, old_name,
1977 					new_dir, new_name),
1978 				&exception);
1979 	} while (exception.retry);
1980 	return err;
1981 }
1982 
1983 static int _nfs4_proc_link(struct inode *inode, struct inode *dir, struct qstr *name)
1984 {
1985 	struct nfs_server *server = NFS_SERVER(inode);
1986 	struct nfs4_link_arg arg = {
1987 		.fh     = NFS_FH(inode),
1988 		.dir_fh = NFS_FH(dir),
1989 		.name   = name,
1990 		.bitmask = server->attr_bitmask,
1991 	};
1992 	struct nfs_fattr fattr, dir_attr;
1993 	struct nfs4_link_res res = {
1994 		.server = server,
1995 		.fattr = &fattr,
1996 		.dir_attr = &dir_attr,
1997 	};
1998 	struct rpc_message msg = {
1999 		.rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_LINK],
2000 		.rpc_argp = &arg,
2001 		.rpc_resp = &res,
2002 	};
2003 	int			status;
2004 
2005 	nfs_fattr_init(res.fattr);
2006 	nfs_fattr_init(res.dir_attr);
2007 	status = rpc_call_sync(server->client, &msg, 0);
2008 	if (!status) {
2009 		update_changeattr(dir, &res.cinfo);
2010 		nfs_post_op_update_inode(dir, res.dir_attr);
2011 		nfs_refresh_inode(inode, res.fattr);
2012 	}
2013 
2014 	return status;
2015 }
2016 
2017 static int nfs4_proc_link(struct inode *inode, struct inode *dir, struct qstr *name)
2018 {
2019 	struct nfs4_exception exception = { };
2020 	int err;
2021 	do {
2022 		err = nfs4_handle_exception(NFS_SERVER(inode),
2023 				_nfs4_proc_link(inode, dir, name),
2024 				&exception);
2025 	} while (exception.retry);
2026 	return err;
2027 }
2028 
2029 static int _nfs4_proc_symlink(struct inode *dir, struct qstr *name,
2030 		struct qstr *path, struct iattr *sattr, struct nfs_fh *fhandle,
2031 		struct nfs_fattr *fattr)
2032 {
2033 	struct nfs_server *server = NFS_SERVER(dir);
2034 	struct nfs_fattr dir_fattr;
2035 	struct nfs4_create_arg arg = {
2036 		.dir_fh = NFS_FH(dir),
2037 		.server = server,
2038 		.name = name,
2039 		.attrs = sattr,
2040 		.ftype = NF4LNK,
2041 		.bitmask = server->attr_bitmask,
2042 	};
2043 	struct nfs4_create_res res = {
2044 		.server = server,
2045 		.fh = fhandle,
2046 		.fattr = fattr,
2047 		.dir_fattr = &dir_fattr,
2048 	};
2049 	struct rpc_message msg = {
2050 		.rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_SYMLINK],
2051 		.rpc_argp = &arg,
2052 		.rpc_resp = &res,
2053 	};
2054 	int			status;
2055 
2056 	if (path->len > NFS4_MAXPATHLEN)
2057 		return -ENAMETOOLONG;
2058 	arg.u.symlink = path;
2059 	nfs_fattr_init(fattr);
2060 	nfs_fattr_init(&dir_fattr);
2061 
2062 	status = rpc_call_sync(NFS_CLIENT(dir), &msg, 0);
2063 	if (!status)
2064 		update_changeattr(dir, &res.dir_cinfo);
2065 	nfs_post_op_update_inode(dir, res.dir_fattr);
2066 	return status;
2067 }
2068 
2069 static int nfs4_proc_symlink(struct inode *dir, struct qstr *name,
2070 		struct qstr *path, struct iattr *sattr, struct nfs_fh *fhandle,
2071 		struct nfs_fattr *fattr)
2072 {
2073 	struct nfs4_exception exception = { };
2074 	int err;
2075 	do {
2076 		err = nfs4_handle_exception(NFS_SERVER(dir),
2077 				_nfs4_proc_symlink(dir, name, path, sattr,
2078 					fhandle, fattr),
2079 				&exception);
2080 	} while (exception.retry);
2081 	return err;
2082 }
2083 
2084 static int _nfs4_proc_mkdir(struct inode *dir, struct dentry *dentry,
2085 		struct iattr *sattr)
2086 {
2087 	struct nfs_server *server = NFS_SERVER(dir);
2088 	struct nfs_fh fhandle;
2089 	struct nfs_fattr fattr, dir_fattr;
2090 	struct nfs4_create_arg arg = {
2091 		.dir_fh = NFS_FH(dir),
2092 		.server = server,
2093 		.name = &dentry->d_name,
2094 		.attrs = sattr,
2095 		.ftype = NF4DIR,
2096 		.bitmask = server->attr_bitmask,
2097 	};
2098 	struct nfs4_create_res res = {
2099 		.server = server,
2100 		.fh = &fhandle,
2101 		.fattr = &fattr,
2102 		.dir_fattr = &dir_fattr,
2103 	};
2104 	struct rpc_message msg = {
2105 		.rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_CREATE],
2106 		.rpc_argp = &arg,
2107 		.rpc_resp = &res,
2108 	};
2109 	int			status;
2110 
2111 	nfs_fattr_init(&fattr);
2112 	nfs_fattr_init(&dir_fattr);
2113 
2114 	status = rpc_call_sync(NFS_CLIENT(dir), &msg, 0);
2115 	if (!status) {
2116 		update_changeattr(dir, &res.dir_cinfo);
2117 		nfs_post_op_update_inode(dir, res.dir_fattr);
2118 		status = nfs_instantiate(dentry, &fhandle, &fattr);
2119 	}
2120 	return status;
2121 }
2122 
2123 static int nfs4_proc_mkdir(struct inode *dir, struct dentry *dentry,
2124 		struct iattr *sattr)
2125 {
2126 	struct nfs4_exception exception = { };
2127 	int err;
2128 	do {
2129 		err = nfs4_handle_exception(NFS_SERVER(dir),
2130 				_nfs4_proc_mkdir(dir, dentry, sattr),
2131 				&exception);
2132 	} while (exception.retry);
2133 	return err;
2134 }
2135 
2136 static int _nfs4_proc_readdir(struct dentry *dentry, struct rpc_cred *cred,
2137                   u64 cookie, struct page *page, unsigned int count, int plus)
2138 {
2139 	struct inode		*dir = dentry->d_inode;
2140 	struct nfs4_readdir_arg args = {
2141 		.fh = NFS_FH(dir),
2142 		.pages = &page,
2143 		.pgbase = 0,
2144 		.count = count,
2145 		.bitmask = NFS_SERVER(dentry->d_inode)->attr_bitmask,
2146 	};
2147 	struct nfs4_readdir_res res;
2148 	struct rpc_message msg = {
2149 		.rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_READDIR],
2150 		.rpc_argp = &args,
2151 		.rpc_resp = &res,
2152 		.rpc_cred = cred,
2153 	};
2154 	int			status;
2155 
2156 	dprintk("%s: dentry = %s/%s, cookie = %Lu\n", __FUNCTION__,
2157 			dentry->d_parent->d_name.name,
2158 			dentry->d_name.name,
2159 			(unsigned long long)cookie);
2160 	lock_kernel();
2161 	nfs4_setup_readdir(cookie, NFS_COOKIEVERF(dir), dentry, &args);
2162 	res.pgbase = args.pgbase;
2163 	status = rpc_call_sync(NFS_CLIENT(dir), &msg, 0);
2164 	if (status == 0)
2165 		memcpy(NFS_COOKIEVERF(dir), res.verifier.data, NFS4_VERIFIER_SIZE);
2166 	unlock_kernel();
2167 	dprintk("%s: returns %d\n", __FUNCTION__, status);
2168 	return status;
2169 }
2170 
2171 static int nfs4_proc_readdir(struct dentry *dentry, struct rpc_cred *cred,
2172                   u64 cookie, struct page *page, unsigned int count, int plus)
2173 {
2174 	struct nfs4_exception exception = { };
2175 	int err;
2176 	do {
2177 		err = nfs4_handle_exception(NFS_SERVER(dentry->d_inode),
2178 				_nfs4_proc_readdir(dentry, cred, cookie,
2179 					page, count, plus),
2180 				&exception);
2181 	} while (exception.retry);
2182 	return err;
2183 }
2184 
2185 static int _nfs4_proc_mknod(struct inode *dir, struct dentry *dentry,
2186 		struct iattr *sattr, dev_t rdev)
2187 {
2188 	struct nfs_server *server = NFS_SERVER(dir);
2189 	struct nfs_fh fh;
2190 	struct nfs_fattr fattr, dir_fattr;
2191 	struct nfs4_create_arg arg = {
2192 		.dir_fh = NFS_FH(dir),
2193 		.server = server,
2194 		.name = &dentry->d_name,
2195 		.attrs = sattr,
2196 		.bitmask = server->attr_bitmask,
2197 	};
2198 	struct nfs4_create_res res = {
2199 		.server = server,
2200 		.fh = &fh,
2201 		.fattr = &fattr,
2202 		.dir_fattr = &dir_fattr,
2203 	};
2204 	struct rpc_message msg = {
2205 		.rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_CREATE],
2206 		.rpc_argp = &arg,
2207 		.rpc_resp = &res,
2208 	};
2209 	int			status;
2210 	int                     mode = sattr->ia_mode;
2211 
2212 	nfs_fattr_init(&fattr);
2213 	nfs_fattr_init(&dir_fattr);
2214 
2215 	BUG_ON(!(sattr->ia_valid & ATTR_MODE));
