xref: /linux/fs/nfs/nfs4proc.c (revision f24e9f586b377749dff37554696cf3a105540c94)
1 /*
2  *  fs/nfs/nfs4proc.c
3  *
4  *  Client-side procedure declarations for NFSv4.
5  *
6  *  Copyright (c) 2002 The Regents of the University of Michigan.
7  *  All rights reserved.
8  *
9  *  Kendrick Smith <kmsmith@umich.edu>
10  *  Andy Adamson   <andros@umich.edu>
11  *
12  *  Redistribution and use in source and binary forms, with or without
13  *  modification, are permitted provided that the following conditions
14  *  are met:
15  *
16  *  1. Redistributions of source code must retain the above copyright
17  *     notice, this list of conditions and the following disclaimer.
18  *  2. Redistributions in binary form must reproduce the above copyright
19  *     notice, this list of conditions and the following disclaimer in the
20  *     documentation and/or other materials provided with the distribution.
21  *  3. Neither the name of the University nor the names of its
22  *     contributors may be used to endorse or promote products derived
23  *     from this software without specific prior written permission.
24  *
25  *  THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED
26  *  WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
27  *  MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
28  *  DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
29  *  FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
30  *  CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
31  *  SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
32  *  BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
33  *  LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
34  *  NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
35  *  SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
36  */
37 
38 #include <linux/mm.h>
39 #include <linux/utsname.h>
40 #include <linux/delay.h>
41 #include <linux/errno.h>
42 #include <linux/string.h>
43 #include <linux/sunrpc/clnt.h>
44 #include <linux/nfs.h>
45 #include <linux/nfs4.h>
46 #include <linux/nfs_fs.h>
47 #include <linux/nfs_page.h>
48 #include <linux/smp_lock.h>
49 #include <linux/namei.h>
50 #include <linux/mount.h>
51 
52 #include "nfs4_fs.h"
53 #include "delegation.h"
54 #include "iostat.h"
55 
56 #define NFSDBG_FACILITY		NFSDBG_PROC
57 
58 #define NFS4_POLL_RETRY_MIN	(1*HZ)
59 #define NFS4_POLL_RETRY_MAX	(15*HZ)
60 
61 struct nfs4_opendata;
62 static int _nfs4_proc_open(struct nfs4_opendata *data);
63 static int nfs4_do_fsinfo(struct nfs_server *, struct nfs_fh *, struct nfs_fsinfo *);
64 static int nfs4_async_handle_error(struct rpc_task *, const struct nfs_server *);
65 static int _nfs4_proc_access(struct inode *inode, struct nfs_access_entry *entry);
66 static int nfs4_handle_exception(const struct nfs_server *server, int errorcode, struct nfs4_exception *exception);
67 static int nfs4_wait_clnt_recover(struct rpc_clnt *clnt, struct nfs4_client *clp);
68 
69 /* Prevent leaks of NFSv4 errors into userland */
70 int nfs4_map_errors(int err)
71 {
72 	if (err < -1000) {
73 		dprintk("%s could not handle NFSv4 error %d\n",
74 				__FUNCTION__, -err);
75 		return -EIO;
76 	}
77 	return err;
78 }
79 
80 /*
81  * This is our standard bitmap for GETATTR requests.
82  */
83 const u32 nfs4_fattr_bitmap[2] = {
84 	FATTR4_WORD0_TYPE
85 	| FATTR4_WORD0_CHANGE
86 	| FATTR4_WORD0_SIZE
87 	| FATTR4_WORD0_FSID
88 	| FATTR4_WORD0_FILEID,
89 	FATTR4_WORD1_MODE
90 	| FATTR4_WORD1_NUMLINKS
91 	| FATTR4_WORD1_OWNER
92 	| FATTR4_WORD1_OWNER_GROUP
93 	| FATTR4_WORD1_RAWDEV
94 	| FATTR4_WORD1_SPACE_USED
95 	| FATTR4_WORD1_TIME_ACCESS
96 	| FATTR4_WORD1_TIME_METADATA
97 	| FATTR4_WORD1_TIME_MODIFY
98 };
99 
100 const u32 nfs4_statfs_bitmap[2] = {
101 	FATTR4_WORD0_FILES_AVAIL
102 	| FATTR4_WORD0_FILES_FREE
103 	| FATTR4_WORD0_FILES_TOTAL,
104 	FATTR4_WORD1_SPACE_AVAIL
105 	| FATTR4_WORD1_SPACE_FREE
106 	| FATTR4_WORD1_SPACE_TOTAL
107 };
108 
109 const u32 nfs4_pathconf_bitmap[2] = {
110 	FATTR4_WORD0_MAXLINK
111 	| FATTR4_WORD0_MAXNAME,
112 	0
113 };
114 
115 const u32 nfs4_fsinfo_bitmap[2] = { FATTR4_WORD0_MAXFILESIZE
116 			| FATTR4_WORD0_MAXREAD
117 			| FATTR4_WORD0_MAXWRITE
118 			| FATTR4_WORD0_LEASE_TIME,
119 			0
120 };
121 
122 const u32 nfs4_fs_locations_bitmap[2] = {
123 	FATTR4_WORD0_TYPE
124 	| FATTR4_WORD0_CHANGE
125 	| FATTR4_WORD0_SIZE
126 	| FATTR4_WORD0_FSID
127 	| FATTR4_WORD0_FILEID
128 	| FATTR4_WORD0_FS_LOCATIONS,
129 	FATTR4_WORD1_MODE
130 	| FATTR4_WORD1_NUMLINKS
131 	| FATTR4_WORD1_OWNER
132 	| FATTR4_WORD1_OWNER_GROUP
133 	| FATTR4_WORD1_RAWDEV
134 	| FATTR4_WORD1_SPACE_USED
135 	| FATTR4_WORD1_TIME_ACCESS
136 	| FATTR4_WORD1_TIME_METADATA
137 	| FATTR4_WORD1_TIME_MODIFY
138 	| FATTR4_WORD1_MOUNTED_ON_FILEID
139 };
140 
141 static void nfs4_setup_readdir(u64 cookie, u32 *verifier, struct dentry *dentry,
142 		struct nfs4_readdir_arg *readdir)
143 {
144 	u32 *start, *p;
145 
146 	BUG_ON(readdir->count < 80);
147 	if (cookie > 2) {
148 		readdir->cookie = cookie;
149 		memcpy(&readdir->verifier, verifier, sizeof(readdir->verifier));
150 		return;
151 	}
152 
153 	readdir->cookie = 0;
154 	memset(&readdir->verifier, 0, sizeof(readdir->verifier));
155 	if (cookie == 2)
156 		return;
157 
158 	/*
159 	 * NFSv4 servers do not return entries for '.' and '..'
160 	 * Therefore, we fake these entries here.  We let '.'
161 	 * have cookie 0 and '..' have cookie 1.  Note that
162 	 * when talking to the server, we always send cookie 0
163 	 * instead of 1 or 2.
164 	 */
165 	start = p = (u32 *)kmap_atomic(*readdir->pages, KM_USER0);
166 
167 	if (cookie == 0) {
168 		*p++ = xdr_one;                                  /* next */
169 		*p++ = xdr_zero;                   /* cookie, first word */
170 		*p++ = xdr_one;                   /* cookie, second word */
171 		*p++ = xdr_one;                             /* entry len */
172 		memcpy(p, ".\0\0\0", 4);                        /* entry */
173 		p++;
174 		*p++ = xdr_one;                         /* bitmap length */
175 		*p++ = htonl(FATTR4_WORD0_FILEID);             /* bitmap */
176 		*p++ = htonl(8);              /* attribute buffer length */
177 		p = xdr_encode_hyper(p, dentry->d_inode->i_ino);
178 	}
179 
180 	*p++ = xdr_one;                                  /* next */
181 	*p++ = xdr_zero;                   /* cookie, first word */
182 	*p++ = xdr_two;                   /* cookie, second word */
183 	*p++ = xdr_two;                             /* entry len */
184 	memcpy(p, "..\0\0", 4);                         /* entry */
185 	p++;
186 	*p++ = xdr_one;                         /* bitmap length */
187 	*p++ = htonl(FATTR4_WORD0_FILEID);             /* bitmap */
188 	*p++ = htonl(8);              /* attribute buffer length */
189 	p = xdr_encode_hyper(p, dentry->d_parent->d_inode->i_ino);
190 
191 	readdir->pgbase = (char *)p - (char *)start;
192 	readdir->count -= readdir->pgbase;
193 	kunmap_atomic(start, KM_USER0);
194 }
195 
196 static void renew_lease(const struct nfs_server *server, unsigned long timestamp)
197 {
198 	struct nfs4_client *clp = server->nfs4_state;
199 	spin_lock(&clp->cl_lock);
200 	if (time_before(clp->cl_last_renewal,timestamp))
201 		clp->cl_last_renewal = timestamp;
202 	spin_unlock(&clp->cl_lock);
203 }
204 
205 static void update_changeattr(struct inode *dir, struct nfs4_change_info *cinfo)
206 {
207 	struct nfs_inode *nfsi = NFS_I(dir);
208 
209 	spin_lock(&dir->i_lock);
210 	nfsi->cache_validity |= NFS_INO_INVALID_ATTR|NFS_INO_REVAL_PAGECACHE|NFS_INO_INVALID_DATA;
211 	if (cinfo->before == nfsi->change_attr && cinfo->atomic)
212 		nfsi->change_attr = cinfo->after;
213 	spin_unlock(&dir->i_lock);
214 }
215 
216 struct nfs4_opendata {
217 	atomic_t count;
218 	struct nfs_openargs o_arg;
219 	struct nfs_openres o_res;
220 	struct nfs_open_confirmargs c_arg;
221 	struct nfs_open_confirmres c_res;
222 	struct nfs_fattr f_attr;
223 	struct nfs_fattr dir_attr;
224 	struct dentry *dentry;
225 	struct dentry *dir;
226 	struct nfs4_state_owner *owner;
227 	struct iattr attrs;
228 	unsigned long timestamp;
229 	int rpc_status;
230 	int cancelled;
231 };
232 
233 static struct nfs4_opendata *nfs4_opendata_alloc(struct dentry *dentry,
234 		struct nfs4_state_owner *sp, int flags,
235 		const struct iattr *attrs)
236 {
237 	struct dentry *parent = dget_parent(dentry);
238 	struct inode *dir = parent->d_inode;
239 	struct nfs_server *server = NFS_SERVER(dir);
240 	struct nfs4_opendata *p;
241 
242 	p = kzalloc(sizeof(*p), GFP_KERNEL);
243 	if (p == NULL)
244 		goto err;
245 	p->o_arg.seqid = nfs_alloc_seqid(&sp->so_seqid);
246 	if (p->o_arg.seqid == NULL)
247 		goto err_free;
248 	atomic_set(&p->count, 1);
249 	p->dentry = dget(dentry);
250 	p->dir = parent;
251 	p->owner = sp;
252 	atomic_inc(&sp->so_count);
253 	p->o_arg.fh = NFS_FH(dir);
254 	p->o_arg.open_flags = flags,
255 	p->o_arg.clientid = server->nfs4_state->cl_clientid;
256 	p->o_arg.id = sp->so_id;
257 	p->o_arg.name = &dentry->d_name;
258 	p->o_arg.server = server;
259 	p->o_arg.bitmask = server->attr_bitmask;
260 	p->o_arg.claim = NFS4_OPEN_CLAIM_NULL;
261 	p->o_res.f_attr = &p->f_attr;
262 	p->o_res.dir_attr = &p->dir_attr;
263 	p->o_res.server = server;
264 	nfs_fattr_init(&p->f_attr);
265 	nfs_fattr_init(&p->dir_attr);
266 	if (flags & O_EXCL) {
267 		u32 *s = (u32 *) p->o_arg.u.verifier.data;
268 		s[0] = jiffies;
269 		s[1] = current->pid;
270 	} else if (flags & O_CREAT) {
271 		p->o_arg.u.attrs = &p->attrs;
272 		memcpy(&p->attrs, attrs, sizeof(p->attrs));
273 	}
274 	p->c_arg.fh = &p->o_res.fh;
275 	p->c_arg.stateid = &p->o_res.stateid;
276 	p->c_arg.seqid = p->o_arg.seqid;
277 	return p;
278 err_free:
279 	kfree(p);
280 err:
281 	dput(parent);
282 	return NULL;
283 }
284 
285 static void nfs4_opendata_free(struct nfs4_opendata *p)
286 {
287 	if (p != NULL && atomic_dec_and_test(&p->count)) {
288 		nfs_free_seqid(p->o_arg.seqid);
289 		nfs4_put_state_owner(p->owner);
290 		dput(p->dir);
291 		dput(p->dentry);
292 		kfree(p);
293 	}
294 }
295 
296 /* Helper for asynchronous RPC calls */
297 static int nfs4_call_async(struct rpc_clnt *clnt,
298 		const struct rpc_call_ops *tk_ops, void *calldata)
299 {
300 	struct rpc_task *task;
301 
302 	if (!(task = rpc_new_task(clnt, RPC_TASK_ASYNC, tk_ops, calldata)))
303 		return -ENOMEM;
304 	rpc_execute(task);
305 	return 0;
306 }
307 
308 static int nfs4_wait_for_completion_rpc_task(struct rpc_task *task)
309 {
310 	sigset_t oldset;
311 	int ret;
312 
313 	rpc_clnt_sigmask(task->tk_client, &oldset);
314 	ret = rpc_wait_for_completion_task(task);
315 	rpc_clnt_sigunmask(task->tk_client, &oldset);
316 	return ret;
317 }
318 
319 static inline void update_open_stateflags(struct nfs4_state *state, mode_t open_flags)
320 {
321 	switch (open_flags) {
322 		case FMODE_WRITE:
323 			state->n_wronly++;
324 			break;
325 		case FMODE_READ:
326 			state->n_rdonly++;
327 			break;
328 		case FMODE_READ|FMODE_WRITE:
329 			state->n_rdwr++;
330 	}
331 }
332 
333 static void update_open_stateid(struct nfs4_state *state, nfs4_stateid *stateid, int open_flags)
334 {
335 	struct inode *inode = state->inode;
336 
337 	open_flags &= (FMODE_READ|FMODE_WRITE);
338 	/* Protect against nfs4_find_state_byowner() */
339 	spin_lock(&state->owner->so_lock);
340 	spin_lock(&inode->i_lock);
341 	memcpy(&state->stateid, stateid, sizeof(state->stateid));
342 	update_open_stateflags(state, open_flags);
343 	nfs4_state_set_mode_locked(state, state->state | open_flags);
344 	spin_unlock(&inode->i_lock);
345 	spin_unlock(&state->owner->so_lock);
346 }
347 
348 static struct nfs4_state *nfs4_opendata_to_nfs4_state(struct nfs4_opendata *data)
349 {
350 	struct inode *inode;
351 	struct nfs4_state *state = NULL;
352 
353 	if (!(data->f_attr.valid & NFS_ATTR_FATTR))
354 		goto out;
355 	inode = nfs_fhget(data->dir->d_sb, &data->o_res.fh, &data->f_attr);
356 	if (IS_ERR(inode))
357 		goto out;
358 	state = nfs4_get_open_state(inode, data->owner);
359 	if (state == NULL)
360 		goto put_inode;
361 	update_open_stateid(state, &data->o_res.stateid, data->o_arg.open_flags);
362 put_inode:
363 	iput(inode);
364 out:
365 	return state;
366 }
367 
368 static struct nfs_open_context *nfs4_state_find_open_context(struct nfs4_state *state)
369 {
370 	struct nfs_inode *nfsi = NFS_I(state->inode);
371 	struct nfs_open_context *ctx;
372 
373 	spin_lock(&state->inode->i_lock);
374 	list_for_each_entry(ctx, &nfsi->open_files, list) {
375 		if (ctx->state != state)
376 			continue;
377 		get_nfs_open_context(ctx);
378 		spin_unlock(&state->inode->i_lock);
379 		return ctx;
380 	}
381 	spin_unlock(&state->inode->i_lock);
382 	return ERR_PTR(-ENOENT);
383 }
384 
385 static int nfs4_open_recover_helper(struct nfs4_opendata *opendata, mode_t openflags, nfs4_stateid *stateid)
386 {
387 	int ret;
388 
389 	opendata->o_arg.open_flags = openflags;
390 	ret = _nfs4_proc_open(opendata);
391 	if (ret != 0)
392 		return ret;
393 	memcpy(stateid->data, opendata->o_res.stateid.data,
394 			sizeof(stateid->data));
395 	return 0;
396 }
397 
398 static int nfs4_open_recover(struct nfs4_opendata *opendata, struct nfs4_state *state)
399 {
400 	nfs4_stateid stateid;
401 	struct nfs4_state *newstate;
402 	int mode = 0;
403 	int delegation = 0;
404 	int ret;
405 
406 	/* memory barrier prior to reading state->n_* */
407 	smp_rmb();
408 	if (state->n_rdwr != 0) {
409 		ret = nfs4_open_recover_helper(opendata, FMODE_READ|FMODE_WRITE, &stateid);
410 		if (ret != 0)
411 			return ret;
412 		mode |= FMODE_READ|FMODE_WRITE;
413 		if (opendata->o_res.delegation_type != 0)
414 			delegation = opendata->o_res.delegation_type;
415 		smp_rmb();
416 	}
417 	if (state->n_wronly != 0) {
418 		ret = nfs4_open_recover_helper(opendata, FMODE_WRITE, &stateid);
419 		if (ret != 0)
420 			return ret;
421 		mode |= FMODE_WRITE;
422 		if (opendata->o_res.delegation_type != 0)
423 			delegation = opendata->o_res.delegation_type;
424 		smp_rmb();
425 	}
426 	if (state->n_rdonly != 0) {
427 		ret = nfs4_open_recover_helper(opendata, FMODE_READ, &stateid);
428 		if (ret != 0)
429 			return ret;
430 		mode |= FMODE_READ;
431 	}
432 	clear_bit(NFS_DELEGATED_STATE, &state->flags);
433 	if (mode == 0)
434 		return 0;
435 	if (opendata->o_res.delegation_type == 0)
436 		opendata->o_res.delegation_type = delegation;
437 	opendata->o_arg.open_flags |= mode;
438 	newstate = nfs4_opendata_to_nfs4_state(opendata);
439 	if (newstate != NULL) {
440 		if (opendata->o_res.delegation_type != 0) {
441 			struct nfs_inode *nfsi = NFS_I(newstate->inode);
442 			int delegation_flags = 0;
443 			if (nfsi->delegation)
444 				delegation_flags = nfsi->delegation->flags;
445 			if (!(delegation_flags & NFS_DELEGATION_NEED_RECLAIM))
446 				nfs_inode_set_delegation(newstate->inode,
447 						opendata->owner->so_cred,
448 						&opendata->o_res);
449 			else
450 				nfs_inode_reclaim_delegation(newstate->inode,
451 						opendata->owner->so_cred,
452 						&opendata->o_res);
453 		}
454 		nfs4_close_state(newstate, opendata->o_arg.open_flags);
455 	}
456 	if (newstate != state)
457 		return -ESTALE;
458 	return 0;
459 }
460 
461 /*
462  * OPEN_RECLAIM:
463  * 	reclaim state on the server after a reboot.
