1 /* 2 * fs/nfs/nfs4proc.c 3 * 4 * Client-side procedure declarations for NFSv4. 5 * 6 * Copyright (c) 2002 The Regents of the University of Michigan. 7 * All rights reserved. 8 * 9 * Kendrick Smith <kmsmith@umich.edu> 10 * Andy Adamson <andros@umich.edu> 11 * 12 * Redistribution and use in source and binary forms, with or without 13 * modification, are permitted provided that the following conditions 14 * are met: 15 * 16 * 1. Redistributions of source code must retain the above copyright 17 * notice, this list of conditions and the following disclaimer. 18 * 2. Redistributions in binary form must reproduce the above copyright 19 * notice, this list of conditions and the following disclaimer in the 20 * documentation and/or other materials provided with the distribution. 21 * 3. Neither the name of the University nor the names of its 22 * contributors may be used to endorse or promote products derived 23 * from this software without specific prior written permission. 24 * 25 * THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED 26 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF 27 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE 28 * DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 29 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 30 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 31 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR 32 * BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF 33 * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING 34 * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS 35 * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 36 */ 37 38 #include <linux/mm.h> 39 #include <linux/utsname.h> 40 #include <linux/delay.h> 41 #include <linux/errno.h> 42 #include <linux/string.h> 43 #include <linux/sunrpc/clnt.h> 44 #include <linux/nfs.h> 45 #include <linux/nfs4.h> 46 #include <linux/nfs_fs.h> 47 #include <linux/nfs_page.h> 48 #include <linux/smp_lock.h> 49 #include <linux/namei.h> 50 #include <linux/mount.h> 51 52 #include "nfs4_fs.h" 53 #include "delegation.h" 54 #include "internal.h" 55 #include "iostat.h" 56 57 #define NFSDBG_FACILITY NFSDBG_PROC 58 59 #define NFS4_POLL_RETRY_MIN (HZ/10) 60 #define NFS4_POLL_RETRY_MAX (15*HZ) 61 62 struct nfs4_opendata; 63 static int _nfs4_proc_open(struct nfs4_opendata *data); 64 static int nfs4_do_fsinfo(struct nfs_server *, struct nfs_fh *, struct nfs_fsinfo *); 65 static int nfs4_async_handle_error(struct rpc_task *, const struct nfs_server *); 66 static int nfs4_handle_exception(const struct nfs_server *server, int errorcode, struct nfs4_exception *exception); 67 static int nfs4_wait_clnt_recover(struct rpc_clnt *clnt, struct nfs_client *clp); 68 static int _nfs4_proc_lookup(struct inode *dir, const struct qstr *name, struct nfs_fh *fhandle, struct nfs_fattr *fattr); 69 static int _nfs4_proc_getattr(struct nfs_server *server, struct nfs_fh *fhandle, struct nfs_fattr *fattr); 70 71 /* Prevent leaks of NFSv4 errors into userland */ 72 int nfs4_map_errors(int err) 73 { 74 if (err < -1000) { 75 dprintk("%s could not handle NFSv4 error %d\n", 76 __func__, -err); 77 return -EIO; 78 } 79 return err; 80 } 81 82 /* 83 * This is our standard bitmap for GETATTR requests. 