2216 	BUG_ON(!S_ISFIFO(mode) && !S_ISBLK(mode) && !S_ISCHR(mode) && !S_ISSOCK(mode));
2217 	if (S_ISFIFO(mode))
2218 		arg.ftype = NF4FIFO;
2219 	else if (S_ISBLK(mode)) {
2220 		arg.ftype = NF4BLK;
2221 		arg.u.device.specdata1 = MAJOR(rdev);
2222 		arg.u.device.specdata2 = MINOR(rdev);
2223 	}
2224 	else if (S_ISCHR(mode)) {
2225 		arg.ftype = NF4CHR;
2226 		arg.u.device.specdata1 = MAJOR(rdev);
2227 		arg.u.device.specdata2 = MINOR(rdev);
2228 	}
2229 	else
2230 		arg.ftype = NF4SOCK;
2231 
2232 	status = rpc_call_sync(NFS_CLIENT(dir), &msg, 0);
2233 	if (status == 0) {
2234 		update_changeattr(dir, &res.dir_cinfo);
2235 		nfs_post_op_update_inode(dir, res.dir_fattr);
2236 		status = nfs_instantiate(dentry, &fh, &fattr);
2237 	}
2238 	return status;
2239 }
2240 
2241 static int nfs4_proc_mknod(struct inode *dir, struct dentry *dentry,
2242 		struct iattr *sattr, dev_t rdev)
2243 {
2244 	struct nfs4_exception exception = { };
2245 	int err;
2246 	do {
2247 		err = nfs4_handle_exception(NFS_SERVER(dir),
2248 				_nfs4_proc_mknod(dir, dentry, sattr, rdev),
2249 				&exception);
2250 	} while (exception.retry);
2251 	return err;
2252 }
2253 
2254 static int _nfs4_proc_statfs(struct nfs_server *server, struct nfs_fh *fhandle,
2255 		 struct nfs_fsstat *fsstat)
2256 {
2257 	struct nfs4_statfs_arg args = {
2258 		.fh = fhandle,
2259 		.bitmask = server->attr_bitmask,
2260 	};
2261 	struct rpc_message msg = {
2262 		.rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_STATFS],
2263 		.rpc_argp = &args,
2264 		.rpc_resp = fsstat,
2265 	};
2266 
2267 	nfs_fattr_init(fsstat->fattr);
2268 	return rpc_call_sync(server->client, &msg, 0);
2269 }
2270 
2271 static int nfs4_proc_statfs(struct nfs_server *server, struct nfs_fh *fhandle, struct nfs_fsstat *fsstat)
2272 {
2273 	struct nfs4_exception exception = { };
2274 	int err;
2275 	do {
2276 		err = nfs4_handle_exception(server,
2277 				_nfs4_proc_statfs(server, fhandle, fsstat),
2278 				&exception);
2279 	} while (exception.retry);
2280 	return err;
2281 }
2282 
2283 static int _nfs4_do_fsinfo(struct nfs_server *server, struct nfs_fh *fhandle,
2284 		struct nfs_fsinfo *fsinfo)
2285 {
2286 	struct nfs4_fsinfo_arg args = {
2287 		.fh = fhandle,
2288 		.bitmask = server->attr_bitmask,
2289 	};
2290 	struct rpc_message msg = {
2291 		.rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_FSINFO],
2292 		.rpc_argp = &args,
2293 		.rpc_resp = fsinfo,
2294 	};
2295 
2296 	return rpc_call_sync(server->client, &msg, 0);
2297 }
2298 
2299 static int nfs4_do_fsinfo(struct nfs_server *server, struct nfs_fh *fhandle, struct nfs_fsinfo *fsinfo)
2300 {
2301 	struct nfs4_exception exception = { };
2302 	int err;
2303 
2304 	do {
2305 		err = nfs4_handle_exception(server,
2306 				_nfs4_do_fsinfo(server, fhandle, fsinfo),
2307 				&exception);
2308 	} while (exception.retry);
2309 	return err;
2310 }
2311 
2312 static int nfs4_proc_fsinfo(struct nfs_server *server, struct nfs_fh *fhandle, struct nfs_fsinfo *fsinfo)
2313 {
2314 	nfs_fattr_init(fsinfo->fattr);
2315 	return nfs4_do_fsinfo(server, fhandle, fsinfo);
2316 }
2317 
2318 static int _nfs4_proc_pathconf(struct nfs_server *server, struct nfs_fh *fhandle,
2319 		struct nfs_pathconf *pathconf)
2320 {
2321 	struct nfs4_pathconf_arg args = {
2322 		.fh = fhandle,
2323 		.bitmask = server->attr_bitmask,
2324 	};
2325 	struct rpc_message msg = {
2326 		.rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_PATHCONF],
2327 		.rpc_argp = &args,
2328 		.rpc_resp = pathconf,
2329 	};
2330 
2331 	/* None of the pathconf attributes are mandatory to implement */
2332 	if ((args.bitmask[0] & nfs4_pathconf_bitmap[0]) == 0) {
2333 		memset(pathconf, 0, sizeof(*pathconf));
2334 		return 0;
2335 	}
2336 
2337 	nfs_fattr_init(pathconf->fattr);
2338 	return rpc_call_sync(server->client, &msg, 0);
2339 }
2340 
2341 static int nfs4_proc_pathconf(struct nfs_server *server, struct nfs_fh *fhandle,
2342 		struct nfs_pathconf *pathconf)
2343 {
2344 	struct nfs4_exception exception = { };
2345 	int err;
2346 
2347 	do {
2348 		err = nfs4_handle_exception(server,
2349 				_nfs4_proc_pathconf(server, fhandle, pathconf),
2350 				&exception);
2351 	} while (exception.retry);
2352 	return err;
2353 }
2354 
2355 static int nfs4_read_done(struct rpc_task *task, struct nfs_read_data *data)
2356 {
2357 	struct nfs_server *server = NFS_SERVER(data->inode);
2358 
2359 	if (nfs4_async_handle_error(task, server) == -EAGAIN) {
2360 		rpc_restart_call(task);
2361 		return -EAGAIN;
2362 	}
2363 	if (task->tk_status > 0)
2364 		renew_lease(server, data->timestamp);
2365 	return 0;
2366 }
2367 
2368 static void nfs4_proc_read_setup(struct nfs_read_data *data)
2369 {
2370 	struct rpc_message msg = {
2371 		.rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_READ],
2372 		.rpc_argp = &data->args,
2373 		.rpc_resp = &data->res,
2374 		.rpc_cred = data->cred,
2375 	};
2376 
2377 	data->timestamp   = jiffies;
2378 
2379 	rpc_call_setup(&data->task, &msg, 0);
2380 }
2381 
2382 static int nfs4_write_done(struct rpc_task *task, struct nfs_write_data *data)
2383 {
2384 	struct inode *inode = data->inode;
2385 
2386 	if (nfs4_async_handle_error(task, NFS_SERVER(inode)) == -EAGAIN) {
2387 		rpc_restart_call(task);
2388 		return -EAGAIN;
2389 	}
2390 	if (task->tk_status >= 0) {
2391 		renew_lease(NFS_SERVER(inode), data->timestamp);
2392 		nfs_post_op_update_inode(inode, data->res.fattr);
2393 	}
2394 	return 0;
2395 }
2396 
2397 static void nfs4_proc_write_setup(struct nfs_write_data *data, int how)
2398 {
2399 	struct rpc_message msg = {
2400 		.rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_WRITE],
2401 		.rpc_argp = &data->args,
2402 		.rpc_resp = &data->res,
2403 		.rpc_cred = data->cred,
2404 	};
2405 	struct inode *inode = data->inode;
2406 	struct nfs_server *server = NFS_SERVER(inode);
2407 	int stable;
2408 
2409 	if (how & FLUSH_STABLE) {
2410 		if (!NFS_I(inode)->ncommit)
2411 			stable = NFS_FILE_SYNC;
2412 		else
2413 			stable = NFS_DATA_SYNC;
2414 	} else
2415 		stable = NFS_UNSTABLE;
2416 	data->args.stable = stable;
2417 	data->args.bitmask = server->attr_bitmask;
2418 	data->res.server = server;
2419 
2420 	data->timestamp   = jiffies;
2421 
2422 	/* Finalize the task. */
2423 	rpc_call_setup(&data->task, &msg, 0);
2424 }
2425 
2426 static int nfs4_commit_done(struct rpc_task *task, struct nfs_write_data *data)
2427 {
2428 	struct inode *inode = data->inode;
2429 
2430 	if (nfs4_async_handle_error(task, NFS_SERVER(inode)) == -EAGAIN) {
2431 		rpc_restart_call(task);
2432 		return -EAGAIN;
2433 	}
2434 	if (task->tk_status >= 0)
2435 		nfs_post_op_update_inode(inode, data->res.fattr);
2436 	return 0;
2437 }
2438 
2439 static void nfs4_proc_commit_setup(struct nfs_write_data *data, int how)
2440 {
2441 	struct rpc_message msg = {
2442 		.rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_COMMIT],
2443 		.rpc_argp = &data->args,
2444 		.rpc_resp = &data->res,
2445 		.rpc_cred = data->cred,
2446 	};
2447 	struct nfs_server *server = NFS_SERVER(data->inode);
2448 
2449 	data->args.bitmask = server->attr_bitmask;
2450 	data->res.server = server;
2451 
2452 	rpc_call_setup(&data->task, &msg, 0);
2453 }
2454 
2455 /*
2456  * nfs4_proc_async_renew(): This is not one of the nfs_rpc_ops; it is a special
2457  * standalone procedure for queueing an asynchronous RENEW.