464  */
465 static int _nfs4_do_open_reclaim(struct nfs4_state_owner *sp, struct nfs4_state *state, struct dentry *dentry)
466 {
467 	struct nfs_delegation *delegation = NFS_I(state->inode)->delegation;
468 	struct nfs4_opendata *opendata;
469 	int delegation_type = 0;
470 	int status;
471 
472 	if (delegation != NULL) {
473 		if (!(delegation->flags & NFS_DELEGATION_NEED_RECLAIM)) {
474 			memcpy(&state->stateid, &delegation->stateid,
475 					sizeof(state->stateid));
476 			set_bit(NFS_DELEGATED_STATE, &state->flags);
477 			return 0;
478 		}
479 		delegation_type = delegation->type;
480 	}
481 	opendata = nfs4_opendata_alloc(dentry, sp, 0, NULL);
482 	if (opendata == NULL)
483 		return -ENOMEM;
484 	opendata->o_arg.claim = NFS4_OPEN_CLAIM_PREVIOUS;
485 	opendata->o_arg.fh = NFS_FH(state->inode);
486 	nfs_copy_fh(&opendata->o_res.fh, opendata->o_arg.fh);
487 	opendata->o_arg.u.delegation_type = delegation_type;
488 	status = nfs4_open_recover(opendata, state);
489 	nfs4_opendata_free(opendata);
490 	return status;
491 }
492 
493 static int nfs4_do_open_reclaim(struct nfs4_state_owner *sp, struct nfs4_state *state, struct dentry *dentry)
494 {
495 	struct nfs_server *server = NFS_SERVER(state->inode);
496 	struct nfs4_exception exception = { };
497 	int err;
498 	do {
499 		err = _nfs4_do_open_reclaim(sp, state, dentry);
500 		if (err != -NFS4ERR_DELAY)
501 			break;
502 		nfs4_handle_exception(server, err, &exception);
503 	} while (exception.retry);
504 	return err;
505 }
506 
507 static int nfs4_open_reclaim(struct nfs4_state_owner *sp, struct nfs4_state *state)
508 {
509 	struct nfs_open_context *ctx;
510 	int ret;
511 
512 	ctx = nfs4_state_find_open_context(state);
513 	if (IS_ERR(ctx))
514 		return PTR_ERR(ctx);
515 	ret = nfs4_do_open_reclaim(sp, state, ctx->dentry);
516 	put_nfs_open_context(ctx);
517 	return ret;
518 }
519 
520 static int _nfs4_open_delegation_recall(struct dentry *dentry, struct nfs4_state *state)
521 {
522 	struct nfs4_state_owner  *sp  = state->owner;
523 	struct nfs4_opendata *opendata;
524 	int ret;
525 
526 	if (!test_bit(NFS_DELEGATED_STATE, &state->flags))
527 		return 0;
528 	opendata = nfs4_opendata_alloc(dentry, sp, 0, NULL);
529 	if (opendata == NULL)
530 		return -ENOMEM;
531 	opendata->o_arg.claim = NFS4_OPEN_CLAIM_DELEGATE_CUR;
532 	memcpy(opendata->o_arg.u.delegation.data, state->stateid.data,
533 			sizeof(opendata->o_arg.u.delegation.data));
534 	ret = nfs4_open_recover(opendata, state);
535 	nfs4_opendata_free(opendata);
536 	return ret;
537 }
538 
539 int nfs4_open_delegation_recall(struct dentry *dentry, struct nfs4_state *state)
540 {
541 	struct nfs4_exception exception = { };
542 	struct nfs_server *server = NFS_SERVER(dentry->d_inode);
543 	int err;
544 	do {
545 		err = _nfs4_open_delegation_recall(dentry, state);
546 		switch (err) {
547 			case 0:
548 				return err;
549 			case -NFS4ERR_STALE_CLIENTID:
550 			case -NFS4ERR_STALE_STATEID:
551 			case -NFS4ERR_EXPIRED:
552 				/* Don't recall a delegation if it was lost */
553 				nfs4_schedule_state_recovery(server->nfs4_state);
554 				return err;
555 		}
556 		err = nfs4_handle_exception(server, err, &exception);
557 	} while (exception.retry);
558 	return err;
559 }
560 
561 static void nfs4_open_confirm_prepare(struct rpc_task *task, void *calldata)
562 {
563 	struct nfs4_opendata *data = calldata;
564 	struct  rpc_message msg = {
565 		.rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_OPEN_CONFIRM],
566 		.rpc_argp = &data->c_arg,
567 		.rpc_resp = &data->c_res,
568 		.rpc_cred = data->owner->so_cred,
569 	};
570 	data->timestamp = jiffies;
571 	rpc_call_setup(task, &msg, 0);
572 }
573 
574 static void nfs4_open_confirm_done(struct rpc_task *task, void *calldata)
575 {
576 	struct nfs4_opendata *data = calldata;
577 
578 	data->rpc_status = task->tk_status;
579 	if (RPC_ASSASSINATED(task))
580 		return;
581 	if (data->rpc_status == 0) {
582 		memcpy(data->o_res.stateid.data, data->c_res.stateid.data,
583 				sizeof(data->o_res.stateid.data));
584 		renew_lease(data->o_res.server, data->timestamp);
585 	}
586 	nfs_increment_open_seqid(data->rpc_status, data->c_arg.seqid);
587 	nfs_confirm_seqid(&data->owner->so_seqid, data->rpc_status);
588 }
589 
590 static void nfs4_open_confirm_release(void *calldata)
591 {
592 	struct nfs4_opendata *data = calldata;
593 	struct nfs4_state *state = NULL;
594 
595 	/* If this request hasn't been cancelled, do nothing */
596 	if (data->cancelled == 0)
597 		goto out_free;
598 	/* In case of error, no cleanup! */
599 	if (data->rpc_status != 0)
600 		goto out_free;
601 	nfs_confirm_seqid(&data->owner->so_seqid, 0);
602 	state = nfs4_opendata_to_nfs4_state(data);
603 	if (state != NULL)
604 		nfs4_close_state(state, data->o_arg.open_flags);
605 out_free:
606 	nfs4_opendata_free(data);
607 }
608 
609 static const struct rpc_call_ops nfs4_open_confirm_ops = {
610 	.rpc_call_prepare = nfs4_open_confirm_prepare,
611 	.rpc_call_done = nfs4_open_confirm_done,
612 	.rpc_release = nfs4_open_confirm_release,
613 };
614 
615 /*
616  * Note: On error, nfs4_proc_open_confirm will free the struct nfs4_opendata
617  */
618 static int _nfs4_proc_open_confirm(struct nfs4_opendata *data)
619 {
620 	struct nfs_server *server = NFS_SERVER(data->dir->d_inode);
621 	struct rpc_task *task;
622 	int status;
623 
624 	atomic_inc(&data->count);
625 	/*
626 	 * If rpc_run_task() ends up calling ->rpc_release(), we
627 	 * want to ensure that it takes the 'error' code path.
628 	 */
629 	data->rpc_status = -ENOMEM;
630 	task = rpc_run_task(server->client, RPC_TASK_ASYNC, &nfs4_open_confirm_ops, data);
631 	if (IS_ERR(task))
632 		return PTR_ERR(task);
633 	status = nfs4_wait_for_completion_rpc_task(task);
634 	if (status != 0) {
635 		data->cancelled = 1;
636 		smp_wmb();
637 	} else
638 		status = data->rpc_status;
639 	rpc_release_task(task);
640 	return status;
641 }
642 
643 static void nfs4_open_prepare(struct rpc_task *task, void *calldata)
644 {
645 	struct nfs4_opendata *data = calldata;
646 	struct nfs4_state_owner *sp = data->owner;
647 	struct rpc_message msg = {
648 		.rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_OPEN],
649 		.rpc_argp = &data->o_arg,
650 		.rpc_resp = &data->o_res,
651 		.rpc_cred = sp->so_cred,
652 	};
653 
654 	if (nfs_wait_on_sequence(data->o_arg.seqid, task) != 0)
655 		return;
656 	/* Update sequence id. */
657 	data->o_arg.id = sp->so_id;
658 	data->o_arg.clientid = sp->so_client->cl_clientid;
659 	if (data->o_arg.claim == NFS4_OPEN_CLAIM_PREVIOUS)
660 		msg.rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_OPEN_NOATTR];
661 	data->timestamp = jiffies;
662 	rpc_call_setup(task, &msg, 0);
663 }
664 
665 static void nfs4_open_done(struct rpc_task *task, void *calldata)
666 {
667 	struct nfs4_opendata *data = calldata;
668 
669 	data->rpc_status = task->tk_status;
670 	if (RPC_ASSASSINATED(task))
671 		return;
672 	if (task->tk_status == 0) {
673 		switch (data->o_res.f_attr->mode & S_IFMT) {
674 			case S_IFREG:
675 				break;
676 			case S_IFLNK:
677 				data->rpc_status = -ELOOP;
678 				break;
679 			case S_IFDIR:
680 				data->rpc_status = -EISDIR;
681 				break;
682 			default:
683 				data->rpc_status = -ENOTDIR;
684 		}
685 		renew_lease(data->o_res.server, data->timestamp);
686 	}
687 	nfs_increment_open_seqid(data->rpc_status, data->o_arg.seqid);
688 }
689 
690 static void nfs4_open_release(void *calldata)
691 {
692 	struct nfs4_opendata *data = calldata;
693 	struct nfs4_state *state = NULL;
694 
695 	/* If this request hasn't been cancelled, do nothing */
696 	if (data->cancelled == 0)
697 		goto out_free;
698 	/* In case of error, no cleanup! */
699 	if (data->rpc_status != 0)
700 		goto out_free;
701 	/* In case we need an open_confirm, no cleanup! */
702 	if (data->o_res.rflags & NFS4_OPEN_RESULT_CONFIRM)
703 		goto out_free;
704 	nfs_confirm_seqid(&data->owner->so_seqid, 0);
705 	state = nfs4_opendata_to_nfs4_state(data);
706 	if (state != NULL)
707 		nfs4_close_state(state, data->o_arg.open_flags);
708 out_free:
709 	nfs4_opendata_free(data);
710 }
711 
712 static const struct rpc_call_ops nfs4_open_ops = {
713 	.rpc_call_prepare = nfs4_open_prepare,
714 	.rpc_call_done = nfs4_open_done,
715 	.rpc_release = nfs4_open_release,
716 };
717 
718 /*
719  * Note: On error, nfs4_proc_open will free the struct nfs4_opendata
720  */
721 static int _nfs4_proc_open(struct nfs4_opendata *data)
722 {
723 	struct inode *dir = data->dir->d_inode;
724 	struct nfs_server *server = NFS_SERVER(dir);
725 	struct nfs_openargs *o_arg = &data->o_arg;
726 	struct nfs_openres *o_res = &data->o_res;
727 	struct rpc_task *task;
728 	int status;
729 
730 	atomic_inc(&data->count);
731 	/*
732 	 * If rpc_run_task() ends up calling ->rpc_release(), we
733 	 * want to ensure that it takes the 'error' code path.
734 	 */
735 	data->rpc_status = -ENOMEM;
736 	task = rpc_run_task(server->client, RPC_TASK_ASYNC, &nfs4_open_ops, data);
737 	if (IS_ERR(task))
738 		return PTR_ERR(task);
739 	status = nfs4_wait_for_completion_rpc_task(task);
740 	if (status != 0) {
741 		data->cancelled = 1;
742 		smp_wmb();
743 	} else
744 		status = data->rpc_status;
745 	rpc_release_task(task);
746 	if (status != 0)
747 		return status;
748 
749 	if (o_arg->open_flags & O_CREAT) {
750 		update_changeattr(dir, &o_res->cinfo);
751 		nfs_post_op_update_inode(dir, o_res->dir_attr);
752 	} else
753 		nfs_refresh_inode(dir, o_res->dir_attr);
754 	if(o_res->rflags & NFS4_OPEN_RESULT_CONFIRM) {
755 		status = _nfs4_proc_open_confirm(data);
756 		if (status != 0)
757 			return status;
758 	}
759 	nfs_confirm_seqid(&data->owner->so_seqid, 0);
760 	if (!(o_res->f_attr->valid & NFS_ATTR_FATTR))
761 		return server->rpc_ops->getattr(server, &o_res->fh, o_res->f_attr);
762 	return 0;
763 }
764 
765 static int _nfs4_do_access(struct inode *inode, struct rpc_cred *cred, int openflags)
766 {
767 	struct nfs_access_entry cache;
768 	int mask = 0;
769 	int status;
770 
771 	if (openflags & FMODE_READ)
772 		mask |= MAY_READ;
773 	if (openflags & FMODE_WRITE)
774 		mask |= MAY_WRITE;
775 	status = nfs_access_get_cached(inode, cred, &cache);
776 	if (status == 0)
777 		goto out;
778 
779 	/* Be clever: ask server to check for all possible rights */
780 	cache.mask = MAY_EXEC | MAY_WRITE | MAY_READ;
781 	cache.cred = cred;
782 	cache.jiffies = jiffies;
783 	status = _nfs4_proc_access(inode, &cache);
784 	if (status != 0)
785 		return status;
786 	nfs_access_add_cache(inode, &cache);
787 out:
788 	if ((cache.mask & mask) == mask)
789 		return 0;
790 	return -EACCES;
791 }
792 
793 int nfs4_recover_expired_lease(struct nfs_server *server)
794 {
795 	struct nfs4_client *clp = server->nfs4_state;
796 
797 	if (test_and_clear_bit(NFS4CLNT_LEASE_EXPIRED, &clp->cl_state))
798 		nfs4_schedule_state_recovery(clp);
799 	return nfs4_wait_clnt_recover(server->client, clp);
800 }
801 
802 /*
803  * OPEN_EXPIRED:
804  * 	reclaim state on the server after a network partition.
805  * 	Assumes caller holds the appropriate lock
806  */
807 static int _nfs4_open_expired(struct nfs4_state_owner *sp, struct nfs4_state *state, struct dentry *dentry)
808 {
809 	struct inode *inode = state->inode;
810 	struct nfs_delegation *delegation = NFS_I(inode)->delegation;
811 	struct nfs4_opendata *opendata;
812 	int openflags = state->state & (FMODE_READ|FMODE_WRITE);
813 	int ret;
814 
815 	if (delegation != NULL && !(delegation->flags & NFS_DELEGATION_NEED_RECLAIM)) {
816 		ret = _nfs4_do_access(inode, sp->so_cred, openflags);
817 		if (ret < 0)
818 			return ret;
819 		memcpy(&state->stateid, &delegation->stateid, sizeof(state->stateid));
820 		set_bit(NFS_DELEGATED_STATE, &state->flags);
821 		return 0;
822 	}
823 	opendata = nfs4_opendata_alloc(dentry, sp, openflags, NULL);
824 	if (opendata == NULL)
825 		return -ENOMEM;
826 	ret = nfs4_open_recover(opendata, state);
827 	if (ret == -ESTALE) {
828 		/* Invalidate the state owner so we don't ever use it again */
829 		nfs4_drop_state_owner(sp);
830 		d_drop(dentry);
831 	}
832 	nfs4_opendata_free(opendata);
833 	return ret;
834 }
835 
836 static inline int nfs4_do_open_expired(struct nfs4_state_owner *sp, struct nfs4_state *state, struct dentry *dentry)
837 {
838 	struct nfs_server *server = NFS_SERVER(dentry->d_inode);
839 	struct nfs4_exception exception = { };
840 	int err;
841 
842 	do {
843 		err = _nfs4_open_expired(sp, state, dentry);
844 		if (err == -NFS4ERR_DELAY)
845 			nfs4_handle_exception(server, err, &exception);
846 	} while (exception.retry);
847 	return err;
848 }
849 
850 static int nfs4_open_expired(struct nfs4_state_owner *sp, struct nfs4_state *state)
851 {
852 	struct nfs_open_context *ctx;
853 	int ret;
854 
855 	ctx = nfs4_state_find_open_context(state);
856 	if (IS_ERR(ctx))
857 		return PTR_ERR(ctx);
858 	ret = nfs4_do_open_expired(sp, state, ctx->dentry);
859 	put_nfs_open_context(ctx);
860 	return ret;
861 }
862 
863 /*
864  * Returns a referenced nfs4_state if there is an open delegation on the file
865  */
866 static int _nfs4_open_delegated(struct inode *inode, int flags, struct rpc_cred *cred, struct nfs4_state **res)
867 {
868 	struct nfs_delegation *delegation;
869 	struct nfs_server *server = NFS_SERVER(inode);
870 	struct nfs4_client *clp = server->nfs4_state;
871 	struct nfs_inode *nfsi = NFS_I(inode);
872 	struct nfs4_state_owner *sp = NULL;
873 	struct nfs4_state *state = NULL;
874 	int open_flags = flags & (FMODE_READ|FMODE_WRITE);
875 	int err;
876 
877 	err = -ENOMEM;
878 	if (!(sp = nfs4_get_state_owner(server, cred))) {
879 		dprintk("%s: nfs4_get_state_owner failed!\n", __FUNCTION__);
880 		return err;
881 	}
882 	err = nfs4_recover_expired_lease(server);
883 	if (err != 0)
884 		goto out_put_state_owner;
885 	/* Protect against reboot recovery - NOTE ORDER! */
886 	down_read(&clp->cl_sem);
887 	/* Protect against delegation recall */
888 	down_read(&nfsi->rwsem);
889 	delegation = NFS_I(inode)->delegation;
890 	err = -ENOENT;
891 	if (delegation == NULL || (delegation->type & open_flags) != open_flags)
892 		goto out_err;
893 	err = -ENOMEM;
894 	state = nfs4_get_open_state(inode, sp);
895 	if (state == NULL)
896 		goto out_err;
897 
898 	err = -ENOENT;
899 	if ((state->state & open_flags) == open_flags) {
900 		spin_lock(&inode->i_lock);
901 		update_open_stateflags(state, open_flags);
902 		spin_unlock(&inode->i_lock);
903 		goto out_ok;
904 	} else if (state->state != 0)
905 		goto out_put_open_state;
906 
907 	lock_kernel();
908 	err = _nfs4_do_access(inode, cred, open_flags);
909 	unlock_kernel();
910 	if (err != 0)
911 		goto out_put_open_state;
912 	set_bit(NFS_DELEGATED_STATE, &state->flags);
913 	update_open_stateid(state, &delegation->stateid, open_flags);
914 out_ok:
915 	nfs4_put_state_owner(sp);
916 	up_read(&nfsi->rwsem);
917 	up_read(&clp->cl_sem);
918 	*res = state;
919 	return 0;
920 out_put_open_state:
921 	nfs4_put_open_state(state);
922 out_err:
923 	up_read(&nfsi->rwsem);
924 	up_read(&clp->cl_sem);
925 	if (err != -EACCES)
926 		nfs_inode_return_delegation(inode);
927 out_put_state_owner:
928 	nfs4_put_state_owner(sp);
929 	return err;
930 }
931 
932 static struct nfs4_state *nfs4_open_delegated(struct inode *inode, int flags, struct rpc_cred *cred)
933 {
934 	struct nfs4_exception exception = { };
935 	struct nfs4_state *res = ERR_PTR(-EIO);
936 	int err;
937 
938 	do {
939 		err = _nfs4_open_delegated(inode, flags, cred, &res);
940 		if (err == 0)
941 			break;
942 		res = ERR_PTR(nfs4_handle_exception(NFS_SERVER(inode),
943 					err, &exception));
944 	} while (exception.retry);
945 	return res;
946 }
947 
948 /*
949  * Returns a referenced nfs4_state
950  */
951 static int _nfs4_do_open(struct inode *dir, struct dentry *dentry, int flags, struct iattr *sattr, struct rpc_cred *cred, struct nfs4_state **res)
952 {
953 	struct nfs4_state_owner  *sp;
954 	struct nfs4_state     *state = NULL;
955 	struct nfs_server       *server = NFS_SERVER(dir);
956 	struct nfs4_client *clp = server->nfs4_state;
957 	struct nfs4_opendata *opendata;
958 	int                     status;
959 
960 	/* Protect against reboot recovery conflicts */
961 	status = -ENOMEM;
962 	if (!(sp = nfs4_get_state_owner(server, cred))) {
963 		dprintk("nfs4_do_open: nfs4_get_state_owner failed!\n");
964 		goto out_err;
965 	}
966 	status = nfs4_recover_expired_lease(server);
967 	if (status != 0)
968 		goto err_put_state_owner;
969 	down_read(&clp->cl_sem);
970 	status = -ENOMEM;
971 	opendata = nfs4_opendata_alloc(dentry, sp, flags, sattr);
972 	if (opendata == NULL)
973 		goto err_release_rwsem;
974 
975 	status = _nfs4_proc_open(opendata);
976 	if (status != 0)
977 		goto err_opendata_free;
978 
979 	status = -ENOMEM;
980 	state = nfs4_opendata_to_nfs4_state(opendata);
981 	if (state == NULL)
982 		goto err_opendata_free;
983 	if (opendata->o_res.delegation_type != 0)
984 		nfs_inode_set_delegation(state->inode, cred, &opendata->o_res);
985 	nfs4_opendata_free(opendata);
986 	nfs4_put_state_owner(sp);
987 	up_read(&clp->cl_sem);
988 	*res = state;
989 	return 0;
990 err_opendata_free:
991 	nfs4_opendata_free(opendata);
992 err_release_rwsem:
993 	up_read(&clp->cl_sem);
994 err_put_state_owner:
995 	nfs4_put_state_owner(sp);
996 out_err:
997 	*res = NULL;
998 	return status;
999 }
1000 
1001 
1002 static struct nfs4_state *nfs4_do_open(struct inode *dir, struct dentry *dentry, int flags, struct iattr *sattr, struct rpc_cred *cred)
1003 {
1004 	struct nfs4_exception exception = { };
1005 	struct nfs4_state *res;
1006 	int status;
1007 
1008 	do {
1009 		status = _nfs4_do_open(dir, dentry, flags, sattr, cred, &res);
1010 		if (status == 0)
1011 			break;
1012 		/* NOTE: BAD_SEQID means the server and client disagree about the
1013 		 * book-keeping w.r.t. state-changing operations
1014 		 * (OPEN/CLOSE/LOCK/LOCKU...)
