xref: /linux/fs/nfs/nfs4proc.c (revision b454cc6636d254fbf6049b73e9560aee76fb04a3)
1 /*
2  *  fs/nfs/nfs4proc.c
3  *
4  *  Client-side procedure declarations for NFSv4.
5  *
6  *  Copyright (c) 2002 The Regents of the University of Michigan.
7  *  All rights reserved.
8  *
9  *  Kendrick Smith <kmsmith@umich.edu>
10  *  Andy Adamson   <andros@umich.edu>
11  *
12  *  Redistribution and use in source and binary forms, with or without
13  *  modification, are permitted provided that the following conditions
14  *  are met:
15  *
16  *  1. Redistributions of source code must retain the above copyright
17  *     notice, this list of conditions and the following disclaimer.
18  *  2. Redistributions in binary form must reproduce the above copyright
19  *     notice, this list of conditions and the following disclaimer in the
20  *     documentation and/or other materials provided with the distribution.
21  *  3. Neither the name of the University nor the names of its
22  *     contributors may be used to endorse or promote products derived
23  *     from this software without specific prior written permission.
24  *
25  *  THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED
26  *  WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
27  *  MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
28  *  DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
29  *  FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
30  *  CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
31  *  SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
32  *  BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
33  *  LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
34  *  NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
35  *  SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
36  */
37 
38 #include <linux/mm.h>
39 #include <linux/utsname.h>
40 #include <linux/delay.h>
41 #include <linux/errno.h>
42 #include <linux/string.h>
43 #include <linux/sunrpc/clnt.h>
44 #include <linux/nfs.h>
45 #include <linux/nfs4.h>
46 #include <linux/nfs_fs.h>
47 #include <linux/nfs_page.h>
48 #include <linux/smp_lock.h>
49 #include <linux/namei.h>
50 #include <linux/mount.h>
51 
52 #include "nfs4_fs.h"
53 #include "delegation.h"
54 #include "iostat.h"
55 
56 #define NFSDBG_FACILITY		NFSDBG_PROC
57 
58 #define NFS4_POLL_RETRY_MIN	(HZ/10)
59 #define NFS4_POLL_RETRY_MAX	(15*HZ)
60 
61 struct nfs4_opendata;
62 static int _nfs4_proc_open(struct nfs4_opendata *data);
63 static int nfs4_do_fsinfo(struct nfs_server *, struct nfs_fh *, struct nfs_fsinfo *);
64 static int nfs4_async_handle_error(struct rpc_task *, const struct nfs_server *);
65 static int _nfs4_proc_access(struct inode *inode, struct nfs_access_entry *entry);
66 static int nfs4_handle_exception(const struct nfs_server *server, int errorcode, struct nfs4_exception *exception);
67 static int nfs4_wait_clnt_recover(struct rpc_clnt *clnt, struct nfs_client *clp);
68 
69 /* Prevent leaks of NFSv4 errors into userland */
70 int nfs4_map_errors(int err)
71 {
72 	if (err < -1000) {
73 		dprintk("%s could not handle NFSv4 error %d\n",
74 				__FUNCTION__, -err);
75 		return -EIO;
76 	}
77 	return err;
78 }
79 
80 /*
81  * This is our standard bitmap for GETATTR requests.
82  */
83 const u32 nfs4_fattr_bitmap[2] = {
84 	FATTR4_WORD0_TYPE
85 	| FATTR4_WORD0_CHANGE
86 	| FATTR4_WORD0_SIZE
87 	| FATTR4_WORD0_FSID
88 	| FATTR4_WORD0_FILEID,
89 	FATTR4_WORD1_MODE
90 	| FATTR4_WORD1_NUMLINKS
91 	| FATTR4_WORD1_OWNER
92 	| FATTR4_WORD1_OWNER_GROUP
93 	| FATTR4_WORD1_RAWDEV
94 	| FATTR4_WORD1_SPACE_USED
95 	| FATTR4_WORD1_TIME_ACCESS
96 	| FATTR4_WORD1_TIME_METADATA
97 	| FATTR4_WORD1_TIME_MODIFY
98 };
99 
100 const u32 nfs4_statfs_bitmap[2] = {
101 	FATTR4_WORD0_FILES_AVAIL
102 	| FATTR4_WORD0_FILES_FREE
103 	| FATTR4_WORD0_FILES_TOTAL,
104 	FATTR4_WORD1_SPACE_AVAIL
105 	| FATTR4_WORD1_SPACE_FREE
106 	| FATTR4_WORD1_SPACE_TOTAL
107 };
108 
109 const u32 nfs4_pathconf_bitmap[2] = {
110 	FATTR4_WORD0_MAXLINK
111 	| FATTR4_WORD0_MAXNAME,
112 	0
113 };
114 
115 const u32 nfs4_fsinfo_bitmap[2] = { FATTR4_WORD0_MAXFILESIZE
116 			| FATTR4_WORD0_MAXREAD
117 			| FATTR4_WORD0_MAXWRITE
118 			| FATTR4_WORD0_LEASE_TIME,
119 			0
120 };
121 
122 const u32 nfs4_fs_locations_bitmap[2] = {
123 	FATTR4_WORD0_TYPE
124 	| FATTR4_WORD0_CHANGE
125 	| FATTR4_WORD0_SIZE
126 	| FATTR4_WORD0_FSID
127 	| FATTR4_WORD0_FILEID
128 	| FATTR4_WORD0_FS_LOCATIONS,
129 	FATTR4_WORD1_MODE
130 	| FATTR4_WORD1_NUMLINKS
131 	| FATTR4_WORD1_OWNER
132 	| FATTR4_WORD1_OWNER_GROUP
133 	| FATTR4_WORD1_RAWDEV
134 	| FATTR4_WORD1_SPACE_USED
135 	| FATTR4_WORD1_TIME_ACCESS
136 	| FATTR4_WORD1_TIME_METADATA
137 	| FATTR4_WORD1_TIME_MODIFY
138 	| FATTR4_WORD1_MOUNTED_ON_FILEID
139 };
140 
141 static void nfs4_setup_readdir(u64 cookie, __be32 *verifier, struct dentry *dentry,
142 		struct nfs4_readdir_arg *readdir)
143 {
144 	__be32 *start, *p;
145 
146 	BUG_ON(readdir->count < 80);
147 	if (cookie > 2) {
148 		readdir->cookie = cookie;
149 		memcpy(&readdir->verifier, verifier, sizeof(readdir->verifier));
150 		return;
151 	}
152 
153 	readdir->cookie = 0;
154 	memset(&readdir->verifier, 0, sizeof(readdir->verifier));
155 	if (cookie == 2)
156 		return;
157 
158 	/*
159 	 * NFSv4 servers do not return entries for '.' and '..'
160 	 * Therefore, we fake these entries here.  We let '.'
161 	 * have cookie 0 and '..' have cookie 1.  Note that
162 	 * when talking to the server, we always send cookie 0
163 	 * instead of 1 or 2.
164 	 */
165 	start = p = kmap_atomic(*readdir->pages, KM_USER0);
166 
167 	if (cookie == 0) {
168 		*p++ = xdr_one;                                  /* next */
169 		*p++ = xdr_zero;                   /* cookie, first word */
170 		*p++ = xdr_one;                   /* cookie, second word */
171 		*p++ = xdr_one;                             /* entry len */
172 		memcpy(p, ".\0\0\0", 4);                        /* entry */
173 		p++;
174 		*p++ = xdr_one;                         /* bitmap length */
175 		*p++ = htonl(FATTR4_WORD0_FILEID);             /* bitmap */
176 		*p++ = htonl(8);              /* attribute buffer length */
177 		p = xdr_encode_hyper(p, dentry->d_inode->i_ino);
178 	}
179 
180 	*p++ = xdr_one;                                  /* next */
181 	*p++ = xdr_zero;                   /* cookie, first word */
182 	*p++ = xdr_two;                   /* cookie, second word */
183 	*p++ = xdr_two;                             /* entry len */
184 	memcpy(p, "..\0\0", 4);                         /* entry */
185 	p++;
186 	*p++ = xdr_one;                         /* bitmap length */
187 	*p++ = htonl(FATTR4_WORD0_FILEID);             /* bitmap */
188 	*p++ = htonl(8);              /* attribute buffer length */
189 	p = xdr_encode_hyper(p, dentry->d_parent->d_inode->i_ino);
190 
191 	readdir->pgbase = (char *)p - (char *)start;
192 	readdir->count -= readdir->pgbase;
193 	kunmap_atomic(start, KM_USER0);
194 }
195 
196 static void renew_lease(const struct nfs_server *server, unsigned long timestamp)
197 {
198 	struct nfs_client *clp = server->nfs_client;
199 	spin_lock(&clp->cl_lock);
200 	if (time_before(clp->cl_last_renewal,timestamp))
201 		clp->cl_last_renewal = timestamp;
202 	spin_unlock(&clp->cl_lock);
203 }
204 
205 static void update_changeattr(struct inode *dir, struct nfs4_change_info *cinfo)
206 {
207 	struct nfs_inode *nfsi = NFS_I(dir);
208 
209 	spin_lock(&dir->i_lock);
210 	nfsi->cache_validity |= NFS_INO_INVALID_ATTR|NFS_INO_REVAL_PAGECACHE|NFS_INO_INVALID_DATA;
211 	if (cinfo->before == nfsi->change_attr && cinfo->atomic)
212 		nfsi->change_attr = cinfo->after;
213 	spin_unlock(&dir->i_lock);
214 }
215 
216 struct nfs4_opendata {
217 	atomic_t count;
218 	struct nfs_openargs o_arg;
219 	struct nfs_openres o_res;
220 	struct nfs_open_confirmargs c_arg;
221 	struct nfs_open_confirmres c_res;
222 	struct nfs_fattr f_attr;
223 	struct nfs_fattr dir_attr;
224 	struct dentry *dentry;
225 	struct dentry *dir;
226 	struct nfs4_state_owner *owner;
227 	struct iattr attrs;
228 	unsigned long timestamp;
229 	int rpc_status;
230 	int cancelled;
231 };
232 
233 static struct nfs4_opendata *nfs4_opendata_alloc(struct dentry *dentry,
234 		struct nfs4_state_owner *sp, int flags,
235 		const struct iattr *attrs)
236 {
237 	struct dentry *parent = dget_parent(dentry);
238 	struct inode *dir = parent->d_inode;
239 	struct nfs_server *server = NFS_SERVER(dir);
240 	struct nfs4_opendata *p;
241 
242 	p = kzalloc(sizeof(*p), GFP_KERNEL);
243 	if (p == NULL)
244 		goto err;
245 	p->o_arg.seqid = nfs_alloc_seqid(&sp->so_seqid);
246 	if (p->o_arg.seqid == NULL)
247 		goto err_free;
248 	atomic_set(&p->count, 1);
249 	p->dentry = dget(dentry);
250 	p->dir = parent;
251 	p->owner = sp;
252 	atomic_inc(&sp->so_count);
253 	p->o_arg.fh = NFS_FH(dir);
254 	p->o_arg.open_flags = flags,
255 	p->o_arg.clientid = server->nfs_client->cl_clientid;
256 	p->o_arg.id = sp->so_id;
257 	p->o_arg.name = &dentry->d_name;
258 	p->o_arg.server = server;
259 	p->o_arg.bitmask = server->attr_bitmask;
260 	p->o_arg.claim = NFS4_OPEN_CLAIM_NULL;
261 	p->o_res.f_attr = &p->f_attr;
262 	p->o_res.dir_attr = &p->dir_attr;
263 	p->o_res.server = server;
264 	nfs_fattr_init(&p->f_attr);
265 	nfs_fattr_init(&p->dir_attr);
266 	if (flags & O_EXCL) {
267 		u32 *s = (u32 *) p->o_arg.u.verifier.data;
268 		s[0] = jiffies;
269 		s[1] = current->pid;
270 	} else if (flags & O_CREAT) {
271 		p->o_arg.u.attrs = &p->attrs;
272 		memcpy(&p->attrs, attrs, sizeof(p->attrs));
273 	}
274 	p->c_arg.fh = &p->o_res.fh;
275 	p->c_arg.stateid = &p->o_res.stateid;
276 	p->c_arg.seqid = p->o_arg.seqid;
277 	return p;
278 err_free:
279 	kfree(p);
280 err:
281 	dput(parent);
282 	return NULL;
283 }
284 
285 static void nfs4_opendata_free(struct nfs4_opendata *p)
286 {
287 	if (p != NULL && atomic_dec_and_test(&p->count)) {
288 		nfs_free_seqid(p->o_arg.seqid);
289 		nfs4_put_state_owner(p->owner);
290 		dput(p->dir);
291 		dput(p->dentry);
292 		kfree(p);
293 	}
294 }
295 
296 /* Helper for asynchronous RPC calls */
297 static int nfs4_call_async(struct rpc_clnt *clnt,
298 		const struct rpc_call_ops *tk_ops, void *calldata)
299 {
300 	struct rpc_task *task;
301 
302 	if (!(task = rpc_new_task(clnt, RPC_TASK_ASYNC, tk_ops, calldata)))
303 		return -ENOMEM;
304 	rpc_execute(task);
305 	return 0;
306 }
307 
308 static int nfs4_wait_for_completion_rpc_task(struct rpc_task *task)
309 {
310 	sigset_t oldset;
311 	int ret;
312 
313 	rpc_clnt_sigmask(task->tk_client, &oldset);
314 	ret = rpc_wait_for_completion_task(task);
315 	rpc_clnt_sigunmask(task->tk_client, &oldset);
316 	return ret;
317 }
318 
319 static inline void update_open_stateflags(struct nfs4_state *state, mode_t open_flags)
320 {
321 	switch (open_flags) {
322 		case FMODE_WRITE:
323 			state->n_wronly++;
324 			break;
325 		case FMODE_READ:
326 			state->n_rdonly++;
327 			break;
328 		case FMODE_READ|FMODE_WRITE:
329 			state->n_rdwr++;
330 	}
331 }
332 
333 static void update_open_stateid(struct nfs4_state *state, nfs4_stateid *stateid, int open_flags)
334 {
335 	struct inode *inode = state->inode;
336 
337 	open_flags &= (FMODE_READ|FMODE_WRITE);
338 	/* Protect against nfs4_find_state_byowner() */
339 	spin_lock(&state->owner->so_lock);
340 	spin_lock(&inode->i_lock);
341 	memcpy(&state->stateid, stateid, sizeof(state->stateid));
342 	update_open_stateflags(state, open_flags);
343 	nfs4_state_set_mode_locked(state, state->state | open_flags);
344 	spin_unlock(&inode->i_lock);
345 	spin_unlock(&state->owner->so_lock);
346 }
347 
348 static struct nfs4_state *nfs4_opendata_to_nfs4_state(struct nfs4_opendata *data)
349 {
350 	struct inode *inode;
351 	struct nfs4_state *state = NULL;
352 
353 	if (!(data->f_attr.valid & NFS_ATTR_FATTR))
354 		goto out;
355 	inode = nfs_fhget(data->dir->d_sb, &data->o_res.fh, &data->f_attr);
356 	if (IS_ERR(inode))
357 		goto out;
358 	state = nfs4_get_open_state(inode, data->owner);
359 	if (state == NULL)
360 		goto put_inode;
361 	update_open_stateid(state, &data->o_res.stateid, data->o_arg.open_flags);
362 put_inode:
363 	iput(inode);
364 out:
365 	return state;
366 }
367 
368 static struct nfs_open_context *nfs4_state_find_open_context(struct nfs4_state *state)
369 {
370 	struct nfs_inode *nfsi = NFS_I(state->inode);
371 	struct nfs_open_context *ctx;
372 
373 	spin_lock(&state->inode->i_lock);
374 	list_for_each_entry(ctx, &nfsi->open_files, list) {
375 		if (ctx->state != state)
376 			continue;
377 		get_nfs_open_context(ctx);
378 		spin_unlock(&state->inode->i_lock);
379 		return ctx;
380 	}
381 	spin_unlock(&state->inode->i_lock);
382 	return ERR_PTR(-ENOENT);
383 }
384 
385 static int nfs4_open_recover_helper(struct nfs4_opendata *opendata, mode_t openflags, nfs4_stateid *stateid)
386 {
387 	int ret;
388 
389 	opendata->o_arg.open_flags = openflags;
390 	ret = _nfs4_proc_open(opendata);
391 	if (ret != 0)
392 		return ret;
393 	memcpy(stateid->data, opendata->o_res.stateid.data,
394 			sizeof(stateid->data));
395 	return 0;
396 }
397 
398 static int nfs4_open_recover(struct nfs4_opendata *opendata, struct nfs4_state *state)
399 {
400 	nfs4_stateid stateid;
401 	struct nfs4_state *newstate;
402 	int mode = 0;
403 	int delegation = 0;
404 	int ret;
405 
406 	/* memory barrier prior to reading state->n_* */
407 	smp_rmb();
408 	if (state->n_rdwr != 0) {
409 		ret = nfs4_open_recover_helper(opendata, FMODE_READ|FMODE_WRITE, &stateid);
410 		if (ret != 0)
411 			return ret;
412 		mode |= FMODE_READ|FMODE_WRITE;
413 		if (opendata->o_res.delegation_type != 0)
414 			delegation = opendata->o_res.delegation_type;
415 		smp_rmb();
416 	}
417 	if (state->n_wronly != 0) {
418 		ret = nfs4_open_recover_helper(opendata, FMODE_WRITE, &stateid);
419 		if (ret != 0)
420 			return ret;
421 		mode |= FMODE_WRITE;
422 		if (opendata->o_res.delegation_type != 0)
423 			delegation = opendata->o_res.delegation_type;
424 		smp_rmb();
425 	}
426 	if (state->n_rdonly != 0) {
427 		ret = nfs4_open_recover_helper(opendata, FMODE_READ, &stateid);
428 		if (ret != 0)
429 			return ret;
430 		mode |= FMODE_READ;
431 	}
432 	clear_bit(NFS_DELEGATED_STATE, &state->flags);
433 	if (mode == 0)
434 		return 0;
435 	if (opendata->o_res.delegation_type == 0)
436 		opendata->o_res.delegation_type = delegation;
437 	opendata->o_arg.open_flags |= mode;
438 	newstate = nfs4_opendata_to_nfs4_state(opendata);
439 	if (newstate != NULL) {
440 		if (opendata->o_res.delegation_type != 0) {
441 			struct nfs_inode *nfsi = NFS_I(newstate->inode);
442 			int delegation_flags = 0;
443 			if (nfsi->delegation)
444 				delegation_flags = nfsi->delegation->flags;
445 			if (!(delegation_flags & NFS_DELEGATION_NEED_RECLAIM))
446 				nfs_inode_set_delegation(newstate->inode,
447 						opendata->owner->so_cred,
448 						&opendata->o_res);
449 			else
450 				nfs_inode_reclaim_delegation(newstate->inode,
451 						opendata->owner->so_cred,
452 						&opendata->o_res);
453 		}
454 		nfs4_close_state(newstate, opendata->o_arg.open_flags);
455 	}
456 	if (newstate != state)
457 		return -ESTALE;
458 	return 0;
459 }
460 
461 /*
462  * OPEN_RECLAIM:
463  * 	reclaim state on the server after a reboot.