2458  */
2459 static void nfs4_renew_done(struct rpc_task *task, void *data)
2460 {
2461 	struct nfs4_client *clp = (struct nfs4_client *)task->tk_msg.rpc_argp;
2462 	unsigned long timestamp = (unsigned long)data;
2463 
2464 	if (task->tk_status < 0) {
2465 		switch (task->tk_status) {
2466 			case -NFS4ERR_STALE_CLIENTID:
2467 			case -NFS4ERR_EXPIRED:
2468 			case -NFS4ERR_CB_PATH_DOWN:
2469 				nfs4_schedule_state_recovery(clp);
2470 		}
2471 		return;
2472 	}
2473 	spin_lock(&clp->cl_lock);
2474 	if (time_before(clp->cl_last_renewal,timestamp))
2475 		clp->cl_last_renewal = timestamp;
2476 	spin_unlock(&clp->cl_lock);
2477 }
2478 
2479 static const struct rpc_call_ops nfs4_renew_ops = {
2480 	.rpc_call_done = nfs4_renew_done,
2481 };
2482 
2483 int nfs4_proc_async_renew(struct nfs4_client *clp, struct rpc_cred *cred)
2484 {
2485 	struct rpc_message msg = {
2486 		.rpc_proc	= &nfs4_procedures[NFSPROC4_CLNT_RENEW],
2487 		.rpc_argp	= clp,
2488 		.rpc_cred	= cred,
2489 	};
2490 
2491 	return rpc_call_async(clp->cl_rpcclient, &msg, RPC_TASK_SOFT,
2492 			&nfs4_renew_ops, (void *)jiffies);
2493 }
2494 
2495 int nfs4_proc_renew(struct nfs4_client *clp, struct rpc_cred *cred)
2496 {
2497 	struct rpc_message msg = {
2498 		.rpc_proc	= &nfs4_procedures[NFSPROC4_CLNT_RENEW],
2499 		.rpc_argp	= clp,
2500 		.rpc_cred	= cred,
2501 	};
2502 	unsigned long now = jiffies;
2503 	int status;
2504 
2505 	status = rpc_call_sync(clp->cl_rpcclient, &msg, 0);
2506 	if (status < 0)
2507 		return status;
2508 	spin_lock(&clp->cl_lock);
2509 	if (time_before(clp->cl_last_renewal,now))
2510 		clp->cl_last_renewal = now;
2511 	spin_unlock(&clp->cl_lock);
2512 	return 0;
2513 }
2514 
2515 static inline int nfs4_server_supports_acls(struct nfs_server *server)
2516 {
2517 	return (server->caps & NFS_CAP_ACLS)
2518 		&& (server->acl_bitmask & ACL4_SUPPORT_ALLOW_ACL)
2519 		&& (server->acl_bitmask & ACL4_SUPPORT_DENY_ACL);
2520 }
2521 
2522 /* Assuming that XATTR_SIZE_MAX is a multiple of PAGE_CACHE_SIZE, and that
2523  * it's OK to put sizeof(void) * (XATTR_SIZE_MAX/PAGE_CACHE_SIZE) bytes on
2524  * the stack.
2525  */
2526 #define NFS4ACL_MAXPAGES (XATTR_SIZE_MAX >> PAGE_CACHE_SHIFT)
2527 
2528 static void buf_to_pages(const void *buf, size_t buflen,
2529 		struct page **pages, unsigned int *pgbase)
2530 {
2531 	const void *p = buf;
2532 
2533 	*pgbase = offset_in_page(buf);
2534 	p -= *pgbase;
2535 	while (p < buf + buflen) {
2536 		*(pages++) = virt_to_page(p);
2537 		p += PAGE_CACHE_SIZE;
2538 	}
2539 }
2540 
2541 struct nfs4_cached_acl {
2542 	int cached;
2543 	size_t len;
2544 	char data[0];
2545 };
2546 
2547 static void nfs4_set_cached_acl(struct inode *inode, struct nfs4_cached_acl *acl)
2548 {
2549 	struct nfs_inode *nfsi = NFS_I(inode);
2550 
2551 	spin_lock(&inode->i_lock);
2552 	kfree(nfsi->nfs4_acl);
2553 	nfsi->nfs4_acl = acl;
2554 	spin_unlock(&inode->i_lock);
2555 }
2556 
2557 static void nfs4_zap_acl_attr(struct inode *inode)
2558 {
2559 	nfs4_set_cached_acl(inode, NULL);
2560 }
2561 
2562 static inline ssize_t nfs4_read_cached_acl(struct inode *inode, char *buf, size_t buflen)
2563 {
2564 	struct nfs_inode *nfsi = NFS_I(inode);
2565 	struct nfs4_cached_acl *acl;
2566 	int ret = -ENOENT;
2567 
2568 	spin_lock(&inode->i_lock);
2569 	acl = nfsi->nfs4_acl;
2570 	if (acl == NULL)
2571 		goto out;
2572 	if (buf == NULL) /* user is just asking for length */
2573 		goto out_len;
2574 	if (acl->cached == 0)
2575 		goto out;
2576 	ret = -ERANGE; /* see getxattr(2) man page */
2577 	if (acl->len > buflen)
2578 		goto out;
2579 	memcpy(buf, acl->data, acl->len);
2580 out_len:
2581 	ret = acl->len;
2582 out:
2583 	spin_unlock(&inode->i_lock);
2584 	return ret;
2585 }
2586 
2587 static void nfs4_write_cached_acl(struct inode *inode, const char *buf, size_t acl_len)
2588 {
2589 	struct nfs4_cached_acl *acl;
2590 
2591 	if (buf && acl_len <= PAGE_SIZE) {
2592 		acl = kmalloc(sizeof(*acl) + acl_len, GFP_KERNEL);
2593 		if (acl == NULL)
2594 			goto out;
2595 		acl->cached = 1;
2596 		memcpy(acl->data, buf, acl_len);
2597 	} else {
2598 		acl = kmalloc(sizeof(*acl), GFP_KERNEL);
2599 		if (acl == NULL)
2600 			goto out;
2601 		acl->cached = 0;
2602 	}
2603 	acl->len = acl_len;
2604 out:
2605 	nfs4_set_cached_acl(inode, acl);
2606 }
2607 
2608 static inline ssize_t nfs4_get_acl_uncached(struct inode *inode, void *buf, size_t buflen)
2609 {
2610 	struct page *pages[NFS4ACL_MAXPAGES];
2611 	struct nfs_getaclargs args = {
2612 		.fh = NFS_FH(inode),
2613 		.acl_pages = pages,
2614 		.acl_len = buflen,
2615 	};
2616 	size_t resp_len = buflen;
2617 	void *resp_buf;
2618 	struct rpc_message msg = {
2619 		.rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_GETACL],
2620 		.rpc_argp = &args,
2621 		.rpc_resp = &resp_len,