1015 		 * It is actually a sign of a bug on the client or on the server.
1016 		 *
1017 		 * If we receive a BAD_SEQID error in the particular case of
1018 		 * doing an OPEN, we assume that nfs_increment_open_seqid() will
1019 		 * have unhashed the old state_owner for us, and that we can
1020 		 * therefore safely retry using a new one. We should still warn
1021 		 * the user though...
1022 		 */
1023 		if (status == -NFS4ERR_BAD_SEQID) {
1024 			printk(KERN_WARNING "NFS: v4 server returned a bad sequence-id error!\n");
1025 			exception.retry = 1;
1026 			continue;
1027 		}
1028 		/*
1029 		 * BAD_STATEID on OPEN means that the server cancelled our
1030 		 * state before it received the OPEN_CONFIRM.
1031 		 * Recover by retrying the request as per the discussion
1032 		 * on Page 181 of RFC3530.
1033 		 */
1034 		if (status == -NFS4ERR_BAD_STATEID) {
1035 			exception.retry = 1;
1036 			continue;
1037 		}
1038 		res = ERR_PTR(nfs4_handle_exception(NFS_SERVER(dir),
1039 					status, &exception));
1040 	} while (exception.retry);
1041 	return res;
1042 }
1043 
1044 static int _nfs4_do_setattr(struct inode *inode, struct nfs_fattr *fattr,
1045                 struct iattr *sattr, struct nfs4_state *state)
1046 {
1047 	struct nfs_server *server = NFS_SERVER(inode);
1048         struct nfs_setattrargs  arg = {
1049                 .fh             = NFS_FH(inode),
1050                 .iap            = sattr,
1051 		.server		= server,
1052 		.bitmask = server->attr_bitmask,
1053         };
1054         struct nfs_setattrres  res = {
1055 		.fattr		= fattr,
1056 		.server		= server,
1057         };
1058         struct rpc_message msg = {
1059                 .rpc_proc       = &nfs4_procedures[NFSPROC4_CLNT_SETATTR],
1060                 .rpc_argp       = &arg,
1061                 .rpc_resp       = &res,
1062         };
1063 	unsigned long timestamp = jiffies;
1064 	int status;
1065 
1066 	nfs_fattr_init(fattr);
1067 
1068 	if (nfs4_copy_delegation_stateid(&arg.stateid, inode)) {
1069 		/* Use that stateid */
1070 	} else if (state != NULL) {
1071 		msg.rpc_cred = state->owner->so_cred;
1072 		nfs4_copy_stateid(&arg.stateid, state, current->files);
1073 	} else
1074 		memcpy(&arg.stateid, &zero_stateid, sizeof(arg.stateid));
1075 
1076 	status = rpc_call_sync(server->client, &msg, 0);
1077 	if (status == 0 && state != NULL)
1078 		renew_lease(server, timestamp);
1079 	return status;
1080 }
1081 
1082 static int nfs4_do_setattr(struct inode *inode, struct nfs_fattr *fattr,
1083                 struct iattr *sattr, struct nfs4_state *state)
1084 {
1085 	struct nfs_server *server = NFS_SERVER(inode);
1086 	struct nfs4_exception exception = { };
1087 	int err;
1088 	do {
1089 		err = nfs4_handle_exception(server,
1090 				_nfs4_do_setattr(inode, fattr, sattr, state),
1091 				&exception);
1092 	} while (exception.retry);
1093 	return err;
1094 }
1095 
1096 struct nfs4_closedata {
1097 	struct inode *inode;
1098 	struct nfs4_state *state;
1099 	struct nfs_closeargs arg;
1100 	struct nfs_closeres res;
1101 	struct nfs_fattr fattr;
1102 	unsigned long timestamp;
1103 };
1104 
1105 static void nfs4_free_closedata(void *data)
1106 {
1107 	struct nfs4_closedata *calldata = data;
1108 	struct nfs4_state_owner *sp = calldata->state->owner;
1109 
1110 	nfs4_put_open_state(calldata->state);
1111 	nfs_free_seqid(calldata->arg.seqid);
1112 	nfs4_put_state_owner(sp);
1113 	kfree(calldata);
1114 }
1115 
1116 static void nfs4_close_done(struct rpc_task *task, void *data)
1117 {
1118 	struct nfs4_closedata *calldata = data;
1119 	struct nfs4_state *state = calldata->state;
1120 	struct nfs_server *server = NFS_SERVER(calldata->inode);
1121 
1122 	if (RPC_ASSASSINATED(task))
1123 		return;
1124         /* hmm. we are done with the inode, and in the process of freeing
1125 	 * the state_owner. we keep this around to process errors
1126 	 */
1127 	nfs_increment_open_seqid(task->tk_status, calldata->arg.seqid);
1128 	switch (task->tk_status) {
1129 		case 0:
1130 			memcpy(&state->stateid, &calldata->res.stateid,
1131 					sizeof(state->stateid));
1132 			renew_lease(server, calldata->timestamp);
1133 			break;
1134 		case -NFS4ERR_STALE_STATEID:
1135 		case -NFS4ERR_EXPIRED:
1136 			nfs4_schedule_state_recovery(server->nfs4_state);
1137 			break;
1138 		default:
1139 			if (nfs4_async_handle_error(task, server) == -EAGAIN) {
1140 				rpc_restart_call(task);
1141 				return;
1142 			}
1143 	}
1144 	nfs_refresh_inode(calldata->inode, calldata->res.fattr);
1145 }
1146 
1147 static void nfs4_close_prepare(struct rpc_task *task, void *data)
1148 {
1149 	struct nfs4_closedata *calldata = data;
1150 	struct nfs4_state *state = calldata->state;
1151 	struct rpc_message msg = {
1152 		.rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_CLOSE],
1153 		.rpc_argp = &calldata->arg,
1154 		.rpc_resp = &calldata->res,
1155 		.rpc_cred = state->owner->so_cred,
1156 	};
1157 	int mode = 0, old_mode;
1158 
1159 	if (nfs_wait_on_sequence(calldata->arg.seqid, task) != 0)
1160 		return;
1161 	/* Recalculate the new open mode in case someone reopened the file
1162 	 * while we were waiting in line to be scheduled.
1163 	 */
1164 	spin_lock(&state->owner->so_lock);
1165 	spin_lock(&calldata->inode->i_lock);
1166 	mode = old_mode = state->state;
1167 	if (state->n_rdwr == 0) {
1168 		if (state->n_rdonly == 0)
1169 			mode &= ~FMODE_READ;
1170 		if (state->n_wronly == 0)
1171 			mode &= ~FMODE_WRITE;
1172 	}
1173 	nfs4_state_set_mode_locked(state, mode);
1174 	spin_unlock(&calldata->inode->i_lock);
1175 	spin_unlock(&state->owner->so_lock);
1176 	if (mode == old_mode || test_bit(NFS_DELEGATED_STATE, &state->flags)) {
1177 		/* Note: exit _without_ calling nfs4_close_done */
1178 		task->tk_action = NULL;
1179 		return;
1180 	}
1181 	nfs_fattr_init(calldata->res.fattr);
1182 	if (mode != 0)
1183 		msg.rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_OPEN_DOWNGRADE];
1184 	calldata->arg.open_flags = mode;
1185 	calldata->timestamp = jiffies;
1186 	rpc_call_setup(task, &msg, 0);
1187 }
1188 
1189 static const struct rpc_call_ops nfs4_close_ops = {
1190 	.rpc_call_prepare = nfs4_close_prepare,
1191 	.rpc_call_done = nfs4_close_done,
1192 	.rpc_release = nfs4_free_closedata,
1193 };
1194 
1195 /*
1196  * It is possible for data to be read/written from a mem-mapped file
1197  * after the sys_close call (which hits the vfs layer as a flush).
1198  * This means that we can't safely call nfsv4 close on a file until
1199  * the inode is cleared. This in turn means that we are not good
1200  * NFSv4 citizens - we do not indicate to the server to update the file's
1201  * share state even when we are done with one of the three share
1202  * stateid's in the inode.
1203  *
1204  * NOTE: Caller must be holding the sp->so_owner semaphore!
1205  */
1206 int nfs4_do_close(struct inode *inode, struct nfs4_state *state)
1207 {
1208 	struct nfs_server *server = NFS_SERVER(inode);
1209 	struct nfs4_closedata *calldata;
1210 	int status = -ENOMEM;
1211 
1212 	calldata = kmalloc(sizeof(*calldata), GFP_KERNEL);
1213 	if (calldata == NULL)
1214 		goto out;
1215 	calldata->inode = inode;
1216 	calldata->state = state;
1217 	calldata->arg.fh = NFS_FH(inode);
1218 	calldata->arg.stateid = &state->stateid;
1219 	/* Serialization for the sequence id */
1220 	calldata->arg.seqid = nfs_alloc_seqid(&state->owner->so_seqid);
1221 	if (calldata->arg.seqid == NULL)
1222 		goto out_free_calldata;
1223 	calldata->arg.bitmask = server->attr_bitmask;
1224 	calldata->res.fattr = &calldata->fattr;
1225 	calldata->res.server = server;
1226 
1227 	status = nfs4_call_async(server->client, &nfs4_close_ops, calldata);
1228 	if (status == 0)
1229 		goto out;
1230 
1231 	nfs_free_seqid(calldata->arg.seqid);
1232 out_free_calldata:
1233 	kfree(calldata);
1234 out:
1235 	return status;
1236 }
1237 
1238 static int nfs4_intent_set_file(struct nameidata *nd, struct dentry *dentry, struct nfs4_state *state)
1239 {
1240 	struct file *filp;
1241 
1242 	filp = lookup_instantiate_filp(nd, dentry, NULL);
1243 	if (!IS_ERR(filp)) {
1244 		struct nfs_open_context *ctx;
1245 		ctx = (struct nfs_open_context *)filp->private_data;
1246 		ctx->state = state;
1247 		return 0;
1248 	}
1249 	nfs4_close_state(state, nd->intent.open.flags);
1250 	return PTR_ERR(filp);
1251 }
1252 
1253 struct dentry *
1254 nfs4_atomic_open(struct inode *dir, struct dentry *dentry, struct nameidata *nd)
1255 {
1256 	struct iattr attr;
1257 	struct rpc_cred *cred;
1258 	struct nfs4_state *state;
1259 	struct dentry *res;
1260 
1261 	if (nd->flags & LOOKUP_CREATE) {
1262 		attr.ia_mode = nd->intent.open.create_mode;
1263 		attr.ia_valid = ATTR_MODE;
1264 		if (!IS_POSIXACL(dir))
1265 			attr.ia_mode &= ~current->fs->umask;
1266 	} else {
1267 		attr.ia_valid = 0;
1268 		BUG_ON(nd->intent.open.flags & O_CREAT);
1269 	}
1270 
1271 	cred = rpcauth_lookupcred(NFS_SERVER(dir)->client->cl_auth, 0);
1272 	if (IS_ERR(cred))
1273 		return (struct dentry *)cred;
1274 	state = nfs4_do_open(dir, dentry, nd->intent.open.flags, &attr, cred);
1275 	put_rpccred(cred);
1276 	if (IS_ERR(state)) {
1277 		if (PTR_ERR(state) == -ENOENT)
1278 			d_add(dentry, NULL);
1279 		return (struct dentry *)state;
1280 	}
1281 	res = d_add_unique(dentry, igrab(state->inode));
1282 	if (res != NULL)
1283 		dentry = res;
1284 	nfs4_intent_set_file(nd, dentry, state);
1285 	return res;
1286 }
1287 
1288 int
1289 nfs4_open_revalidate(struct inode *dir, struct dentry *dentry, int openflags, struct nameidata *nd)
1290 {
1291 	struct rpc_cred *cred;
1292 	struct nfs4_state *state;
1293 
1294 	cred = rpcauth_lookupcred(NFS_SERVER(dir)->client->cl_auth, 0);
1295 	if (IS_ERR(cred))
1296 		return PTR_ERR(cred);
1297 	state = nfs4_open_delegated(dentry->d_inode, openflags, cred);
1298 	if (IS_ERR(state))
1299 		state = nfs4_do_open(dir, dentry, openflags, NULL, cred);
1300 	put_rpccred(cred);
1301 	if (IS_ERR(state)) {
1302 		switch (PTR_ERR(state)) {
1303 			case -EPERM:
1304 			case -EACCES:
1305 			case -EDQUOT:
1306 			case -ENOSPC:
1307 			case -EROFS:
1308 				lookup_instantiate_filp(nd, (struct dentry *)state, NULL);
1309 				return 1;
1310 			case -ENOENT:
1311 				if (dentry->d_inode == NULL)
1312 					return 1;
1313 		}
1314 		goto out_drop;
1315 	}
1316 	if (state->inode == dentry->d_inode) {
1317 		nfs4_intent_set_file(nd, dentry, state);
1318 		return 1;
1319 	}
1320 	nfs4_close_state(state, openflags);
1321 out_drop:
1322 	d_drop(dentry);
1323 	return 0;
1324 }
1325 
1326 
1327 static int _nfs4_server_capabilities(struct nfs_server *server, struct nfs_fh *fhandle)
1328 {
1329 	struct nfs4_server_caps_res res = {};
1330 	struct rpc_message msg = {
1331 		.rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_SERVER_CAPS],
1332 		.rpc_argp = fhandle,
1333 		.rpc_resp = &res,
1334 	};
1335 	int status;
1336 
1337 	status = rpc_call_sync(server->client, &msg, 0);
1338 	if (status == 0) {
1339 		memcpy(server->attr_bitmask, res.attr_bitmask, sizeof(server->attr_bitmask));
1340 		if (res.attr_bitmask[0] & FATTR4_WORD0_ACL)
1341 			server->caps |= NFS_CAP_ACLS;
1342 		if (res.has_links != 0)
1343 			server->caps |= NFS_CAP_HARDLINKS;
1344 		if (res.has_symlinks != 0)
1345 			server->caps |= NFS_CAP_SYMLINKS;
1346 		server->acl_bitmask = res.acl_bitmask;
1347 	}
1348 	return status;
1349 }
1350 
1351 int nfs4_server_capabilities(struct nfs_server *server, struct nfs_fh *fhandle)
1352 {
1353 	struct nfs4_exception exception = { };
1354 	int err;
1355 	do {
1356 		err = nfs4_handle_exception(server,
1357 				_nfs4_server_capabilities(server, fhandle),
1358 				&exception);
1359 	} while (exception.retry);
1360 	return err;
1361 }
1362 
1363 static int _nfs4_lookup_root(struct nfs_server *server, struct nfs_fh *fhandle,
1364 		struct nfs_fsinfo *info)
1365 {
1366 	struct nfs4_lookup_root_arg args = {
1367 		.bitmask = nfs4_fattr_bitmap,
1368 	};
1369 	struct nfs4_lookup_res res = {
1370 		.server = server,
1371 		.fattr = info->fattr,
1372 		.fh = fhandle,
1373 	};
1374 	struct rpc_message msg = {
1375 		.rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_LOOKUP_ROOT],
1376 		.rpc_argp = &args,
1377 		.rpc_resp = &res,
1378 	};
1379 	nfs_fattr_init(info->fattr);
1380 	return rpc_call_sync(server->client, &msg, 0);
1381 }
1382 
1383 static int nfs4_lookup_root(struct nfs_server *server, struct nfs_fh *fhandle,
1384 		struct nfs_fsinfo *info)
1385 {
1386 	struct nfs4_exception exception = { };
1387 	int err;
1388 	do {
1389 		err = nfs4_handle_exception(server,
1390 				_nfs4_lookup_root(server, fhandle, info),
1391 				&exception);
1392 	} while (exception.retry);
1393 	return err;
1394 }
1395 
1396 static int nfs4_proc_get_root(struct nfs_server *server, struct nfs_fh *fhandle,
1397 		struct nfs_fsinfo *info)
1398 {
1399 	struct nfs_fattr *	fattr = info->fattr;
1400 	unsigned char *		p;
1401 	struct qstr		q;
1402 	struct nfs4_lookup_arg args = {
1403 		.dir_fh = fhandle,
1404 		.name = &q,
1405 		.bitmask = nfs4_fattr_bitmap,
1406 	};
1407 	struct nfs4_lookup_res res = {
1408 		.server = server,
1409 		.fattr = fattr,
1410 		.fh = fhandle,
1411 	};
1412 	struct rpc_message msg = {
1413 		.rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_LOOKUP],
1414 		.rpc_argp = &args,
1415 		.rpc_resp = &res,
1416 	};
1417 	int status;
1418 
1419 	/*
1420 	 * Now we do a separate LOOKUP for each component of the mount path.