464  */
465 static int _nfs4_do_open_reclaim(struct nfs4_state_owner *sp, struct nfs4_state *state, struct dentry *dentry)
466 {
467 	struct nfs_delegation *delegation = NFS_I(state->inode)->delegation;
468 	struct nfs4_opendata *opendata;
469 	int delegation_type = 0;
470 	int status;
471 
472 	if (delegation != NULL) {
473 		if (!(delegation->flags & NFS_DELEGATION_NEED_RECLAIM)) {
474 			memcpy(&state->stateid, &delegation->stateid,
475 					sizeof(state->stateid));
476 			set_bit(NFS_DELEGATED_STATE, &state->flags);
477 			return 0;
478 		}
479 		delegation_type = delegation->type;
480 	}
481 	opendata = nfs4_opendata_alloc(dentry, sp, 0, NULL);
482 	if (opendata == NULL)
483 		return -ENOMEM;
484 	opendata->o_arg.claim = NFS4_OPEN_CLAIM_PREVIOUS;
485 	opendata->o_arg.fh = NFS_FH(state->inode);
486 	nfs_copy_fh(&opendata->o_res.fh, opendata->o_arg.fh);
487 	opendata->o_arg.u.delegation_type = delegation_type;
488 	status = nfs4_open_recover(opendata, state);
489 	nfs4_opendata_free(opendata);
490 	return status;
491 }
492 
493 static int nfs4_do_open_reclaim(struct nfs4_state_owner *sp, struct nfs4_state *state, struct dentry *dentry)
494 {
495 	struct nfs_server *server = NFS_SERVER(state->inode);
496 	struct nfs4_exception exception = { };
497 	int err;
498 	do {
499 		err = _nfs4_do_open_reclaim(sp, state, dentry);
500 		if (err != -NFS4ERR_DELAY)
501 			break;
502 		nfs4_handle_exception(server, err, &exception);
503 	} while (exception.retry);
504 	return err;
505 }
506 
507 static int nfs4_open_reclaim(struct nfs4_state_owner *sp, struct nfs4_state *state)
508 {
509 	struct nfs_open_context *ctx;
510 	int ret;
511 
512 	ctx = nfs4_state_find_open_context(state);
513 	if (IS_ERR(ctx))
514 		return PTR_ERR(ctx);
515 	ret = nfs4_do_open_reclaim(sp, state, ctx->dentry);
516 	put_nfs_open_context(ctx);
517 	return ret;
518 }
519 
520 static int _nfs4_open_delegation_recall(struct dentry *dentry, struct nfs4_state *state)
521 {
522 	struct nfs4_state_owner  *sp  = state->owner;
523 	struct nfs4_opendata *opendata;
524 	int ret;
525 
526 	if (!test_bit(NFS_DELEGATED_STATE, &state->flags))
527 		return 0;
528 	opendata = nfs4_opendata_alloc(dentry, sp, 0, NULL);
529 	if (opendata == NULL)
530 		return -ENOMEM;
531 	opendata->o_arg.claim = NFS4_OPEN_CLAIM_DELEGATE_CUR;
532 	memcpy(opendata->o_arg.u.delegation.data, state->stateid.data,
533 			sizeof(opendata->o_arg.u.delegation.data));
534 	ret = nfs4_open_recover(opendata, state);
535 	nfs4_opendata_free(opendata);
536 	return ret;
537 }
538 
539 int nfs4_open_delegation_recall(struct dentry *dentry, struct nfs4_state *state)
540 {
541 	struct nfs4_exception exception = { };
542 	struct nfs_server *server = NFS_SERVER(dentry->d_inode);
543 	int err;
544 	do {
545 		err = _nfs4_open_delegation_recall(dentry, state);
546 		switch (err) {
547 			case 0:
548 				return err;
549 			case -NFS4ERR_STALE_CLIENTID:
550 			case -NFS4ERR_STALE_STATEID:
551 			case -NFS4ERR_EXPIRED:
552 				/* Don't recall a delegation if it was lost */
553 				nfs4_schedule_state_recovery(server->nfs_client);
554 				return err;
555 		}
556 		err = nfs4_handle_exception(server, err, &exception);
557 	} while (exception.retry);
558 	return err;
559 }
560 
561 static void nfs4_open_confirm_prepare(struct rpc_task *task, void *calldata)
562 {
563 	struct nfs4_opendata *data = calldata;
564 	struct  rpc_message msg = {
565 		.rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_OPEN_CONFIRM],
566 		.rpc_argp = &data->c_arg,
567 		.rpc_resp = &data->c_res,
568 		.rpc_cred = data->owner->so_cred,
569 	};
570 	data->timestamp = jiffies;
571 	rpc_call_setup(task, &msg, 0);
572 }
573 
574 static void nfs4_open_confirm_done(struct rpc_task *task, void *calldata)
575 {
576 	struct nfs4_opendata *data = calldata;
577 
578 	data->rpc_status = task->tk_status;
579 	if (RPC_ASSASSINATED(task))
580 		return;
581 	if (data->rpc_status == 0) {
582 		memcpy(data->o_res.stateid.data, data->c_res.stateid.data,
583 				sizeof(data->o_res.stateid.data));
584 		renew_lease(data->o_res.server, data->timestamp);
585 	}
586 	nfs_increment_open_seqid(data->rpc_status, data->c_arg.seqid);
587 	nfs_confirm_seqid(&data->owner->so_seqid, data->rpc_status);
588 }
589 
590 static void nfs4_open_confirm_release(void *calldata)
591 {
592 	struct nfs4_opendata *data = calldata;
593 	struct nfs4_state *state = NULL;
594 
595 	/* If this request hasn't been cancelled, do nothing */
596 	if (data->cancelled == 0)
597 		goto out_free;
598 	/* In case of error, no cleanup! */
599 	if (data->rpc_status != 0)
600 		goto out_free;
601 	nfs_confirm_seqid(&data->owner->so_seqid, 0);
602 	state = nfs4_opendata_to_nfs4_state(data);
603 	if (state != NULL)
604 		nfs4_close_state(state, data->o_arg.open_flags);
605 out_free:
606 	nfs4_opendata_free(data);
607 }
608 
609 static const struct rpc_call_ops nfs4_open_confirm_ops = {
610 	.rpc_call_prepare = nfs4_open_confirm_prepare,
611 	.rpc_call_done = nfs4_open_confirm_done,
612 	.rpc_release = nfs4_open_confirm_release,
613 };
614 
615 /*
616  * Note: On error, nfs4_proc_open_confirm will free the struct nfs4_opendata
617  */
618 static int _nfs4_proc_open_confirm(struct nfs4_opendata *data)
619 {
620 	struct nfs_server *server = NFS_SERVER(data->dir->d_inode);
621 	struct rpc_task *task;
622 	int status;
623 
624 	atomic_inc(&data->count);
625 	/*
626 	 * If rpc_run_task() ends up calling ->rpc_release(), we
627 	 * want to ensure that it takes the 'error' code path.
628 	 */
629 	data->rpc_status = -ENOMEM;
630 	task = rpc_run_task(server->client, RPC_TASK_ASYNC, &nfs4_open_confirm_ops, data);
631 	if (IS_ERR(task))
632 		return PTR_ERR(task);
633 	status = nfs4_wait_for_completion_rpc_task(task);
634 	if (status != 0) {
635 		data->cancelled = 1;
636 		smp_wmb();
637 	} else
638 		status = data->rpc_status;
639 	rpc_put_task(task);
640 	return status;
641 }
642 
643 static void nfs4_open_prepare(struct rpc_task *task, void *calldata)
644 {
645 	struct nfs4_opendata *data = calldata;
646 	struct nfs4_state_owner *sp = data->owner;
647 	struct rpc_message msg = {
648 		.rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_OPEN],
649 		.rpc_argp = &data->o_arg,
650 		.rpc_resp = &data->o_res,
651 		.rpc_cred = sp->so_cred,
652 	};
653 
654 	if (nfs_wait_on_sequence(data->o_arg.seqid, task) != 0)
655 		return;
656 	/* Update sequence id. */
657 	data->o_arg.id = sp->so_id;
658 	data->o_arg.clientid = sp->so_client->cl_clientid;
659 	if (data->o_arg.claim == NFS4_OPEN_CLAIM_PREVIOUS)
660 		msg.rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_OPEN_NOATTR];
661 	data->timestamp = jiffies;
662 	rpc_call_setup(task, &msg, 0);
663 }
664 
665 static void nfs4_open_done(struct rpc_task *task, void *calldata)
666 {
667 	struct nfs4_opendata *data = calldata;
668 
669 	data->rpc_status = task->tk_status;
670 	if (RPC_ASSASSINATED(task))
671 		return;
672 	if (task->tk_status == 0) {
673 		switch (data->o_res.f_attr->mode & S_IFMT) {
674 			case S_IFREG:
675 				break;
676 			case S_IFLNK:
677 				data->rpc_status = -ELOOP;
678 				break;
679 			case S_IFDIR:
680 				data->rpc_status = -EISDIR;
681 				break;
682 			default:
683 				data->rpc_status = -ENOTDIR;
684 		}
685 		renew_lease(data->o_res.server, data->timestamp);
686 	}
687 	nfs_increment_open_seqid(data->rpc_status, data->o_arg.seqid);
688 }
689 
690 static void nfs4_open_release(void *calldata)
691 {
692 	struct nfs4_opendata *data = calldata;
693 	struct nfs4_state *state = NULL;
694 
695 	/* If this request hasn't been cancelled, do nothing */
696 	if (data->cancelled == 0)
697 		goto out_free;
698 	/* In case of error, no cleanup! */
699 	if (data->rpc_status != 0)
700 		goto out_free;
701 	/* In case we need an open_confirm, no cleanup! */
702 	if (data->o_res.rflags & NFS4_OPEN_RESULT_CONFIRM)
703 		goto out_free;
704 	nfs_confirm_seqid(&data->owner->so_seqid, 0);
705 	state = nfs4_opendata_to_nfs4_state(data);
706 	if (state != NULL)
707 		nfs4_close_state(state, data->o_arg.open_flags);
708 out_free:
709 	nfs4_opendata_free(data);
710 }
711 
712 static const struct rpc_call_ops nfs4_open_ops = {
713 	.rpc_call_prepare = nfs4_open_prepare,
714 	.rpc_call_done = nfs4_open_done,
715 	.rpc_release = nfs4_open_release,
716 };
717 
718 /*
719  * Note: On error, nfs4_proc_open will free the struct nfs4_opendata
720  */
721 static int _nfs4_proc_open(struct nfs4_opendata *data)
722 {
723 	struct inode *dir = data->dir->d_inode;
724 	struct nfs_server *server = NFS_SERVER(dir);
725 	struct nfs_openargs *o_arg = &data->o_arg;
726 	struct nfs_openres *o_res = &data->o_res;
727 	struct rpc_task *task;
728 	int status;
729 
730 	atomic_inc(&data->count);
731 	/*
732 	 * If rpc_run_task() ends up calling ->rpc_release(), we
733 	 * want to ensure that it takes the 'error' code path.
734 	 */
735 	data->rpc_status = -ENOMEM;
736 	task = rpc_run_task(server->client, RPC_TASK_ASYNC, &nfs4_open_ops, data);
737 	if (IS_ERR(task))
738 		return PTR_ERR(task);
739 	status = nfs4_wait_for_completion_rpc_task(task);
740 	if (status != 0) {
741 		data->cancelled = 1;
742 		smp_wmb();
743 	} else
744 		status = data->rpc_status;
745 	rpc_put_task(task);
746 	if (status != 0)
747 		return status;
748 
749 	if (o_arg->open_flags & O_CREAT) {
750 		update_changeattr(dir, &o_res->cinfo);
751 		nfs_post_op_update_inode(dir, o_res->dir_attr);
752 	} else
753 		nfs_refresh_inode(dir, o_res->dir_attr);
754 	if(o_res->rflags & NFS4_OPEN_RESULT_CONFIRM) {
755 		status = _nfs4_proc_open_confirm(data);
756 		if (status != 0)
757 			return status;
758 	}
759 	nfs_confirm_seqid(&data->owner->so_seqid, 0);
760 	if (!(o_res->f_attr->valid & NFS_ATTR_FATTR))
761 		return server->nfs_client->rpc_ops->getattr(server, &o_res->fh, o_res->f_attr);
762 	return 0;
763 }
764 
765 static int _nfs4_do_access(struct inode *inode, struct rpc_cred *cred, int openflags)
766 {
767 	struct nfs_access_entry cache;
768 	int mask = 0;
769 	int status;
770 
771 	if (openflags & FMODE_READ)
772 		mask |= MAY_READ;
773 	if (openflags & FMODE_WRITE)
774 		mask |= MAY_WRITE;
775 	status = nfs_access_get_cached(inode, cred, &cache);
776 	if (status == 0)
777 		goto out;
778 
779 	/* Be clever: ask server to check for all possible rights */
780 	cache.mask = MAY_EXEC | MAY_WRITE | MAY_READ;
781 	cache.cred = cred;
782 	cache.jiffies = jiffies;
783 	status = _nfs4_proc_access(inode, &cache);
784 	if (status != 0)
785 		return status;
786 	nfs_access_add_cache(inode, &cache);
787 out:
788 	if ((cache.mask & mask) == mask)
789 		return 0;
790 	return -EACCES;
791 }
792 
793 int nfs4_recover_expired_lease(struct nfs_server *server)
794 {
795 	struct nfs_client *clp = server->nfs_client;
796 	int ret;
797 
798 	for (;;) {
799 		ret = nfs4_wait_clnt_recover(server->client, clp);
800 		if (ret != 0)
801 			return ret;
802 		if (!test_and_clear_bit(NFS4CLNT_LEASE_EXPIRED, &clp->cl_state))
803 			break;
804 		nfs4_schedule_state_recovery(clp);
805 	}
806 	return 0;
807 }
808 
809 /*
810  * OPEN_EXPIRED:
811  * 	reclaim state on the server after a network partition.
812  * 	Assumes caller holds the appropriate lock
813  */
814 static int _nfs4_open_expired(struct nfs4_state_owner *sp, struct nfs4_state *state, struct dentry *dentry)
815 {
816 	struct inode *inode = state->inode;
817 	struct nfs_delegation *delegation = NFS_I(inode)->delegation;
818 	struct nfs4_opendata *opendata;
819 	int openflags = state->state & (FMODE_READ|FMODE_WRITE);
820 	int ret;
821 
822 	if (delegation != NULL && !(delegation->flags & NFS_DELEGATION_NEED_RECLAIM)) {
823 		ret = _nfs4_do_access(inode, sp->so_cred, openflags);
824 		if (ret < 0)
825 			return ret;
826 		memcpy(&state->stateid, &delegation->stateid, sizeof(state->stateid));
827 		set_bit(NFS_DELEGATED_STATE, &state->flags);
828 		return 0;
829 	}
830 	opendata = nfs4_opendata_alloc(dentry, sp, openflags, NULL);
831 	if (opendata == NULL)
832 		return -ENOMEM;
833 	ret = nfs4_open_recover(opendata, state);
834 	if (ret == -ESTALE) {
835 		/* Invalidate the state owner so we don't ever use it again */
836 		nfs4_drop_state_owner(sp);
837 		d_drop(dentry);
838 	}
839 	nfs4_opendata_free(opendata);
840 	return ret;
841 }
842 
843 static inline int nfs4_do_open_expired(struct nfs4_state_owner *sp, struct nfs4_state *state, struct dentry *dentry)
844 {
845 	struct nfs_server *server = NFS_SERVER(dentry->d_inode);
846 	struct nfs4_exception exception = { };
847 	int err;
848 
849 	do {
850 		err = _nfs4_open_expired(sp, state, dentry);
851 		if (err == -NFS4ERR_DELAY)
852 			nfs4_handle_exception(server, err, &exception);
853 	} while (exception.retry);
854 	return err;
855 }
856 
857 static int nfs4_open_expired(struct nfs4_state_owner *sp, struct nfs4_state *state)
858 {
859 	struct nfs_open_context *ctx;
860 	int ret;
861 
862 	ctx = nfs4_state_find_open_context(state);
863 	if (IS_ERR(ctx))
864 		return PTR_ERR(ctx);
865 	ret = nfs4_do_open_expired(sp, state, ctx->dentry);
866 	put_nfs_open_context(ctx);
867 	return ret;
868 }
869 
870 /*
871  * Returns a referenced nfs4_state if there is an open delegation on the file
872  */
873 static int _nfs4_open_delegated(struct inode *inode, int flags, struct rpc_cred *cred, struct nfs4_state **res)
874 {
875 	struct nfs_delegation *delegation;
876 	struct nfs_server *server = NFS_SERVER(inode);
877 	struct nfs_client *clp = server->nfs_client;
878 	struct nfs_inode *nfsi = NFS_I(inode);
879 	struct nfs4_state_owner *sp = NULL;
880 	struct nfs4_state *state = NULL;
881 	int open_flags = flags & (FMODE_READ|FMODE_WRITE);
882 	int err;
883 
884 	err = -ENOMEM;
885 	if (!(sp = nfs4_get_state_owner(server, cred))) {
886 		dprintk("%s: nfs4_get_state_owner failed!\n", __FUNCTION__);
887 		return err;
888 	}
889 	err = nfs4_recover_expired_lease(server);
890 	if (err != 0)
891 		goto out_put_state_owner;
892 	/* Protect against reboot recovery - NOTE ORDER! */
893 	down_read(&clp->cl_sem);
894 	/* Protect against delegation recall */
895 	down_read(&nfsi->rwsem);
896 	delegation = NFS_I(inode)->delegation;
897 	err = -ENOENT;
898 	if (delegation == NULL || (delegation->type & open_flags) != open_flags)
899 		goto out_err;
900 	err = -ENOMEM;
901 	state = nfs4_get_open_state(inode, sp);
902 	if (state == NULL)
903 		goto out_err;
904 
905 	err = -ENOENT;
906 	if ((state->state & open_flags) == open_flags) {
907 		spin_lock(&inode->i_lock);
908 		update_open_stateflags(state, open_flags);
909 		spin_unlock(&inode->i_lock);
910 		goto out_ok;
911 	} else if (state->state != 0)
912 		goto out_put_open_state;
913 
914 	lock_kernel();
915 	err = _nfs4_do_access(inode, cred, open_flags);
916 	unlock_kernel();
917 	if (err != 0)
918 		goto out_put_open_state;
919 	set_bit(NFS_DELEGATED_STATE, &state->flags);
920 	update_open_stateid(state, &delegation->stateid, open_flags);
921 out_ok:
922 	nfs4_put_state_owner(sp);
923 	up_read(&nfsi->rwsem);
924 	up_read(&clp->cl_sem);
925 	*res = state;
926 	return 0;
927 out_put_open_state:
928 	nfs4_put_open_state(state);
929 out_err:
930 	up_read(&nfsi->rwsem);
931 	up_read(&clp->cl_sem);
932 	if (err != -EACCES)
933 		nfs_inode_return_delegation(inode);
934 out_put_state_owner:
935 	nfs4_put_state_owner(sp);
936 	return err;
937 }
938 
939 static struct nfs4_state *nfs4_open_delegated(struct inode *inode, int flags, struct rpc_cred *cred)
940 {
941 	struct nfs4_exception exception = { };
942 	struct nfs4_state *res = ERR_PTR(-EIO);
943 	int err;
944 
945 	do {
946 		err = _nfs4_open_delegated(inode, flags, cred, &res);
947 		if (err == 0)
948 			break;
949 		res = ERR_PTR(nfs4_handle_exception(NFS_SERVER(inode),
950 					err, &exception));
951 	} while (exception.retry);
952 	return res;
953 }
954 
955 /*
956  * Returns a referenced nfs4_state
957  */
958 static int _nfs4_do_open(struct inode *dir, struct dentry *dentry, int flags, struct iattr *sattr, struct rpc_cred *cred, struct nfs4_state **res)
959 {
960 	struct nfs4_state_owner  *sp;
961 	struct nfs4_state     *state = NULL;
962 	struct nfs_server       *server = NFS_SERVER(dir);
963 	struct nfs_client *clp = server->nfs_client;
964 	struct nfs4_opendata *opendata;
965 	int                     status;
966 
967 	/* Protect against reboot recovery conflicts */
968 	status = -ENOMEM;
969 	if (!(sp = nfs4_get_state_owner(server, cred))) {
970 		dprintk("nfs4_do_open: nfs4_get_state_owner failed!\n");
971 		goto out_err;
972 	}
973 	status = nfs4_recover_expired_lease(server);
974 	if (status != 0)
975 		goto err_put_state_owner;
976 	down_read(&clp->cl_sem);
977 	status = -ENOMEM;
978 	opendata = nfs4_opendata_alloc(dentry, sp, flags, sattr);
979 	if (opendata == NULL)
980 		goto err_release_rwsem;
981 
982 	status = _nfs4_proc_open(opendata);
983 	if (status != 0)
984 		goto err_opendata_free;
985 
986 	status = -ENOMEM;
987 	state = nfs4_opendata_to_nfs4_state(opendata);
988 	if (state == NULL)
989 		goto err_opendata_free;
990 	if (opendata->o_res.delegation_type != 0)
991 		nfs_inode_set_delegation(state->inode, cred, &opendata->o_res);
992 	nfs4_opendata_free(opendata);
993 	nfs4_put_state_owner(sp);
994 	up_read(&clp->cl_sem);
995 	*res = state;
996 	return 0;
997 err_opendata_free:
998 	nfs4_opendata_free(opendata);
999 err_release_rwsem:
1000 	up_read(&clp->cl_sem);
1001 err_put_state_owner:
1002 	nfs4_put_state_owner(sp);
1003 out_err:
1004 	*res = NULL;
1005 	return status;
1006 }
1007 
1008 
1009 static struct nfs4_state *nfs4_do_open(struct inode *dir, struct dentry *dentry, int flags, struct iattr *sattr, struct rpc_cred *cred)
1010 {
1011 	struct nfs4_exception exception = { };
1012 	struct nfs4_state *res;
1013 	int status;
1014 
1015 	do {
1016 		status = _nfs4_do_open(dir, dentry, flags, sattr, cred, &res);
1017 		if (status == 0)
1018 			break;
1019 		/* NOTE: BAD_SEQID means the server and client disagree about the
1020 		 * book-keeping w.r.t. state-changing operations
1021 		 * (OPEN/CLOSE/LOCK/LOCKU...)