2622 	};
2623 	struct page *localpage = NULL;
2624 	int ret;
2625 
2626 	if (buflen < PAGE_SIZE) {
2627 		/* As long as we're doing a round trip to the server anyway,
2628 		 * let's be prepared for a page of acl data. */
2629 		localpage = alloc_page(GFP_KERNEL);
2630 		resp_buf = page_address(localpage);
2631 		if (localpage == NULL)
2632 			return -ENOMEM;
2633 		args.acl_pages[0] = localpage;
2634 		args.acl_pgbase = 0;
2635 		resp_len = args.acl_len = PAGE_SIZE;
2636 	} else {
2637 		resp_buf = buf;
2638 		buf_to_pages(buf, buflen, args.acl_pages, &args.acl_pgbase);
2639 	}
2640 	ret = rpc_call_sync(NFS_CLIENT(inode), &msg, 0);
2641 	if (ret)
2642 		goto out_free;
2643 	if (resp_len > args.acl_len)
2644 		nfs4_write_cached_acl(inode, NULL, resp_len);
2645 	else
2646 		nfs4_write_cached_acl(inode, resp_buf, resp_len);
2647 	if (buf) {
2648 		ret = -ERANGE;
2649 		if (resp_len > buflen)
2650 			goto out_free;
2651 		if (localpage)
2652 			memcpy(buf, resp_buf, resp_len);
2653 	}
2654 	ret = resp_len;
2655 out_free:
2656 	if (localpage)
2657 		__free_page(localpage);
2658 	return ret;
2659 }
2660 
2661 static ssize_t nfs4_proc_get_acl(struct inode *inode, void *buf, size_t buflen)
2662 {
2663 	struct nfs_server *server = NFS_SERVER(inode);
2664 	int ret;
2665 
2666 	if (!nfs4_server_supports_acls(server))
2667 		return -EOPNOTSUPP;
2668 	ret = nfs_revalidate_inode(server, inode);
2669 	if (ret < 0)
2670 		return ret;
2671 	ret = nfs4_read_cached_acl(inode, buf, buflen);
2672 	if (ret != -ENOENT)
2673 		return ret;
2674 	return nfs4_get_acl_uncached(inode, buf, buflen);
2675 }
2676 
2677 static int nfs4_proc_set_acl(struct inode *inode, const void *buf, size_t buflen)
2678 {
2679 	struct nfs_server *server = NFS_SERVER(inode);
2680 	struct page *pages[NFS4ACL_MAXPAGES];
2681 	struct nfs_setaclargs arg = {
2682 		.fh		= NFS_FH(inode),
2683 		.acl_pages	= pages,
2684 		.acl_len	= buflen,
2685 	};
2686 	struct rpc_message msg = {
2687 		.rpc_proc	= &nfs4_procedures[NFSPROC4_CLNT_SETACL],
2688 		.rpc_argp	= &arg,
2689 		.rpc_resp	= NULL,
2690 	};
2691 	int ret;
2692 
2693 	if (!nfs4_server_supports_acls(server))
2694 		return -EOPNOTSUPP;
2695 	nfs_inode_return_delegation(inode);
2696 	buf_to_pages(buf, buflen, arg.acl_pages, &arg.acl_pgbase);
2697 	ret = rpc_call_sync(NFS_SERVER(inode)->client, &msg, 0);
2698 	if (ret == 0)
2699 		nfs4_write_cached_acl(inode, buf, buflen);
2700 	return ret;
2701 }
2702 
2703 static int
2704 nfs4_async_handle_error(struct rpc_task *task, const struct nfs_server *server)
2705 {
2706 	struct nfs4_client *clp = server->nfs4_state;
2707 
2708 	if (!clp || task->tk_status >= 0)
2709 		return 0;
2710 	switch(task->tk_status) {
2711 		case -NFS4ERR_STALE_CLIENTID:
2712 		case -NFS4ERR_STALE_STATEID:
2713 		case -NFS4ERR_EXPIRED:
2714 			rpc_sleep_on(&clp->cl_rpcwaitq, task, NULL, NULL);
2715 			nfs4_schedule_state_recovery(clp);
2716 			if (test_bit(NFS4CLNT_STATE_RECOVER, &clp->cl_state) == 0)
2717 				rpc_wake_up_task(task);
2718 			task->tk_status = 0;
2719 			return -EAGAIN;
2720 		case -NFS4ERR_DELAY:
2721 			nfs_inc_server_stats((struct nfs_server *) server,
2722 						NFSIOS_DELAY);
2723 		case -NFS4ERR_GRACE:
2724 			rpc_delay(task, NFS4_POLL_RETRY_MAX);
2725 			task->tk_status = 0;
2726 			return -EAGAIN;
2727 		case -NFS4ERR_OLD_STATEID:
2728 			task->tk_status = 0;
2729 			return -EAGAIN;
2730 	}
2731 	task->tk_status = nfs4_map_errors(task->tk_status);
2732 	return 0;
2733 }
2734 
2735 static int nfs4_wait_bit_interruptible(void *word)
2736 {
2737 	if (signal_pending(current))
2738 		return -ERESTARTSYS;
2739 	schedule();
2740 	return 0;
2741 }
2742 
2743 static int nfs4_wait_clnt_recover(struct rpc_clnt *clnt, struct nfs4_client *clp)
2744 {
2745 	sigset_t oldset;
2746 	int res;
2747 
2748 	might_sleep();
2749 
2750 	rpc_clnt_sigmask(clnt, &oldset);
2751 	res = wait_on_bit(&clp->cl_state, NFS4CLNT_STATE_RECOVER,
2752 			nfs4_wait_bit_interruptible,
2753 			TASK_INTERRUPTIBLE);
2754 	rpc_clnt_sigunmask(clnt, &oldset);
2755 	return res;
2756 }
2757 
2758 static int nfs4_delay(struct rpc_clnt *clnt, long *timeout)
2759 {
2760 	sigset_t oldset;
2761 	int res = 0;
2762 
2763 	might_sleep();
2764 
2765 	if (*timeout <= 0)
2766 		*timeout = NFS4_POLL_RETRY_MIN;
2767 	if (*timeout > NFS4_POLL_RETRY_MAX)
2768 		*timeout = NFS4_POLL_RETRY_MAX;
2769 	rpc_clnt_sigmask(clnt, &oldset);
2770 	if (clnt->cl_intr) {
2771 		schedule_timeout_interruptible(*timeout);
2772 		if (signalled())
2773 			res = -ERESTARTSYS;
2774 	} else
2775 		schedule_timeout_uninterruptible(*timeout);
2776 	rpc_clnt_sigunmask(clnt, &oldset);
2777 	*timeout <<= 1;
2778 	return res;
2779 }
2780 
2781 /* This is the error handling routine for processes that are allowed
2782  * to sleep.