1421 	 * The LOOKUPs are done separately so that we can conveniently
1422 	 * catch an ERR_WRONGSEC if it occurs along the way...
1423 	 */
1424 	status = nfs4_lookup_root(server, fhandle, info);
1425 	if (status)
1426 		goto out;
1427 
1428 	p = server->mnt_path;
1429 	for (;;) {
1430 		struct nfs4_exception exception = { };
1431 
1432 		while (*p == '/')
1433 			p++;
1434 		if (!*p)
1435 			break;
1436 		q.name = p;
1437 		while (*p && (*p != '/'))
1438 			p++;
1439 		q.len = p - q.name;
1440 
1441 		do {
1442 			nfs_fattr_init(fattr);
1443 			status = nfs4_handle_exception(server,
1444 					rpc_call_sync(server->client, &msg, 0),
1445 					&exception);
1446 		} while (exception.retry);
1447 		if (status == 0)
1448 			continue;
1449 		if (status == -ENOENT) {
1450 			printk(KERN_NOTICE "NFS: mount path %s does not exist!\n", server->mnt_path);
1451 			printk(KERN_NOTICE "NFS: suggestion: try mounting '/' instead.\n");
1452 		}
1453 		break;
1454 	}
1455 	if (status == 0)
1456 		status = nfs4_server_capabilities(server, fhandle);
1457 	if (status == 0)
1458 		status = nfs4_do_fsinfo(server, fhandle, info);
1459 out:
1460 	return nfs4_map_errors(status);
1461 }
1462 
1463 /*
1464  * Get locations and (maybe) other attributes of a referral.
1465  * Note that we'll actually follow the referral later when
1466  * we detect fsid mismatch in inode revalidation
1467  */
1468 static int nfs4_get_referral(struct inode *dir, struct qstr *name, struct nfs_fattr *fattr, struct nfs_fh *fhandle)
1469 {
1470 	int status = -ENOMEM;
1471 	struct page *page = NULL;
1472 	struct nfs4_fs_locations *locations = NULL;
1473 	struct dentry dentry = {};
1474 
1475 	page = alloc_page(GFP_KERNEL);
1476 	if (page == NULL)
1477 		goto out;
1478 	locations = kmalloc(sizeof(struct nfs4_fs_locations), GFP_KERNEL);
1479 	if (locations == NULL)
1480 		goto out;
1481 
1482 	dentry.d_name.name = name->name;
1483 	dentry.d_name.len = name->len;
1484 	status = nfs4_proc_fs_locations(dir, &dentry, locations, page);
1485 	if (status != 0)
1486 		goto out;
1487 	/* Make sure server returned a different fsid for the referral */
1488 	if (nfs_fsid_equal(&NFS_SERVER(dir)->fsid, &locations->fattr.fsid)) {
1489 		dprintk("%s: server did not return a different fsid for a referral at %s\n", __FUNCTION__, name->name);
1490 		status = -EIO;
1491 		goto out;
1492 	}
1493 
1494 	memcpy(fattr, &locations->fattr, sizeof(struct nfs_fattr));
1495 	fattr->valid |= NFS_ATTR_FATTR_V4_REFERRAL;
1496 	if (!fattr->mode)
1497 		fattr->mode = S_IFDIR;
1498 	memset(fhandle, 0, sizeof(struct nfs_fh));
1499 out:
1500 	if (page)
1501 		__free_page(page);
1502 	if (locations)
1503 		kfree(locations);
1504 	return status;
1505 }
1506 
1507 static int _nfs4_proc_getattr(struct nfs_server *server, struct nfs_fh *fhandle, struct nfs_fattr *fattr)
1508 {
1509 	struct nfs4_getattr_arg args = {
1510 		.fh = fhandle,
1511 		.bitmask = server->attr_bitmask,
1512 	};
1513 	struct nfs4_getattr_res res = {
1514 		.fattr = fattr,
1515 		.server = server,
1516 	};
1517 	struct rpc_message msg = {
1518 		.rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_GETATTR],
1519 		.rpc_argp = &args,
1520 		.rpc_resp = &res,
1521 	};
1522 
1523 	nfs_fattr_init(fattr);
1524 	return rpc_call_sync(server->client, &msg, 0);
1525 }
1526 
1527 static int nfs4_proc_getattr(struct nfs_server *server, struct nfs_fh *fhandle, struct nfs_fattr *fattr)
1528 {
1529 	struct nfs4_exception exception = { };
1530 	int err;
1531 	do {
1532 		err = nfs4_handle_exception(server,
1533 				_nfs4_proc_getattr(server, fhandle, fattr),
1534 				&exception);
1535 	} while (exception.retry);
1536 	return err;
1537 }
1538 
1539 /*
1540  * The file is not closed if it is opened due to the a request to change
1541  * the size of the file. The open call will not be needed once the
1542  * VFS layer lookup-intents are implemented.
1543  *
1544  * Close is called when the inode is destroyed.
1545  * If we haven't opened the file for O_WRONLY, we
1546  * need to in the size_change case to obtain a stateid.
1547  *
1548  * Got race?
1549  * Because OPEN is always done by name in nfsv4, it is
1550  * possible that we opened a different file by the same
1551  * name.  We can recognize this race condition, but we
1552  * can't do anything about it besides returning an error.
1553  *
1554  * This will be fixed with VFS changes (lookup-intent).
1555  */
1556 static int
1557 nfs4_proc_setattr(struct dentry *dentry, struct nfs_fattr *fattr,
1558 		  struct iattr *sattr)
1559 {
1560 	struct rpc_cred *cred;
1561 	struct inode *inode = dentry->d_inode;
1562 	struct nfs_open_context *ctx;
1563 	struct nfs4_state *state = NULL;
1564 	int status;
1565 
1566 	nfs_fattr_init(fattr);
1567 
1568 	cred = rpcauth_lookupcred(NFS_SERVER(inode)->client->cl_auth, 0);
1569 	if (IS_ERR(cred))
1570 		return PTR_ERR(cred);
1571 
1572 	/* Search for an existing open(O_WRITE) file */
1573 	ctx = nfs_find_open_context(inode, cred, FMODE_WRITE);
1574 	if (ctx != NULL)
1575 		state = ctx->state;
1576 
1577 	status = nfs4_do_setattr(inode, fattr, sattr, state);
1578 	if (status == 0)
1579 		nfs_setattr_update_inode(inode, sattr);
1580 	if (ctx != NULL)
1581 		put_nfs_open_context(ctx);
1582 	put_rpccred(cred);
1583 	return status;
1584 }
1585 
1586 static int _nfs4_proc_lookup(struct inode *dir, struct qstr *name,
1587 		struct nfs_fh *fhandle, struct nfs_fattr *fattr)
1588 {
1589 	int		       status;
1590 	struct nfs_server *server = NFS_SERVER(dir);
1591 	struct nfs4_lookup_arg args = {
1592 		.bitmask = server->attr_bitmask,
1593 		.dir_fh = NFS_FH(dir),
1594 		.name = name,
1595 	};
1596 	struct nfs4_lookup_res res = {
1597 		.server = server,
1598 		.fattr = fattr,
1599 		.fh = fhandle,
1600 	};
1601 	struct rpc_message msg = {
1602 		.rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_LOOKUP],
1603 		.rpc_argp = &args,
1604 		.rpc_resp = &res,
1605 	};
1606 
1607 	nfs_fattr_init(fattr);
1608 
1609 	dprintk("NFS call  lookup %s\n", name->name);
1610 	status = rpc_call_sync(NFS_CLIENT(dir), &msg, 0);
1611 	if (status == -NFS4ERR_MOVED)
1612 		status = nfs4_get_referral(dir, name, fattr, fhandle);
1613 	dprintk("NFS reply lookup: %d\n", status);
1614 	return status;
1615 }
1616 
1617 static int nfs4_proc_lookup(struct inode *dir, struct qstr *name, struct nfs_fh *fhandle, struct nfs_fattr *fattr)
1618 {
1619 	struct nfs4_exception exception = { };
1620 	int err;
1621 	do {
1622 		err = nfs4_handle_exception(NFS_SERVER(dir),
1623 				_nfs4_proc_lookup(dir, name, fhandle, fattr),
1624 				&exception);
1625 	} while (exception.retry);
1626 	return err;
1627 }
1628 
1629 static int _nfs4_proc_access(struct inode *inode, struct nfs_access_entry *entry)
1630 {
1631 	struct nfs4_accessargs args = {
1632 		.fh = NFS_FH(inode),
1633 	};
1634 	struct nfs4_accessres res = { 0 };
1635 	struct rpc_message msg = {
1636 		.rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_ACCESS],
1637 		.rpc_argp = &args,
1638 		.rpc_resp = &res,
1639 		.rpc_cred = entry->cred,
1640 	};
1641 	int mode = entry->mask;
1642 	int status;
1643 
1644 	/*
1645 	 * Determine which access bits we want to ask for...
1646 	 */
1647 	if (mode & MAY_READ)
1648 		args.access |= NFS4_ACCESS_READ;
1649 	if (S_ISDIR(inode->i_mode)) {
1650 		if (mode & MAY_WRITE)
1651 			args.access |= NFS4_ACCESS_MODIFY | NFS4_ACCESS_EXTEND | NFS4_ACCESS_DELETE;
1652 		if (mode & MAY_EXEC)
1653 			args.access |= NFS4_ACCESS_LOOKUP;
1654 	} else {
1655 		if (mode & MAY_WRITE)
1656 			args.access |= NFS4_ACCESS_MODIFY | NFS4_ACCESS_EXTEND;
1657 		if (mode & MAY_EXEC)
1658 			args.access |= NFS4_ACCESS_EXECUTE;
1659 	}
1660 	status = rpc_call_sync(NFS_CLIENT(inode), &msg, 0);
1661 	if (!status) {
1662 		entry->mask = 0;
1663 		if (res.access & NFS4_ACCESS_READ)
1664 			entry->mask |= MAY_READ;
1665 		if (res.access & (NFS4_ACCESS_MODIFY | NFS4_ACCESS_EXTEND | NFS4_ACCESS_DELETE))
1666 			entry->mask |= MAY_WRITE;
1667 		if (res.access & (NFS4_ACCESS_LOOKUP|NFS4_ACCESS_EXECUTE))
1668 			entry->mask |= MAY_EXEC;
1669 	}
1670 	return status;
1671 }
1672 
1673 static int nfs4_proc_access(struct inode *inode, struct nfs_access_entry *entry)
1674 {
1675 	struct nfs4_exception exception = { };
1676 	int err;
1677 	do {
1678 		err = nfs4_handle_exception(NFS_SERVER(inode),
1679 				_nfs4_proc_access(inode, entry),
1680 				&exception);
1681 	} while (exception.retry);
1682 	return err;
1683 }
1684 
1685 /*
1686  * TODO: For the time being, we don't try to get any attributes
1687  * along with any of the zero-copy operations READ, READDIR,
1688  * READLINK, WRITE.
1689  *
1690  * In the case of the first three, we want to put the GETATTR
1691  * after the read-type operation -- this is because it is hard
1692  * to predict the length of a GETATTR response in v4, and thus
1693  * align the READ data correctly.  This means that the GETATTR
1694  * may end up partially falling into the page cache, and we should
1695  * shift it into the 'tail' of the xdr_buf before processing.
1696  * To do this efficiently, we need to know the total length
1697  * of data received, which doesn't seem to be available outside
1698  * of the RPC layer.
1699  *
1700  * In the case of WRITE, we also want to put the GETATTR after
1701  * the operation -- in this case because we want to make sure
1702  * we get the post-operation mtime and size.  This means that
1703  * we can't use xdr_encode_pages() as written: we need a variant
1704  * of it which would leave room in the 'tail' iovec.
1705  *
1706  * Both of these changes to the XDR layer would in fact be quite
1707  * minor, but I decided to leave them for a subsequent patch.
1708  */
1709 static int _nfs4_proc_readlink(struct inode *inode, struct page *page,
1710 		unsigned int pgbase, unsigned int pglen)
1711 {
1712 	struct nfs4_readlink args = {
1713 		.fh       = NFS_FH(inode),
1714 		.pgbase	  = pgbase,
1715 		.pglen    = pglen,
1716 		.pages    = &page,
1717 	};
1718 	struct rpc_message msg = {
1719 		.rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_READLINK],
1720 		.rpc_argp = &args,
1721 		.rpc_resp = NULL,
1722 	};
1723 
1724 	return rpc_call_sync(NFS_CLIENT(inode), &msg, 0);
1725 }
1726 
1727 static int nfs4_proc_readlink(struct inode *inode, struct page *page,
1728 		unsigned int pgbase, unsigned int pglen)
1729 {
1730 	struct nfs4_exception exception = { };
1731 	int err;
1732 	do {
1733 		err = nfs4_handle_exception(NFS_SERVER(inode),
1734 				_nfs4_proc_readlink(inode, page, pgbase, pglen),
1735 				&exception);
1736 	} while (exception.retry);
1737 	return err;
1738 }
1739 
1740 static int _nfs4_proc_read(struct nfs_read_data *rdata)
1741 {
1742 	int flags = rdata->flags;
1743 	struct inode *inode = rdata->inode;
1744 	struct nfs_fattr *fattr = rdata->res.fattr;
1745 	struct nfs_server *server = NFS_SERVER(inode);
1746 	struct rpc_message msg = {
1747 		.rpc_proc	= &nfs4_procedures[NFSPROC4_CLNT_READ],
1748 		.rpc_argp	= &rdata->args,
1749 		.rpc_resp	= &rdata->res,
1750 		.rpc_cred	= rdata->cred,
1751 	};
1752 	unsigned long timestamp = jiffies;
1753 	int status;
1754 
1755 	dprintk("NFS call  read %d @ %Ld\n", rdata->args.count,
1756 			(long long) rdata->args.offset);
1757 
1758 	nfs_fattr_init(fattr);
1759 	status = rpc_call_sync(server->client, &msg, flags);
1760 	if (!status)
1761 		renew_lease(server, timestamp);
1762 	dprintk("NFS reply read: %d\n", status);
1763 	return status;
1764 }
1765 
1766 static int nfs4_proc_read(struct nfs_read_data *rdata)
1767 {
1768 	struct nfs4_exception exception = { };
1769 	int err;
1770 	do {
1771 		err = nfs4_handle_exception(NFS_SERVER(rdata->inode),
1772 				_nfs4_proc_read(rdata),
1773 				&exception);
1774 	} while (exception.retry);
1775 	return err;
1776 }
1777 
1778 static int _nfs4_proc_write(struct nfs_write_data *wdata)
1779 {
1780 	int rpcflags = wdata->flags;
1781 	struct inode *inode = wdata->inode;
1782 	struct nfs_fattr *fattr = wdata->res.fattr;
1783 	struct nfs_server *server = NFS_SERVER(inode);
1784 	struct rpc_message msg = {
1785 		.rpc_proc	= &nfs4_procedures[NFSPROC4_CLNT_WRITE],
1786 		.rpc_argp	= &wdata->args,
1787 		.rpc_resp	= &wdata->res,
1788 		.rpc_cred	= wdata->cred,
1789 	};
1790 	int status;
1791 
1792 	dprintk("NFS call  write %d @ %Ld\n", wdata->args.count,
1793 			(long long) wdata->args.offset);
1794 
1795 	wdata->args.bitmask = server->attr_bitmask;
1796 	wdata->res.server = server;
1797 	wdata->timestamp = jiffies;
1798 	nfs_fattr_init(fattr);
1799 	status = rpc_call_sync(server->client, &msg, rpcflags);
1800 	dprintk("NFS reply write: %d\n", status);
1801 	if (status < 0)
1802 		return status;
1803 	renew_lease(server, wdata->timestamp);
1804 	nfs_post_op_update_inode(inode, fattr);
1805 	return wdata->res.count;
1806 }
1807 
1808 static int nfs4_proc_write(struct nfs_write_data *wdata)
1809 {
1810 	struct nfs4_exception exception = { };
1811 	int err;
1812 	do {
1813 		err = nfs4_handle_exception(NFS_SERVER(wdata->inode),
1814 				_nfs4_proc_write(wdata),
1815 				&exception);
1816 	} while (exception.retry);
1817 	return err;
1818 }
1819 
1820 static int _nfs4_proc_commit(struct nfs_write_data *cdata)
1821 {
1822 	struct inode *inode = cdata->inode;
1823 	struct nfs_fattr *fattr = cdata->res.fattr;
1824 	struct nfs_server *server = NFS_SERVER(inode);
1825 	struct rpc_message msg = {
1826 		.rpc_proc	= &nfs4_procedures[NFSPROC4_CLNT_COMMIT],
1827 		.rpc_argp	= &cdata->args,
1828 		.rpc_resp	= &cdata->res,
1829 		.rpc_cred	= cdata->cred,
1830 	};
1831 	int status;
1832 
1833 	dprintk("NFS call  commit %d @ %Ld\n", cdata->args.count,
1834 			(long long) cdata->args.offset);
1835 
1836 	cdata->args.bitmask = server->attr_bitmask;
1837 	cdata->res.server = server;
1838 	cdata->timestamp = jiffies;
1839 	nfs_fattr_init(fattr);
1840 	status = rpc_call_sync(server->client, &msg, 0);
1841 	if (status >= 0)
1842 		renew_lease(server, cdata->timestamp);
1843 	dprintk("NFS reply commit: %d\n", status);
1844 	if (status >= 0)
1845 		nfs_post_op_update_inode(inode, fattr);
1846 	return status;
1847 }
1848 
1849 static int nfs4_proc_commit(struct nfs_write_data *cdata)
1850 {
1851 	struct nfs4_exception exception = { };
1852 	int err;
1853 	do {
1854 		err = nfs4_handle_exception(NFS_SERVER(cdata->inode),
1855 				_nfs4_proc_commit(cdata),
1856 				&exception);
1857 	} while (exception.retry);
1858 	return err;
1859 }
1860 
1861 /*
1862  * Got race?
1863  * We will need to arrange for the VFS layer to provide an atomic open.
1864  * Until then, this create/open method is prone to inefficiency and race
1865  * conditions due to the lookup, create, and open VFS calls from sys_open()
1866  * placed on the wire.
1867  *
1868  * Given the above sorry state of affairs, I'm simply sending an OPEN.
1869  * The file will be opened again in the subsequent VFS open call
1870  * (nfs4_proc_file_open).
1871  *
1872  * The open for read will just hang around to be used by any process that
1873  * opens the file O_RDONLY. This will all be resolved with the VFS changes.