1022 		 * It is actually a sign of a bug on the client or on the server.
1023 		 *
1024 		 * If we receive a BAD_SEQID error in the particular case of
1025 		 * doing an OPEN, we assume that nfs_increment_open_seqid() will
1026 		 * have unhashed the old state_owner for us, and that we can
1027 		 * therefore safely retry using a new one. We should still warn
1028 		 * the user though...
1029 		 */
1030 		if (status == -NFS4ERR_BAD_SEQID) {
1031 			printk(KERN_WARNING "NFS: v4 server returned a bad sequence-id error!\n");
1032 			exception.retry = 1;
1033 			continue;
1034 		}
1035 		/*
1036 		 * BAD_STATEID on OPEN means that the server cancelled our
1037 		 * state before it received the OPEN_CONFIRM.
1038 		 * Recover by retrying the request as per the discussion
1039 		 * on Page 181 of RFC3530.
1040 		 */
1041 		if (status == -NFS4ERR_BAD_STATEID) {
1042 			exception.retry = 1;
1043 			continue;
1044 		}
1045 		res = ERR_PTR(nfs4_handle_exception(NFS_SERVER(dir),
1046 					status, &exception));
1047 	} while (exception.retry);
1048 	return res;
1049 }
1050 
1051 static int _nfs4_do_setattr(struct inode *inode, struct nfs_fattr *fattr,
1052                 struct iattr *sattr, struct nfs4_state *state)
1053 {
1054 	struct nfs_server *server = NFS_SERVER(inode);
1055         struct nfs_setattrargs  arg = {
1056                 .fh             = NFS_FH(inode),
1057                 .iap            = sattr,
1058 		.server		= server,
1059 		.bitmask = server->attr_bitmask,
1060         };
1061         struct nfs_setattrres  res = {
1062 		.fattr		= fattr,
1063 		.server		= server,
1064         };
1065         struct rpc_message msg = {
1066                 .rpc_proc       = &nfs4_procedures[NFSPROC4_CLNT_SETATTR],
1067                 .rpc_argp       = &arg,
1068                 .rpc_resp       = &res,
1069         };
1070 	unsigned long timestamp = jiffies;
1071 	int status;
1072 
1073 	nfs_fattr_init(fattr);
1074 
1075 	if (nfs4_copy_delegation_stateid(&arg.stateid, inode)) {
1076 		/* Use that stateid */
1077 	} else if (state != NULL) {
1078 		msg.rpc_cred = state->owner->so_cred;
1079 		nfs4_copy_stateid(&arg.stateid, state, current->files);
1080 	} else
1081 		memcpy(&arg.stateid, &zero_stateid, sizeof(arg.stateid));
1082 
1083 	status = rpc_call_sync(server->client, &msg, 0);
1084 	if (status == 0 && state != NULL)
1085 		renew_lease(server, timestamp);
1086 	return status;
1087 }
1088 
1089 static int nfs4_do_setattr(struct inode *inode, struct nfs_fattr *fattr,
1090                 struct iattr *sattr, struct nfs4_state *state)
1091 {
1092 	struct nfs_server *server = NFS_SERVER(inode);
1093 	struct nfs4_exception exception = { };
1094 	int err;
1095 	do {
1096 		err = nfs4_handle_exception(server,
1097 				_nfs4_do_setattr(inode, fattr, sattr, state),
1098 				&exception);
1099 	} while (exception.retry);
1100 	return err;
1101 }
1102 
1103 struct nfs4_closedata {
1104 	struct inode *inode;
1105 	struct nfs4_state *state;
1106 	struct nfs_closeargs arg;
1107 	struct nfs_closeres res;
1108 	struct nfs_fattr fattr;
1109 	unsigned long timestamp;
1110 };
1111 
1112 static void nfs4_free_closedata(void *data)
1113 {
1114 	struct nfs4_closedata *calldata = data;
1115 	struct nfs4_state_owner *sp = calldata->state->owner;
1116 
1117 	nfs4_put_open_state(calldata->state);
1118 	nfs_free_seqid(calldata->arg.seqid);
1119 	nfs4_put_state_owner(sp);
1120 	kfree(calldata);
1121 }
1122 
1123 static void nfs4_close_done(struct rpc_task *task, void *data)
1124 {
1125 	struct nfs4_closedata *calldata = data;
1126 	struct nfs4_state *state = calldata->state;
1127 	struct nfs_server *server = NFS_SERVER(calldata->inode);
1128 
1129 	if (RPC_ASSASSINATED(task))
1130 		return;
1131         /* hmm. we are done with the inode, and in the process of freeing
1132 	 * the state_owner. we keep this around to process errors
1133 	 */
1134 	nfs_increment_open_seqid(task->tk_status, calldata->arg.seqid);
1135 	switch (task->tk_status) {
1136 		case 0:
1137 			memcpy(&state->stateid, &calldata->res.stateid,
1138 					sizeof(state->stateid));
1139 			renew_lease(server, calldata->timestamp);
1140 			break;
1141 		case -NFS4ERR_STALE_STATEID:
1142 		case -NFS4ERR_EXPIRED:
1143 			nfs4_schedule_state_recovery(server->nfs_client);
1144 			break;
1145 		default:
1146 			if (nfs4_async_handle_error(task, server) == -EAGAIN) {
1147 				rpc_restart_call(task);
1148 				return;
1149 			}
1150 	}
1151 	nfs_refresh_inode(calldata->inode, calldata->res.fattr);
1152 }
1153 
1154 static void nfs4_close_prepare(struct rpc_task *task, void *data)
1155 {
1156 	struct nfs4_closedata *calldata = data;
1157 	struct nfs4_state *state = calldata->state;
1158 	struct rpc_message msg = {
1159 		.rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_CLOSE],
1160 		.rpc_argp = &calldata->arg,
1161 		.rpc_resp = &calldata->res,
1162 		.rpc_cred = state->owner->so_cred,
1163 	};
1164 	int mode = 0, old_mode;
1165 
1166 	if (nfs_wait_on_sequence(calldata->arg.seqid, task) != 0)
1167 		return;
1168 	/* Recalculate the new open mode in case someone reopened the file
1169 	 * while we were waiting in line to be scheduled.
1170 	 */
1171 	spin_lock(&state->owner->so_lock);
1172 	spin_lock(&calldata->inode->i_lock);
1173 	mode = old_mode = state->state;
1174 	if (state->n_rdwr == 0) {
1175 		if (state->n_rdonly == 0)
1176 			mode &= ~FMODE_READ;
1177 		if (state->n_wronly == 0)
1178 			mode &= ~FMODE_WRITE;
1179 	}
1180 	nfs4_state_set_mode_locked(state, mode);
1181 	spin_unlock(&calldata->inode->i_lock);
1182 	spin_unlock(&state->owner->so_lock);
1183 	if (mode == old_mode || test_bit(NFS_DELEGATED_STATE, &state->flags)) {
1184 		/* Note: exit _without_ calling nfs4_close_done */
1185 		task->tk_action = NULL;
1186 		return;
1187 	}
1188 	nfs_fattr_init(calldata->res.fattr);
1189 	if (mode != 0)
1190 		msg.rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_OPEN_DOWNGRADE];
1191 	calldata->arg.open_flags = mode;
1192 	calldata->timestamp = jiffies;
1193 	rpc_call_setup(task, &msg, 0);
1194 }
1195 
1196 static const struct rpc_call_ops nfs4_close_ops = {
1197 	.rpc_call_prepare = nfs4_close_prepare,
1198 	.rpc_call_done = nfs4_close_done,
1199 	.rpc_release = nfs4_free_closedata,
1200 };
1201 
1202 /*
1203  * It is possible for data to be read/written from a mem-mapped file
1204  * after the sys_close call (which hits the vfs layer as a flush).
1205  * This means that we can't safely call nfsv4 close on a file until
1206  * the inode is cleared. This in turn means that we are not good
1207  * NFSv4 citizens - we do not indicate to the server to update the file's
1208  * share state even when we are done with one of the three share
1209  * stateid's in the inode.
1210  *
1211  * NOTE: Caller must be holding the sp->so_owner semaphore!
1212  */
1213 int nfs4_do_close(struct inode *inode, struct nfs4_state *state)
1214 {
1215 	struct nfs_server *server = NFS_SERVER(inode);
1216 	struct nfs4_closedata *calldata;
1217 	int status = -ENOMEM;
1218 
1219 	calldata = kmalloc(sizeof(*calldata), GFP_KERNEL);
1220 	if (calldata == NULL)
1221 		goto out;
1222 	calldata->inode = inode;
1223 	calldata->state = state;
1224 	calldata->arg.fh = NFS_FH(inode);
1225 	calldata->arg.stateid = &state->stateid;
1226 	/* Serialization for the sequence id */
1227 	calldata->arg.seqid = nfs_alloc_seqid(&state->owner->so_seqid);
1228 	if (calldata->arg.seqid == NULL)
1229 		goto out_free_calldata;
1230 	calldata->arg.bitmask = server->attr_bitmask;
1231 	calldata->res.fattr = &calldata->fattr;
1232 	calldata->res.server = server;
1233 
1234 	status = nfs4_call_async(server->client, &nfs4_close_ops, calldata);
1235 	if (status == 0)
1236 		goto out;
1237 
1238 	nfs_free_seqid(calldata->arg.seqid);
1239 out_free_calldata:
1240 	kfree(calldata);
1241 out:
1242 	return status;
1243 }
1244 
1245 static int nfs4_intent_set_file(struct nameidata *nd, struct dentry *dentry, struct nfs4_state *state)
1246 {
1247 	struct file *filp;
1248 
1249 	filp = lookup_instantiate_filp(nd, dentry, NULL);
1250 	if (!IS_ERR(filp)) {
1251 		struct nfs_open_context *ctx;
1252 		ctx = (struct nfs_open_context *)filp->private_data;
1253 		ctx->state = state;
1254 		return 0;
1255 	}
1256 	nfs4_close_state(state, nd->intent.open.flags);
1257 	return PTR_ERR(filp);
1258 }
1259 
1260 struct dentry *
1261 nfs4_atomic_open(struct inode *dir, struct dentry *dentry, struct nameidata *nd)
1262 {
1263 	struct iattr attr;
1264 	struct rpc_cred *cred;
1265 	struct nfs4_state *state;
1266 	struct dentry *res;
1267 
1268 	if (nd->flags & LOOKUP_CREATE) {
1269 		attr.ia_mode = nd->intent.open.create_mode;
1270 		attr.ia_valid = ATTR_MODE;
1271 		if (!IS_POSIXACL(dir))
1272 			attr.ia_mode &= ~current->fs->umask;
1273 	} else {
1274 		attr.ia_valid = 0;
1275 		BUG_ON(nd->intent.open.flags & O_CREAT);
1276 	}
1277 
1278 	cred = rpcauth_lookupcred(NFS_CLIENT(dir)->cl_auth, 0);
1279 	if (IS_ERR(cred))
1280 		return (struct dentry *)cred;
1281 	state = nfs4_do_open(dir, dentry, nd->intent.open.flags, &attr, cred);
1282 	put_rpccred(cred);
1283 	if (IS_ERR(state)) {
1284 		if (PTR_ERR(state) == -ENOENT)
1285 			d_add(dentry, NULL);
1286 		return (struct dentry *)state;
1287 	}
1288 	res = d_add_unique(dentry, igrab(state->inode));
1289 	if (res != NULL)
1290 		dentry = res;
1291 	nfs4_intent_set_file(nd, dentry, state);
1292 	return res;
1293 }
1294 
1295 int
1296 nfs4_open_revalidate(struct inode *dir, struct dentry *dentry, int openflags, struct nameidata *nd)
1297 {
1298 	struct rpc_cred *cred;
1299 	struct nfs4_state *state;
1300 
1301 	cred = rpcauth_lookupcred(NFS_CLIENT(dir)->cl_auth, 0);
1302 	if (IS_ERR(cred))
1303 		return PTR_ERR(cred);
1304 	state = nfs4_open_delegated(dentry->d_inode, openflags, cred);
1305 	if (IS_ERR(state))
1306 		state = nfs4_do_open(dir, dentry, openflags, NULL, cred);
1307 	put_rpccred(cred);
1308 	if (IS_ERR(state)) {
1309 		switch (PTR_ERR(state)) {
1310 			case -EPERM:
1311 			case -EACCES:
1312 			case -EDQUOT:
1313 			case -ENOSPC:
1314 			case -EROFS:
1315 				lookup_instantiate_filp(nd, (struct dentry *)state, NULL);
1316 				return 1;
1317 			default:
1318 				goto out_drop;
1319 		}
1320 	}
1321 	if (state->inode == dentry->d_inode) {
1322 		nfs4_intent_set_file(nd, dentry, state);
1323 		return 1;
1324 	}
1325 	nfs4_close_state(state, openflags);
1326 out_drop:
1327 	d_drop(dentry);
1328 	return 0;
1329 }
1330 
1331 
1332 static int _nfs4_server_capabilities(struct nfs_server *server, struct nfs_fh *fhandle)
1333 {
1334 	struct nfs4_server_caps_res res = {};
1335 	struct rpc_message msg = {
1336 		.rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_SERVER_CAPS],
1337 		.rpc_argp = fhandle,
1338 		.rpc_resp = &res,
1339 	};
1340 	int status;
1341 
1342 	status = rpc_call_sync(server->client, &msg, 0);
1343 	if (status == 0) {
1344 		memcpy(server->attr_bitmask, res.attr_bitmask, sizeof(server->attr_bitmask));
1345 		if (res.attr_bitmask[0] & FATTR4_WORD0_ACL)
1346 			server->caps |= NFS_CAP_ACLS;
1347 		if (res.has_links != 0)
1348 			server->caps |= NFS_CAP_HARDLINKS;
1349 		if (res.has_symlinks != 0)
1350 			server->caps |= NFS_CAP_SYMLINKS;
1351 		server->acl_bitmask = res.acl_bitmask;
1352 	}
1353 	return status;
1354 }
1355 
1356 int nfs4_server_capabilities(struct nfs_server *server, struct nfs_fh *fhandle)
1357 {
1358 	struct nfs4_exception exception = { };
1359 	int err;
1360 	do {
1361 		err = nfs4_handle_exception(server,
1362 				_nfs4_server_capabilities(server, fhandle),
1363 				&exception);
1364 	} while (exception.retry);
1365 	return err;
1366 }
1367 
1368 static int _nfs4_lookup_root(struct nfs_server *server, struct nfs_fh *fhandle,
1369 		struct nfs_fsinfo *info)
1370 {
1371 	struct nfs4_lookup_root_arg args = {
1372 		.bitmask = nfs4_fattr_bitmap,
1373 	};
1374 	struct nfs4_lookup_res res = {
1375 		.server = server,
1376 		.fattr = info->fattr,
1377 		.fh = fhandle,
1378 	};
1379 	struct rpc_message msg = {
1380 		.rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_LOOKUP_ROOT],
1381 		.rpc_argp = &args,
1382 		.rpc_resp = &res,
1383 	};
1384 	nfs_fattr_init(info->fattr);
1385 	return rpc_call_sync(server->client, &msg, 0);
1386 }
1387 
1388 static int nfs4_lookup_root(struct nfs_server *server, struct nfs_fh *fhandle,
1389 		struct nfs_fsinfo *info)
1390 {
1391 	struct nfs4_exception exception = { };
1392 	int err;
1393 	do {
1394 		err = nfs4_handle_exception(server,
1395 				_nfs4_lookup_root(server, fhandle, info),
1396 				&exception);
1397 	} while (exception.retry);
1398 	return err;
1399 }
1400 
1401 /*
1402  * get the file handle for the "/" directory on the server
1403  */
1404 static int nfs4_proc_get_root(struct nfs_server *server, struct nfs_fh *fhandle,
1405 			      struct nfs_fsinfo *info)
1406 {
1407 	int status;
1408 
1409 	status = nfs4_lookup_root(server, fhandle, info);
1410 	if (status == 0)
1411 		status = nfs4_server_capabilities(server, fhandle);
1412 	if (status == 0)
1413 		status = nfs4_do_fsinfo(server, fhandle, info);
1414 	return nfs4_map_errors(status);
1415 }
1416 
1417 /*
1418  * Get locations and (maybe) other attributes of a referral.