2783  */
2784 int nfs4_handle_exception(const struct nfs_server *server, int errorcode, struct nfs4_exception *exception)
2785 {
2786 	struct nfs4_client *clp = server->nfs4_state;
2787 	int ret = errorcode;
2788 
2789 	exception->retry = 0;
2790 	switch(errorcode) {
2791 		case 0:
2792 			return 0;
2793 		case -NFS4ERR_STALE_CLIENTID:
2794 		case -NFS4ERR_STALE_STATEID:
2795 		case -NFS4ERR_EXPIRED:
2796 			nfs4_schedule_state_recovery(clp);
2797 			ret = nfs4_wait_clnt_recover(server->client, clp);
2798 			if (ret == 0)
2799 				exception->retry = 1;
2800 			break;
2801 		case -NFS4ERR_GRACE:
2802 		case -NFS4ERR_DELAY:
2803 			ret = nfs4_delay(server->client, &exception->timeout);
2804 			if (ret != 0)
2805 				break;
2806 		case -NFS4ERR_OLD_STATEID:
2807 			exception->retry = 1;
2808 	}
2809 	/* We failed to handle the error */
2810 	return nfs4_map_errors(ret);
2811 }
2812 
2813 int nfs4_proc_setclientid(struct nfs4_client *clp, u32 program, unsigned short port, struct rpc_cred *cred)
2814 {
2815 	nfs4_verifier sc_verifier;
2816 	struct nfs4_setclientid setclientid = {
2817 		.sc_verifier = &sc_verifier,
2818 		.sc_prog = program,
2819 	};
2820 	struct rpc_message msg = {
2821 		.rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_SETCLIENTID],
2822 		.rpc_argp = &setclientid,
2823 		.rpc_resp = clp,
2824 		.rpc_cred = cred,
2825 	};
2826 	u32 *p;
2827 	int loop = 0;
2828 	int status;
2829 
2830 	p = (u32*)sc_verifier.data;
2831 	*p++ = htonl((u32)clp->cl_boot_time.tv_sec);
2832 	*p = htonl((u32)clp->cl_boot_time.tv_nsec);
2833 
2834 	for(;;) {
2835 		setclientid.sc_name_len = scnprintf(setclientid.sc_name,
2836 				sizeof(setclientid.sc_name), "%s/%u.%u.%u.%u %s %u",
2837 				clp->cl_ipaddr, NIPQUAD(clp->cl_addr.s_addr),
2838 				cred->cr_ops->cr_name,
2839 				clp->cl_id_uniquifier);
2840 		setclientid.sc_netid_len = scnprintf(setclientid.sc_netid,
2841 				sizeof(setclientid.sc_netid), "tcp");
2842 		setclientid.sc_uaddr_len = scnprintf(setclientid.sc_uaddr,
2843 				sizeof(setclientid.sc_uaddr), "%s.%d.%d",
2844 				clp->cl_ipaddr, port >> 8, port & 255);
2845 
2846 		status = rpc_call_sync(clp->cl_rpcclient, &msg, 0);
2847 		if (status != -NFS4ERR_CLID_INUSE)
2848 			break;
2849 		if (signalled())
2850 			break;
2851 		if (loop++ & 1)
2852 			ssleep(clp->cl_lease_time + 1);
2853 		else
2854 			if (++clp->cl_id_uniquifier == 0)
2855 				break;
2856 	}
2857 	return status;
2858 }
2859 
2860 static int _nfs4_proc_setclientid_confirm(struct nfs4_client *clp, struct rpc_cred *cred)
2861 {
2862 	struct nfs_fsinfo fsinfo;
2863 	struct rpc_message msg = {
2864 		.rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_SETCLIENTID_CONFIRM],
2865 		.rpc_argp = clp,
2866 		.rpc_resp = &fsinfo,
2867 		.rpc_cred = cred,
2868 	};
2869 	unsigned long now;
2870 	int status;
2871 
2872 	now = jiffies;
2873 	status = rpc_call_sync(clp->cl_rpcclient, &msg, 0);
2874 	if (status == 0) {
2875 		spin_lock(&clp->cl_lock);
2876 		clp->cl_lease_time = fsinfo.lease_time * HZ;
2877 		clp->cl_last_renewal = now;
2878 		clear_bit(NFS4CLNT_LEASE_EXPIRED, &clp->cl_state);
2879 		spin_unlock(&clp->cl_lock);
2880 	}
2881 	return status;
2882 }
2883 
2884 int nfs4_proc_setclientid_confirm(struct nfs4_client *clp, struct rpc_cred *cred)
2885 {
2886 	long timeout;
2887 	int err;
2888 	do {
2889 		err = _nfs4_proc_setclientid_confirm(clp, cred);
2890 		switch (err) {
2891 			case 0:
2892 				return err;
2893 			case -NFS4ERR_RESOURCE:
2894 				/* The IBM lawyers misread another document! */
2895 			case -NFS4ERR_DELAY:
2896 				err = nfs4_delay(clp->cl_rpcclient, &timeout);
2897 		}
2898 	} while (err == 0);
2899 	return err;
2900 }
2901 
2902 struct nfs4_delegreturndata {
2903 	struct nfs4_delegreturnargs args;
2904 	struct nfs4_delegreturnres res;
2905 	struct nfs_fh fh;
2906 	nfs4_stateid stateid;
2907 	struct rpc_cred *cred;
2908 	unsigned long timestamp;
2909 	struct nfs_fattr fattr;
2910 	int rpc_status;
2911 };
2912 
2913 static void nfs4_delegreturn_prepare(struct rpc_task *task, void *calldata)
2914 {
2915 	struct nfs4_delegreturndata *data = calldata;
2916 	struct rpc_message msg = {
2917 		.rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_DELEGRETURN],
2918 		.rpc_argp = &data->args,
2919 		.rpc_resp = &data->res,
2920 		.rpc_cred = data->cred,
2921 	};
2922 	nfs_fattr_init(data->res.fattr);
2923 	rpc_call_setup(task, &msg, 0);
2924 }
2925 
2926 static void nfs4_delegreturn_done(struct rpc_task *task, void *calldata)
2927 {
2928 	struct nfs4_delegreturndata *data = calldata;
2929 	data->rpc_status = task->tk_status;
2930 	if (data->rpc_status == 0)
2931 		renew_lease(data->res.server, data->timestamp);
2932 }
2933 
2934 static void nfs4_delegreturn_release(void *calldata)
2935 {
2936 	struct nfs4_delegreturndata *data = calldata;
2937 
2938 	put_rpccred(data->cred);
2939 	kfree(calldata);
2940 }
2941 
2942 static const struct rpc_call_ops nfs4_delegreturn_ops = {
2943 	.rpc_call_prepare = nfs4_delegreturn_prepare,
2944 	.rpc_call_done = nfs4_delegreturn_done,
2945 	.rpc_release = nfs4_delegreturn_release,
2946 };
2947 
2948 static int _nfs4_proc_delegreturn(struct inode *inode, struct rpc_cred *cred, const nfs4_stateid *stateid)
2949 {
2950 	struct nfs4_delegreturndata *data;
2951 	struct nfs_server *server = NFS_SERVER(inode);
2952 	struct rpc_task *task;
2953 	int status;
2954 
2955 	data = kmalloc(sizeof(*data), GFP_KERNEL);
2956 	if (data == NULL)
2957 		return -ENOMEM;
2958 	data->args.fhandle = &data->fh;
2959 	data->args.stateid = &data->stateid;
2960 	data->args.bitmask = server->attr_bitmask;
2961 	nfs_copy_fh(&data->fh, NFS_FH(inode));
2962 	memcpy(&data->stateid, stateid, sizeof(data->stateid));
2963 	data->res.fattr = &data->fattr;
2964 	data->res.server = server;
2965 	data->cred = get_rpccred(cred);
2966 	data->timestamp = jiffies;
2967 	data->rpc_status = 0;
2968 
2969 	task = rpc_run_task(NFS_CLIENT(inode), RPC_TASK_ASYNC, &nfs4_delegreturn_ops, data);
2970 	if (IS_ERR(task))
2971 		return PTR_ERR(task);
2972 	status = nfs4_wait_for_completion_rpc_task(task);
2973 	if (status == 0) {
2974 		status = data->rpc_status;
2975 		if (status == 0)
2976 			nfs_post_op_update_inode(inode, &data->fattr);
2977 	}
2978 	rpc_release_task(task);
2979 	return status;
2980 }
2981 
2982 int nfs4_proc_delegreturn(struct inode *inode, struct rpc_cred *cred, const nfs4_stateid *stateid)
2983 {
2984 	struct nfs_server *server = NFS_SERVER(inode);
2985 	struct nfs4_exception exception = { };
2986 	int err;
2987 	do {
2988 		err = _nfs4_proc_delegreturn(inode, cred, stateid);
2989 		switch (err) {
2990 			case -NFS4ERR_STALE_STATEID:
2991 			case -NFS4ERR_EXPIRED:
2992 				nfs4_schedule_state_recovery(server->nfs4_state);
2993 			case 0:
2994 				return 0;
2995 		}
2996 		err = nfs4_handle_exception(server, err, &exception);
2997 	} while (exception.retry);
2998 	return err;
2999 }
3000 
3001 #define NFS4_LOCK_MINTIMEOUT (1 * HZ)
3002 #define NFS4_LOCK_MAXTIMEOUT (30 * HZ)
3003 
3004 /*
3005  * sleep, with exponential backoff, and retry the LOCK operation.