1874  */
1875 
1876 static int
1877 nfs4_proc_create(struct inode *dir, struct dentry *dentry, struct iattr *sattr,
1878                  int flags, struct nameidata *nd)
1879 {
1880 	struct nfs4_state *state;
1881 	struct rpc_cred *cred;
1882 	int status = 0;
1883 
1884 	cred = rpcauth_lookupcred(NFS_SERVER(dir)->client->cl_auth, 0);
1885 	if (IS_ERR(cred)) {
1886 		status = PTR_ERR(cred);
1887 		goto out;
1888 	}
1889 	state = nfs4_do_open(dir, dentry, flags, sattr, cred);
1890 	put_rpccred(cred);
1891 	if (IS_ERR(state)) {
1892 		status = PTR_ERR(state);
1893 		goto out;
1894 	}
1895 	d_instantiate(dentry, igrab(state->inode));
1896 	if (flags & O_EXCL) {
1897 		struct nfs_fattr fattr;
1898 		status = nfs4_do_setattr(state->inode, &fattr, sattr, state);
1899 		if (status == 0)
1900 			nfs_setattr_update_inode(state->inode, sattr);
1901 	}
1902 	if (status == 0 && nd != NULL && (nd->flags & LOOKUP_OPEN))
1903 		status = nfs4_intent_set_file(nd, dentry, state);
1904 	else
1905 		nfs4_close_state(state, flags);
1906 out:
1907 	return status;
1908 }
1909 
1910 static int _nfs4_proc_remove(struct inode *dir, struct qstr *name)
1911 {
1912 	struct nfs_server *server = NFS_SERVER(dir);
1913 	struct nfs4_remove_arg args = {
1914 		.fh = NFS_FH(dir),
1915 		.name = name,
1916 		.bitmask = server->attr_bitmask,
1917 	};
1918 	struct nfs_fattr dir_attr;
1919 	struct nfs4_remove_res	res = {
1920 		.server = server,
1921 		.dir_attr = &dir_attr,
1922 	};
1923 	struct rpc_message msg = {
1924 		.rpc_proc	= &nfs4_procedures[NFSPROC4_CLNT_REMOVE],
1925 		.rpc_argp	= &args,
1926 		.rpc_resp	= &res,
1927 	};
1928 	int			status;
1929 
1930 	nfs_fattr_init(res.dir_attr);
1931 	status = rpc_call_sync(server->client, &msg, 0);
1932 	if (status == 0) {
1933 		update_changeattr(dir, &res.cinfo);
1934 		nfs_post_op_update_inode(dir, res.dir_attr);
1935 	}
1936 	return status;
1937 }
1938 
1939 static int nfs4_proc_remove(struct inode *dir, struct qstr *name)
1940 {
1941 	struct nfs4_exception exception = { };
1942 	int err;
1943 	do {
1944 		err = nfs4_handle_exception(NFS_SERVER(dir),
1945 				_nfs4_proc_remove(dir, name),
1946 				&exception);
1947 	} while (exception.retry);
1948 	return err;
1949 }
1950 
1951 struct unlink_desc {
1952 	struct nfs4_remove_arg	args;
1953 	struct nfs4_remove_res	res;
1954 	struct nfs_fattr dir_attr;
1955 };
1956 
1957 static int nfs4_proc_unlink_setup(struct rpc_message *msg, struct dentry *dir,
1958 		struct qstr *name)
1959 {
1960 	struct nfs_server *server = NFS_SERVER(dir->d_inode);
1961 	struct unlink_desc *up;
1962 
1963 	up = (struct unlink_desc *) kmalloc(sizeof(*up), GFP_KERNEL);
1964 	if (!up)
1965 		return -ENOMEM;
1966 
1967 	up->args.fh = NFS_FH(dir->d_inode);
1968 	up->args.name = name;
1969 	up->args.bitmask = server->attr_bitmask;
1970 	up->res.server = server;
1971 	up->res.dir_attr = &up->dir_attr;
1972 
1973 	msg->rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_REMOVE];
1974 	msg->rpc_argp = &up->args;
1975 	msg->rpc_resp = &up->res;
1976 	return 0;
1977 }
1978 
1979 static int nfs4_proc_unlink_done(struct dentry *dir, struct rpc_task *task)
1980 {
1981 	struct rpc_message *msg = &task->tk_msg;
1982 	struct unlink_desc *up;
1983 
1984 	if (msg->rpc_resp != NULL) {
1985 		up = container_of(msg->rpc_resp, struct unlink_desc, res);
1986 		update_changeattr(dir->d_inode, &up->res.cinfo);
1987 		nfs_post_op_update_inode(dir->d_inode, up->res.dir_attr);
1988 		kfree(up);
1989 		msg->rpc_resp = NULL;
1990 		msg->rpc_argp = NULL;
1991 	}
1992 	return 0;
1993 }
1994 
1995 static int _nfs4_proc_rename(struct inode *old_dir, struct qstr *old_name,
1996 		struct inode *new_dir, struct qstr *new_name)
1997 {
1998 	struct nfs_server *server = NFS_SERVER(old_dir);
1999 	struct nfs4_rename_arg arg = {
2000 		.old_dir = NFS_FH(old_dir),
2001 		.new_dir = NFS_FH(new_dir),
2002 		.old_name = old_name,
2003 		.new_name = new_name,
2004 		.bitmask = server->attr_bitmask,
2005 	};
2006 	struct nfs_fattr old_fattr, new_fattr;
2007 	struct nfs4_rename_res res = {
2008 		.server = server,
2009 		.old_fattr = &old_fattr,
2010 		.new_fattr = &new_fattr,
2011 	};
2012 	struct rpc_message msg = {
2013 		.rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_RENAME],
2014 		.rpc_argp = &arg,
2015 		.rpc_resp = &res,
2016 	};
2017 	int			status;
2018 
2019 	nfs_fattr_init(res.old_fattr);
2020 	nfs_fattr_init(res.new_fattr);
2021 	status = rpc_call_sync(server->client, &msg, 0);
2022 
2023 	if (!status) {
2024 		update_changeattr(old_dir, &res.old_cinfo);
2025 		nfs_post_op_update_inode(old_dir, res.old_fattr);
2026 		update_changeattr(new_dir, &res.new_cinfo);
2027 		nfs_post_op_update_inode(new_dir, res.new_fattr);
2028 	}
2029 	return status;
2030 }
2031 
2032 static int nfs4_proc_rename(struct inode *old_dir, struct qstr *old_name,
2033 		struct inode *new_dir, struct qstr *new_name)
2034 {
2035 	struct nfs4_exception exception = { };
2036 	int err;
2037 	do {
2038 		err = nfs4_handle_exception(NFS_SERVER(old_dir),
2039 				_nfs4_proc_rename(old_dir, old_name,
2040 					new_dir, new_name),
2041 				&exception);
2042 	} while (exception.retry);
2043 	return err;
2044 }
2045 
2046 static int _nfs4_proc_link(struct inode *inode, struct inode *dir, struct qstr *name)
2047 {
2048 	struct nfs_server *server = NFS_SERVER(inode);
2049 	struct nfs4_link_arg arg = {
2050 		.fh     = NFS_FH(inode),
2051 		.dir_fh = NFS_FH(dir),
2052 		.name   = name,
2053 		.bitmask = server->attr_bitmask,
2054 	};
2055 	struct nfs_fattr fattr, dir_attr;
2056 	struct nfs4_link_res res = {
2057 		.server = server,
2058 		.fattr = &fattr,
2059 		.dir_attr = &dir_attr,
2060 	};
2061 	struct rpc_message msg = {
2062 		.rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_LINK],
2063 		.rpc_argp = &arg,
2064 		.rpc_resp = &res,
2065 	};
2066 	int			status;
2067 
2068 	nfs_fattr_init(res.fattr);
2069 	nfs_fattr_init(res.dir_attr);
2070 	status = rpc_call_sync(server->client, &msg, 0);
2071 	if (!status) {
2072 		update_changeattr(dir, &res.cinfo);
2073 		nfs_post_op_update_inode(dir, res.dir_attr);
2074 		nfs_post_op_update_inode(inode, res.fattr);
2075 	}
2076 
2077 	return status;
2078 }
2079 
2080 static int nfs4_proc_link(struct inode *inode, struct inode *dir, struct qstr *name)
2081 {
2082 	struct nfs4_exception exception = { };
2083 	int err;
2084 	do {
2085 		err = nfs4_handle_exception(NFS_SERVER(inode),
2086 				_nfs4_proc_link(inode, dir, name),
2087 				&exception);
2088 	} while (exception.retry);
2089 	return err;
2090 }
2091 
2092 static int _nfs4_proc_symlink(struct inode *dir, struct qstr *name,
2093 		struct qstr *path, struct iattr *sattr, struct nfs_fh *fhandle,
2094 		struct nfs_fattr *fattr)
2095 {
2096 	struct nfs_server *server = NFS_SERVER(dir);
2097 	struct nfs_fattr dir_fattr;
2098 	struct nfs4_create_arg arg = {
2099 		.dir_fh = NFS_FH(dir),
2100 		.server = server,
2101 		.name = name,
2102 		.attrs = sattr,
2103 		.ftype = NF4LNK,
2104 		.bitmask = server->attr_bitmask,
2105 	};
2106 	struct nfs4_create_res res = {
2107 		.server = server,
2108 		.fh = fhandle,
2109 		.fattr = fattr,
2110 		.dir_fattr = &dir_fattr,
2111 	};
2112 	struct rpc_message msg = {
2113 		.rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_SYMLINK],
2114 		.rpc_argp = &arg,
2115 		.rpc_resp = &res,
2116 	};
2117 	int			status;
2118 
2119 	if (path->len > NFS4_MAXPATHLEN)
2120 		return -ENAMETOOLONG;
2121 	arg.u.symlink = path;
2122 	nfs_fattr_init(fattr);
2123 	nfs_fattr_init(&dir_fattr);
2124 
2125 	status = rpc_call_sync(NFS_CLIENT(dir), &msg, 0);
2126 	if (!status)
2127 		update_changeattr(dir, &res.dir_cinfo);
2128 	nfs_post_op_update_inode(dir, res.dir_fattr);
2129 	return status;
2130 }
2131 
2132 static int nfs4_proc_symlink(struct inode *dir, struct qstr *name,
2133 		struct qstr *path, struct iattr *sattr, struct nfs_fh *fhandle,
2134 		struct nfs_fattr *fattr)
2135 {
2136 	struct nfs4_exception exception = { };
2137 	int err;
2138 	do {
2139 		err = nfs4_handle_exception(NFS_SERVER(dir),
2140 				_nfs4_proc_symlink(dir, name, path, sattr,
2141 					fhandle, fattr),
2142 				&exception);
2143 	} while (exception.retry);
2144 	return err;
2145 }
2146 
2147 static int _nfs4_proc_mkdir(struct inode *dir, struct dentry *dentry,
2148 		struct iattr *sattr)
2149 {
2150 	struct nfs_server *server = NFS_SERVER(dir);
2151 	struct nfs_fh fhandle;
2152 	struct nfs_fattr fattr, dir_fattr;
2153 	struct nfs4_create_arg arg = {
2154 		.dir_fh = NFS_FH(dir),
2155 		.server = server,
2156 		.name = &dentry->d_name,
2157 		.attrs = sattr,
2158 		.ftype = NF4DIR,
2159 		.bitmask = server->attr_bitmask,
2160 	};
2161 	struct nfs4_create_res res = {
2162 		.server = server,
2163 		.fh = &fhandle,
2164 		.fattr = &fattr,
2165 		.dir_fattr = &dir_fattr,
2166 	};
2167 	struct rpc_message msg = {
2168 		.rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_CREATE],
2169 		.rpc_argp = &arg,
2170 		.rpc_resp = &res,
2171 	};
2172 	int			status;
2173 
2174 	nfs_fattr_init(&fattr);
2175 	nfs_fattr_init(&dir_fattr);
2176 
2177 	status = rpc_call_sync(NFS_CLIENT(dir), &msg, 0);
2178 	if (!status) {
2179 		update_changeattr(dir, &res.dir_cinfo);
2180 		nfs_post_op_update_inode(dir, res.dir_fattr);
2181 		status = nfs_instantiate(dentry, &fhandle, &fattr);
2182 	}
2183 	return status;
2184 }
2185 
2186 static int nfs4_proc_mkdir(struct inode *dir, struct dentry *dentry,
2187 		struct iattr *sattr)
2188 {
2189 	struct nfs4_exception exception = { };
2190 	int err;
2191 	do {
2192 		err = nfs4_handle_exception(NFS_SERVER(dir),
2193 				_nfs4_proc_mkdir(dir, dentry, sattr),
2194 				&exception);
2195 	} while (exception.retry);
2196 	return err;
2197 }
2198 
2199 static int _nfs4_proc_readdir(struct dentry *dentry, struct rpc_cred *cred,
2200                   u64 cookie, struct page *page, unsigned int count, int plus)
2201 {
2202 	struct inode		*dir = dentry->d_inode;
2203 	struct nfs4_readdir_arg args = {
2204 		.fh = NFS_FH(dir),
2205 		.pages = &page,
2206 		.pgbase = 0,
2207 		.count = count,
2208 		.bitmask = NFS_SERVER(dentry->d_inode)->attr_bitmask,
2209 	};
2210 	struct nfs4_readdir_res res;
2211 	struct rpc_message msg = {
2212 		.rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_READDIR],
2213 		.rpc_argp = &args,
2214 		.rpc_resp = &res,
2215 		.rpc_cred = cred,
2216 	};
2217 	int			status;
2218 
2219 	dprintk("%s: dentry = %s/%s, cookie = %Lu\n", __FUNCTION__,
2220 			dentry->d_parent->d_name.name,
2221 			dentry->d_name.name,
2222 			(unsigned long long)cookie);
2223 	lock_kernel();
2224 	nfs4_setup_readdir(cookie, NFS_COOKIEVERF(dir), dentry, &args);
2225 	res.pgbase = args.pgbase;
2226 	status = rpc_call_sync(NFS_CLIENT(dir), &msg, 0);
2227 	if (status == 0)
2228 		memcpy(NFS_COOKIEVERF(dir), res.verifier.data, NFS4_VERIFIER_SIZE);
2229 	unlock_kernel();
2230 	dprintk("%s: returns %d\n", __FUNCTION__, status);
2231 	return status;
2232 }
2233 
2234 static int nfs4_proc_readdir(struct dentry *dentry, struct rpc_cred *cred,
2235                   u64 cookie, struct page *page, unsigned int count, int plus)
2236 {
2237 	struct nfs4_exception exception = { };
2238 	int err;
2239 	do {
2240 		err = nfs4_handle_exception(NFS_SERVER(dentry->d_inode),
2241 				_nfs4_proc_readdir(dentry, cred, cookie,
2242 					page, count, plus),
2243 				&exception);
2244 	} while (exception.retry);
2245 	return err;
2246 }
2247 
2248 static int _nfs4_proc_mknod(struct inode *dir, struct dentry *dentry,
2249 		struct iattr *sattr, dev_t rdev)
2250 {
2251 	struct nfs_server *server = NFS_SERVER(dir);
2252 	struct nfs_fh fh;
2253 	struct nfs_fattr fattr, dir_fattr;
2254 	struct nfs4_create_arg arg = {
2255 		.dir_fh = NFS_FH(dir),
2256 		.server = server,
2257 		.name = &dentry->d_name,
2258 		.attrs = sattr,
2259 		.bitmask = server->attr_bitmask,
2260 	};
2261 	struct nfs4_create_res res = {
2262 		.server = server,
2263 		.fh = &fh,
2264 		.fattr = &fattr,
2265 		.dir_fattr = &dir_fattr,
2266 	};
2267 	struct rpc_message msg = {
2268 		.rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_CREATE],
2269 		.rpc_argp = &arg,
2270 		.rpc_resp = &res,
2271 	};
2272 	int			status;
2273 	int                     mode = sattr->ia_mode;
2274 
2275 	nfs_fattr_init(&fattr);
2276 	nfs_fattr_init(&dir_fattr);
2277 
2278 	BUG_ON(!(sattr->ia_valid & ATTR_MODE));
2279 	BUG_ON(!S_ISFIFO(mode) && !S_ISBLK(mode) && !S_ISCHR(mode) && !S_ISSOCK(mode));
2280 	if (S_ISFIFO(mode))
2281 		arg.ftype = NF4FIFO;
2282 	else if (S_ISBLK(mode)) {
2283 		arg.ftype = NF4BLK;
2284 		arg.u.device.specdata1 = MAJOR(rdev);
2285 		arg.u.device.specdata2 = MINOR(rdev);
2286 	}
2287 	else if (S_ISCHR(mode)) {
2288 		arg.ftype = NF4CHR;
2289 		arg.u.device.specdata1 = MAJOR(rdev);
2290 		arg.u.device.specdata2 = MINOR(rdev);
2291 	}
2292 	else
2293 		arg.ftype = NF4SOCK;
2294 
2295 	status = rpc_call_sync(NFS_CLIENT(dir), &msg, 0);
2296 	if (status == 0) {
2297 		update_changeattr(dir, &res.dir_cinfo);
2298 		nfs_post_op_update_inode(dir, res.dir_fattr);
2299 		status = nfs_instantiate(dentry, &fh, &fattr);
2300 	}
2301 	return status;
2302 }
2303 
2304 static int nfs4_proc_mknod(struct inode *dir, struct dentry *dentry,
2305 		struct iattr *sattr, dev_t rdev)
2306 {
2307 	struct nfs4_exception exception = { };
2308 	int err;
2309 	do {
2310 		err = nfs4_handle_exception(NFS_SERVER(dir),
2311 				_nfs4_proc_mknod(dir, dentry, sattr, rdev),
2312 				&exception);
2313 	} while (exception.retry);
2314 	return err;
2315 }
2316 
2317 static int _nfs4_proc_statfs(struct nfs_server *server, struct nfs_fh *fhandle,
2318 		 struct nfs_fsstat *fsstat)
2319 {
2320 	struct nfs4_statfs_arg args = {
2321 		.fh = fhandle,
2322 		.bitmask = server->attr_bitmask,
2323 	};
2324 	struct rpc_message msg = {
2325 		.rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_STATFS],
2326 		.rpc_argp = &args,
2327 		.rpc_resp = fsstat,
2328 	};
2329 
2330 	nfs_fattr_init(fsstat->fattr);
2331 	return rpc_call_sync(server->client, &msg, 0);
2332 }
2333 
2334 static int nfs4_proc_statfs(struct nfs_server *server, struct nfs_fh *fhandle, struct nfs_fsstat *fsstat)
2335 {
2336 	struct nfs4_exception exception = { };
2337 	int err;
2338 	do {
2339 		err = nfs4_handle_exception(server,
2340 				_nfs4_proc_statfs(server, fhandle, fsstat),
2341 				&exception);
2342 	} while (exception.retry);
2343 	return err;
2344 }
2345 
2346 static int _nfs4_do_fsinfo(struct nfs_server *server, struct nfs_fh *fhandle,
2347 		struct nfs_fsinfo *fsinfo)
2348 {
2349 	struct nfs4_fsinfo_arg args = {
2350 		.fh = fhandle,
2351 		.bitmask = server->attr_bitmask,
2352 	};
2353 	struct rpc_message msg = {
2354 		.rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_FSINFO],
2355 		.rpc_argp = &args,
2356 		.rpc_resp = fsinfo,
2357 	};
2358 
2359 	return rpc_call_sync(server->client, &msg, 0);
2360 }
2361 
2362 static int nfs4_do_fsinfo(struct nfs_server *server, struct nfs_fh *fhandle, struct nfs_fsinfo *fsinfo)
2363 {
2364 	struct nfs4_exception exception = { };
2365 	int err;
2366 
2367 	do {
2368 		err = nfs4_handle_exception(server,
2369 				_nfs4_do_fsinfo(server, fhandle, fsinfo),
2370 				&exception);
2371 	} while (exception.retry);
2372 	return err;
2373 }
2374 
2375 static int nfs4_proc_fsinfo(struct nfs_server *server, struct nfs_fh *fhandle, struct nfs_fsinfo *fsinfo)
2376 {
2377 	nfs_fattr_init(fsinfo->fattr);
2378 	return nfs4_do_fsinfo(server, fhandle, fsinfo);
2379 }
2380 
2381 static int _nfs4_proc_pathconf(struct nfs_server *server, struct nfs_fh *fhandle,
2382 		struct nfs_pathconf *pathconf)
2383 {
2384 	struct nfs4_pathconf_arg args = {
2385 		.fh = fhandle,
2386 		.bitmask = server->attr_bitmask,
2387 	};
2388 	struct rpc_message msg = {
2389 		.rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_PATHCONF],
2390 		.rpc_argp = &args,
2391 		.rpc_resp = pathconf,
2392 	};
2393 
2394 	/* None of the pathconf attributes are mandatory to implement */
2395 	if ((args.bitmask[0] & nfs4_pathconf_bitmap[0]) == 0) {
2396 		memset(pathconf, 0, sizeof(*pathconf));
2397 		return 0;
2398 	}
2399 
2400 	nfs_fattr_init(pathconf->fattr);
2401 	return rpc_call_sync(server->client, &msg, 0);
2402 }
2403 
2404 static int nfs4_proc_pathconf(struct nfs_server *server, struct nfs_fh *fhandle,
2405 		struct nfs_pathconf *pathconf)
2406 {
2407 	struct nfs4_exception exception = { };
2408 	int err;
2409 
2410 	do {
2411 		err = nfs4_handle_exception(server,
2412 				_nfs4_proc_pathconf(server, fhandle, pathconf),
2413 				&exception);
2414 	} while (exception.retry);
2415 	return err;
2416 }
2417 
2418 static int nfs4_read_done(struct rpc_task *task, struct nfs_read_data *data)
2419 {
2420 	struct nfs_server *server = NFS_SERVER(data->inode);
2421 
2422 	if (nfs4_async_handle_error(task, server) == -EAGAIN) {
2423 		rpc_restart_call(task);
2424 		return -EAGAIN;
2425 	}
2426 	if (task->tk_status > 0)
2427 		renew_lease(server, data->timestamp);
2428 	return 0;
2429 }
2430 
2431 static void nfs4_proc_read_setup(struct nfs_read_data *data)
2432 {
2433 	struct rpc_message msg = {
2434 		.rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_READ],
2435 		.rpc_argp = &data->args,
2436 		.rpc_resp = &data->res,
2437 		.rpc_cred = data->cred,
2438 	};
2439 
2440 	data->timestamp   = jiffies;
2441 
2442 	rpc_call_setup(&data->task, &msg, 0);
2443 }
2444 
2445 static int nfs4_write_done(struct rpc_task *task, struct nfs_write_data *data)
2446 {
2447 	struct inode *inode = data->inode;
2448 
2449 	if (nfs4_async_handle_error(task, NFS_SERVER(inode)) == -EAGAIN) {
2450 		rpc_restart_call(task);
2451 		return -EAGAIN;
2452 	}
2453 	if (task->tk_status >= 0) {
2454 		renew_lease(NFS_SERVER(inode), data->timestamp);
2455 		nfs_post_op_update_inode(inode, data->res.fattr);
2456 	}
2457 	return 0;
2458 }
2459 
2460 static void nfs4_proc_write_setup(struct nfs_write_data *data, int how)
2461 {
2462 	struct rpc_message msg = {
2463 		.rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_WRITE],
2464 		.rpc_argp = &data->args,
2465 		.rpc_resp = &data->res,
2466 		.rpc_cred = data->cred,
2467 	};
2468 	struct inode *inode = data->inode;
2469 	struct nfs_server *server = NFS_SERVER(inode);
2470 	int stable;
2471 
2472 	if (how & FLUSH_STABLE) {
2473 		if (!NFS_I(inode)->ncommit)
2474 			stable = NFS_FILE_SYNC;
2475 		else
2476 			stable = NFS_DATA_SYNC;
2477 	} else
2478 		stable = NFS_UNSTABLE;
2479 	data->args.stable = stable;
2480 	data->args.bitmask = server->attr_bitmask;
2481 	data->res.server = server;
2482 
2483 	data->timestamp   = jiffies;
2484 
2485 	/* Finalize the task. */
2486 	rpc_call_setup(&data->task, &msg, 0);
2487 }
2488 
2489 static int nfs4_commit_done(struct rpc_task *task, struct nfs_write_data *data)
2490 {
2491 	struct inode *inode = data->inode;
2492 
2493 	if (nfs4_async_handle_error(task, NFS_SERVER(inode)) == -EAGAIN) {
2494 		rpc_restart_call(task);
2495 		return -EAGAIN;
2496 	}
2497 	if (task->tk_status >= 0)
2498 		nfs_post_op_update_inode(inode, data->res.fattr);
2499 	return 0;
2500 }
2501 
2502 static void nfs4_proc_commit_setup(struct nfs_write_data *data, int how)
2503 {
2504 	struct rpc_message msg = {
2505 		.rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_COMMIT],
2506 		.rpc_argp = &data->args,
2507 		.rpc_resp = &data->res,
2508 		.rpc_cred = data->cred,
2509 	};
2510 	struct nfs_server *server = NFS_SERVER(data->inode);
2511 
2512 	data->args.bitmask = server->attr_bitmask;
2513 	data->res.server = server;
2514 
2515 	rpc_call_setup(&data->task, &msg, 0);
2516 }
2517 
2518 /*
2519  * nfs4_proc_async_renew(): This is not one of the nfs_rpc_ops; it is a special
2520  * standalone procedure for queueing an asynchronous RENEW.