1419  * Note that we'll actually follow the referral later when
1420  * we detect fsid mismatch in inode revalidation
1421  */
1422 static int nfs4_get_referral(struct inode *dir, struct qstr *name, struct nfs_fattr *fattr, struct nfs_fh *fhandle)
1423 {
1424 	int status = -ENOMEM;
1425 	struct page *page = NULL;
1426 	struct nfs4_fs_locations *locations = NULL;
1427 	struct dentry dentry = {};
1428 
1429 	page = alloc_page(GFP_KERNEL);
1430 	if (page == NULL)
1431 		goto out;
1432 	locations = kmalloc(sizeof(struct nfs4_fs_locations), GFP_KERNEL);
1433 	if (locations == NULL)
1434 		goto out;
1435 
1436 	dentry.d_name.name = name->name;
1437 	dentry.d_name.len = name->len;
1438 	status = nfs4_proc_fs_locations(dir, &dentry, locations, page);
1439 	if (status != 0)
1440 		goto out;
1441 	/* Make sure server returned a different fsid for the referral */
1442 	if (nfs_fsid_equal(&NFS_SERVER(dir)->fsid, &locations->fattr.fsid)) {
1443 		dprintk("%s: server did not return a different fsid for a referral at %s\n", __FUNCTION__, name->name);
1444 		status = -EIO;
1445 		goto out;
1446 	}
1447 
1448 	memcpy(fattr, &locations->fattr, sizeof(struct nfs_fattr));
1449 	fattr->valid |= NFS_ATTR_FATTR_V4_REFERRAL;
1450 	if (!fattr->mode)
1451 		fattr->mode = S_IFDIR;
1452 	memset(fhandle, 0, sizeof(struct nfs_fh));
1453 out:
1454 	if (page)
1455 		__free_page(page);
1456 	if (locations)
1457 		kfree(locations);
1458 	return status;
1459 }
1460 
1461 static int _nfs4_proc_getattr(struct nfs_server *server, struct nfs_fh *fhandle, struct nfs_fattr *fattr)
1462 {
1463 	struct nfs4_getattr_arg args = {
1464 		.fh = fhandle,
1465 		.bitmask = server->attr_bitmask,
1466 	};
1467 	struct nfs4_getattr_res res = {
1468 		.fattr = fattr,
1469 		.server = server,
1470 	};
1471 	struct rpc_message msg = {
1472 		.rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_GETATTR],
1473 		.rpc_argp = &args,
1474 		.rpc_resp = &res,
1475 	};
1476 
1477 	nfs_fattr_init(fattr);
1478 	return rpc_call_sync(server->client, &msg, 0);
1479 }
1480 
1481 static int nfs4_proc_getattr(struct nfs_server *server, struct nfs_fh *fhandle, struct nfs_fattr *fattr)
1482 {
1483 	struct nfs4_exception exception = { };
1484 	int err;
1485 	do {
1486 		err = nfs4_handle_exception(server,
1487 				_nfs4_proc_getattr(server, fhandle, fattr),
1488 				&exception);
1489 	} while (exception.retry);
1490 	return err;
1491 }
1492 
1493 /*
1494  * The file is not closed if it is opened due to the a request to change
1495  * the size of the file. The open call will not be needed once the
1496  * VFS layer lookup-intents are implemented.
1497  *
1498  * Close is called when the inode is destroyed.
1499  * If we haven't opened the file for O_WRONLY, we
1500  * need to in the size_change case to obtain a stateid.
1501  *
1502  * Got race?
1503  * Because OPEN is always done by name in nfsv4, it is
1504  * possible that we opened a different file by the same
1505  * name.  We can recognize this race condition, but we
1506  * can't do anything about it besides returning an error.
1507  *
1508  * This will be fixed with VFS changes (lookup-intent).
1509  */
1510 static int
1511 nfs4_proc_setattr(struct dentry *dentry, struct nfs_fattr *fattr,
1512 		  struct iattr *sattr)
1513 {
1514 	struct rpc_cred *cred;
1515 	struct inode *inode = dentry->d_inode;
1516 	struct nfs_open_context *ctx;
1517 	struct nfs4_state *state = NULL;
1518 	int status;
1519 
1520 	nfs_fattr_init(fattr);
1521 
1522 	cred = rpcauth_lookupcred(NFS_CLIENT(inode)->cl_auth, 0);
1523 	if (IS_ERR(cred))
1524 		return PTR_ERR(cred);
1525 
1526 	/* Search for an existing open(O_WRITE) file */
1527 	ctx = nfs_find_open_context(inode, cred, FMODE_WRITE);
1528 	if (ctx != NULL)
1529 		state = ctx->state;
1530 
1531 	status = nfs4_do_setattr(inode, fattr, sattr, state);
1532 	if (status == 0)
1533 		nfs_setattr_update_inode(inode, sattr);
1534 	if (ctx != NULL)
1535 		put_nfs_open_context(ctx);
1536 	put_rpccred(cred);
1537 	return status;
1538 }
1539 
1540 static int _nfs4_proc_lookupfh(struct nfs_server *server, struct nfs_fh *dirfh,
1541 		struct qstr *name, struct nfs_fh *fhandle,
1542 		struct nfs_fattr *fattr)
1543 {
1544 	int		       status;
1545 	struct nfs4_lookup_arg args = {
1546 		.bitmask = server->attr_bitmask,
1547 		.dir_fh = dirfh,
1548 		.name = name,
1549 	};
1550 	struct nfs4_lookup_res res = {
1551 		.server = server,
1552 		.fattr = fattr,
1553 		.fh = fhandle,
1554 	};
1555 	struct rpc_message msg = {
1556 		.rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_LOOKUP],
1557 		.rpc_argp = &args,
1558 		.rpc_resp = &res,
1559 	};
1560 
1561 	nfs_fattr_init(fattr);
1562 
1563 	dprintk("NFS call  lookupfh %s\n", name->name);
1564 	status = rpc_call_sync(server->client, &msg, 0);
1565 	dprintk("NFS reply lookupfh: %d\n", status);
1566 	if (status == -NFS4ERR_MOVED)
1567 		status = -EREMOTE;
1568 	return status;
1569 }
1570 
1571 static int nfs4_proc_lookupfh(struct nfs_server *server, struct nfs_fh *dirfh,
1572 			      struct qstr *name, struct nfs_fh *fhandle,
1573 			      struct nfs_fattr *fattr)
1574 {
1575 	struct nfs4_exception exception = { };
1576 	int err;
1577 	do {
1578 		err = nfs4_handle_exception(server,
1579 				_nfs4_proc_lookupfh(server, dirfh, name,
1580 						    fhandle, fattr),
1581 				&exception);
1582 	} while (exception.retry);
1583 	return err;
1584 }
1585 
1586 static int _nfs4_proc_lookup(struct inode *dir, struct qstr *name,
1587 		struct nfs_fh *fhandle, struct nfs_fattr *fattr)
1588 {
1589 	int		       status;
1590 	struct nfs_server *server = NFS_SERVER(dir);
1591 	struct nfs4_lookup_arg args = {
1592 		.bitmask = server->attr_bitmask,
1593 		.dir_fh = NFS_FH(dir),
1594 		.name = name,
1595 	};
1596 	struct nfs4_lookup_res res = {
1597 		.server = server,
1598 		.fattr = fattr,
1599 		.fh = fhandle,
1600 	};
1601 	struct rpc_message msg = {
1602 		.rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_LOOKUP],
1603 		.rpc_argp = &args,
1604 		.rpc_resp = &res,
1605 	};
1606 
1607 	nfs_fattr_init(fattr);
1608 
1609 	dprintk("NFS call  lookup %s\n", name->name);
1610 	status = rpc_call_sync(NFS_CLIENT(dir), &msg, 0);
1611 	if (status == -NFS4ERR_MOVED)
1612 		status = nfs4_get_referral(dir, name, fattr, fhandle);
1613 	dprintk("NFS reply lookup: %d\n", status);
1614 	return status;
1615 }
1616 
1617 static int nfs4_proc_lookup(struct inode *dir, struct qstr *name, struct nfs_fh *fhandle, struct nfs_fattr *fattr)
1618 {
1619 	struct nfs4_exception exception = { };
1620 	int err;
1621 	do {
1622 		err = nfs4_handle_exception(NFS_SERVER(dir),
1623 				_nfs4_proc_lookup(dir, name, fhandle, fattr),
1624 				&exception);
1625 	} while (exception.retry);
1626 	return err;
1627 }
1628 
1629 static int _nfs4_proc_access(struct inode *inode, struct nfs_access_entry *entry)
1630 {
1631 	struct nfs4_accessargs args = {
1632 		.fh = NFS_FH(inode),
1633 	};
1634 	struct nfs4_accessres res = { 0 };
1635 	struct rpc_message msg = {
1636 		.rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_ACCESS],
1637 		.rpc_argp = &args,
1638 		.rpc_resp = &res,
1639 		.rpc_cred = entry->cred,
1640 	};
1641 	int mode = entry->mask;
1642 	int status;
1643 
1644 	/*
1645 	 * Determine which access bits we want to ask for...
1646 	 */
1647 	if (mode & MAY_READ)
1648 		args.access |= NFS4_ACCESS_READ;
1649 	if (S_ISDIR(inode->i_mode)) {
1650 		if (mode & MAY_WRITE)
1651 			args.access |= NFS4_ACCESS_MODIFY | NFS4_ACCESS_EXTEND | NFS4_ACCESS_DELETE;
1652 		if (mode & MAY_EXEC)
1653 			args.access |= NFS4_ACCESS_LOOKUP;
1654 	} else {
1655 		if (mode & MAY_WRITE)
1656 			args.access |= NFS4_ACCESS_MODIFY | NFS4_ACCESS_EXTEND;
1657 		if (mode & MAY_EXEC)
1658 			args.access |= NFS4_ACCESS_EXECUTE;
1659 	}
1660 	status = rpc_call_sync(NFS_CLIENT(inode), &msg, 0);
1661 	if (!status) {
1662 		entry->mask = 0;
1663 		if (res.access & NFS4_ACCESS_READ)
1664 			entry->mask |= MAY_READ;
1665 		if (res.access & (NFS4_ACCESS_MODIFY | NFS4_ACCESS_EXTEND | NFS4_ACCESS_DELETE))
1666 			entry->mask |= MAY_WRITE;
1667 		if (res.access & (NFS4_ACCESS_LOOKUP|NFS4_ACCESS_EXECUTE))
1668 			entry->mask |= MAY_EXEC;
1669 	}
1670 	return status;
1671 }
1672 
1673 static int nfs4_proc_access(struct inode *inode, struct nfs_access_entry *entry)
1674 {
1675 	struct nfs4_exception exception = { };
1676 	int err;
1677 	do {
1678 		err = nfs4_handle_exception(NFS_SERVER(inode),
1679 				_nfs4_proc_access(inode, entry),
1680 				&exception);
1681 	} while (exception.retry);
1682 	return err;
1683 }
1684 
1685 /*
1686  * TODO: For the time being, we don't try to get any attributes
1687  * along with any of the zero-copy operations READ, READDIR,
1688  * READLINK, WRITE.
1689  *
1690  * In the case of the first three, we want to put the GETATTR
1691  * after the read-type operation -- this is because it is hard
1692  * to predict the length of a GETATTR response in v4, and thus
1693  * align the READ data correctly.  This means that the GETATTR
1694  * may end up partially falling into the page cache, and we should
1695  * shift it into the 'tail' of the xdr_buf before processing.
1696  * To do this efficiently, we need to know the total length
1697  * of data received, which doesn't seem to be available outside
1698  * of the RPC layer.
1699  *
1700  * In the case of WRITE, we also want to put the GETATTR after
1701  * the operation -- in this case because we want to make sure
1702  * we get the post-operation mtime and size.  This means that
1703  * we can't use xdr_encode_pages() as written: we need a variant
1704  * of it which would leave room in the 'tail' iovec.
1705  *
1706  * Both of these changes to the XDR layer would in fact be quite
1707  * minor, but I decided to leave them for a subsequent patch.
1708  */
1709 static int _nfs4_proc_readlink(struct inode *inode, struct page *page,
1710 		unsigned int pgbase, unsigned int pglen)
1711 {
1712 	struct nfs4_readlink args = {
1713 		.fh       = NFS_FH(inode),
1714 		.pgbase	  = pgbase,
1715 		.pglen    = pglen,
1716 		.pages    = &page,
1717 	};
1718 	struct rpc_message msg = {
1719 		.rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_READLINK],
1720 		.rpc_argp = &args,
1721 		.rpc_resp = NULL,
1722 	};
1723 
1724 	return rpc_call_sync(NFS_CLIENT(inode), &msg, 0);
1725 }
1726 
1727 static int nfs4_proc_readlink(struct inode *inode, struct page *page,
1728 		unsigned int pgbase, unsigned int pglen)
1729 {
1730 	struct nfs4_exception exception = { };
1731 	int err;
1732 	do {
1733 		err = nfs4_handle_exception(NFS_SERVER(inode),
1734 				_nfs4_proc_readlink(inode, page, pgbase, pglen),
1735 				&exception);
1736 	} while (exception.retry);
1737 	return err;
1738 }
1739 
1740 static int _nfs4_proc_read(struct nfs_read_data *rdata)
1741 {
1742 	int flags = rdata->flags;
1743 	struct inode *inode = rdata->inode;
1744 	struct nfs_fattr *fattr = rdata->res.fattr;
1745 	struct nfs_server *server = NFS_SERVER(inode);
1746 	struct rpc_message msg = {
1747 		.rpc_proc	= &nfs4_procedures[NFSPROC4_CLNT_READ],
1748 		.rpc_argp	= &rdata->args,
1749 		.rpc_resp	= &rdata->res,
1750 		.rpc_cred	= rdata->cred,
1751 	};
1752 	unsigned long timestamp = jiffies;
1753 	int status;
1754 
1755 	dprintk("NFS call  read %d @ %Ld\n", rdata->args.count,
1756 			(long long) rdata->args.offset);
1757 
1758 	nfs_fattr_init(fattr);
1759 	status = rpc_call_sync(server->client, &msg, flags);
1760 	if (!status)
1761 		renew_lease(server, timestamp);
1762 	dprintk("NFS reply read: %d\n", status);
1763 	return status;
1764 }
1765 
1766 static int nfs4_proc_read(struct nfs_read_data *rdata)
1767 {
1768 	struct nfs4_exception exception = { };
1769 	int err;
1770 	do {
1771 		err = nfs4_handle_exception(NFS_SERVER(rdata->inode),
1772 				_nfs4_proc_read(rdata),
1773 				&exception);
1774 	} while (exception.retry);
1775 	return err;
1776 }
1777 
1778 /*
1779  * Got race?
1780  * We will need to arrange for the VFS layer to provide an atomic open.
1781  * Until then, this create/open method is prone to inefficiency and race
1782  * conditions due to the lookup, create, and open VFS calls from sys_open()
1783  * placed on the wire.
1784  *
1785  * Given the above sorry state of affairs, I'm simply sending an OPEN.
1786  * The file will be opened again in the subsequent VFS open call
1787  * (nfs4_proc_file_open).
1788  *
1789  * The open for read will just hang around to be used by any process that
1790  * opens the file O_RDONLY. This will all be resolved with the VFS changes.