3006  */
3007 static unsigned long
3008 nfs4_set_lock_task_retry(unsigned long timeout)
3009 {
3010 	schedule_timeout_interruptible(timeout);
3011 	timeout <<= 1;
3012 	if (timeout > NFS4_LOCK_MAXTIMEOUT)
3013 		return NFS4_LOCK_MAXTIMEOUT;
3014 	return timeout;
3015 }
3016 
3017 static int _nfs4_proc_getlk(struct nfs4_state *state, int cmd, struct file_lock *request)
3018 {
3019 	struct inode *inode = state->inode;
3020 	struct nfs_server *server = NFS_SERVER(inode);
3021 	struct nfs4_client *clp = server->nfs4_state;
3022 	struct nfs_lockt_args arg = {
3023 		.fh = NFS_FH(inode),
3024 		.fl = request,
3025 	};
3026 	struct nfs_lockt_res res = {
3027 		.denied = request,
3028 	};
3029 	struct rpc_message msg = {
3030 		.rpc_proc	= &nfs4_procedures[NFSPROC4_CLNT_LOCKT],
3031 		.rpc_argp       = &arg,
3032 		.rpc_resp       = &res,
3033 		.rpc_cred	= state->owner->so_cred,
3034 	};
3035 	struct nfs4_lock_state *lsp;
3036 	int status;
3037 
3038 	down_read(&clp->cl_sem);
3039 	arg.lock_owner.clientid = clp->cl_clientid;
3040 	status = nfs4_set_lock_state(state, request);
3041 	if (status != 0)
3042 		goto out;
3043 	lsp = request->fl_u.nfs4_fl.owner;
3044 	arg.lock_owner.id = lsp->ls_id;
3045 	status = rpc_call_sync(server->client, &msg, 0);
3046 	switch (status) {
3047 		case 0:
3048 			request->fl_type = F_UNLCK;
3049 			break;
3050 		case -NFS4ERR_DENIED:
3051 			status = 0;
3052 	}
3053 out:
3054 	up_read(&clp->cl_sem);
3055 	return status;
3056 }
3057 
3058 static int nfs4_proc_getlk(struct nfs4_state *state, int cmd, struct file_lock *request)
3059 {
3060 	struct nfs4_exception exception = { };
3061 	int err;
3062 
3063 	do {
3064 		err = nfs4_handle_exception(NFS_SERVER(state->inode),
3065 				_nfs4_proc_getlk(state, cmd, request),
3066 				&exception);
3067 	} while (exception.retry);
3068 	return err;
3069 }
3070 
3071 static int do_vfs_lock(struct file *file, struct file_lock *fl)
3072 {
3073 	int res = 0;
3074 	switch (fl->fl_flags & (FL_POSIX|FL_FLOCK)) {
3075 		case FL_POSIX:
3076 			res = posix_lock_file_wait(file, fl);
3077 			break;
3078 		case FL_FLOCK:
3079 			res = flock_lock_file_wait(file, fl);
3080 			break;
3081 		default:
3082 			BUG();
3083 	}
3084 	if (res < 0)
3085 		printk(KERN_WARNING "%s: VFS is out of sync with lock manager!\n",
3086 				__FUNCTION__);
3087 	return res;
3088 }
3089 
3090 struct nfs4_unlockdata {
3091 	struct nfs_locku_args arg;
3092 	struct nfs_locku_res res;
3093 	struct nfs4_lock_state *lsp;
3094 	struct nfs_open_context *ctx;
3095 	struct file_lock fl;
3096 	const struct nfs_server *server;
3097 	unsigned long timestamp;
3098 };
3099 
3100 static struct nfs4_unlockdata *nfs4_alloc_unlockdata(struct file_lock *fl,
3101 		struct nfs_open_context *ctx,
3102 		struct nfs4_lock_state *lsp,
3103 		struct nfs_seqid *seqid)
3104 {
3105 	struct nfs4_unlockdata *p;
3106 	struct inode *inode = lsp->ls_state->inode;
3107 
3108 	p = kmalloc(sizeof(*p), GFP_KERNEL);
3109 	if (p == NULL)
3110 		return NULL;
3111 	p->arg.fh = NFS_FH(inode);
3112 	p->arg.fl = &p->fl;
3113 	p->arg.seqid = seqid;
3114 	p->arg.stateid = &lsp->ls_stateid;
3115 	p->lsp = lsp;
3116 	atomic_inc(&lsp->ls_count);
3117 	/* Ensure we don't close file until we're done freeing locks! */
3118 	p->ctx = get_nfs_open_context(ctx);
3119 	memcpy(&p->fl, fl, sizeof(p->fl));
3120 	p->server = NFS_SERVER(inode);
3121 	return p;
3122 }
3123 
3124 static void nfs4_locku_release_calldata(void *data)
3125 {
3126 	struct nfs4_unlockdata *calldata = data;
3127 	nfs_free_seqid(calldata->arg.seqid);
3128 	nfs4_put_lock_state(calldata->lsp);
3129 	put_nfs_open_context(calldata->ctx);
3130 	kfree(calldata);
3131 }
3132 
3133 static void nfs4_locku_done(struct rpc_task *task, void *data)
3134 {
3135 	struct nfs4_unlockdata *calldata = data;
3136 
3137 	if (RPC_ASSASSINATED(task))
3138 		return;
3139 	nfs_increment_lock_seqid(task->tk_status, calldata->arg.seqid);
3140 	switch (task->tk_status) {
3141 		case 0:
3142 			memcpy(calldata->lsp->ls_stateid.data,
3143 					calldata->res.stateid.data,
3144 					sizeof(calldata->lsp->ls_stateid.data));
3145 			renew_lease(calldata->server, calldata->timestamp);
3146 			break;
3147 		case -NFS4ERR_STALE_STATEID:
3148 		case -NFS4ERR_EXPIRED:
3149 			nfs4_schedule_state_recovery(calldata->server->nfs4_state);
3150 			break;
3151 		default:
3152 			if (nfs4_async_handle_error(task, calldata->server) == -EAGAIN) {
3153 				rpc_restart_call(task);
3154 			}
3155 	}
3156 }
3157 
3158 static void nfs4_locku_prepare(struct rpc_task *task, void *data)
3159 {
3160 	struct nfs4_unlockdata *calldata = data;
3161 	struct rpc_message msg = {
3162 		.rpc_proc	= &nfs4_procedures[NFSPROC4_CLNT_LOCKU],
3163 		.rpc_argp       = &calldata->arg,
3164 		.rpc_resp       = &calldata->res,
3165 		.rpc_cred	= calldata->lsp->ls_state->owner->so_cred,
3166 	};
3167 
3168 	if (nfs_wait_on_sequence(calldata->arg.seqid, task) != 0)
3169 		return;
3170 	if ((calldata->lsp->ls_flags & NFS_LOCK_INITIALIZED) == 0) {
3171 		/* Note: exit _without_ running nfs4_locku_done */
3172 		task->tk_action = NULL;
3173 		return;
3174 	}
3175 	calldata->timestamp = jiffies;
3176 	rpc_call_setup(task, &msg, 0);
3177 }
3178 
3179 static const struct rpc_call_ops nfs4_locku_ops = {
3180 	.rpc_call_prepare = nfs4_locku_prepare,
3181 	.rpc_call_done = nfs4_locku_done,
3182 	.rpc_release = nfs4_locku_release_calldata,
3183 };
3184 
3185 static struct rpc_task *nfs4_do_unlck(struct file_lock *fl,
3186 		struct nfs_open_context *ctx,
3187 		struct nfs4_lock_state *lsp,
3188 		struct nfs_seqid *seqid)
3189 {
3190 	struct nfs4_unlockdata *data;
3191 
3192 	data = nfs4_alloc_unlockdata(fl, ctx, lsp, seqid);
3193 	if (data == NULL) {
3194 		nfs_free_seqid(seqid);
3195 		return ERR_PTR(-ENOMEM);
3196 	}
3197 
3198 	/* Unlock _before_ we do the RPC call */
3199 	do_vfs_lock(fl->fl_file, fl);
3200 	return rpc_run_task(NFS_CLIENT(lsp->ls_state->inode), RPC_TASK_ASYNC, &nfs4_locku_ops, data);
3201 }
3202 
3203 static int nfs4_proc_unlck(struct nfs4_state *state, int cmd, struct file_lock *request)
3204 {
3205 	struct nfs_seqid *seqid;
3206 	struct nfs4_lock_state *lsp;
3207 	struct rpc_task *task;
3208 	int status = 0;
3209 
3210 	/* Is this a delegated lock? */
3211 	if (test_bit(NFS_DELEGATED_STATE, &state->flags))
3212 		goto out_unlock;
3213 	/* Is this open_owner holding any locks on the server? */
3214 	if (test_bit(LK_STATE_IN_USE, &state->flags) == 0)
3215 		goto out_unlock;
3216 
3217 	status = nfs4_set_lock_state(state, request);
3218 	if (status != 0)
3219 		goto out_unlock;
3220 	lsp = request->fl_u.nfs4_fl.owner;
3221 	status = -ENOMEM;
3222 	seqid = nfs_alloc_seqid(&lsp->ls_seqid);
3223 	if (seqid == NULL)