2521  */
2522 static void nfs4_renew_done(struct rpc_task *task, void *data)
2523 {
2524 	struct nfs4_client *clp = (struct nfs4_client *)task->tk_msg.rpc_argp;
2525 	unsigned long timestamp = (unsigned long)data;
2526 
2527 	if (task->tk_status < 0) {
2528 		switch (task->tk_status) {
2529 			case -NFS4ERR_STALE_CLIENTID:
2530 			case -NFS4ERR_EXPIRED:
2531 			case -NFS4ERR_CB_PATH_DOWN:
2532 				nfs4_schedule_state_recovery(clp);
2533 		}
2534 		return;
2535 	}
2536 	spin_lock(&clp->cl_lock);
2537 	if (time_before(clp->cl_last_renewal,timestamp))
2538 		clp->cl_last_renewal = timestamp;
2539 	spin_unlock(&clp->cl_lock);
2540 }
2541 
2542 static const struct rpc_call_ops nfs4_renew_ops = {
2543 	.rpc_call_done = nfs4_renew_done,
2544 };
2545 
2546 int nfs4_proc_async_renew(struct nfs4_client *clp, struct rpc_cred *cred)
2547 {
2548 	struct rpc_message msg = {
2549 		.rpc_proc	= &nfs4_procedures[NFSPROC4_CLNT_RENEW],
2550 		.rpc_argp	= clp,
2551 		.rpc_cred	= cred,
2552 	};
2553 
2554 	return rpc_call_async(clp->cl_rpcclient, &msg, RPC_TASK_SOFT,
2555 			&nfs4_renew_ops, (void *)jiffies);
2556 }
2557 
2558 int nfs4_proc_renew(struct nfs4_client *clp, struct rpc_cred *cred)
2559 {
2560 	struct rpc_message msg = {
2561 		.rpc_proc	= &nfs4_procedures[NFSPROC4_CLNT_RENEW],
2562 		.rpc_argp	= clp,
2563 		.rpc_cred	= cred,
2564 	};
2565 	unsigned long now = jiffies;
2566 	int status;
2567 
2568 	status = rpc_call_sync(clp->cl_rpcclient, &msg, 0);
2569 	if (status < 0)
2570 		return status;
2571 	spin_lock(&clp->cl_lock);
2572 	if (time_before(clp->cl_last_renewal,now))
2573 		clp->cl_last_renewal = now;
2574 	spin_unlock(&clp->cl_lock);
2575 	return 0;
2576 }
2577 
2578 static inline int nfs4_server_supports_acls(struct nfs_server *server)
2579 {
2580 	return (server->caps & NFS_CAP_ACLS)
2581 		&& (server->acl_bitmask & ACL4_SUPPORT_ALLOW_ACL)
2582 		&& (server->acl_bitmask & ACL4_SUPPORT_DENY_ACL);
2583 }
2584 
2585 /* Assuming that XATTR_SIZE_MAX is a multiple of PAGE_CACHE_SIZE, and that
2586  * it's OK to put sizeof(void) * (XATTR_SIZE_MAX/PAGE_CACHE_SIZE) bytes on
2587  * the stack.
2588  */
2589 #define NFS4ACL_MAXPAGES (XATTR_SIZE_MAX >> PAGE_CACHE_SHIFT)
2590 
2591 static void buf_to_pages(const void *buf, size_t buflen,
2592 		struct page **pages, unsigned int *pgbase)
2593 {
2594 	const void *p = buf;
2595 
2596 	*pgbase = offset_in_page(buf);
2597 	p -= *pgbase;
2598 	while (p < buf + buflen) {
2599 		*(pages++) = virt_to_page(p);
2600 		p += PAGE_CACHE_SIZE;
2601 	}
2602 }
2603 
2604 struct nfs4_cached_acl {
2605 	int cached;
2606 	size_t len;
2607 	char data[0];
2608 };
2609 
2610 static void nfs4_set_cached_acl(struct inode *inode, struct nfs4_cached_acl *acl)
2611 {
2612 	struct nfs_inode *nfsi = NFS_I(inode);
2613 
2614 	spin_lock(&inode->i_lock);
2615 	kfree(nfsi->nfs4_acl);
2616 	nfsi->nfs4_acl = acl;
2617 	spin_unlock(&inode->i_lock);
2618 }
2619 
2620 static void nfs4_zap_acl_attr(struct inode *inode)
2621 {
2622 	nfs4_set_cached_acl(inode, NULL);
2623 }
2624 
2625 static inline ssize_t nfs4_read_cached_acl(struct inode *inode, char *buf, size_t buflen)
2626 {
2627 	struct nfs_inode *nfsi = NFS_I(inode);
2628 	struct nfs4_cached_acl *acl;
2629 	int ret = -ENOENT;
2630 
2631 	spin_lock(&inode->i_lock);
2632 	acl = nfsi->nfs4_acl;
2633 	if (acl == NULL)
2634 		goto out;
2635 	if (buf == NULL) /* user is just asking for length */
2636 		goto out_len;
2637 	if (acl->cached == 0)
2638 		goto out;
2639 	ret = -ERANGE; /* see getxattr(2) man page */
2640 	if (acl->len > buflen)
2641 		goto out;
2642 	memcpy(buf, acl->data, acl->len);
2643 out_len:
2644 	ret = acl->len;
2645 out:
2646 	spin_unlock(&inode->i_lock);
2647 	return ret;
2648 }
2649 
2650 static void nfs4_write_cached_acl(struct inode *inode, const char *buf, size_t acl_len)
2651 {
2652 	struct nfs4_cached_acl *acl;
2653 
2654 	if (buf && acl_len <= PAGE_SIZE) {
2655 		acl = kmalloc(sizeof(*acl) + acl_len, GFP_KERNEL);
2656 		if (acl == NULL)
2657 			goto out;
2658 		acl->cached = 1;
2659 		memcpy(acl->data, buf, acl_len);
2660 	} else {
2661 		acl = kmalloc(sizeof(*acl), GFP_KERNEL);
2662 		if (acl == NULL)
2663 			goto out;
2664 		acl->cached = 0;
2665 	}
2666 	acl->len = acl_len;
2667 out:
2668 	nfs4_set_cached_acl(inode, acl);
2669 }
2670 
2671 static ssize_t __nfs4_get_acl_uncached(struct inode *inode, void *buf, size_t buflen)
2672 {
2673 	struct page *pages[NFS4ACL_MAXPAGES];
2674 	struct nfs_getaclargs args = {
2675 		.fh = NFS_FH(inode),
2676 		.acl_pages = pages,
2677 		.acl_len = buflen,
2678 	};
2679 	size_t resp_len = buflen;
2680 	void *resp_buf;
2681 	struct rpc_message msg = {
2682 		.rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_GETACL],
2683 		.rpc_argp = &args,
2684 		.rpc_resp = &resp_len,
2685 	};
2686 	struct page *localpage = NULL;
2687 	int ret;
2688 
2689 	if (buflen < PAGE_SIZE) {
2690 		/* As long as we're doing a round trip to the server anyway,
2691 		 * let's be prepared for a page of acl data. */
2692 		localpage = alloc_page(GFP_KERNEL);
2693 		resp_buf = page_address(localpage);
2694 		if (localpage == NULL)
2695 			return -ENOMEM;
2696 		args.acl_pages[0] = localpage;
2697 		args.acl_pgbase = 0;
2698 		resp_len = args.acl_len = PAGE_SIZE;
2699 	} else {
2700 		resp_buf = buf;
2701 		buf_to_pages(buf, buflen, args.acl_pages, &args.acl_pgbase);
2702 	}
2703 	ret = rpc_call_sync(NFS_CLIENT(inode), &msg, 0);
2704 	if (ret)
2705 		goto out_free;
2706 	if (resp_len > args.acl_len)
2707 		nfs4_write_cached_acl(inode, NULL, resp_len);
2708 	else
2709 		nfs4_write_cached_acl(inode, resp_buf, resp_len);
2710 	if (buf) {
2711 		ret = -ERANGE;
2712 		if (resp_len > buflen)
2713 			goto out_free;
2714 		if (localpage)
2715 			memcpy(buf, resp_buf, resp_len);
2716 	}
2717 	ret = resp_len;
2718 out_free:
2719 	if (localpage)
2720 		__free_page(localpage);
2721 	return ret;
2722 }
2723 
2724 static ssize_t nfs4_get_acl_uncached(struct inode *inode, void *buf, size_t buflen)
2725 {
2726 	struct nfs4_exception exception = { };
2727 	ssize_t ret;
2728 	do {
2729 		ret = __nfs4_get_acl_uncached(inode, buf, buflen);
2730 		if (ret >= 0)
2731 			break;
2732 		ret = nfs4_handle_exception(NFS_SERVER(inode), ret, &exception);
2733 	} while (exception.retry);
2734 	return ret;
2735 }
2736 
2737 static ssize_t nfs4_proc_get_acl(struct inode *inode, void *buf, size_t buflen)
2738 {
2739 	struct nfs_server *server = NFS_SERVER(inode);
2740 	int ret;
2741 
2742 	if (!nfs4_server_supports_acls(server))
2743 		return -EOPNOTSUPP;
2744 	ret = nfs_revalidate_inode(server, inode);
2745 	if (ret < 0)
2746 		return ret;
2747 	ret = nfs4_read_cached_acl(inode, buf, buflen);
2748 	if (ret != -ENOENT)
2749 		return ret;
2750 	return nfs4_get_acl_uncached(inode, buf, buflen);
2751 }
2752 
2753 static int __nfs4_proc_set_acl(struct inode *inode, const void *buf, size_t buflen)
2754 {
2755 	struct nfs_server *server = NFS_SERVER(inode);
2756 	struct page *pages[NFS4ACL_MAXPAGES];
2757 	struct nfs_setaclargs arg = {
2758 		.fh		= NFS_FH(inode),
2759 		.acl_pages	= pages,
2760 		.acl_len	= buflen,
2761 	};
2762 	struct rpc_message msg = {
2763 		.rpc_proc	= &nfs4_procedures[NFSPROC4_CLNT_SETACL],
2764 		.rpc_argp	= &arg,
2765 		.rpc_resp	= NULL,
2766 	};
2767 	int ret;
2768 
2769 	if (!nfs4_server_supports_acls(server))
2770 		return -EOPNOTSUPP;
2771 	nfs_inode_return_delegation(inode);
2772 	buf_to_pages(buf, buflen, arg.acl_pages, &arg.acl_pgbase);
2773 	ret = rpc_call_sync(NFS_SERVER(inode)->client, &msg, 0);
2774 	if (ret == 0)
2775 		nfs4_write_cached_acl(inode, buf, buflen);
2776 	return ret;
2777 }
2778 
2779 static int nfs4_proc_set_acl(struct inode *inode, const void *buf, size_t buflen)
2780 {
2781 	struct nfs4_exception exception = { };
2782 	int err;
2783 	do {
2784 		err = nfs4_handle_exception(NFS_SERVER(inode),
2785 				__nfs4_proc_set_acl(inode, buf, buflen),
2786 				&exception);
2787 	} while (exception.retry);
2788 	return err;
2789 }
2790 
2791 static int
2792 nfs4_async_handle_error(struct rpc_task *task, const struct nfs_server *server)
2793 {
2794 	struct nfs4_client *clp = server->nfs4_state;
2795 
2796 	if (!clp || task->tk_status >= 0)
2797 		return 0;
2798 	switch(task->tk_status) {
2799 		case -NFS4ERR_STALE_CLIENTID:
2800 		case -NFS4ERR_STALE_STATEID:
2801 		case -NFS4ERR_EXPIRED:
2802 			rpc_sleep_on(&clp->cl_rpcwaitq, task, NULL, NULL);
2803 			nfs4_schedule_state_recovery(clp);
2804 			if (test_bit(NFS4CLNT_STATE_RECOVER, &clp->cl_state) == 0)
2805 				rpc_wake_up_task(task);
2806 			task->tk_status = 0;
2807 			return -EAGAIN;
2808 		case -NFS4ERR_DELAY:
2809 			nfs_inc_server_stats((struct nfs_server *) server,
2810 						NFSIOS_DELAY);
2811 		case -NFS4ERR_GRACE:
2812 			rpc_delay(task, NFS4_POLL_RETRY_MAX);
2813 			task->tk_status = 0;
2814 			return -EAGAIN;
2815 		case -NFS4ERR_OLD_STATEID:
2816 			task->tk_status = 0;
2817 			return -EAGAIN;
2818 	}
2819 	task->tk_status = nfs4_map_errors(task->tk_status);
2820 	return 0;
2821 }
2822 
2823 static int nfs4_wait_bit_interruptible(void *word)
2824 {
2825 	if (signal_pending(current))
2826 		return -ERESTARTSYS;
2827 	schedule();
2828 	return 0;
2829 }
2830 
2831 static int nfs4_wait_clnt_recover(struct rpc_clnt *clnt, struct nfs4_client *clp)
2832 {
2833 	sigset_t oldset;
2834 	int res;
2835 
2836 	might_sleep();
2837 
2838 	rpc_clnt_sigmask(clnt, &oldset);
2839 	res = wait_on_bit(&clp->cl_state, NFS4CLNT_STATE_RECOVER,
2840 			nfs4_wait_bit_interruptible,
2841 			TASK_INTERRUPTIBLE);
2842 	rpc_clnt_sigunmask(clnt, &oldset);
2843 	return res;
2844 }
2845 
2846 static int nfs4_delay(struct rpc_clnt *clnt, long *timeout)
2847 {
2848 	sigset_t oldset;
2849 	int res = 0;
2850 
2851 	might_sleep();
2852 
2853 	if (*timeout <= 0)
2854 		*timeout = NFS4_POLL_RETRY_MIN;
2855 	if (*timeout > NFS4_POLL_RETRY_MAX)
2856 		*timeout = NFS4_POLL_RETRY_MAX;
2857 	rpc_clnt_sigmask(clnt, &oldset);
2858 	if (clnt->cl_intr) {
2859 		schedule_timeout_interruptible(*timeout);
2860 		if (signalled())
2861 			res = -ERESTARTSYS;
2862 	} else
2863 		schedule_timeout_uninterruptible(*timeout);
2864 	rpc_clnt_sigunmask(clnt, &oldset);
2865 	*timeout <<= 1;
2866 	return res;
2867 }
2868 
2869 /* This is the error handling routine for processes that are allowed
2870  * to sleep.