1791  */
1792 
1793 static int
1794 nfs4_proc_create(struct inode *dir, struct dentry *dentry, struct iattr *sattr,
1795                  int flags, struct nameidata *nd)
1796 {
1797 	struct nfs4_state *state;
1798 	struct rpc_cred *cred;
1799 	int status = 0;
1800 
1801 	cred = rpcauth_lookupcred(NFS_CLIENT(dir)->cl_auth, 0);
1802 	if (IS_ERR(cred)) {
1803 		status = PTR_ERR(cred);
1804 		goto out;
1805 	}
1806 	state = nfs4_do_open(dir, dentry, flags, sattr, cred);
1807 	put_rpccred(cred);
1808 	if (IS_ERR(state)) {
1809 		status = PTR_ERR(state);
1810 		goto out;
1811 	}
1812 	d_instantiate(dentry, igrab(state->inode));
1813 	if (flags & O_EXCL) {
1814 		struct nfs_fattr fattr;
1815 		status = nfs4_do_setattr(state->inode, &fattr, sattr, state);
1816 		if (status == 0)
1817 			nfs_setattr_update_inode(state->inode, sattr);
1818 	}
1819 	if (status == 0 && nd != NULL && (nd->flags & LOOKUP_OPEN))
1820 		status = nfs4_intent_set_file(nd, dentry, state);
1821 	else
1822 		nfs4_close_state(state, flags);
1823 out:
1824 	return status;
1825 }
1826 
1827 static int _nfs4_proc_remove(struct inode *dir, struct qstr *name)
1828 {
1829 	struct nfs_server *server = NFS_SERVER(dir);
1830 	struct nfs4_remove_arg args = {
1831 		.fh = NFS_FH(dir),
1832 		.name = name,
1833 		.bitmask = server->attr_bitmask,
1834 	};
1835 	struct nfs_fattr dir_attr;
1836 	struct nfs4_remove_res	res = {
1837 		.server = server,
1838 		.dir_attr = &dir_attr,
1839 	};
1840 	struct rpc_message msg = {
1841 		.rpc_proc	= &nfs4_procedures[NFSPROC4_CLNT_REMOVE],
1842 		.rpc_argp	= &args,
1843 		.rpc_resp	= &res,
1844 	};
1845 	int			status;
1846 
1847 	nfs_fattr_init(res.dir_attr);
1848 	status = rpc_call_sync(server->client, &msg, 0);
1849 	if (status == 0) {
1850 		update_changeattr(dir, &res.cinfo);
1851 		nfs_post_op_update_inode(dir, res.dir_attr);
1852 	}
1853 	return status;
1854 }
1855 
1856 static int nfs4_proc_remove(struct inode *dir, struct qstr *name)
1857 {
1858 	struct nfs4_exception exception = { };
1859 	int err;
1860 	do {
1861 		err = nfs4_handle_exception(NFS_SERVER(dir),
1862 				_nfs4_proc_remove(dir, name),
1863 				&exception);
1864 	} while (exception.retry);
1865 	return err;
1866 }
1867 
1868 struct unlink_desc {
1869 	struct nfs4_remove_arg	args;
1870 	struct nfs4_remove_res	res;
1871 	struct nfs_fattr dir_attr;
1872 };
1873 
1874 static int nfs4_proc_unlink_setup(struct rpc_message *msg, struct dentry *dir,
1875 		struct qstr *name)
1876 {
1877 	struct nfs_server *server = NFS_SERVER(dir->d_inode);
1878 	struct unlink_desc *up;
1879 
1880 	up = kmalloc(sizeof(*up), GFP_KERNEL);
1881 	if (!up)
1882 		return -ENOMEM;
1883 
1884 	up->args.fh = NFS_FH(dir->d_inode);
1885 	up->args.name = name;
1886 	up->args.bitmask = server->attr_bitmask;
1887 	up->res.server = server;
1888 	up->res.dir_attr = &up->dir_attr;
1889 
1890 	msg->rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_REMOVE];
1891 	msg->rpc_argp = &up->args;
1892 	msg->rpc_resp = &up->res;
1893 	return 0;
1894 }
1895 
1896 static int nfs4_proc_unlink_done(struct dentry *dir, struct rpc_task *task)
1897 {
1898 	struct rpc_message *msg = &task->tk_msg;
1899 	struct unlink_desc *up;
1900 
1901 	if (msg->rpc_resp != NULL) {
1902 		up = container_of(msg->rpc_resp, struct unlink_desc, res);
1903 		update_changeattr(dir->d_inode, &up->res.cinfo);
1904 		nfs_post_op_update_inode(dir->d_inode, up->res.dir_attr);
1905 		kfree(up);
1906 		msg->rpc_resp = NULL;
1907 		msg->rpc_argp = NULL;
1908 	}
1909 	return 0;
1910 }
1911 
1912 static int _nfs4_proc_rename(struct inode *old_dir, struct qstr *old_name,
1913 		struct inode *new_dir, struct qstr *new_name)
1914 {
1915 	struct nfs_server *server = NFS_SERVER(old_dir);
1916 	struct nfs4_rename_arg arg = {
1917 		.old_dir = NFS_FH(old_dir),
1918 		.new_dir = NFS_FH(new_dir),
1919 		.old_name = old_name,
1920 		.new_name = new_name,
1921 		.bitmask = server->attr_bitmask,
1922 	};
1923 	struct nfs_fattr old_fattr, new_fattr;
1924 	struct nfs4_rename_res res = {
1925 		.server = server,
1926 		.old_fattr = &old_fattr,
1927 		.new_fattr = &new_fattr,
1928 	};
1929 	struct rpc_message msg = {
1930 		.rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_RENAME],
1931 		.rpc_argp = &arg,
1932 		.rpc_resp = &res,
1933 	};
1934 	int			status;
1935 
1936 	nfs_fattr_init(res.old_fattr);
1937 	nfs_fattr_init(res.new_fattr);
1938 	status = rpc_call_sync(server->client, &msg, 0);
1939 
1940 	if (!status) {
1941 		update_changeattr(old_dir, &res.old_cinfo);
1942 		nfs_post_op_update_inode(old_dir, res.old_fattr);
1943 		update_changeattr(new_dir, &res.new_cinfo);
1944 		nfs_post_op_update_inode(new_dir, res.new_fattr);
1945 	}
1946 	return status;
1947 }
1948 
1949 static int nfs4_proc_rename(struct inode *old_dir, struct qstr *old_name,
1950 		struct inode *new_dir, struct qstr *new_name)
1951 {
1952 	struct nfs4_exception exception = { };
1953 	int err;
1954 	do {
1955 		err = nfs4_handle_exception(NFS_SERVER(old_dir),
1956 				_nfs4_proc_rename(old_dir, old_name,
1957 					new_dir, new_name),
1958 				&exception);
1959 	} while (exception.retry);
1960 	return err;
1961 }
1962 
1963 static int _nfs4_proc_link(struct inode *inode, struct inode *dir, struct qstr *name)
1964 {
1965 	struct nfs_server *server = NFS_SERVER(inode);
1966 	struct nfs4_link_arg arg = {
1967 		.fh     = NFS_FH(inode),
1968 		.dir_fh = NFS_FH(dir),
1969 		.name   = name,
1970 		.bitmask = server->attr_bitmask,
1971 	};
1972 	struct nfs_fattr fattr, dir_attr;
1973 	struct nfs4_link_res res = {
1974 		.server = server,
1975 		.fattr = &fattr,
1976 		.dir_attr = &dir_attr,
1977 	};
1978 	struct rpc_message msg = {
1979 		.rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_LINK],
1980 		.rpc_argp = &arg,
1981 		.rpc_resp = &res,
1982 	};
1983 	int			status;
1984 
1985 	nfs_fattr_init(res.fattr);
1986 	nfs_fattr_init(res.dir_attr);
1987 	status = rpc_call_sync(server->client, &msg, 0);
1988 	if (!status) {
1989 		update_changeattr(dir, &res.cinfo);
1990 		nfs_post_op_update_inode(dir, res.dir_attr);
1991 		nfs_post_op_update_inode(inode, res.fattr);
1992 	}
1993 
1994 	return status;
1995 }
1996 
1997 static int nfs4_proc_link(struct inode *inode, struct inode *dir, struct qstr *name)
1998 {
1999 	struct nfs4_exception exception = { };
2000 	int err;
2001 	do {
2002 		err = nfs4_handle_exception(NFS_SERVER(inode),
2003 				_nfs4_proc_link(inode, dir, name),
2004 				&exception);
2005 	} while (exception.retry);
2006 	return err;
2007 }
2008 
2009 static int _nfs4_proc_symlink(struct inode *dir, struct dentry *dentry,
2010 		struct page *page, unsigned int len, struct iattr *sattr)
2011 {
2012 	struct nfs_server *server = NFS_SERVER(dir);
2013 	struct nfs_fh fhandle;
2014 	struct nfs_fattr fattr, dir_fattr;
2015 	struct nfs4_create_arg arg = {
2016 		.dir_fh = NFS_FH(dir),
2017 		.server = server,
2018 		.name = &dentry->d_name,
2019 		.attrs = sattr,
2020 		.ftype = NF4LNK,
2021 		.bitmask = server->attr_bitmask,
2022 	};
2023 	struct nfs4_create_res res = {
2024 		.server = server,
2025 		.fh = &fhandle,
2026 		.fattr = &fattr,
2027 		.dir_fattr = &dir_fattr,
2028 	};
2029 	struct rpc_message msg = {
2030 		.rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_SYMLINK],
2031 		.rpc_argp = &arg,
2032 		.rpc_resp = &res,
2033 	};
2034 	int			status;
2035 
2036 	if (len > NFS4_MAXPATHLEN)
2037 		return -ENAMETOOLONG;
2038 
2039 	arg.u.symlink.pages = &page;
2040 	arg.u.symlink.len = len;
2041 	nfs_fattr_init(&fattr);
2042 	nfs_fattr_init(&dir_fattr);
2043 
2044 	status = rpc_call_sync(NFS_CLIENT(dir), &msg, 0);
2045 	if (!status) {
2046 		update_changeattr(dir, &res.dir_cinfo);
2047 		nfs_post_op_update_inode(dir, res.dir_fattr);
2048 		status = nfs_instantiate(dentry, &fhandle, &fattr);
2049 	}
2050 	return status;
2051 }
2052 
2053 static int nfs4_proc_symlink(struct inode *dir, struct dentry *dentry,
2054 		struct page *page, unsigned int len, struct iattr *sattr)
2055 {
2056 	struct nfs4_exception exception = { };
2057 	int err;
2058 	do {
2059 		err = nfs4_handle_exception(NFS_SERVER(dir),
2060 				_nfs4_proc_symlink(dir, dentry, page,
2061 							len, sattr),
2062 				&exception);
2063 	} while (exception.retry);
2064 	return err;
2065 }
2066 
2067 static int _nfs4_proc_mkdir(struct inode *dir, struct dentry *dentry,
2068 		struct iattr *sattr)
2069 {
2070 	struct nfs_server *server = NFS_SERVER(dir);
2071 	struct nfs_fh fhandle;
2072 	struct nfs_fattr fattr, dir_fattr;
2073 	struct nfs4_create_arg arg = {
2074 		.dir_fh = NFS_FH(dir),
2075 		.server = server,
2076 		.name = &dentry->d_name,
2077 		.attrs = sattr,
2078 		.ftype = NF4DIR,
2079 		.bitmask = server->attr_bitmask,
2080 	};
2081 	struct nfs4_create_res res = {
2082 		.server = server,
2083 		.fh = &fhandle,
2084 		.fattr = &fattr,
2085 		.dir_fattr = &dir_fattr,
2086 	};
2087 	struct rpc_message msg = {
2088 		.rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_CREATE],
2089 		.rpc_argp = &arg,
2090 		.rpc_resp = &res,
2091 	};
2092 	int			status;
2093 
2094 	nfs_fattr_init(&fattr);
2095 	nfs_fattr_init(&dir_fattr);
2096 
2097 	status = rpc_call_sync(NFS_CLIENT(dir), &msg, 0);
2098 	if (!status) {
2099 		update_changeattr(dir, &res.dir_cinfo);
2100 		nfs_post_op_update_inode(dir, res.dir_fattr);
2101 		status = nfs_instantiate(dentry, &fhandle, &fattr);
2102 	}
2103 	return status;
2104 }
2105 
2106 static int nfs4_proc_mkdir(struct inode *dir, struct dentry *dentry,
2107 		struct iattr *sattr)
2108 {
2109 	struct nfs4_exception exception = { };
2110 	int err;
2111 	do {
2112 		err = nfs4_handle_exception(NFS_SERVER(dir),
2113 				_nfs4_proc_mkdir(dir, dentry, sattr),
2114 				&exception);
2115 	} while (exception.retry);
2116 	return err;
2117 }
2118 
2119 static int _nfs4_proc_readdir(struct dentry *dentry, struct rpc_cred *cred,
2120                   u64 cookie, struct page *page, unsigned int count, int plus)
2121 {
2122 	struct inode		*dir = dentry->d_inode;
2123 	struct nfs4_readdir_arg args = {
2124 		.fh = NFS_FH(dir),
2125 		.pages = &page,
2126 		.pgbase = 0,
2127 		.count = count,
2128 		.bitmask = NFS_SERVER(dentry->d_inode)->attr_bitmask,
2129 	};
2130 	struct nfs4_readdir_res res;
2131 	struct rpc_message msg = {
2132 		.rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_READDIR],
2133 		.rpc_argp = &args,
2134 		.rpc_resp = &res,
2135 		.rpc_cred = cred,
2136 	};
2137 	int			status;
2138 
2139 	dprintk("%s: dentry = %s/%s, cookie = %Lu\n", __FUNCTION__,
2140 			dentry->d_parent->d_name.name,
2141 			dentry->d_name.name,
2142 			(unsigned long long)cookie);
2143 	nfs4_setup_readdir(cookie, NFS_COOKIEVERF(dir), dentry, &args);
2144 	res.pgbase = args.pgbase;
2145 	status = rpc_call_sync(NFS_CLIENT(dir), &msg, 0);
2146 	if (status == 0)
2147 		memcpy(NFS_COOKIEVERF(dir), res.verifier.data, NFS4_VERIFIER_SIZE);
2148 	dprintk("%s: returns %d\n", __FUNCTION__, status);
2149 	return status;
2150 }
2151 
2152 static int nfs4_proc_readdir(struct dentry *dentry, struct rpc_cred *cred,
2153                   u64 cookie, struct page *page, unsigned int count, int plus)
2154 {
2155 	struct nfs4_exception exception = { };
2156 	int err;
2157 	do {
2158 		err = nfs4_handle_exception(NFS_SERVER(dentry->d_inode),
2159 				_nfs4_proc_readdir(dentry, cred, cookie,
2160 					page, count, plus),
2161 				&exception);
2162 	} while (exception.retry);
2163 	return err;
2164 }
2165 
2166 static int _nfs4_proc_mknod(struct inode *dir, struct dentry *dentry,
2167 		struct iattr *sattr, dev_t rdev)
2168 {
2169 	struct nfs_server *server = NFS_SERVER(dir);
2170 	struct nfs_fh fh;
2171 	struct nfs_fattr fattr, dir_fattr;
2172 	struct nfs4_create_arg arg = {
2173 		.dir_fh = NFS_FH(dir),
2174 		.server = server,
2175 		.name = &dentry->d_name,
2176 		.attrs = sattr,
2177 		.bitmask = server->attr_bitmask,
2178 	};
2179 	struct nfs4_create_res res = {
2180 		.server = server,
2181 		.fh = &fh,
2182 		.fattr = &fattr,
2183 		.dir_fattr = &dir_fattr,
2184 	};
2185 	struct rpc_message msg = {
2186 		.rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_CREATE],
2187 		.rpc_argp = &arg,
2188 		.rpc_resp = &res,
2189 	};
2190 	int			status;
2191 	int                     mode = sattr->ia_mode;
2192 
2193 	nfs_fattr_init(&fattr);
2194 	nfs_fattr_init(&dir_fattr);
2195 
2196 	BUG_ON(!(sattr->ia_valid & ATTR_MODE));
2197 	BUG_ON(!S_ISFIFO(mode) && !S_ISBLK(mode) && !S_ISCHR(mode) && !S_ISSOCK(mode));
2198 	if (S_ISFIFO(mode))
2199 		arg.ftype = NF4FIFO;
2200 	else if (S_ISBLK(mode)) {
2201 		arg.ftype = NF4BLK;
2202 		arg.u.device.specdata1 = MAJOR(rdev);
2203 		arg.u.device.specdata2 = MINOR(rdev);
2204 	}
2205 	else if (S_ISCHR(mode)) {
2206 		arg.ftype = NF4CHR;
2207 		arg.u.device.specdata1 = MAJOR(rdev);
2208 		arg.u.device.specdata2 = MINOR(rdev);
2209 	}
2210 	else
2211 		arg.ftype = NF4SOCK;
2212 
2213 	status = rpc_call_sync(NFS_CLIENT(dir), &msg, 0);
2214 	if (status == 0) {
2215 		update_changeattr(dir, &res.dir_cinfo);
2216 		nfs_post_op_update_inode(dir, res.dir_fattr);
2217 		status = nfs_instantiate(dentry, &fh, &fattr);
2218 	}
2219 	return status;
2220 }
2221 
2222 static int nfs4_proc_mknod(struct inode *dir, struct dentry *dentry,
2223 		struct iattr *sattr, dev_t rdev)
2224 {
2225 	struct nfs4_exception exception = { };
2226 	int err;
2227 	do {
2228 		err = nfs4_handle_exception(NFS_SERVER(dir),
2229 				_nfs4_proc_mknod(dir, dentry, sattr, rdev),
2230 				&exception);
2231 	} while (exception.retry);
2232 	return err;
2233 }
2234 
2235 static int _nfs4_proc_statfs(struct nfs_server *server, struct nfs_fh *fhandle,
2236 		 struct nfs_fsstat *fsstat)
2237 {
2238 	struct nfs4_statfs_arg args = {
2239 		.fh = fhandle,
2240 		.bitmask = server->attr_bitmask,
2241 	};
2242 	struct rpc_message msg = {
2243 		.rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_STATFS],
2244 		.rpc_argp = &args,
2245 		.rpc_resp = fsstat,
2246 	};
2247 
2248 	nfs_fattr_init(fsstat->fattr);
2249 	return rpc_call_sync(server->client, &msg, 0);
2250 }
2251 
2252 static int nfs4_proc_statfs(struct nfs_server *server, struct nfs_fh *fhandle, struct nfs_fsstat *fsstat)
2253 {
2254 	struct nfs4_exception exception = { };
2255 	int err;
2256 	do {
2257 		err = nfs4_handle_exception(server,
2258 				_nfs4_proc_statfs(server, fhandle, fsstat),
2259 				&exception);
2260 	} while (exception.retry);
2261 	return err;
2262 }
2263 
2264 static int _nfs4_do_fsinfo(struct nfs_server *server, struct nfs_fh *fhandle,
2265 		struct nfs_fsinfo *fsinfo)
2266 {
2267 	struct nfs4_fsinfo_arg args = {
2268 		.fh = fhandle,
2269 		.bitmask = server->attr_bitmask,
2270 	};
2271 	struct rpc_message msg = {
2272 		.rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_FSINFO],
2273 		.rpc_argp = &args,
2274 		.rpc_resp = fsinfo,
2275 	};
2276 
2277 	return rpc_call_sync(server->client, &msg, 0);
2278 }
2279 
2280 static int nfs4_do_fsinfo(struct nfs_server *server, struct nfs_fh *fhandle, struct nfs_fsinfo *fsinfo)
2281 {
2282 	struct nfs4_exception exception = { };
2283 	int err;
2284 
2285 	do {
2286 		err = nfs4_handle_exception(server,
2287 				_nfs4_do_fsinfo(server, fhandle, fsinfo),
2288 				&exception);
2289 	} while (exception.retry);
2290 	return err;
2291 }
2292 
2293 static int nfs4_proc_fsinfo(struct nfs_server *server, struct nfs_fh *fhandle, struct nfs_fsinfo *fsinfo)
2294 {
2295 	nfs_fattr_init(fsinfo->fattr);
2296 	return nfs4_do_fsinfo(server, fhandle, fsinfo);
2297 }
2298 
2299 static int _nfs4_proc_pathconf(struct nfs_server *server, struct nfs_fh *fhandle,
2300 		struct nfs_pathconf *pathconf)
2301 {
2302 	struct nfs4_pathconf_arg args = {
2303 		.fh = fhandle,
2304 		.bitmask = server->attr_bitmask,
2305 	};
2306 	struct rpc_message msg = {
2307 		.rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_PATHCONF],
2308 		.rpc_argp = &args,
2309 		.rpc_resp = pathconf,
2310 	};
2311 
2312 	/* None of the pathconf attributes are mandatory to implement */
2313 	if ((args.bitmask[0] & nfs4_pathconf_bitmap[0]) == 0) {
2314 		memset(pathconf, 0, sizeof(*pathconf));
2315 		return 0;
2316 	}
2317 
2318 	nfs_fattr_init(pathconf->fattr);
2319 	return rpc_call_sync(server->client, &msg, 0);
2320 }
2321 
2322 static int nfs4_proc_pathconf(struct nfs_server *server, struct nfs_fh *fhandle,
2323 		struct nfs_pathconf *pathconf)
2324 {
2325 	struct nfs4_exception exception = { };
2326 	int err;
2327 
2328 	do {
2329 		err = nfs4_handle_exception(server,
2330 				_nfs4_proc_pathconf(server, fhandle, pathconf),
2331 				&exception);
2332 	} while (exception.retry);
2333 	return err;
2334 }
2335 
2336 static int nfs4_read_done(struct rpc_task *task, struct nfs_read_data *data)
2337 {
2338 	struct nfs_server *server = NFS_SERVER(data->inode);
2339 
2340 	if (nfs4_async_handle_error(task, server) == -EAGAIN) {
2341 		rpc_restart_call(task);
2342 		return -EAGAIN;
2343 	}
2344 	if (task->tk_status > 0)
2345 		renew_lease(server, data->timestamp);
2346 	return 0;
2347 }
2348 
2349 static void nfs4_proc_read_setup(struct nfs_read_data *data)
2350 {
2351 	struct rpc_message msg = {
2352 		.rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_READ],
2353 		.rpc_argp = &data->args,
2354 		.rpc_resp = &data->res,
2355 		.rpc_cred = data->cred,
2356 	};
2357 
2358 	data->timestamp   = jiffies;
2359 
2360 	rpc_call_setup(&data->task, &msg, 0);
2361 }
2362 
2363 static int nfs4_write_done(struct rpc_task *task, struct nfs_write_data *data)
2364 {
2365 	struct inode *inode = data->inode;
2366 
2367 	if (nfs4_async_handle_error(task, NFS_SERVER(inode)) == -EAGAIN) {
2368 		rpc_restart_call(task);
2369 		return -EAGAIN;
2370 	}
2371 	if (task->tk_status >= 0) {
2372 		renew_lease(NFS_SERVER(inode), data->timestamp);
2373 		nfs_post_op_update_inode(inode, data->res.fattr);
2374 	}
2375 	return 0;
2376 }
2377 
2378 static void nfs4_proc_write_setup(struct nfs_write_data *data, int how)
2379 {
2380 	struct rpc_message msg = {
2381 		.rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_WRITE],
2382 		.rpc_argp = &data->args,
2383 		.rpc_resp = &data->res,
2384 		.rpc_cred = data->cred,
2385 	};
2386 	struct inode *inode = data->inode;
2387 	struct nfs_server *server = NFS_SERVER(inode);
2388 	int stable;
2389 
2390 	if (how & FLUSH_STABLE) {
2391 		if (!NFS_I(inode)->ncommit)
2392 			stable = NFS_FILE_SYNC;
2393 		else
2394 			stable = NFS_DATA_SYNC;
2395 	} else
2396 		stable = NFS_UNSTABLE;
2397 	data->args.stable = stable;
2398 	data->args.bitmask = server->attr_bitmask;
2399 	data->res.server = server;
2400 
2401 	data->timestamp   = jiffies;
2402 
2403 	/* Finalize the task. */
2404 	rpc_call_setup(&data->task, &msg, 0);
2405 }
2406 
2407 static int nfs4_commit_done(struct rpc_task *task, struct nfs_write_data *data)
2408 {
2409 	struct inode *inode = data->inode;
2410 
2411 	if (nfs4_async_handle_error(task, NFS_SERVER(inode)) == -EAGAIN) {
2412 		rpc_restart_call(task);
2413 		return -EAGAIN;
2414 	}
2415 	if (task->tk_status >= 0)
2416 		nfs_post_op_update_inode(inode, data->res.fattr);
2417 	return 0;
2418 }
2419 
2420 static void nfs4_proc_commit_setup(struct nfs_write_data *data, int how)
2421 {
2422 	struct rpc_message msg = {
2423 		.rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_COMMIT],
2424 		.rpc_argp = &data->args,
2425 		.rpc_resp = &data->res,
2426 		.rpc_cred = data->cred,
2427 	};
2428 	struct nfs_server *server = NFS_SERVER(data->inode);
2429 
2430 	data->args.bitmask = server->attr_bitmask;
2431 	data->res.server = server;
2432 
2433 	rpc_call_setup(&data->task, &msg, 0);
2434 }
2435 
2436 /*
2437  * nfs4_proc_async_renew(): This is not one of the nfs_rpc_ops; it is a special
2438  * standalone procedure for queueing an asynchronous RENEW.