3224 		goto out_unlock;
3225 	task = nfs4_do_unlck(request, request->fl_file->private_data, lsp, seqid);
3226 	status = PTR_ERR(task);
3227 	if (IS_ERR(task))
3228 		goto out_unlock;
3229 	status = nfs4_wait_for_completion_rpc_task(task);
3230 	rpc_release_task(task);
3231 	return status;
3232 out_unlock:
3233 	do_vfs_lock(request->fl_file, request);
3234 	return status;
3235 }
3236 
3237 struct nfs4_lockdata {
3238 	struct nfs_lock_args arg;
3239 	struct nfs_lock_res res;
3240 	struct nfs4_lock_state *lsp;
3241 	struct nfs_open_context *ctx;
3242 	struct file_lock fl;
3243 	unsigned long timestamp;
3244 	int rpc_status;
3245 	int cancelled;
3246 };
3247 
3248 static struct nfs4_lockdata *nfs4_alloc_lockdata(struct file_lock *fl,
3249 		struct nfs_open_context *ctx, struct nfs4_lock_state *lsp)
3250 {
3251 	struct nfs4_lockdata *p;
3252 	struct inode *inode = lsp->ls_state->inode;
3253 	struct nfs_server *server = NFS_SERVER(inode);
3254 
3255 	p = kzalloc(sizeof(*p), GFP_KERNEL);
3256 	if (p == NULL)
3257 		return NULL;
3258 
3259 	p->arg.fh = NFS_FH(inode);
3260 	p->arg.fl = &p->fl;
3261 	p->arg.lock_seqid = nfs_alloc_seqid(&lsp->ls_seqid);
3262 	if (p->arg.lock_seqid == NULL)
3263 		goto out_free;
3264 	p->arg.lock_stateid = &lsp->ls_stateid;
3265 	p->arg.lock_owner.clientid = server->nfs4_state->cl_clientid;
3266 	p->arg.lock_owner.id = lsp->ls_id;
3267 	p->lsp = lsp;
3268 	atomic_inc(&lsp->ls_count);
3269 	p->ctx = get_nfs_open_context(ctx);
3270 	memcpy(&p->fl, fl, sizeof(p->fl));
3271 	return p;
3272 out_free:
3273 	kfree(p);
3274 	return NULL;
3275 }
3276 
3277 static void nfs4_lock_prepare(struct rpc_task *task, void *calldata)
3278 {
3279 	struct nfs4_lockdata *data = calldata;
3280 	struct nfs4_state *state = data->lsp->ls_state;
3281 	struct nfs4_state_owner *sp = state->owner;
3282 	struct rpc_message msg = {
3283 		.rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_LOCK],
3284 		.rpc_argp = &data->arg,
3285 		.rpc_resp = &data->res,
3286 		.rpc_cred = sp->so_cred,
3287 	};
3288 
3289 	if (nfs_wait_on_sequence(data->arg.lock_seqid, task) != 0)
3290 		return;
3291 	dprintk("%s: begin!\n", __FUNCTION__);
3292 	/* Do we need to do an open_to_lock_owner? */
3293 	if (!(data->arg.lock_seqid->sequence->flags & NFS_SEQID_CONFIRMED)) {
3294 		data->arg.open_seqid = nfs_alloc_seqid(&sp->so_seqid);
3295 		if (data->arg.open_seqid == NULL) {
3296 			data->rpc_status = -ENOMEM;
3297 			task->tk_action = NULL;
3298 			goto out;
3299 		}
3300 		data->arg.open_stateid = &state->stateid;
3301 		data->arg.new_lock_owner = 1;
3302 	}
3303 	data->timestamp = jiffies;
3304 	rpc_call_setup(task, &msg, 0);
3305 out:
3306 	dprintk("%s: done!, ret = %d\n", __FUNCTION__, data->rpc_status);
3307 }
3308 
3309 static void nfs4_lock_done(struct rpc_task *task, void *calldata)
3310 {
3311 	struct nfs4_lockdata *data = calldata;
3312 
3313 	dprintk("%s: begin!\n", __FUNCTION__);
3314 
3315 	data->rpc_status = task->tk_status;
3316 	if (RPC_ASSASSINATED(task))
3317 		goto out;
3318 	if (data->arg.new_lock_owner != 0) {
3319 		nfs_increment_open_seqid(data->rpc_status, data->arg.open_seqid);
3320 		if (data->rpc_status == 0)
3321 			nfs_confirm_seqid(&data->lsp->ls_seqid, 0);
3322 		else
3323 			goto out;
3324 	}
3325 	if (data->rpc_status == 0) {
3326 		memcpy(data->lsp->ls_stateid.data, data->res.stateid.data,
3327 					sizeof(data->lsp->ls_stateid.data));
3328 		data->lsp->ls_flags |= NFS_LOCK_INITIALIZED;
3329 		renew_lease(NFS_SERVER(data->ctx->dentry->d_inode), data->timestamp);
3330 	}
3331 	nfs_increment_lock_seqid(data->rpc_status, data->arg.lock_seqid);
3332 out:
3333 	dprintk("%s: done, ret = %d!\n", __FUNCTION__, data->rpc_status);
3334 }
3335 
3336 static void nfs4_lock_release(void *calldata)
3337 {
3338 	struct nfs4_lockdata *data = calldata;
3339 
3340 	dprintk("%s: begin!\n", __FUNCTION__);
3341 	if (data->arg.open_seqid != NULL)
3342 		nfs_free_seqid(data->arg.open_seqid);
3343 	if (data->cancelled != 0) {
3344 		struct rpc_task *task;
3345 		task = nfs4_do_unlck(&data->fl, data->ctx, data->lsp,
3346 				data->arg.lock_seqid);
3347 		if (!IS_ERR(task))
3348 			rpc_release_task(task);
3349 		dprintk("%s: cancelling lock!\n", __FUNCTION__);
3350 	} else
3351 		nfs_free_seqid(data->arg.lock_seqid);
3352 	nfs4_put_lock_state(data->lsp);
3353 	put_nfs_open_context(data->ctx);
3354 	kfree(data);
3355 	dprintk("%s: done!\n", __FUNCTION__);
3356 }
3357 
3358 static const struct rpc_call_ops nfs4_lock_ops = {
3359 	.rpc_call_prepare = nfs4_lock_prepare,
3360 	.rpc_call_done = nfs4_lock_done,
3361 	.rpc_release = nfs4_lock_release,
3362 };
3363 
3364 static int _nfs4_do_setlk(struct nfs4_state *state, int cmd, struct file_lock *fl, int reclaim)
3365 {
3366 	struct nfs4_lockdata *data;
3367 	struct rpc_task *task;
3368 	int ret;
3369 
3370 	dprintk("%s: begin!\n", __FUNCTION__);
3371 	data = nfs4_alloc_lockdata(fl, fl->fl_file->private_data,
3372 			fl->fl_u.nfs4_fl.owner);
3373 	if (data == NULL)
3374 		return -ENOMEM;
3375 	if (IS_SETLKW(cmd))
3376 		data->arg.block = 1;
3377 	if (reclaim != 0)
3378 		data->arg.reclaim = 1;
3379 	task = rpc_run_task(NFS_CLIENT(state->inode), RPC_TASK_ASYNC,
3380 			&nfs4_lock_ops, data);
3381 	if (IS_ERR(task))
3382 		return PTR_ERR(task);
3383 	ret = nfs4_wait_for_completion_rpc_task(task);
3384 	if (ret == 0) {
3385 		ret = data->rpc_status;
3386 		if (ret == -NFS4ERR_DENIED)
3387 			ret = -EAGAIN;
3388 	} else
3389 		data->cancelled = 1;
3390 	rpc_release_task(task);
3391 	dprintk("%s: done, ret = %d!\n", __FUNCTION__, ret);
3392 	return ret;
3393 }
3394 
3395 static int nfs4_lock_reclaim(struct nfs4_state *state, struct file_lock *request)
3396 {
3397 	struct nfs_server *server = NFS_SERVER(state->inode);
3398 	struct nfs4_exception exception = { };
3399 	int err;
3400 
3401 	/* Cache the lock if possible... */
3402 	if (test_bit(NFS_DELEGATED_STATE, &state->flags))
3403 		return 0;
3404 	do {
3405 		err = _nfs4_do_setlk(state, F_SETLK, request, 1);
3406 		if (err != -NFS4ERR_DELAY)
3407 			break;
3408 		nfs4_handle_exception(server, err, &exception);
3409 	} while (exception.retry);
3410 	return err;
3411 }
3412 
3413 static int nfs4_lock_expired(struct nfs4_state *state, struct file_lock *request)
3414 {
3415 	struct nfs_server *server = NFS_SERVER(state->inode);
3416 	struct nfs4_exception exception = { };
3417 	int err;
3418 
3419 	err = nfs4_set_lock_state(state, request);
3420 	if (err != 0)
3421 		return err;
3422 	do {
3423 		err = _nfs4_do_setlk(state, F_SETLK, request, 0);
3424 		if (err != -NFS4ERR_DELAY)
3425 			break;
3426 		nfs4_handle_exception(server, err, &exception);
3427 	} while (exception.retry);
3428 	return err;