2871  */
2872 int nfs4_handle_exception(const struct nfs_server *server, int errorcode, struct nfs4_exception *exception)
2873 {
2874 	struct nfs4_client *clp = server->nfs4_state;
2875 	int ret = errorcode;
2876 
2877 	exception->retry = 0;
2878 	switch(errorcode) {
2879 		case 0:
2880 			return 0;
2881 		case -NFS4ERR_STALE_CLIENTID:
2882 		case -NFS4ERR_STALE_STATEID:
2883 		case -NFS4ERR_EXPIRED:
2884 			nfs4_schedule_state_recovery(clp);
2885 			ret = nfs4_wait_clnt_recover(server->client, clp);
2886 			if (ret == 0)
2887 				exception->retry = 1;
2888 			break;
2889 		case -NFS4ERR_GRACE:
2890 		case -NFS4ERR_DELAY:
2891 			ret = nfs4_delay(server->client, &exception->timeout);
2892 			if (ret != 0)
2893 				break;
2894 		case -NFS4ERR_OLD_STATEID:
2895 			exception->retry = 1;
2896 	}
2897 	/* We failed to handle the error */
2898 	return nfs4_map_errors(ret);
2899 }
2900 
2901 int nfs4_proc_setclientid(struct nfs4_client *clp, u32 program, unsigned short port, struct rpc_cred *cred)
2902 {
2903 	nfs4_verifier sc_verifier;
2904 	struct nfs4_setclientid setclientid = {
2905 		.sc_verifier = &sc_verifier,
2906 		.sc_prog = program,
2907 	};
2908 	struct rpc_message msg = {
2909 		.rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_SETCLIENTID],
2910 		.rpc_argp = &setclientid,
2911 		.rpc_resp = clp,
2912 		.rpc_cred = cred,
2913 	};
2914 	u32 *p;
2915 	int loop = 0;
2916 	int status;
2917 
2918 	p = (u32*)sc_verifier.data;
2919 	*p++ = htonl((u32)clp->cl_boot_time.tv_sec);
2920 	*p = htonl((u32)clp->cl_boot_time.tv_nsec);
2921 
2922 	for(;;) {
2923 		setclientid.sc_name_len = scnprintf(setclientid.sc_name,
2924 				sizeof(setclientid.sc_name), "%s/%u.%u.%u.%u %s %u",
2925 				clp->cl_ipaddr, NIPQUAD(clp->cl_addr.s_addr),
2926 				cred->cr_ops->cr_name,
2927 				clp->cl_id_uniquifier);
2928 		setclientid.sc_netid_len = scnprintf(setclientid.sc_netid,
2929 				sizeof(setclientid.sc_netid), "tcp");
2930 		setclientid.sc_uaddr_len = scnprintf(setclientid.sc_uaddr,
2931 				sizeof(setclientid.sc_uaddr), "%s.%d.%d",
2932 				clp->cl_ipaddr, port >> 8, port & 255);
2933 
2934 		status = rpc_call_sync(clp->cl_rpcclient, &msg, 0);
2935 		if (status != -NFS4ERR_CLID_INUSE)
2936 			break;
2937 		if (signalled())
2938 			break;
2939 		if (loop++ & 1)
2940 			ssleep(clp->cl_lease_time + 1);
2941 		else
2942 			if (++clp->cl_id_uniquifier == 0)
2943 				break;
2944 	}
2945 	return status;
2946 }
2947 
2948 static int _nfs4_proc_setclientid_confirm(struct nfs4_client *clp, struct rpc_cred *cred)
2949 {
2950 	struct nfs_fsinfo fsinfo;
2951 	struct rpc_message msg = {
2952 		.rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_SETCLIENTID_CONFIRM],
2953 		.rpc_argp = clp,
2954 		.rpc_resp = &fsinfo,
2955 		.rpc_cred = cred,
2956 	};
2957 	unsigned long now;
2958 	int status;
2959 
2960 	now = jiffies;
2961 	status = rpc_call_sync(clp->cl_rpcclient, &msg, 0);
2962 	if (status == 0) {
2963 		spin_lock(&clp->cl_lock);
2964 		clp->cl_lease_time = fsinfo.lease_time * HZ;
2965 		clp->cl_last_renewal = now;
2966 		clear_bit(NFS4CLNT_LEASE_EXPIRED, &clp->cl_state);
2967 		spin_unlock(&clp->cl_lock);
2968 	}
2969 	return status;
2970 }
2971 
2972 int nfs4_proc_setclientid_confirm(struct nfs4_client *clp, struct rpc_cred *cred)
2973 {
2974 	long timeout;
2975 	int err;
2976 	do {
2977 		err = _nfs4_proc_setclientid_confirm(clp, cred);
2978 		switch (err) {
2979 			case 0:
2980 				return err;
2981 			case -NFS4ERR_RESOURCE:
2982 				/* The IBM lawyers misread another document! */
2983 			case -NFS4ERR_DELAY:
2984 				err = nfs4_delay(clp->cl_rpcclient, &timeout);
2985 		}
2986 	} while (err == 0);
2987 	return err;
2988 }
2989 
2990 struct nfs4_delegreturndata {
2991 	struct nfs4_delegreturnargs args;
2992 	struct nfs4_delegreturnres res;
2993 	struct nfs_fh fh;
2994 	nfs4_stateid stateid;
2995 	struct rpc_cred *cred;
2996 	unsigned long timestamp;
2997 	struct nfs_fattr fattr;
2998 	int rpc_status;
2999 };
3000 
3001 static void nfs4_delegreturn_prepare(struct rpc_task *task, void *calldata)
3002 {
3003 	struct nfs4_delegreturndata *data = calldata;
3004 	struct rpc_message msg = {
3005 		.rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_DELEGRETURN],
3006 		.rpc_argp = &data->args,
3007 		.rpc_resp = &data->res,
3008 		.rpc_cred = data->cred,
3009 	};
3010 	nfs_fattr_init(data->res.fattr);
3011 	rpc_call_setup(task, &msg, 0);
3012 }
3013 
3014 static void nfs4_delegreturn_done(struct rpc_task *task, void *calldata)
3015 {
3016 	struct nfs4_delegreturndata *data = calldata;
3017 	data->rpc_status = task->tk_status;
3018 	if (data->rpc_status == 0)
3019 		renew_lease(data->res.server, data->timestamp);
3020 }
3021 
3022 static void nfs4_delegreturn_release(void *calldata)
3023 {
3024 	struct nfs4_delegreturndata *data = calldata;
3025 
3026 	put_rpccred(data->cred);
3027 	kfree(calldata);
3028 }
3029 
3030 static const struct rpc_call_ops nfs4_delegreturn_ops = {
3031 	.rpc_call_prepare = nfs4_delegreturn_prepare,
3032 	.rpc_call_done = nfs4_delegreturn_done,
3033 	.rpc_release = nfs4_delegreturn_release,
3034 };
3035 
3036 static int _nfs4_proc_delegreturn(struct inode *inode, struct rpc_cred *cred, const nfs4_stateid *stateid)
3037 {
3038 	struct nfs4_delegreturndata *data;
3039 	struct nfs_server *server = NFS_SERVER(inode);
3040 	struct rpc_task *task;
3041 	int status;
3042 
3043 	data = kmalloc(sizeof(*data), GFP_KERNEL);
3044 	if (data == NULL)
3045 		return -ENOMEM;
3046 	data->args.fhandle = &data->fh;
3047 	data->args.stateid = &data->stateid;
3048 	data->args.bitmask = server->attr_bitmask;
3049 	nfs_copy_fh(&data->fh, NFS_FH(inode));
3050 	memcpy(&data->stateid, stateid, sizeof(data->stateid));
3051 	data->res.fattr = &data->fattr;
3052 	data->res.server = server;
3053 	data->cred = get_rpccred(cred);
3054 	data->timestamp = jiffies;
3055 	data->rpc_status = 0;
3056 
3057 	task = rpc_run_task(NFS_CLIENT(inode), RPC_TASK_ASYNC, &nfs4_delegreturn_ops, data);
3058 	if (IS_ERR(task))
3059 		return PTR_ERR(task);
3060 	status = nfs4_wait_for_completion_rpc_task(task);
3061 	if (status == 0) {
3062 		status = data->rpc_status;
3063 		if (status == 0)
3064 			nfs_post_op_update_inode(inode, &data->fattr);
3065 	}
3066 	rpc_release_task(task);
3067 	return status;
3068 }
3069 
3070 int nfs4_proc_delegreturn(struct inode *inode, struct rpc_cred *cred, const nfs4_stateid *stateid)
3071 {
3072 	struct nfs_server *server = NFS_SERVER(inode);
3073 	struct nfs4_exception exception = { };
3074 	int err;
3075 	do {
3076 		err = _nfs4_proc_delegreturn(inode, cred, stateid);
3077 		switch (err) {
3078 			case -NFS4ERR_STALE_STATEID:
3079 			case -NFS4ERR_EXPIRED:
3080 				nfs4_schedule_state_recovery(server->nfs4_state);
3081 			case 0:
3082 				return 0;
3083 		}
3084 		err = nfs4_handle_exception(server, err, &exception);
3085 	} while (exception.retry);
3086 	return err;
3087 }
3088 
3089 #define NFS4_LOCK_MINTIMEOUT (1 * HZ)
3090 #define NFS4_LOCK_MAXTIMEOUT (30 * HZ)
3091 
3092 /*
3093  * sleep, with exponential backoff, and retry the LOCK operation.
3094  */
3095 static unsigned long
3096 nfs4_set_lock_task_retry(unsigned long timeout)
3097 {
3098 	schedule_timeout_interruptible(timeout);
3099 	timeout <<= 1;
3100 	if (timeout > NFS4_LOCK_MAXTIMEOUT)
3101 		return NFS4_LOCK_MAXTIMEOUT;
3102 	return timeout;
3103 }
3104 
3105 static int _nfs4_proc_getlk(struct nfs4_state *state, int cmd, struct file_lock *request)
3106 {
3107 	struct inode *inode = state->inode;
3108 	struct nfs_server *server = NFS_SERVER(inode);
3109 	struct nfs4_client *clp = server->nfs4_state;
3110 	struct nfs_lockt_args arg = {
3111 		.fh = NFS_FH(inode),
3112 		.fl = request,
3113 	};
3114 	struct nfs_lockt_res res = {
3115 		.denied = request,
3116 	};
3117 	struct rpc_message msg = {
3118 		.rpc_proc	= &nfs4_procedures[NFSPROC4_CLNT_LOCKT],
3119 		.rpc_argp       = &arg,
3120 		.rpc_resp       = &res,
3121 		.rpc_cred	= state->owner->so_cred,
3122 	};
3123 	struct nfs4_lock_state *lsp;
3124 	int status;
3125 
3126 	down_read(&clp->cl_sem);
3127 	arg.lock_owner.clientid = clp->cl_clientid;
3128 	status = nfs4_set_lock_state(state, request);
3129 	if (status != 0)
3130 		goto out;
3131 	lsp = request->fl_u.nfs4_fl.owner;
3132 	arg.lock_owner.id = lsp->ls_id;
3133 	status = rpc_call_sync(server->client, &msg, 0);
3134 	switch (status) {
3135 		case 0:
3136 			request->fl_type = F_UNLCK;
3137 			break;
3138 		case -NFS4ERR_DENIED:
3139 			status = 0;
3140 	}
3141 out:
3142 	up_read(&clp->cl_sem);
3143 	return status;
3144 }
3145 
3146 static int nfs4_proc_getlk(struct nfs4_state *state, int cmd, struct file_lock *request)
3147 {
3148 	struct nfs4_exception exception = { };
3149 	int err;
3150 
3151 	do {
3152 		err = nfs4_handle_exception(NFS_SERVER(state->inode),
3153 				_nfs4_proc_getlk(state, cmd, request),
3154 				&exception);
3155 	} while (exception.retry);
3156 	return err;
3157 }
3158 
3159 static int do_vfs_lock(struct file *file, struct file_lock *fl)
3160 {
3161 	int res = 0;
3162 	switch (fl->fl_flags & (FL_POSIX|FL_FLOCK)) {
3163 		case FL_POSIX:
3164 			res = posix_lock_file_wait(file, fl);
3165 			break;
3166 		case FL_FLOCK:
3167 			res = flock_lock_file_wait(file, fl);
3168 			break;
3169 		default:
3170 			BUG();
3171 	}
3172 	return res;
3173 }
3174 
3175 struct nfs4_unlockdata {
3176 	struct nfs_locku_args arg;
3177 	struct nfs_locku_res res;
3178 	struct nfs4_lock_state *lsp;
3179 	struct nfs_open_context *ctx;
3180 	struct file_lock fl;
3181 	const struct nfs_server *server;
3182 	unsigned long timestamp;
3183 };
3184 
3185 static struct nfs4_unlockdata *nfs4_alloc_unlockdata(struct file_lock *fl,
3186 		struct nfs_open_context *ctx,
3187 		struct nfs4_lock_state *lsp,
3188 		struct nfs_seqid *seqid)
3189 {
3190 	struct nfs4_unlockdata *p;
3191 	struct inode *inode = lsp->ls_state->inode;
3192 
3193 	p = kmalloc(sizeof(*p), GFP_KERNEL);
3194 	if (p == NULL)
3195 		return NULL;
3196 	p->arg.fh = NFS_FH(inode);
3197 	p->arg.fl = &p->fl;
3198 	p->arg.seqid = seqid;
3199 	p->arg.stateid = &lsp->ls_stateid;
3200 	p->lsp = lsp;
3201 	atomic_inc(&lsp->ls_count);
3202 	/* Ensure we don't close file until we're done freeing locks! */
3203 	p->ctx = get_nfs_open_context(ctx);
3204 	memcpy(&p->fl, fl, sizeof(p->fl));
3205 	p->server = NFS_SERVER(inode);
3206 	return p;
3207 }
3208 
3209 static void nfs4_locku_release_calldata(void *data)
3210 {
3211 	struct nfs4_unlockdata *calldata = data;
3212 	nfs_free_seqid(calldata->arg.seqid);
3213 	nfs4_put_lock_state(calldata->lsp);
3214 	put_nfs_open_context(calldata->ctx);
3215 	kfree(calldata);
3216 }
3217 
3218 static void nfs4_locku_done(struct rpc_task *task, void *data)
3219 {
3220 	struct nfs4_unlockdata *calldata = data;
3221 
3222 	if (RPC_ASSASSINATED(task))
3223 		return;
3224 	nfs_increment_lock_seqid(task->tk_status, calldata->arg.seqid);
3225 	switch (task->tk_status) {
3226 		case 0:
3227 			memcpy(calldata->lsp->ls_stateid.data,
3228 					calldata->res.stateid.data,
3229 					sizeof(calldata->lsp->ls_stateid.data));
3230 			renew_lease(calldata->server, calldata->timestamp);
3231 			break;
3232 		case -NFS4ERR_STALE_STATEID:
3233 		case -NFS4ERR_EXPIRED:
3234 			nfs4_schedule_state_recovery(calldata->server->nfs4_state);
3235 			break;
3236 		default:
3237 			if (nfs4_async_handle_error(task, calldata->server) == -EAGAIN) {
3238 				rpc_restart_call(task);
3239 			}
3240 	}
3241 }
3242 
3243 static void nfs4_locku_prepare(struct rpc_task *task, void *data)
3244 {
3245 	struct nfs4_unlockdata *calldata = data;
3246 	struct rpc_message msg = {
3247 		.rpc_proc	= &nfs4_procedures[NFSPROC4_CLNT_LOCKU],
3248 		.rpc_argp       = &calldata->arg,
3249 		.rpc_resp       = &calldata->res,
3250 		.rpc_cred	= calldata->lsp->ls_state->owner->so_cred,
3251 	};
3252 
3253 	if (nfs_wait_on_sequence(calldata->arg.seqid, task) != 0)
3254 		return;
3255 	if ((calldata->lsp->ls_flags & NFS_LOCK_INITIALIZED) == 0) {
3256 		/* Note: exit _without_ running nfs4_locku_done */
3257 		task->tk_action = NULL;
3258 		return;
3259 	}
3260 	calldata->timestamp = jiffies;
3261 	rpc_call_setup(task, &msg, 0);
3262 }
3263 
3264 static const struct rpc_call_ops nfs4_locku_ops = {
3265 	.rpc_call_prepare = nfs4_locku_prepare,
3266 	.rpc_call_done = nfs4_locku_done,
3267 	.rpc_release = nfs4_locku_release_calldata,
3268 };
3269 
3270 static struct rpc_task *nfs4_do_unlck(struct file_lock *fl,
3271 		struct nfs_open_context *ctx,
3272 		struct nfs4_lock_state *lsp,
3273 		struct nfs_seqid *seqid)
3274 {
3275 	struct nfs4_unlockdata *data;
3276 
3277 	data = nfs4_alloc_unlockdata(fl, ctx, lsp, seqid);
3278 	if (data == NULL) {
3279 		nfs_free_seqid(seqid);
3280 		return ERR_PTR(-ENOMEM);
3281 	}
3282 
3283 	return rpc_run_task(NFS_CLIENT(lsp->ls_state->inode), RPC_TASK_ASYNC, &nfs4_locku_ops, data);
3284 }
3285 
3286 static int nfs4_proc_unlck(struct nfs4_state *state, int cmd, struct file_lock *request)
3287 {
3288 	struct nfs_seqid *seqid;
3289 	struct nfs4_lock_state *lsp;
3290 	struct rpc_task *task;
3291 	int status = 0;
3292 
3293 	status = nfs4_set_lock_state(state, request);
3294 	/* Unlock _before_ we do the RPC call */
3295 	request->fl_flags |= FL_EXISTS;
3296 	if (do_vfs_lock(request->fl_file, request) == -ENOENT)
3297 		goto out;
3298 	if (status != 0)
3299 		goto out;
3300 	/* Is this a delegated lock? */
3301 	if (test_bit(NFS_DELEGATED_STATE, &state->flags))
3302 		goto out;
3303 	lsp = request->fl_u.nfs4_fl.owner;
3304 	seqid = nfs_alloc_seqid(&lsp->ls_seqid);
3305 	status = -ENOMEM;
3306 	if (seqid == NULL)
3307 		goto out;
3308 	task = nfs4_do_unlck(request, request->fl_file->private_data, lsp, seqid);
3309 	status = PTR_ERR(task);
3310 	if (IS_ERR(task))
3311 		goto out;
3312 	status = nfs4_wait_for_completion_rpc_task(task);
3313 	rpc_release_task(task);
3314 out:
3315 	return status;
3316 }
3317 
3318 struct nfs4_lockdata {
3319 	struct nfs_lock_args arg;
3320 	struct nfs_lock_res res;
3321 	struct nfs4_lock_state *lsp;
3322 	struct nfs_open_context *ctx;
3323 	struct file_lock fl;
3324 	unsigned long timestamp;
3325 	int rpc_status;
3326 	int cancelled;
3327 };
3328 
3329 static struct nfs4_lockdata *nfs4_alloc_lockdata(struct file_lock *fl,