2439  */
2440 static void nfs4_renew_done(struct rpc_task *task, void *data)
2441 {
2442 	struct nfs_client *clp = (struct nfs_client *)task->tk_msg.rpc_argp;
2443 	unsigned long timestamp = (unsigned long)data;
2444 
2445 	if (task->tk_status < 0) {
2446 		switch (task->tk_status) {
2447 			case -NFS4ERR_STALE_CLIENTID:
2448 			case -NFS4ERR_EXPIRED:
2449 			case -NFS4ERR_CB_PATH_DOWN:
2450 				nfs4_schedule_state_recovery(clp);
2451 		}
2452 		return;
2453 	}
2454 	spin_lock(&clp->cl_lock);
2455 	if (time_before(clp->cl_last_renewal,timestamp))
2456 		clp->cl_last_renewal = timestamp;
2457 	spin_unlock(&clp->cl_lock);
2458 }
2459 
2460 static const struct rpc_call_ops nfs4_renew_ops = {
2461 	.rpc_call_done = nfs4_renew_done,
2462 };
2463 
2464 int nfs4_proc_async_renew(struct nfs_client *clp, struct rpc_cred *cred)
2465 {
2466 	struct rpc_message msg = {
2467 		.rpc_proc	= &nfs4_procedures[NFSPROC4_CLNT_RENEW],
2468 		.rpc_argp	= clp,
2469 		.rpc_cred	= cred,
2470 	};
2471 
2472 	return rpc_call_async(clp->cl_rpcclient, &msg, RPC_TASK_SOFT,
2473 			&nfs4_renew_ops, (void *)jiffies);
2474 }
2475 
2476 int nfs4_proc_renew(struct nfs_client *clp, struct rpc_cred *cred)
2477 {
2478 	struct rpc_message msg = {
2479 		.rpc_proc	= &nfs4_procedures[NFSPROC4_CLNT_RENEW],
2480 		.rpc_argp	= clp,
2481 		.rpc_cred	= cred,
2482 	};
2483 	unsigned long now = jiffies;
2484 	int status;
2485 
2486 	status = rpc_call_sync(clp->cl_rpcclient, &msg, 0);
2487 	if (status < 0)
2488 		return status;
2489 	spin_lock(&clp->cl_lock);
2490 	if (time_before(clp->cl_last_renewal,now))
2491 		clp->cl_last_renewal = now;
2492 	spin_unlock(&clp->cl_lock);
2493 	return 0;
2494 }
2495 
2496 static inline int nfs4_server_supports_acls(struct nfs_server *server)
2497 {
2498 	return (server->caps & NFS_CAP_ACLS)
2499 		&& (server->acl_bitmask & ACL4_SUPPORT_ALLOW_ACL)
2500 		&& (server->acl_bitmask & ACL4_SUPPORT_DENY_ACL);
2501 }
2502 
2503 /* Assuming that XATTR_SIZE_MAX is a multiple of PAGE_CACHE_SIZE, and that
2504  * it's OK to put sizeof(void) * (XATTR_SIZE_MAX/PAGE_CACHE_SIZE) bytes on
2505  * the stack.
2506  */
2507 #define NFS4ACL_MAXPAGES (XATTR_SIZE_MAX >> PAGE_CACHE_SHIFT)
2508 
2509 static void buf_to_pages(const void *buf, size_t buflen,
2510 		struct page **pages, unsigned int *pgbase)
2511 {
2512 	const void *p = buf;
2513 
2514 	*pgbase = offset_in_page(buf);
2515 	p -= *pgbase;
2516 	while (p < buf + buflen) {
2517 		*(pages++) = virt_to_page(p);
2518 		p += PAGE_CACHE_SIZE;
2519 	}
2520 }
2521 
2522 struct nfs4_cached_acl {
2523 	int cached;
2524 	size_t len;
2525 	char data[0];
2526 };
2527 
2528 static void nfs4_set_cached_acl(struct inode *inode, struct nfs4_cached_acl *acl)
2529 {
2530 	struct nfs_inode *nfsi = NFS_I(inode);
2531 
2532 	spin_lock(&inode->i_lock);
2533 	kfree(nfsi->nfs4_acl);
2534 	nfsi->nfs4_acl = acl;
2535 	spin_unlock(&inode->i_lock);
2536 }
2537 
2538 static void nfs4_zap_acl_attr(struct inode *inode)
2539 {
2540 	nfs4_set_cached_acl(inode, NULL);
2541 }
2542 
2543 static inline ssize_t nfs4_read_cached_acl(struct inode *inode, char *buf, size_t buflen)
2544 {
2545 	struct nfs_inode *nfsi = NFS_I(inode);
2546 	struct nfs4_cached_acl *acl;
2547 	int ret = -ENOENT;
2548 
2549 	spin_lock(&inode->i_lock);
2550 	acl = nfsi->nfs4_acl;
2551 	if (acl == NULL)
2552 		goto out;
2553 	if (buf == NULL) /* user is just asking for length */
2554 		goto out_len;
2555 	if (acl->cached == 0)
2556 		goto out;
2557 	ret = -ERANGE; /* see getxattr(2) man page */
2558 	if (acl->len > buflen)
2559 		goto out;
2560 	memcpy(buf, acl->data, acl->len);
2561 out_len:
2562 	ret = acl->len;
2563 out:
2564 	spin_unlock(&inode->i_lock);
2565 	return ret;
2566 }
2567 
2568 static void nfs4_write_cached_acl(struct inode *inode, const char *buf, size_t acl_len)
2569 {
2570 	struct nfs4_cached_acl *acl;
2571 
2572 	if (buf && acl_len <= PAGE_SIZE) {
2573 		acl = kmalloc(sizeof(*acl) + acl_len, GFP_KERNEL);
2574 		if (acl == NULL)
2575 			goto out;
2576 		acl->cached = 1;
2577 		memcpy(acl->data, buf, acl_len);
2578 	} else {
2579 		acl = kmalloc(sizeof(*acl), GFP_KERNEL);
2580 		if (acl == NULL)
2581 			goto out;
2582 		acl->cached = 0;
2583 	}
2584 	acl->len = acl_len;
2585 out:
2586 	nfs4_set_cached_acl(inode, acl);
2587 }
2588 
2589 static ssize_t __nfs4_get_acl_uncached(struct inode *inode, void *buf, size_t buflen)
2590 {
2591 	struct page *pages[NFS4ACL_MAXPAGES];
2592 	struct nfs_getaclargs args = {
2593 		.fh = NFS_FH(inode),
2594 		.acl_pages = pages,
2595 		.acl_len = buflen,
2596 	};
2597 	size_t resp_len = buflen;
2598 	void *resp_buf;
2599 	struct rpc_message msg = {
2600 		.rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_GETACL],
2601 		.rpc_argp = &args,
2602 		.rpc_resp = &resp_len,
2603 	};
2604 	struct page *localpage = NULL;
2605 	int ret;
2606 
2607 	if (buflen < PAGE_SIZE) {
2608 		/* As long as we're doing a round trip to the server anyway,
2609 		 * let's be prepared for a page of acl data. */
2610 		localpage = alloc_page(GFP_KERNEL);
2611 		resp_buf = page_address(localpage);
2612 		if (localpage == NULL)
2613 			return -ENOMEM;
2614 		args.acl_pages[0] = localpage;
2615 		args.acl_pgbase = 0;
2616 		resp_len = args.acl_len = PAGE_SIZE;
2617 	} else {
2618 		resp_buf = buf;
2619 		buf_to_pages(buf, buflen, args.acl_pages, &args.acl_pgbase);
2620 	}
2621 	ret = rpc_call_sync(NFS_CLIENT(inode), &msg, 0);
2622 	if (ret)
2623 		goto out_free;
2624 	if (resp_len > args.acl_len)
2625 		nfs4_write_cached_acl(inode, NULL, resp_len);
2626 	else
2627 		nfs4_write_cached_acl(inode, resp_buf, resp_len);
2628 	if (buf) {
2629 		ret = -ERANGE;
2630 		if (resp_len > buflen)
2631 			goto out_free;
2632 		if (localpage)
2633 			memcpy(buf, resp_buf, resp_len);
2634 	}
2635 	ret = resp_len;
2636 out_free:
2637 	if (localpage)
2638 		__free_page(localpage);
2639 	return ret;
2640 }
2641 
2642 static ssize_t nfs4_get_acl_uncached(struct inode *inode, void *buf, size_t buflen)
2643 {
2644 	struct nfs4_exception exception = { };
2645 	ssize_t ret;
2646 	do {
2647 		ret = __nfs4_get_acl_uncached(inode, buf, buflen);
2648 		if (ret >= 0)
2649 			break;
2650 		ret = nfs4_handle_exception(NFS_SERVER(inode), ret, &exception);
2651 	} while (exception.retry);
2652 	return ret;
2653 }
2654 
2655 static ssize_t nfs4_proc_get_acl(struct inode *inode, void *buf, size_t buflen)
2656 {
2657 	struct nfs_server *server = NFS_SERVER(inode);
2658 	int ret;
2659 
2660 	if (!nfs4_server_supports_acls(server))
2661 		return -EOPNOTSUPP;
2662 	ret = nfs_revalidate_inode(server, inode);
2663 	if (ret < 0)
2664 		return ret;
2665 	ret = nfs4_read_cached_acl(inode, buf, buflen);
2666 	if (ret != -ENOENT)
2667 		return ret;
2668 	return nfs4_get_acl_uncached(inode, buf, buflen);
2669 }
2670 
2671 static int __nfs4_proc_set_acl(struct inode *inode, const void *buf, size_t buflen)
2672 {
2673 	struct nfs_server *server = NFS_SERVER(inode);
2674 	struct page *pages[NFS4ACL_MAXPAGES];
2675 	struct nfs_setaclargs arg = {
2676 		.fh		= NFS_FH(inode),
2677 		.acl_pages	= pages,
2678 		.acl_len	= buflen,
2679 	};
2680 	struct rpc_message msg = {
2681 		.rpc_proc	= &nfs4_procedures[NFSPROC4_CLNT_SETACL],
2682 		.rpc_argp	= &arg,
2683 		.rpc_resp	= NULL,
2684 	};
2685 	int ret;
2686 
2687 	if (!nfs4_server_supports_acls(server))
2688 		return -EOPNOTSUPP;
2689 	nfs_inode_return_delegation(inode);
2690 	buf_to_pages(buf, buflen, arg.acl_pages, &arg.acl_pgbase);
2691 	ret = rpc_call_sync(NFS_CLIENT(inode), &msg, 0);
2692 	if (ret == 0)
2693 		nfs4_write_cached_acl(inode, buf, buflen);
2694 	return ret;
2695 }
2696 
2697 static int nfs4_proc_set_acl(struct inode *inode, const void *buf, size_t buflen)
2698 {
2699 	struct nfs4_exception exception = { };
2700 	int err;
2701 	do {
2702 		err = nfs4_handle_exception(NFS_SERVER(inode),
2703 				__nfs4_proc_set_acl(inode, buf, buflen),
2704 				&exception);
2705 	} while (exception.retry);
2706 	return err;
2707 }
2708 
2709 static int
2710 nfs4_async_handle_error(struct rpc_task *task, const struct nfs_server *server)
2711 {
2712 	struct nfs_client *clp = server->nfs_client;
2713 
2714 	if (!clp || task->tk_status >= 0)
2715 		return 0;
2716 	switch(task->tk_status) {
2717 		case -NFS4ERR_STALE_CLIENTID:
2718 		case -NFS4ERR_STALE_STATEID:
2719 		case -NFS4ERR_EXPIRED:
2720 			rpc_sleep_on(&clp->cl_rpcwaitq, task, NULL, NULL);
2721 			nfs4_schedule_state_recovery(clp);
2722 			if (test_bit(NFS4CLNT_STATE_RECOVER, &clp->cl_state) == 0)
2723 				rpc_wake_up_task(task);
2724 			task->tk_status = 0;
2725 			return -EAGAIN;
2726 		case -NFS4ERR_DELAY:
2727 			nfs_inc_server_stats((struct nfs_server *) server,
2728 						NFSIOS_DELAY);
2729 		case -NFS4ERR_GRACE:
2730 			rpc_delay(task, NFS4_POLL_RETRY_MAX);
2731 			task->tk_status = 0;
2732 			return -EAGAIN;
2733 		case -NFS4ERR_OLD_STATEID:
2734 			task->tk_status = 0;
2735 			return -EAGAIN;
2736 	}
2737 	task->tk_status = nfs4_map_errors(task->tk_status);
2738 	return 0;
2739 }
2740 
2741 static int nfs4_wait_bit_interruptible(void *word)
2742 {
2743 	if (signal_pending(current))
2744 		return -ERESTARTSYS;
2745 	schedule();
2746 	return 0;
2747 }
2748 
2749 static int nfs4_wait_clnt_recover(struct rpc_clnt *clnt, struct nfs_client *clp)
2750 {
2751 	sigset_t oldset;
2752 	int res;
2753 
2754 	might_sleep();
2755 
2756 	rpc_clnt_sigmask(clnt, &oldset);
2757 	res = wait_on_bit(&clp->cl_state, NFS4CLNT_STATE_RECOVER,
2758 			nfs4_wait_bit_interruptible,
2759 			TASK_INTERRUPTIBLE);
2760 	rpc_clnt_sigunmask(clnt, &oldset);
2761 	return res;
2762 }
2763 
2764 static int nfs4_delay(struct rpc_clnt *clnt, long *timeout)
2765 {
2766 	sigset_t oldset;
2767 	int res = 0;
2768 
2769 	might_sleep();
2770 
2771 	if (*timeout <= 0)
2772 		*timeout = NFS4_POLL_RETRY_MIN;
2773 	if (*timeout > NFS4_POLL_RETRY_MAX)
2774 		*timeout = NFS4_POLL_RETRY_MAX;
2775 	rpc_clnt_sigmask(clnt, &oldset);
2776 	if (clnt->cl_intr) {
2777 		schedule_timeout_interruptible(*timeout);
2778 		if (signalled())
2779 			res = -ERESTARTSYS;
2780 	} else
2781 		schedule_timeout_uninterruptible(*timeout);
2782 	rpc_clnt_sigunmask(clnt, &oldset);
2783 	*timeout <<= 1;
2784 	return res;
2785 }
2786 
2787 /* This is the error handling routine for processes that are allowed
2788  * to sleep.