3429 }
3430 
3431 static int _nfs4_proc_setlk(struct nfs4_state *state, int cmd, struct file_lock *request)
3432 {
3433 	struct nfs4_client *clp = state->owner->so_client;
3434 	int status;
3435 
3436 	/* Is this a delegated open? */
3437 	if (NFS_I(state->inode)->delegation_state != 0) {
3438 		/* Yes: cache locks! */
3439 		status = do_vfs_lock(request->fl_file, request);
3440 		/* ...but avoid races with delegation recall... */
3441 		if (status < 0 || test_bit(NFS_DELEGATED_STATE, &state->flags))
3442 			return status;
3443 	}
3444 	down_read(&clp->cl_sem);
3445 	status = nfs4_set_lock_state(state, request);
3446 	if (status != 0)
3447 		goto out;
3448 	status = _nfs4_do_setlk(state, cmd, request, 0);
3449 	if (status != 0)
3450 		goto out;
3451 	/* Note: we always want to sleep here! */
3452 	request->fl_flags |= FL_SLEEP;
3453 	if (do_vfs_lock(request->fl_file, request) < 0)
3454 		printk(KERN_WARNING "%s: VFS is out of sync with lock manager!\n", __FUNCTION__);
3455 out:
3456 	up_read(&clp->cl_sem);
3457 	return status;
3458 }
3459 
3460 static int nfs4_proc_setlk(struct nfs4_state *state, int cmd, struct file_lock *request)
3461 {
3462 	struct nfs4_exception exception = { };
3463 	int err;
3464 
3465 	do {
3466 		err = nfs4_handle_exception(NFS_SERVER(state->inode),
3467 				_nfs4_proc_setlk(state, cmd, request),
3468 				&exception);
3469 	} while (exception.retry);
3470 	return err;
3471 }
3472 
3473 static int
3474 nfs4_proc_lock(struct file *filp, int cmd, struct file_lock *request)
3475 {
3476 	struct nfs_open_context *ctx;
3477 	struct nfs4_state *state;
3478 	unsigned long timeout = NFS4_LOCK_MINTIMEOUT;
3479 	int status;
3480 
3481 	/* verify open state */
3482 	ctx = (struct nfs_open_context *)filp->private_data;
3483 	state = ctx->state;
3484 
3485 	if (request->fl_start < 0 || request->fl_end < 0)
3486 		return -EINVAL;
3487 
3488 	if (IS_GETLK(cmd))
3489 		return nfs4_proc_getlk(state, F_GETLK, request);
3490 
3491 	if (!(IS_SETLK(cmd) || IS_SETLKW(cmd)))
3492 		return -EINVAL;
3493 
3494 	if (request->fl_type == F_UNLCK)
3495 		return nfs4_proc_unlck(state, cmd, request);
3496 
3497 	do {
3498 		status = nfs4_proc_setlk(state, cmd, request);
3499 		if ((status != -EAGAIN) || IS_SETLK(cmd))
3500 			break;
3501 		timeout = nfs4_set_lock_task_retry(timeout);
3502 		status = -ERESTARTSYS;
3503 		if (signalled())
3504 			break;
3505 	} while(status < 0);
3506 	return status;
3507 }
3508 
3509 int nfs4_lock_delegation_recall(struct nfs4_state *state, struct file_lock *fl)
3510 {
3511 	struct nfs_server *server = NFS_SERVER(state->inode);
3512 	struct nfs4_exception exception = { };
3513 	int err;
3514 
3515 	err = nfs4_set_lock_state(state, fl);
3516 	if (err != 0)
3517 		goto out;
3518 	do {
3519 		err = _nfs4_do_setlk(state, F_SETLK, fl, 0);
3520 		if (err != -NFS4ERR_DELAY)
3521 			break;
3522 		err = nfs4_handle_exception(server, err, &exception);
3523 	} while (exception.retry);
3524 out:
3525 	return err;
3526 }
3527 
3528 #define XATTR_NAME_NFSV4_ACL "system.nfs4_acl"
3529 
3530 int nfs4_setxattr(struct dentry *dentry, const char *key, const void *buf,
3531 		size_t buflen, int flags)
3532 {
3533 	struct inode *inode = dentry->d_inode;
3534 
3535 	if (strcmp(key, XATTR_NAME_NFSV4_ACL) != 0)
3536 		return -EOPNOTSUPP;
3537 
3538 	if (!S_ISREG(inode->i_mode) &&
3539 	    (!S_ISDIR(inode->i_mode) || inode->i_mode & S_ISVTX))
3540 		return -EPERM;
3541 
3542 	return nfs4_proc_set_acl(inode, buf, buflen);
3543 }
3544 
3545 /* The getxattr man page suggests returning -ENODATA for unknown attributes,
3546  * and that's what we'll do for e.g. user attributes that haven't been set.
3547  * But we'll follow ext2/ext3's lead by returning -EOPNOTSUPP for unsupported
3548  * attributes in kernel-managed attribute namespaces. */
3549 ssize_t nfs4_getxattr(struct dentry *dentry, const char *key, void *buf,
3550 		size_t buflen)
3551 {
3552 	struct inode *inode = dentry->d_inode;
3553 
3554 	if (strcmp(key, XATTR_NAME_NFSV4_ACL) != 0)
3555 		return -EOPNOTSUPP;
3556 
3557 	return nfs4_proc_get_acl(inode, buf, buflen);
3558 }
3559 
3560 ssize_t nfs4_listxattr(struct dentry *dentry, char *buf, size_t buflen)
3561 {
3562 	size_t len = strlen(XATTR_NAME_NFSV4_ACL) + 1;
3563 
3564 	if (!nfs4_server_supports_acls(NFS_SERVER(dentry->d_inode)))
3565 		return 0;
3566 	if (buf && buflen < len)
3567 		return -ERANGE;
3568 	if (buf)
3569 		memcpy(buf, XATTR_NAME_NFSV4_ACL, len);
3570 	return len;
3571 }
3572 
3573 struct nfs4_state_recovery_ops nfs4_reboot_recovery_ops = {
3574 	.recover_open	= nfs4_open_reclaim,
3575 	.recover_lock	= nfs4_lock_reclaim,
3576 };
3577 
3578 struct nfs4_state_recovery_ops nfs4_network_partition_recovery_ops = {
3579 	.recover_open	= nfs4_open_expired,
3580 	.recover_lock	= nfs4_lock_expired,
3581 };
3582 
3583 static struct inode_operations nfs4_file_inode_operations = {
3584 	.permission	= nfs_permission,
3585 	.getattr	= nfs_getattr,
3586 	.setattr	= nfs_setattr,
3587 	.getxattr	= nfs4_getxattr,
3588 	.setxattr	= nfs4_setxattr,
3589 	.listxattr	= nfs4_listxattr,
3590 };
3591 
3592 struct nfs_rpc_ops	nfs_v4_clientops = {
3593 	.version	= 4,			/* protocol version */
3594 	.dentry_ops	= &nfs4_dentry_operations,
3595 	.dir_inode_ops	= &nfs4_dir_inode_operations,
3596 	.file_inode_ops	= &nfs4_file_inode_operations,
3597 	.getroot	= nfs4_proc_get_root,
3598 	.getattr	= nfs4_proc_getattr,
3599 	.setattr	= nfs4_proc_setattr,
3600 	.lookup		= nfs4_proc_lookup,
3601 	.access		= nfs4_proc_access,
3602 	.readlink	= nfs4_proc_readlink,
3603 	.read		= nfs4_proc_read,
3604 	.write		= nfs4_proc_write,
3605 	.commit		= nfs4_proc_commit,
3606 	.create		= nfs4_proc_create,
3607 	.remove		= nfs4_proc_remove,
3608 	.unlink_setup	= nfs4_proc_unlink_setup,
3609 	.unlink_done	= nfs4_proc_unlink_done,
3610 	.rename		= nfs4_proc_rename,
3611 	.link		= nfs4_proc_link,
3612 	.symlink	= nfs4_proc_symlink,
3613 	.mkdir		= nfs4_proc_mkdir,
3614 	.rmdir		= nfs4_proc_remove,
3615 	.readdir	= nfs4_proc_readdir,
3616 	.mknod		= nfs4_proc_mknod,
3617 	.statfs		= nfs4_proc_statfs,
3618 	.fsinfo		= nfs4_proc_fsinfo,
3619 	.pathconf	= nfs4_proc_pathconf,
3620 	.decode_dirent	= nfs4_decode_dirent,
3621 	.read_setup	= nfs4_proc_read_setup,
3622 	.read_done	= nfs4_read_done,
3623 	.write_setup	= nfs4_proc_write_setup,
3624 	.write_done	= nfs4_write_done,
3625 	.commit_setup	= nfs4_proc_commit_setup,
3626 	.commit_done	= nfs4_commit_done,
3627 	.file_open      = nfs_open,
3628 	.file_release   = nfs_release,
3629 	.lock		= nfs4_proc_lock,
3630 	.clear_acl_cache = nfs4_zap_acl_attr,
3631 };
3632 
3633 /*
3634  * Local variables:
3635  *  c-basic-offset: 8
3636  * End:
3637  */
3638