3330 		struct nfs_open_context *ctx, struct nfs4_lock_state *lsp)
3331 {
3332 	struct nfs4_lockdata *p;
3333 	struct inode *inode = lsp->ls_state->inode;
3334 	struct nfs_server *server = NFS_SERVER(inode);
3335 
3336 	p = kzalloc(sizeof(*p), GFP_KERNEL);
3337 	if (p == NULL)
3338 		return NULL;
3339 
3340 	p->arg.fh = NFS_FH(inode);
3341 	p->arg.fl = &p->fl;
3342 	p->arg.lock_seqid = nfs_alloc_seqid(&lsp->ls_seqid);
3343 	if (p->arg.lock_seqid == NULL)
3344 		goto out_free;
3345 	p->arg.lock_stateid = &lsp->ls_stateid;
3346 	p->arg.lock_owner.clientid = server->nfs4_state->cl_clientid;
3347 	p->arg.lock_owner.id = lsp->ls_id;
3348 	p->lsp = lsp;
3349 	atomic_inc(&lsp->ls_count);
3350 	p->ctx = get_nfs_open_context(ctx);
3351 	memcpy(&p->fl, fl, sizeof(p->fl));
3352 	return p;
3353 out_free:
3354 	kfree(p);
3355 	return NULL;
3356 }
3357 
3358 static void nfs4_lock_prepare(struct rpc_task *task, void *calldata)
3359 {
3360 	struct nfs4_lockdata *data = calldata;
3361 	struct nfs4_state *state = data->lsp->ls_state;
3362 	struct nfs4_state_owner *sp = state->owner;
3363 	struct rpc_message msg = {
3364 		.rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_LOCK],
3365 		.rpc_argp = &data->arg,
3366 		.rpc_resp = &data->res,
3367 		.rpc_cred = sp->so_cred,
3368 	};
3369 
3370 	if (nfs_wait_on_sequence(data->arg.lock_seqid, task) != 0)
3371 		return;
3372 	dprintk("%s: begin!\n", __FUNCTION__);
3373 	/* Do we need to do an open_to_lock_owner? */
3374 	if (!(data->arg.lock_seqid->sequence->flags & NFS_SEQID_CONFIRMED)) {
3375 		data->arg.open_seqid = nfs_alloc_seqid(&sp->so_seqid);
3376 		if (data->arg.open_seqid == NULL) {
3377 			data->rpc_status = -ENOMEM;
3378 			task->tk_action = NULL;
3379 			goto out;
3380 		}
3381 		data->arg.open_stateid = &state->stateid;
3382 		data->arg.new_lock_owner = 1;
3383 	}
3384 	data->timestamp = jiffies;
3385 	rpc_call_setup(task, &msg, 0);
3386 out:
3387 	dprintk("%s: done!, ret = %d\n", __FUNCTION__, data->rpc_status);
3388 }
3389 
3390 static void nfs4_lock_done(struct rpc_task *task, void *calldata)
3391 {
3392 	struct nfs4_lockdata *data = calldata;
3393 
3394 	dprintk("%s: begin!\n", __FUNCTION__);
3395 
3396 	data->rpc_status = task->tk_status;
3397 	if (RPC_ASSASSINATED(task))
3398 		goto out;
3399 	if (data->arg.new_lock_owner != 0) {
3400 		nfs_increment_open_seqid(data->rpc_status, data->arg.open_seqid);
3401 		if (data->rpc_status == 0)
3402 			nfs_confirm_seqid(&data->lsp->ls_seqid, 0);
3403 		else
3404 			goto out;
3405 	}
3406 	if (data->rpc_status == 0) {
3407 		memcpy(data->lsp->ls_stateid.data, data->res.stateid.data,
3408 					sizeof(data->lsp->ls_stateid.data));
3409 		data->lsp->ls_flags |= NFS_LOCK_INITIALIZED;
3410 		renew_lease(NFS_SERVER(data->ctx->dentry->d_inode), data->timestamp);
3411 	}
3412 	nfs_increment_lock_seqid(data->rpc_status, data->arg.lock_seqid);
3413 out:
3414 	dprintk("%s: done, ret = %d!\n", __FUNCTION__, data->rpc_status);
3415 }
3416 
3417 static void nfs4_lock_release(void *calldata)
3418 {
3419 	struct nfs4_lockdata *data = calldata;
3420 
3421 	dprintk("%s: begin!\n", __FUNCTION__);
3422 	if (data->arg.open_seqid != NULL)
3423 		nfs_free_seqid(data->arg.open_seqid);
3424 	if (data->cancelled != 0) {
3425 		struct rpc_task *task;
3426 		task = nfs4_do_unlck(&data->fl, data->ctx, data->lsp,
3427 				data->arg.lock_seqid);
3428 		if (!IS_ERR(task))
3429 			rpc_release_task(task);
3430 		dprintk("%s: cancelling lock!\n", __FUNCTION__);
3431 	} else
3432 		nfs_free_seqid(data->arg.lock_seqid);
3433 	nfs4_put_lock_state(data->lsp);
3434 	put_nfs_open_context(data->ctx);
3435 	kfree(data);
3436 	dprintk("%s: done!\n", __FUNCTION__);
3437 }
3438 
3439 static const struct rpc_call_ops nfs4_lock_ops = {
3440 	.rpc_call_prepare = nfs4_lock_prepare,
3441 	.rpc_call_done = nfs4_lock_done,
3442 	.rpc_release = nfs4_lock_release,
3443 };
3444 
3445 static int _nfs4_do_setlk(struct nfs4_state *state, int cmd, struct file_lock *fl, int reclaim)
3446 {
3447 	struct nfs4_lockdata *data;
3448 	struct rpc_task *task;
3449 	int ret;
3450 
3451 	dprintk("%s: begin!\n", __FUNCTION__);
3452 	data = nfs4_alloc_lockdata(fl, fl->fl_file->private_data,
3453 			fl->fl_u.nfs4_fl.owner);
3454 	if (data == NULL)
3455 		return -ENOMEM;
3456 	if (IS_SETLKW(cmd))
3457 		data->arg.block = 1;
3458 	if (reclaim != 0)
3459 		data->arg.reclaim = 1;
3460 	task = rpc_run_task(NFS_CLIENT(state->inode), RPC_TASK_ASYNC,
3461 			&nfs4_lock_ops, data);
3462 	if (IS_ERR(task))
3463 		return PTR_ERR(task);
3464 	ret = nfs4_wait_for_completion_rpc_task(task);
3465 	if (ret == 0) {
3466 		ret = data->rpc_status;
3467 		if (ret == -NFS4ERR_DENIED)
3468 			ret = -EAGAIN;
3469 	} else
3470 		data->cancelled = 1;
3471 	rpc_release_task(task);
3472 	dprintk("%s: done, ret = %d!\n", __FUNCTION__, ret);
3473 	return ret;
3474 }
3475 
3476 static int nfs4_lock_reclaim(struct nfs4_state *state, struct file_lock *request)
3477 {
3478 	struct nfs_server *server = NFS_SERVER(state->inode);
3479 	struct nfs4_exception exception = { };
3480 	int err;
3481 
3482 	do {
3483 		/* Cache the lock if possible... */
3484 		if (test_bit(NFS_DELEGATED_STATE, &state->flags) != 0)
3485 			return 0;
3486 		err = _nfs4_do_setlk(state, F_SETLK, request, 1);
3487 		if (err != -NFS4ERR_DELAY)
3488 			break;
3489 		nfs4_handle_exception(server, err, &exception);
3490 	} while (exception.retry);
3491 	return err;
3492 }
3493 
3494 static int nfs4_lock_expired(struct nfs4_state *state, struct file_lock *request)
3495 {
3496 	struct nfs_server *server = NFS_SERVER(state->inode);
3497 	struct nfs4_exception exception = { };
3498 	int err;
3499 
3500 	err = nfs4_set_lock_state(state, request);
3501 	if (err != 0)
3502 		return err;
3503 	do {
3504 		if (test_bit(NFS_DELEGATED_STATE, &state->flags) != 0)
3505 			return 0;
3506 		err = _nfs4_do_setlk(state, F_SETLK, request, 0);
3507 		if (err != -NFS4ERR_DELAY)
3508 			break;
3509 		nfs4_handle_exception(server, err, &exception);
3510 	} while (exception.retry);
3511 	return err;
3512 }
3513 
3514 static int _nfs4_proc_setlk(struct nfs4_state *state, int cmd, struct file_lock *request)
3515 {
3516 	struct nfs4_client *clp = state->owner->so_client;
3517 	unsigned char fl_flags = request->fl_flags;
3518 	int status;
3519 
3520 	/* Is this a delegated open? */
3521 	status = nfs4_set_lock_state(state, request);
3522 	if (status != 0)
3523 		goto out;
3524 	request->fl_flags |= FL_ACCESS;
3525 	status = do_vfs_lock(request->fl_file, request);
3526 	if (status < 0)
3527 		goto out;
3528 	down_read(&clp->cl_sem);
3529 	if (test_bit(NFS_DELEGATED_STATE, &state->flags)) {
3530 		struct nfs_inode *nfsi = NFS_I(state->inode);
3531 		/* Yes: cache locks! */
3532 		down_read(&nfsi->rwsem);
3533 		/* ...but avoid races with delegation recall... */
3534 		if (test_bit(NFS_DELEGATED_STATE, &state->flags)) {
3535 			request->fl_flags = fl_flags & ~FL_SLEEP;
3536 			status = do_vfs_lock(request->fl_file, request);
3537 			up_read(&nfsi->rwsem);
3538 			goto out_unlock;
3539 		}
3540 		up_read(&nfsi->rwsem);
3541 	}
3542 	status = _nfs4_do_setlk(state, cmd, request, 0);
3543 	if (status != 0)
3544 		goto out_unlock;
3545 	/* Note: we always want to sleep here! */
3546 	request->fl_flags = fl_flags | FL_SLEEP;
3547 	if (do_vfs_lock(request->fl_file, request) < 0)
3548 		printk(KERN_WARNING "%s: VFS is out of sync with lock manager!\n", __FUNCTION__);
3549 out_unlock:
3550 	up_read(&clp->cl_sem);
3551 out:
3552 	request->fl_flags = fl_flags;
3553 	return status;
3554 }
3555 
3556 static int nfs4_proc_setlk(struct nfs4_state *state, int cmd, struct file_lock *request)
3557 {
3558 	struct nfs4_exception exception = { };
3559 	int err;
3560 
3561 	do {
3562 		err = nfs4_handle_exception(NFS_SERVER(state->inode),
3563 				_nfs4_proc_setlk(state, cmd, request),
3564 				&exception);
3565 	} while (exception.retry);
3566 	return err;
3567 }
3568 
3569 static int
3570 nfs4_proc_lock(struct file *filp, int cmd, struct file_lock *request)
3571 {
3572 	struct nfs_open_context *ctx;
3573 	struct nfs4_state *state;
3574 	unsigned long timeout = NFS4_LOCK_MINTIMEOUT;
3575 	int status;
3576 
3577 	/* verify open state */
3578 	ctx = (struct nfs_open_context *)filp->private_data;
3579 	state = ctx->state;
3580 
3581 	if (request->fl_start < 0 || request->fl_end < 0)
3582 		return -EINVAL;
3583 
3584 	if (IS_GETLK(cmd))
3585 		return nfs4_proc_getlk(state, F_GETLK, request);
3586 
3587 	if (!(IS_SETLK(cmd) || IS_SETLKW(cmd)))
3588 		return -EINVAL;
3589 
3590 	if (request->fl_type == F_UNLCK)
3591 		return nfs4_proc_unlck(state, cmd, request);
3592 
3593 	do {
3594 		status = nfs4_proc_setlk(state, cmd, request);
3595 		if ((status != -EAGAIN) || IS_SETLK(cmd))
3596 			break;
3597 		timeout = nfs4_set_lock_task_retry(timeout);
3598 		status = -ERESTARTSYS;
3599 		if (signalled())
3600 			break;
3601 	} while(status < 0);
3602 	return status;
3603 }
3604 
3605 int nfs4_lock_delegation_recall(struct nfs4_state *state, struct file_lock *fl)
3606 {
3607 	struct nfs_server *server = NFS_SERVER(state->inode);
3608 	struct nfs4_exception exception = { };
3609 	int err;
3610 
3611 	err = nfs4_set_lock_state(state, fl);
3612 	if (err != 0)
3613 		goto out;
3614 	do {
3615 		err = _nfs4_do_setlk(state, F_SETLK, fl, 0);
3616 		if (err != -NFS4ERR_DELAY)
3617 			break;
3618 		err = nfs4_handle_exception(server, err, &exception);
3619 	} while (exception.retry);
3620 out:
3621 	return err;
3622 }
3623 
3624 #define XATTR_NAME_NFSV4_ACL "system.nfs4_acl"
3625 
3626 int nfs4_setxattr(struct dentry *dentry, const char *key, const void *buf,
3627 		size_t buflen, int flags)
3628 {
3629 	struct inode *inode = dentry->d_inode;
3630 
3631 	if (strcmp(key, XATTR_NAME_NFSV4_ACL) != 0)
3632 		return -EOPNOTSUPP;
3633 
3634 	if (!S_ISREG(inode->i_mode) &&
3635 	    (!S_ISDIR(inode->i_mode) || inode->i_mode & S_ISVTX))
3636 		return -EPERM;
3637 
3638 	return nfs4_proc_set_acl(inode, buf, buflen);
3639 }
3640 
3641 /* The getxattr man page suggests returning -ENODATA for unknown attributes,
3642  * and that's what we'll do for e.g. user attributes that haven't been set.
3643  * But we'll follow ext2/ext3's lead by returning -EOPNOTSUPP for unsupported
3644  * attributes in kernel-managed attribute namespaces. */
3645 ssize_t nfs4_getxattr(struct dentry *dentry, const char *key, void *buf,
3646 		size_t buflen)
3647 {
3648 	struct inode *inode = dentry->d_inode;
3649 
3650 	if (strcmp(key, XATTR_NAME_NFSV4_ACL) != 0)
3651 		return -EOPNOTSUPP;
3652 
3653 	return nfs4_proc_get_acl(inode, buf, buflen);
3654 }
3655 
3656 ssize_t nfs4_listxattr(struct dentry *dentry, char *buf, size_t buflen)
3657 {
3658 	size_t len = strlen(XATTR_NAME_NFSV4_ACL) + 1;
3659 
3660 	if (!nfs4_server_supports_acls(NFS_SERVER(dentry->d_inode)))
3661 		return 0;
3662 	if (buf && buflen < len)
3663 		return -ERANGE;
3664 	if (buf)
3665 		memcpy(buf, XATTR_NAME_NFSV4_ACL, len);
3666 	return len;
3667 }
3668 
3669 int nfs4_proc_fs_locations(struct inode *dir, struct dentry *dentry,
3670 		struct nfs4_fs_locations *fs_locations, struct page *page)
3671 {
3672 	struct nfs_server *server = NFS_SERVER(dir);
3673 	u32 bitmask[2] = {
3674 		[0] = FATTR4_WORD0_FSID | FATTR4_WORD0_FS_LOCATIONS,
3675 		[1] = FATTR4_WORD1_MOUNTED_ON_FILEID,
3676 	};
3677 	struct nfs4_fs_locations_arg args = {
3678 		.dir_fh = NFS_FH(dir),
3679 		.name = &dentry->d_name,
3680 		.page = page,
3681 		.bitmask = bitmask,
3682 	};
3683 	struct rpc_message msg = {
3684 		.rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_FS_LOCATIONS],
3685 		.rpc_argp = &args,
3686 		.rpc_resp = fs_locations,
3687 	};
3688 	int status;
3689 
3690 	dprintk("%s: start\n", __FUNCTION__);
3691 	fs_locations->fattr.valid = 0;
3692 	fs_locations->server = server;
3693 	fs_locations->nlocations = 0;
3694 	status = rpc_call_sync(server->client, &msg, 0);
3695 	dprintk("%s: returned status = %d\n", __FUNCTION__, status);
3696 	return status;
3697 }
3698 
3699 struct nfs4_state_recovery_ops nfs4_reboot_recovery_ops = {
3700 	.recover_open	= nfs4_open_reclaim,
3701 	.recover_lock	= nfs4_lock_reclaim,
3702 };
3703 
3704 struct nfs4_state_recovery_ops nfs4_network_partition_recovery_ops = {
3705 	.recover_open	= nfs4_open_expired,
3706 	.recover_lock	= nfs4_lock_expired,
3707 };
3708 
3709 static struct inode_operations nfs4_file_inode_operations = {
3710 	.permission	= nfs_permission,
3711 	.getattr	= nfs_getattr,
3712 	.setattr	= nfs_setattr,
3713 	.getxattr	= nfs4_getxattr,
3714 	.setxattr	= nfs4_setxattr,
3715 	.listxattr	= nfs4_listxattr,
3716 };
3717 
3718 struct nfs_rpc_ops	nfs_v4_clientops = {
3719 	.version	= 4,			/* protocol version */
3720 	.dentry_ops	= &nfs4_dentry_operations,
3721 	.dir_inode_ops	= &nfs4_dir_inode_operations,
3722 	.file_inode_ops	= &nfs4_file_inode_operations,
3723 	.getroot	= nfs4_proc_get_root,
3724 	.getattr	= nfs4_proc_getattr,
3725 	.setattr	= nfs4_proc_setattr,
3726 	.lookup		= nfs4_proc_lookup,
3727 	.access		= nfs4_proc_access,
3728 	.readlink	= nfs4_proc_readlink,
3729 	.read		= nfs4_proc_read,
3730 	.write		= nfs4_proc_write,
3731 	.commit		= nfs4_proc_commit,
3732 	.create		= nfs4_proc_create,
3733 	.remove		= nfs4_proc_remove,
3734 	.unlink_setup	= nfs4_proc_unlink_setup,
3735 	.unlink_done	= nfs4_proc_unlink_done,
3736 	.rename		= nfs4_proc_rename,
3737 	.link		= nfs4_proc_link,
3738 	.symlink	= nfs4_proc_symlink,
3739 	.mkdir		= nfs4_proc_mkdir,
3740 	.rmdir		= nfs4_proc_remove,
3741 	.readdir	= nfs4_proc_readdir,
3742 	.mknod		= nfs4_proc_mknod,
3743 	.statfs		= nfs4_proc_statfs,
3744 	.fsinfo		= nfs4_proc_fsinfo,
3745 	.pathconf	= nfs4_proc_pathconf,
3746 	.decode_dirent	= nfs4_decode_dirent,
3747 	.read_setup	= nfs4_proc_read_setup,
3748 	.read_done	= nfs4_read_done,
3749 	.write_setup	= nfs4_proc_write_setup,
3750 	.write_done	= nfs4_write_done,
3751 	.commit_setup	= nfs4_proc_commit_setup,
3752 	.commit_done	= nfs4_commit_done,
3753 	.file_open      = nfs_open,
3754 	.file_release   = nfs_release,
3755 	.lock		= nfs4_proc_lock,
3756 	.clear_acl_cache = nfs4_zap_acl_attr,
3757 };
3758 
3759 /*
3760  * Local variables:
3761  *  c-basic-offset: 8
3762  * End:
3763  */
3764