2789  */
2790 int nfs4_handle_exception(const struct nfs_server *server, int errorcode, struct nfs4_exception *exception)
2791 {
2792 	struct nfs_client *clp = server->nfs_client;
2793 	int ret = errorcode;
2794 
2795 	exception->retry = 0;
2796 	switch(errorcode) {
2797 		case 0:
2798 			return 0;
2799 		case -NFS4ERR_STALE_CLIENTID:
2800 		case -NFS4ERR_STALE_STATEID:
2801 		case -NFS4ERR_EXPIRED:
2802 			nfs4_schedule_state_recovery(clp);
2803 			ret = nfs4_wait_clnt_recover(server->client, clp);
2804 			if (ret == 0)
2805 				exception->retry = 1;
2806 			break;
2807 		case -NFS4ERR_FILE_OPEN:
2808 		case -NFS4ERR_GRACE:
2809 		case -NFS4ERR_DELAY:
2810 			ret = nfs4_delay(server->client, &exception->timeout);
2811 			if (ret != 0)
2812 				break;
2813 		case -NFS4ERR_OLD_STATEID:
2814 			exception->retry = 1;
2815 	}
2816 	/* We failed to handle the error */
2817 	return nfs4_map_errors(ret);
2818 }
2819 
2820 int nfs4_proc_setclientid(struct nfs_client *clp, u32 program, unsigned short port, struct rpc_cred *cred)
2821 {
2822 	nfs4_verifier sc_verifier;
2823 	struct nfs4_setclientid setclientid = {
2824 		.sc_verifier = &sc_verifier,
2825 		.sc_prog = program,
2826 	};
2827 	struct rpc_message msg = {
2828 		.rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_SETCLIENTID],
2829 		.rpc_argp = &setclientid,
2830 		.rpc_resp = clp,
2831 		.rpc_cred = cred,
2832 	};
2833 	__be32 *p;
2834 	int loop = 0;
2835 	int status;
2836 
2837 	p = (__be32*)sc_verifier.data;
2838 	*p++ = htonl((u32)clp->cl_boot_time.tv_sec);
2839 	*p = htonl((u32)clp->cl_boot_time.tv_nsec);
2840 
2841 	for(;;) {
2842 		setclientid.sc_name_len = scnprintf(setclientid.sc_name,
2843 				sizeof(setclientid.sc_name), "%s/%u.%u.%u.%u %s %u",
2844 				clp->cl_ipaddr, NIPQUAD(clp->cl_addr.sin_addr),
2845 				cred->cr_ops->cr_name,
2846 				clp->cl_id_uniquifier);
2847 		setclientid.sc_netid_len = scnprintf(setclientid.sc_netid,
2848 				sizeof(setclientid.sc_netid), "tcp");
2849 		setclientid.sc_uaddr_len = scnprintf(setclientid.sc_uaddr,
2850 				sizeof(setclientid.sc_uaddr), "%s.%d.%d",
2851 				clp->cl_ipaddr, port >> 8, port & 255);
2852 
2853 		status = rpc_call_sync(clp->cl_rpcclient, &msg, 0);
2854 		if (status != -NFS4ERR_CLID_INUSE)
2855 			break;
2856 		if (signalled())
2857 			break;
2858 		if (loop++ & 1)
2859 			ssleep(clp->cl_lease_time + 1);
2860 		else
2861 			if (++clp->cl_id_uniquifier == 0)
2862 				break;
2863 	}
2864 	return status;
2865 }
2866 
2867 static int _nfs4_proc_setclientid_confirm(struct nfs_client *clp, struct rpc_cred *cred)
2868 {
2869 	struct nfs_fsinfo fsinfo;
2870 	struct rpc_message msg = {
2871 		.rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_SETCLIENTID_CONFIRM],
2872 		.rpc_argp = clp,
2873 		.rpc_resp = &fsinfo,
2874 		.rpc_cred = cred,
2875 	};
2876 	unsigned long now;
2877 	int status;
2878 
2879 	now = jiffies;
2880 	status = rpc_call_sync(clp->cl_rpcclient, &msg, 0);
2881 	if (status == 0) {
2882 		spin_lock(&clp->cl_lock);
2883 		clp->cl_lease_time = fsinfo.lease_time * HZ;
2884 		clp->cl_last_renewal = now;
2885 		clear_bit(NFS4CLNT_LEASE_EXPIRED, &clp->cl_state);
2886 		spin_unlock(&clp->cl_lock);
2887 	}
2888 	return status;
2889 }
2890 
2891 int nfs4_proc_setclientid_confirm(struct nfs_client *clp, struct rpc_cred *cred)
2892 {
2893 	long timeout;
2894 	int err;
2895 	do {
2896 		err = _nfs4_proc_setclientid_confirm(clp, cred);
2897 		switch (err) {
2898 			case 0:
2899 				return err;
2900 			case -NFS4ERR_RESOURCE:
2901 				/* The IBM lawyers misread another document! */
2902 			case -NFS4ERR_DELAY:
2903 				err = nfs4_delay(clp->cl_rpcclient, &timeout);
2904 		}
2905 	} while (err == 0);
2906 	return err;
2907 }
2908 
2909 struct nfs4_delegreturndata {
2910 	struct nfs4_delegreturnargs args;
2911 	struct nfs4_delegreturnres res;
2912 	struct nfs_fh fh;
2913 	nfs4_stateid stateid;
2914 	struct rpc_cred *cred;
2915 	unsigned long timestamp;
2916 	struct nfs_fattr fattr;
2917 	int rpc_status;
2918 };
2919 
2920 static void nfs4_delegreturn_prepare(struct rpc_task *task, void *calldata)
2921 {
2922 	struct nfs4_delegreturndata *data = calldata;
2923 	struct rpc_message msg = {
2924 		.rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_DELEGRETURN],
2925 		.rpc_argp = &data->args,
2926 		.rpc_resp = &data->res,
2927 		.rpc_cred = data->cred,
2928 	};
2929 	nfs_fattr_init(data->res.fattr);
2930 	rpc_call_setup(task, &msg, 0);
2931 }
2932 
2933 static void nfs4_delegreturn_done(struct rpc_task *task, void *calldata)
2934 {
2935 	struct nfs4_delegreturndata *data = calldata;
2936 	data->rpc_status = task->tk_status;
2937 	if (data->rpc_status == 0)
2938 		renew_lease(data->res.server, data->timestamp);
2939 }
2940 
2941 static void nfs4_delegreturn_release(void *calldata)
2942 {
2943 	struct nfs4_delegreturndata *data = calldata;
2944 
2945 	put_rpccred(data->cred);
2946 	kfree(calldata);
2947 }
2948 
2949 static const struct rpc_call_ops nfs4_delegreturn_ops = {
2950 	.rpc_call_prepare = nfs4_delegreturn_prepare,
2951 	.rpc_call_done = nfs4_delegreturn_done,
2952 	.rpc_release = nfs4_delegreturn_release,
2953 };
2954 
2955 static int _nfs4_proc_delegreturn(struct inode *inode, struct rpc_cred *cred, const nfs4_stateid *stateid)
2956 {
2957 	struct nfs4_delegreturndata *data;
2958 	struct nfs_server *server = NFS_SERVER(inode);
2959 	struct rpc_task *task;
2960 	int status;
2961 
2962 	data = kmalloc(sizeof(*data), GFP_KERNEL);
2963 	if (data == NULL)
2964 		return -ENOMEM;
2965 	data->args.fhandle = &data->fh;
2966 	data->args.stateid = &data->stateid;
2967 	data->args.bitmask = server->attr_bitmask;
2968 	nfs_copy_fh(&data->fh, NFS_FH(inode));
2969 	memcpy(&data->stateid, stateid, sizeof(data->stateid));
2970 	data->res.fattr = &data->fattr;
2971 	data->res.server = server;
2972 	data->cred = get_rpccred(cred);
2973 	data->timestamp = jiffies;
2974 	data->rpc_status = 0;
2975 
2976 	task = rpc_run_task(NFS_CLIENT(inode), RPC_TASK_ASYNC, &nfs4_delegreturn_ops, data);
2977 	if (IS_ERR(task))
2978 		return PTR_ERR(task);
2979 	status = nfs4_wait_for_completion_rpc_task(task);
2980 	if (status == 0) {
2981 		status = data->rpc_status;
2982 		if (status == 0)
2983 			nfs_post_op_update_inode(inode, &data->fattr);
2984 	}
2985 	rpc_put_task(task);
2986 	return status;
2987 }
2988 
2989 int nfs4_proc_delegreturn(struct inode *inode, struct rpc_cred *cred, const nfs4_stateid *stateid)
2990 {
2991 	struct nfs_server *server = NFS_SERVER(inode);
2992 	struct nfs4_exception exception = { };
2993 	int err;
2994 	do {
2995 		err = _nfs4_proc_delegreturn(inode, cred, stateid);
2996 		switch (err) {
2997 			case -NFS4ERR_STALE_STATEID:
2998 			case -NFS4ERR_EXPIRED:
2999 				nfs4_schedule_state_recovery(server->nfs_client);
3000 			case 0:
3001 				return 0;
3002 		}
3003 		err = nfs4_handle_exception(server, err, &exception);
3004 	} while (exception.retry);
3005 	return err;
3006 }
3007 
3008 #define NFS4_LOCK_MINTIMEOUT (1 * HZ)
3009 #define NFS4_LOCK_MAXTIMEOUT (30 * HZ)
3010 
3011 /*
3012  * sleep, with exponential backoff, and retry the LOCK operation.
3013  */
3014 static unsigned long
3015 nfs4_set_lock_task_retry(unsigned long timeout)
3016 {
3017 	schedule_timeout_interruptible(timeout);
3018 	timeout <<= 1;
3019 	if (timeout > NFS4_LOCK_MAXTIMEOUT)
3020 		return NFS4_LOCK_MAXTIMEOUT;
3021 	return timeout;
3022 }
3023 
3024 static int _nfs4_proc_getlk(struct nfs4_state *state, int cmd, struct file_lock *request)
3025 {
3026 	struct inode *inode = state->inode;
3027 	struct nfs_server *server = NFS_SERVER(inode);
3028 	struct nfs_client *clp = server->nfs_client;
3029 	struct nfs_lockt_args arg = {
3030 		.fh = NFS_FH(inode),
3031 		.fl = request,
3032 	};
3033 	struct nfs_lockt_res res = {
3034 		.denied = request,
3035 	};
3036 	struct rpc_message msg = {
3037 		.rpc_proc	= &nfs4_procedures[NFSPROC4_CLNT_LOCKT],
3038 		.rpc_argp       = &arg,
3039 		.rpc_resp       = &res,
3040 		.rpc_cred	= state->owner->so_cred,
3041 	};
3042 	struct nfs4_lock_state *lsp;
3043 	int status;
3044 
3045 	down_read(&clp->cl_sem);
3046 	arg.lock_owner.clientid = clp->cl_clientid;
3047 	status = nfs4_set_lock_state(state, request);
3048 	if (status != 0)
3049 		goto out;
3050 	lsp = request->fl_u.nfs4_fl.owner;
3051 	arg.lock_owner.id = lsp->ls_id;
3052 	status = rpc_call_sync(server->client, &msg, 0);
3053 	switch (status) {
3054 		case 0:
3055 			request->fl_type = F_UNLCK;
3056 			break;
3057 		case -NFS4ERR_DENIED:
3058 			status = 0;
3059 	}
3060 out:
3061 	up_read(&clp->cl_sem);
3062 	return status;
3063 }
3064 
3065 static int nfs4_proc_getlk(struct nfs4_state *state, int cmd, struct file_lock *request)
3066 {
3067 	struct nfs4_exception exception = { };
3068 	int err;
3069 
3070 	do {
3071 		err = nfs4_handle_exception(NFS_SERVER(state->inode),
3072 				_nfs4_proc_getlk(state, cmd, request),
3073 				&exception);
3074 	} while (exception.retry);
3075 	return err;
3076 }
3077 
3078 static int do_vfs_lock(struct file *file, struct file_lock *fl)
3079 {
3080 	int res = 0;
3081 	switch (fl->fl_flags & (FL_POSIX|FL_FLOCK)) {
3082 		case FL_POSIX:
3083 			res = posix_lock_file_wait(file, fl);
3084 			break;
3085 		case FL_FLOCK:
3086 			res = flock_lock_file_wait(file, fl);
3087 			break;
3088 		default:
3089 			BUG();
3090 	}
3091 	return res;
3092 }
3093 
3094 struct nfs4_unlockdata {
3095 	struct nfs_locku_args arg;
3096 	struct nfs_locku_res res;
3097 	struct nfs4_lock_state *lsp;
3098 	struct nfs_open_context *ctx;
3099 	struct file_lock fl;
3100 	const struct nfs_server *server;
3101 	unsigned long timestamp;
3102 };
3103 
3104 static struct nfs4_unlockdata *nfs4_alloc_unlockdata(struct file_lock *fl,
3105 		struct nfs_open_context *ctx,
3106 		struct nfs4_lock_state *lsp,
3107 		struct nfs_seqid *seqid)
3108 {
3109 	struct nfs4_unlockdata *p;
3110 	struct inode *inode = lsp->ls_state->inode;
3111 
3112 	p = kmalloc(sizeof(*p), GFP_KERNEL);
3113 	if (p == NULL)
3114 		return NULL;
3115 	p->arg.fh = NFS_FH(inode);
3116 	p->arg.fl = &p->fl;
3117 	p->arg.seqid = seqid;
3118 	p->arg.stateid = &lsp->ls_stateid;
3119 	p->lsp = lsp;
3120 	atomic_inc(&lsp->ls_count);
3121 	/* Ensure we don't close file until we're done freeing locks! */
3122 	p->ctx = get_nfs_open_context(ctx);
3123 	memcpy(&p->fl, fl, sizeof(p->fl));
3124 	p->server = NFS_SERVER(inode);
3125 	return p;
3126 }
3127 
3128 static void nfs4_locku_release_calldata(void *data)
3129 {
3130 	struct nfs4_unlockdata *calldata = data;
3131 	nfs_free_seqid(calldata->arg.seqid);
3132 	nfs4_put_lock_state(calldata->lsp);
3133 	put_nfs_open_context(calldata->ctx);
3134 	kfree(calldata);
3135 }
3136 
3137 static void nfs4_locku_done(struct rpc_task *task, void *data)
3138 {
3139 	struct nfs4_unlockdata *calldata = data;
3140 
3141 	if (RPC_ASSASSINATED(task))
3142 		return;
3143 	nfs_increment_lock_seqid(task->tk_status, calldata->arg.seqid);
3144 	switch (task->tk_status) {
3145 		case 0:
3146 			memcpy(calldata->lsp->ls_stateid.data,
3147 					calldata->res.stateid.data,
3148 					sizeof(calldata->lsp->ls_stateid.data));
3149 			renew_lease(calldata->server, calldata->timestamp);
3150 			break;
3151 		case -NFS4ERR_STALE_STATEID:
3152 		case -NFS4ERR_EXPIRED:
3153 			nfs4_schedule_state_recovery(calldata->server->nfs_client);
3154 			break;
3155 		default:
3156 			if (nfs4_async_handle_error(task, calldata->server) == -EAGAIN) {
3157 				rpc_restart_call(task);
3158 			}
3159 	}
3160 }
3161 
3162 static void nfs4_locku_prepare(struct rpc_task *task, void *data)
3163 {
3164 	struct nfs4_unlockdata *calldata = data;
3165 	struct rpc_message msg = {
3166 		.rpc_proc	= &nfs4_procedures[NFSPROC4_CLNT_LOCKU],
3167 		.rpc_argp       = &calldata->arg,
3168 		.rpc_resp       = &calldata->res,
3169 		.rpc_cred	= calldata->lsp->ls_state->owner->so_cred,
3170 	};
3171 
3172 	if (nfs_wait_on_sequence(calldata->arg.seqid, task) != 0)
3173 		return;
3174 	if ((calldata->lsp->ls_flags & NFS_LOCK_INITIALIZED) == 0) {
3175 		/* Note: exit _without_ running nfs4_locku_done */
3176 		task->tk_action = NULL;
3177 		return;
3178 	}
3179 	calldata->timestamp = jiffies;
3180 	rpc_call_setup(task, &msg, 0);
3181 }
3182 
3183 static const struct rpc_call_ops nfs4_locku_ops = {
3184 	.rpc_call_prepare = nfs4_locku_prepare,
3185 	.rpc_call_done = nfs4_locku_done,
3186 	.rpc_release = nfs4_locku_release_calldata,
3187 };
3188 
3189 static struct rpc_task *nfs4_do_unlck(struct file_lock *fl,
3190 		struct nfs_open_context *ctx,
3191 		struct nfs4_lock_state *lsp,
3192 		struct nfs_seqid *seqid)
3193 {
3194 	struct nfs4_unlockdata *data;
3195 
3196 	data = nfs4_alloc_unlockdata(fl, ctx, lsp, seqid);
3197 	if (data == NULL) {
3198 		nfs_free_seqid(seqid);
3199 		return ERR_PTR(-ENOMEM);
3200 	}
3201 
3202 	return rpc_run_task(NFS_CLIENT(lsp->ls_state->inode), RPC_TASK_ASYNC, &nfs4_locku_ops, data);
3203 }
3204 
3205 static int nfs4_proc_unlck(struct nfs4_state *state, int cmd, struct file_lock *request)
3206 {
3207 	struct nfs_seqid *seqid;
3208 	struct nfs4_lock_state *lsp;
3209 	struct rpc_task *task;
3210 	int status = 0;
3211 
3212 	status = nfs4_set_lock_state(state, request);
3213 	/* Unlock _before_ we do the RPC call */
3214 	request->fl_flags |= FL_EXISTS;
3215 	if (do_vfs_lock(request->fl_file, request) == -ENOENT)
3216 		goto out;
3217 	if (status != 0)
3218 		goto out;
3219 	/* Is this a delegated lock? */
3220 	if (test_bit(NFS_DELEGATED_STATE, &state->flags))
3221 		goto out;
3222 	lsp = request->fl_u.nfs4_fl.owner;
3223 	seqid = nfs_alloc_seqid(&lsp->ls_seqid);
3224 	status = -ENOMEM;
3225 	if (seqid == NULL)
3226 		goto out;
3227 	task = nfs4_do_unlck(request, request->fl_file->private_data, lsp, seqid);
3228 	status = PTR_ERR(task);
3229 	if (IS_ERR(task))
3230 		goto out;
3231 	status = nfs4_wait_for_completion_rpc_task(task);
3232 	rpc_put_task(task);
3233 out:
3234 	return status;
3235 }
3236 
3237 struct nfs4_lockdata {
3238 	struct nfs_lock_args arg;
3239 	struct nfs_lock_res res;
3240 	struct nfs4_lock_state *lsp;
3241 	struct nfs_open_context *ctx;
3242 	struct file_lock fl;
3243 	unsigned long timestamp;
3244 	int rpc_status;
3245 	int cancelled;
3246 };
3247 
3248 static struct nfs4_lockdata *nfs4_alloc_lockdata(struct file_lock *fl,
3249 		struct nfs_open_context *ctx, struct nfs4_lock_state *lsp)
3250 {
3251 	struct nfs4_lockdata *p;
3252 	struct inode *inode = lsp->ls_state->inode;
3253 	struct nfs_server *server = NFS_SERVER(inode);
3254 
3255 	p = kzalloc(sizeof(*p), GFP_KERNEL);
3256 	if (p == NULL)
3257 		return NULL;
3258 
3259 	p->arg.fh = NFS_FH(inode);
3260 	p->arg.fl = &p->fl;
3261 	p->arg.lock_seqid = nfs_alloc_seqid(&lsp->ls_seqid);
3262 	if (p->arg.lock_seqid == NULL)
3263 		goto out_free;
3264 	p->arg.lock_stateid = &lsp->ls_stateid;
3265 	p->arg.lock_owner.clientid = server->nfs_client->cl_clientid;
3266 	p->arg.lock_owner.id = lsp->ls_id;
3267 	p->lsp = lsp;
3268 	atomic_inc(&lsp->ls_count);
3269 	p->ctx = get_nfs_open_context(ctx);
3270 	memcpy(&p->fl, fl, sizeof(p->fl));
3271 	return p;
3272 out_free:
3273 	kfree(p);
3274 	return NULL;
3275 }
3276 
3277 static void nfs4_lock_prepare(struct rpc_task *task, void *calldata)
3278 {
3279 	struct nfs4_lockdata *data = calldata;
3280 	struct nfs4_state *state = data->lsp->ls_state;
3281 	struct nfs4_state_owner *sp = state->owner;
3282 	struct rpc_message msg = {
3283 		.rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_LOCK],
3284 		.rpc_argp = &data->arg,
3285 		.rpc_resp = &data->res,
3286 		.rpc_cred = sp->so_cred,
3287 	};
3288 
3289 	if (nfs_wait_on_sequence(data->arg.lock_seqid, task) != 0)
3290 		return;
3291 	dprintk("%s: begin!\n", __FUNCTION__);
3292 	/* Do we need to do an open_to_lock_owner? */
3293 	if (!(data->arg.lock_seqid->sequence->flags & NFS_SEQID_CONFIRMED)) {
3294 		data->arg.open_seqid = nfs_alloc_seqid(&sp->so_seqid);
3295 		if (data->arg.open_seqid == NULL) {
3296 			data->rpc_status = -ENOMEM;
3297 			task->tk_action = NULL;
3298 			goto out;
3299 		}
3300 		data->arg.open_stateid = &state->stateid;
3301 		data->arg.new_lock_owner = 1;
3302 	}
3303 	data->timestamp = jiffies;
3304 	rpc_call_setup(task, &msg, 0);
3305 out:
3306 	dprintk("%s: done!, ret = %d\n", __FUNCTION__, data->rpc_status);
3307 }
3308 
3309 static void nfs4_lock_done(struct rpc_task *task, void *calldata)
3310 {
3311 	struct nfs4_lockdata *data = calldata;
3312 
3313 	dprintk("%s: begin!\n", __FUNCTION__);
3314 
3315 	data->rpc_status = task->tk_status;
3316 	if (RPC_ASSASSINATED(task))
3317 		goto out;
3318 	if (data->arg.new_lock_owner != 0) {
3319 		nfs_increment_open_seqid(data->rpc_status, data->arg.open_seqid);
3320 		if (data->rpc_status == 0)
3321 			nfs_confirm_seqid(&data->lsp->ls_seqid, 0);
3322 		else
3323 			goto out;
3324 	}
3325 	if (data->rpc_status == 0) {
3326 		memcpy(data->lsp->ls_stateid.data, data->res.stateid.data,
3327 					sizeof(data->lsp->ls_stateid.data));
3328 		data->lsp->ls_flags |= NFS_LOCK_INITIALIZED;
3329 		renew_lease(NFS_SERVER(data->ctx->dentry->d_inode), data->timestamp);
3330 	}
3331 	nfs_increment_lock_seqid(data->rpc_status, data->arg.lock_seqid);
3332 out:
3333 	dprintk("%s: done, ret = %d!\n", __FUNCTION__, data->rpc_status);
3334 }
3335 
3336 static void nfs4_lock_release(void *calldata)
3337 {
3338 	struct nfs4_lockdata *data = calldata;
3339 
3340 	dprintk("%s: begin!\n", __FUNCTION__);
3341 	if (data->arg.open_seqid != NULL)
3342 		nfs_free_seqid(data->arg.open_seqid);
3343 	if (data->cancelled != 0) {
3344 		struct rpc_task *task;
3345 		task = nfs4_do_unlck(&data->fl, data->ctx, data->lsp,
3346 				data->arg.lock_seqid);
3347 		if (!IS_ERR(task))
3348 			rpc_put_task(task);
3349 		dprintk("%s: cancelling lock!\n", __FUNCTION__);
3350 	} else
3351 		nfs_free_seqid(data->arg.lock_seqid);
3352 	nfs4_put_lock_state(data->lsp);
3353 	put_nfs_open_context(data->ctx);
3354 	kfree(data);
3355 	dprintk("%s: done!\n", __FUNCTION__);
3356 }
3357 
3358 static const struct rpc_call_ops nfs4_lock_ops = {
3359 	.rpc_call_prepare = nfs4_lock_prepare,
3360 	.rpc_call_done = nfs4_lock_done,
3361 	.rpc_release = nfs4_lock_release,
3362 };
3363 
3364 static int _nfs4_do_setlk(struct nfs4_state *state, int cmd, struct file_lock *fl, int reclaim)
3365 {
3366 	struct nfs4_lockdata *data;
3367 	struct rpc_task *task;
3368 	int ret;
3369 
3370 	dprintk("%s: begin!\n", __FUNCTION__);
3371 	data = nfs4_alloc_lockdata(fl, fl->fl_file->private_data,
3372 			fl->fl_u.nfs4_fl.owner);
3373 	if (data == NULL)
3374 		return -ENOMEM;
3375 	if (IS_SETLKW(cmd))
3376 		data->arg.block = 1;
3377 	if (reclaim != 0)
3378 		data->arg.reclaim = 1;
3379 	task = rpc_run_task(NFS_CLIENT(state->inode), RPC_TASK_ASYNC,
3380 			&nfs4_lock_ops, data);
3381 	if (IS_ERR(task))
3382 		return PTR_ERR(task);
3383 	ret = nfs4_wait_for_completion_rpc_task(task);
3384 	if (ret == 0) {
3385 		ret = data->rpc_status;
3386 		if (ret == -NFS4ERR_DENIED)
3387 			ret = -EAGAIN;
3388 	} else
3389 		data->cancelled = 1;
3390 	rpc_put_task(task);
3391 	dprintk("%s: done, ret = %d!\n", __FUNCTION__, ret);
3392 	return ret;
3393 }
3394 
3395 static int nfs4_lock_reclaim(struct nfs4_state *state, struct file_lock *request)
3396 {
3397 	struct nfs_server *server = NFS_SERVER(state->inode);
3398 	struct nfs4_exception exception = { };
3399 	int err;
3400 
3401 	do {
3402 		/* Cache the lock if possible... */
3403 		if (test_bit(NFS_DELEGATED_STATE, &state->flags) != 0)
3404 			return 0;
3405 		err = _nfs4_do_setlk(state, F_SETLK, request, 1);
3406 		if (err != -NFS4ERR_DELAY)
3407 			break;
3408 		nfs4_handle_exception(server, err, &exception);
3409 	} while (exception.retry);
3410 	return err;
3411 }
3412 
3413 static int nfs4_lock_expired(struct nfs4_state *state, struct file_lock *request)
3414 {
3415 	struct nfs_server *server = NFS_SERVER(state->inode);
3416 	struct nfs4_exception exception = { };
3417 	int err;
3418 
3419 	err = nfs4_set_lock_state(state, request);
3420 	if (err != 0)
3421 		return err;
3422 	do {
3423 		if (test_bit(NFS_DELEGATED_STATE, &state->flags) != 0)
3424 			return 0;
3425 		err = _nfs4_do_setlk(state, F_SETLK, request, 0);
3426 		if (err != -NFS4ERR_DELAY)
3427 			break;
3428 		nfs4_handle_exception(server, err, &exception);
3429 	} while (exception.retry);
3430 	return err;
3431 }
3432 
3433 static int _nfs4_proc_setlk(struct nfs4_state *state, int cmd, struct file_lock *request)
3434 {
3435 	struct nfs_client *clp = state->owner->so_client;
3436 	unsigned char fl_flags = request->fl_flags;
3437 	int status;
3438 
3439 	/* Is this a delegated open? */
3440 	status = nfs4_set_lock_state(state, request);
3441 	if (status != 0)
3442 		goto out;
3443 	request->fl_flags |= FL_ACCESS;
3444 	status = do_vfs_lock(request->fl_file, request);
3445 	if (status < 0)
3446 		goto out;
3447 	down_read(&clp->cl_sem);
3448 	if (test_bit(NFS_DELEGATED_STATE, &state->flags)) {
3449 		struct nfs_inode *nfsi = NFS_I(state->inode);
3450 		/* Yes: cache locks! */
3451 		down_read(&nfsi->rwsem);
3452 		/* ...but avoid races with delegation recall... */
3453 		if (test_bit(NFS_DELEGATED_STATE, &state->flags)) {
3454 			request->fl_flags = fl_flags & ~FL_SLEEP;
3455 			status = do_vfs_lock(request->fl_file, request);
3456 			up_read(&nfsi->rwsem);
3457 			goto out_unlock;
3458 		}
3459 		up_read(&nfsi->rwsem);
3460 	}
3461 	status = _nfs4_do_setlk(state, cmd, request, 0);
3462 	if (status != 0)
3463 		goto out_unlock;
3464 	/* Note: we always want to sleep here! */
3465 	request->fl_flags = fl_flags | FL_SLEEP;
3466 	if (do_vfs_lock(request->fl_file, request) < 0)
3467 		printk(KERN_WARNING "%s: VFS is out of sync with lock manager!\n", __FUNCTION__);
3468 out_unlock:
3469 	up_read(&clp->cl_sem);
3470 out:
3471 	request->fl_flags = fl_flags;
3472 	return status;
3473 }
3474 
3475 static int nfs4_proc_setlk(struct nfs4_state *state, int cmd, struct file_lock *request)
3476 {
3477 	struct nfs4_exception exception = { };
3478 	int err;
3479 
3480 	do {
3481 		err = nfs4_handle_exception(NFS_SERVER(state->inode),
3482 				_nfs4_proc_setlk(state, cmd, request),
3483 				&exception);
3484 	} while (exception.retry);
3485 	return err;
3486 }
3487 
3488 static int
3489 nfs4_proc_lock(struct file *filp, int cmd, struct file_lock *request)
3490 {
3491 	struct nfs_open_context *ctx;
3492 	struct nfs4_state *state;
3493 	unsigned long timeout = NFS4_LOCK_MINTIMEOUT;
3494 	int status;
3495 
3496 	/* verify open state */
3497 	ctx = (struct nfs_open_context *)filp->private_data;
3498 	state = ctx->state;
3499 
3500 	if (request->fl_start < 0 || request->fl_end < 0)
3501 		return -EINVAL;
3502 
3503 	if (IS_GETLK(cmd))
3504 		return nfs4_proc_getlk(state, F_GETLK, request);
3505 
3506 	if (!(IS_SETLK(cmd) || IS_SETLKW(cmd)))
3507 		return -EINVAL;
3508 
3509 	if (request->fl_type == F_UNLCK)
3510 		return nfs4_proc_unlck(state, cmd, request);
3511 
3512 	do {
3513 		status = nfs4_proc_setlk(state, cmd, request);
3514 		if ((status != -EAGAIN) || IS_SETLK(cmd))
3515 			break;
3516 		timeout = nfs4_set_lock_task_retry(timeout);
3517 		status = -ERESTARTSYS;
3518 		if (signalled())
3519 			break;
3520 	} while(status < 0);
3521 	return status;
3522 }
3523 
3524 int nfs4_lock_delegation_recall(struct nfs4_state *state, struct file_lock *fl)
3525 {
3526 	struct nfs_server *server = NFS_SERVER(state->inode);
3527 	struct nfs4_exception exception = { };
3528 	int err;
3529 
3530 	err = nfs4_set_lock_state(state, fl);
3531 	if (err != 0)
3532 		goto out;
3533 	do {
3534 		err = _nfs4_do_setlk(state, F_SETLK, fl, 0);
3535 		if (err != -NFS4ERR_DELAY)
3536 			break;
3537 		err = nfs4_handle_exception(server, err, &exception);
3538 	} while (exception.retry);
3539 out:
3540 	return err;
3541 }
3542 
3543 #define XATTR_NAME_NFSV4_ACL "system.nfs4_acl"
3544 
3545 int nfs4_setxattr(struct dentry *dentry, const char *key, const void *buf,
3546 		size_t buflen, int flags)
3547 {
3548 	struct inode *inode = dentry->d_inode;
3549 
3550 	if (strcmp(key, XATTR_NAME_NFSV4_ACL) != 0)
3551 		return -EOPNOTSUPP;
3552 
3553 	if (!S_ISREG(inode->i_mode) &&
3554 	    (!S_ISDIR(inode->i_mode) || inode->i_mode & S_ISVTX))
3555 		return -EPERM;
3556 
3557 	return nfs4_proc_set_acl(inode, buf, buflen);
3558 }
3559 
3560 /* The getxattr man page suggests returning -ENODATA for unknown attributes,
3561  * and that's what we'll do for e.g. user attributes that haven't been set.
3562  * But we'll follow ext2/ext3's lead by returning -EOPNOTSUPP for unsupported
3563  * attributes in kernel-managed attribute namespaces. */
3564 ssize_t nfs4_getxattr(struct dentry *dentry, const char *key, void *buf,
3565 		size_t buflen)
3566 {
3567 	struct inode *inode = dentry->d_inode;
3568 
3569 	if (strcmp(key, XATTR_NAME_NFSV4_ACL) != 0)
3570 		return -EOPNOTSUPP;
3571 
3572 	return nfs4_proc_get_acl(inode, buf, buflen);
3573 }
3574 
3575 ssize_t nfs4_listxattr(struct dentry *dentry, char *buf, size_t buflen)
3576 {
3577 	size_t len = strlen(XATTR_NAME_NFSV4_ACL) + 1;
3578 
3579 	if (!nfs4_server_supports_acls(NFS_SERVER(dentry->d_inode)))
3580 		return 0;
3581 	if (buf && buflen < len)
3582 		return -ERANGE;
3583 	if (buf)
3584 		memcpy(buf, XATTR_NAME_NFSV4_ACL, len);
3585 	return len;
3586 }
3587 
3588 int nfs4_proc_fs_locations(struct inode *dir, struct dentry *dentry,
3589 		struct nfs4_fs_locations *fs_locations, struct page *page)
3590 {
3591 	struct nfs_server *server = NFS_SERVER(dir);
3592 	u32 bitmask[2] = {
3593 		[0] = FATTR4_WORD0_FSID | FATTR4_WORD0_FS_LOCATIONS,
3594 		[1] = FATTR4_WORD1_MOUNTED_ON_FILEID,
3595 	};
3596 	struct nfs4_fs_locations_arg args = {
3597 		.dir_fh = NFS_FH(dir),
3598 		.name = &dentry->d_name,
3599 		.page = page,
3600 		.bitmask = bitmask,
3601 	};
3602 	struct rpc_message msg = {
3603 		.rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_FS_LOCATIONS],
3604 		.rpc_argp = &args,
3605 		.rpc_resp = fs_locations,
3606 	};
3607 	int status;
3608 
3609 	dprintk("%s: start\n", __FUNCTION__);
3610 	fs_locations->fattr.valid = 0;
3611 	fs_locations->server = server;
3612 	fs_locations->nlocations = 0;
3613 	status = rpc_call_sync(server->client, &msg, 0);
3614 	dprintk("%s: returned status = %d\n", __FUNCTION__, status);
3615 	return status;
3616 }
3617 
3618 struct nfs4_state_recovery_ops nfs4_reboot_recovery_ops = {
3619 	.recover_open	= nfs4_open_reclaim,
3620 	.recover_lock	= nfs4_lock_reclaim,
3621 };
3622 
3623 struct nfs4_state_recovery_ops nfs4_network_partition_recovery_ops = {
3624 	.recover_open	= nfs4_open_expired,
3625 	.recover_lock	= nfs4_lock_expired,
3626 };
3627 
3628 static struct inode_operations nfs4_file_inode_operations = {
3629 	.permission	= nfs_permission,
3630 	.getattr	= nfs_getattr,
3631 	.setattr	= nfs_setattr,
3632 	.getxattr	= nfs4_getxattr,
3633 	.setxattr	= nfs4_setxattr,
3634 	.listxattr	= nfs4_listxattr,
3635 };
3636 
3637 const struct nfs_rpc_ops nfs_v4_clientops = {
3638 	.version	= 4,			/* protocol version */
3639 	.dentry_ops	= &nfs4_dentry_operations,
3640 	.dir_inode_ops	= &nfs4_dir_inode_operations,
3641 	.file_inode_ops	= &nfs4_file_inode_operations,
3642 	.getroot	= nfs4_proc_get_root,
3643 	.getattr	= nfs4_proc_getattr,
3644 	.setattr	= nfs4_proc_setattr,
3645 	.lookupfh	= nfs4_proc_lookupfh,
3646 	.lookup		= nfs4_proc_lookup,
3647 	.access		= nfs4_proc_access,
3648 	.readlink	= nfs4_proc_readlink,
3649 	.read		= nfs4_proc_read,
3650 	.create		= nfs4_proc_create,
3651 	.remove		= nfs4_proc_remove,
3652 	.unlink_setup	= nfs4_proc_unlink_setup,
3653 	.unlink_done	= nfs4_proc_unlink_done,
3654 	.rename		= nfs4_proc_rename,
3655 	.link		= nfs4_proc_link,
3656 	.symlink	= nfs4_proc_symlink,
3657 	.mkdir		= nfs4_proc_mkdir,
3658 	.rmdir		= nfs4_proc_remove,
3659 	.readdir	= nfs4_proc_readdir,
3660 	.mknod		= nfs4_proc_mknod,
3661 	.statfs		= nfs4_proc_statfs,
3662 	.fsinfo		= nfs4_proc_fsinfo,
3663 	.pathconf	= nfs4_proc_pathconf,
3664 	.set_capabilities = nfs4_server_capabilities,
3665 	.decode_dirent	= nfs4_decode_dirent,
3666 	.read_setup	= nfs4_proc_read_setup,
3667 	.read_done	= nfs4_read_done,
3668 	.write_setup	= nfs4_proc_write_setup,
3669 	.write_done	= nfs4_write_done,
3670 	.commit_setup	= nfs4_proc_commit_setup,
3671 	.commit_done	= nfs4_commit_done,
3672 	.file_open      = nfs_open,
3673 	.file_release   = nfs_release,
3674 	.lock		= nfs4_proc_lock,
3675 	.clear_acl_cache = nfs4_zap_acl_attr,
3676 };
3677 
3678 /*
3679  * Local variables:
3680  *  c-basic-offset: 8
3681  * End:
3682  */
3683