84 */ 85 const u32 nfs4_fattr_bitmap[2] = { 86 FATTR4_WORD0_TYPE 87 | FATTR4_WORD0_CHANGE 88 | FATTR4_WORD0_SIZE 89 | FATTR4_WORD0_FSID 90 | FATTR4_WORD0_FILEID, 91 FATTR4_WORD1_MODE 92 | FATTR4_WORD1_NUMLINKS 93 | FATTR4_WORD1_OWNER 94 | FATTR4_WORD1_OWNER_GROUP 95 | FATTR4_WORD1_RAWDEV 96 | FATTR4_WORD1_SPACE_USED 97 | FATTR4_WORD1_TIME_ACCESS 98 | FATTR4_WORD1_TIME_METADATA 99 | FATTR4_WORD1_TIME_MODIFY 100 }; 101 102 const u32 nfs4_statfs_bitmap[2] = { 103 FATTR4_WORD0_FILES_AVAIL 104 | FATTR4_WORD0_FILES_FREE 105 | FATTR4_WORD0_FILES_TOTAL, 106 FATTR4_WORD1_SPACE_AVAIL 107 | FATTR4_WORD1_SPACE_FREE 108 | FATTR4_WORD1_SPACE_TOTAL 109 }; 110 111 const u32 nfs4_pathconf_bitmap[2] = { 112 FATTR4_WORD0_MAXLINK 113 | FATTR4_WORD0_MAXNAME, 114 0 115 }; 116 117 const u32 nfs4_fsinfo_bitmap[2] = { FATTR4_WORD0_MAXFILESIZE 118 | FATTR4_WORD0_MAXREAD 119 | FATTR4_WORD0_MAXWRITE 120 | FATTR4_WORD0_LEASE_TIME, 121 0 122 }; 123 124 const u32 nfs4_fs_locations_bitmap[2] = { 125 FATTR4_WORD0_TYPE 126 | FATTR4_WORD0_CHANGE 127 | FATTR4_WORD0_SIZE 128 | FATTR4_WORD0_FSID 129 | FATTR4_WORD0_FILEID 130 | FATTR4_WORD0_FS_LOCATIONS, 131 FATTR4_WORD1_MODE 132 | FATTR4_WORD1_NUMLINKS 133 | FATTR4_WORD1_OWNER 134 | FATTR4_WORD1_OWNER_GROUP 135 | FATTR4_WORD1_RAWDEV 136 | FATTR4_WORD1_SPACE_USED 137 | FATTR4_WORD1_TIME_ACCESS 138 | FATTR4_WORD1_TIME_METADATA 139 | FATTR4_WORD1_TIME_MODIFY 140 | FATTR4_WORD1_MOUNTED_ON_FILEID 141 }; 142 143 static void nfs4_setup_readdir(u64 cookie, __be32 *verifier, struct dentry *dentry, 144 struct nfs4_readdir_arg *readdir) 145 { 146 __be32 *start, *p; 147 148 BUG_ON(readdir->count < 80); 149 if (cookie > 2) { 150 readdir->cookie = cookie; 151 memcpy(&readdir->verifier, verifier, sizeof(readdir->verifier)); 152 return; 153 } 154 155 readdir->cookie = 0; 156 memset(&readdir->verifier, 0, sizeof(readdir->verifier)); 157 if (cookie == 2) 158 return; 159 160 /* 161 * NFSv4 servers do not return entries for '.' and '..' 162 * Therefore, we fake these entries here. We let '.' 163 * have cookie 0 and '..' have cookie 1. Note that 164 * when talking to the server, we always send cookie 0 165 * instead of 1 or 2. 166 */ 167 start = p = kmap_atomic(*readdir->pages, KM_USER0); 168 169 if (cookie == 0) { 170 *p++ = xdr_one; /* next */ 171 *p++ = xdr_zero; /* cookie, first word */ 172 *p++ = xdr_one; /* cookie, second word */ 173 *p++ = xdr_one; /* entry len */ 174 memcpy(p, ".\0\0\0", 4); /* entry */ 175 p++; 176 *p++ = xdr_one; /* bitmap length */ 177 *p++ = htonl(FATTR4_WORD0_FILEID); /* bitmap */ 178 *p++ = htonl(8); /* attribute buffer length */ 179 p = xdr_encode_hyper(p, NFS_FILEID(dentry->d_inode)); 180 } 181 182 *p++ = xdr_one; /* next */ 183 *p++ = xdr_zero; /* cookie, first word */ 184 *p++ = xdr_two; /* cookie, second word */ 185 *p++ = xdr_two; /* entry len */ 186 memcpy(p, "..\0\0", 4); /* entry */ 187 p++; 188 *p++ = xdr_one; /* bitmap length */ 189 *p++ = htonl(FATTR4_WORD0_FILEID); /* bitmap */ 190 *p++ = htonl(8); /* attribute buffer length */ 191 p = xdr_encode_hyper(p, NFS_FILEID(dentry->d_parent->d_inode)); 192 193 readdir->pgbase = (char *)p - (char *)start; 194 readdir->count -= readdir->pgbase; 195 kunmap_atomic(start, KM_USER0); 196 } 197 198 static void renew_lease(const struct nfs_server *server, unsigned long timestamp) 199 { 200 struct nfs_client *clp = server->nfs_client; 201 spin_lock(&clp->cl_lock); 202 if (time_before(clp->cl_last_renewal,timestamp)) 203 clp->cl_last_renewal = timestamp; 204 spin_unlock(&clp->cl_lock); 205 } 206 207 static void update_changeattr(struct inode *dir, struct nfs4_change_info *cinfo) 208 { 209 struct nfs_inode *nfsi = NFS_I(dir); 210 211 spin_lock(&dir->i_lock); 212 nfsi->cache_validity |= NFS_INO_INVALID_ATTR|NFS_INO_REVAL_PAGECACHE|NFS_INO_INVALID_DATA; 213 if (!cinfo->atomic || cinfo->before != nfsi->change_attr) 214 nfs_force_lookup_revalidate(dir); 215 nfsi->change_attr = cinfo->after; 216 spin_unlock(&dir->i_lock); 217 } 218 219 struct nfs4_opendata { 220 struct kref kref; 221 struct nfs_openargs o_arg; 222 struct nfs_openres o_res; 223 struct nfs_open_confirmargs c_arg; 224 struct nfs_open_confirmres c_res; 225 struct nfs_fattr f_attr; 226 struct nfs_fattr dir_attr; 227 struct path path; 228 struct dentry *dir; 229 struct nfs4_state_owner *owner; 230 struct nfs4_state *state; 231 struct iattr attrs; 232 unsigned long timestamp; 233 unsigned int rpc_done : 1; 234 int rpc_status; 235 int cancelled; 236 }; 237 238 239 static void nfs4_init_opendata_res(struct nfs4_opendata *p) 240 { 241 p->o_res.f_attr = &p->f_attr; 242 p->o_res.dir_attr = &p->dir_attr; 243 p->o_res.seqid = p->o_arg.seqid; 244 p->c_res.seqid = p->c_arg.seqid; 245 p->o_res.server = p->o_arg.server; 246 nfs_fattr_init(&p->f_attr); 247 nfs_fattr_init(&p->dir_attr); 248 } 249 250 static struct nfs4_opendata *nfs4_opendata_alloc(struct path *path, 251 struct nfs4_state_owner *sp, int flags, 252 const struct iattr *attrs) 253 { 254 struct dentry *parent = dget_parent(path->dentry); 255 struct inode *dir = parent->d_inode; 256 struct nfs_server *server = NFS_SERVER(dir); 257 struct nfs4_opendata *p; 258 259 p = kzalloc(sizeof(*p), GFP_KERNEL); 260 if (p == NULL) 261 goto err; 262 p->o_arg.seqid = nfs_alloc_seqid(&sp->so_seqid); 263 if (p->o_arg.seqid == NULL) 264 goto err_free; 265 p->path.mnt = mntget(path->mnt); 266 p->path.dentry = dget(path->dentry); 267 p->dir = parent; 268 p->owner = sp; 269 atomic_inc(&sp->so_count); 270 p->o_arg.fh = NFS_FH(dir); 271 p->o_arg.open_flags = flags, 272 p->o_arg.clientid = server->nfs_client->cl_clientid; 273 p->o_arg.id = sp->so_owner_id.id; 274 p->o_arg.name = &p->path.dentry->d_name; 275 p->o_arg.server = server; 276 p->o_arg.bitmask = server->attr_bitmask; 277 p->o_arg.claim = NFS4_OPEN_CLAIM_NULL; 278 if (flags & O_EXCL) { 279 u32 *s = (u32 *) p->o_arg.u.verifier.data; 280 s[0] = jiffies; 281 s[1] = current->pid; 282 } else if (flags & O_CREAT) { 283 p->o_arg.u.attrs = &p->attrs; 284 memcpy(&p->attrs, attrs, sizeof(p->attrs)); 285 } 286 p->c_arg.fh = &p->o_res.fh; 287 p->c_arg.stateid = &p->o_res.stateid; 288 p->c_arg.seqid = p->o_arg.seqid; 289 nfs4_init_opendata_res(p); 290 kref_init(&p->kref); 291 return p; 292 err_free: 293 kfree(p); 294 err: 295 dput(parent); 296 return NULL; 297 } 298 299 static void nfs4_opendata_free(struct kref *kref) 300 { 301 struct nfs4_opendata *p = container_of(kref, 302 struct nfs4_opendata, kref); 303 304 nfs_free_seqid(p->o_arg.seqid); 305 if (p->state != NULL) 306 nfs4_put_open_state(p->state); 307 nfs4_put_state_owner(p->owner); 308 dput(p->dir); 309 path_put(&p->path); 310 kfree(p); 311 } 312 313 static void nfs4_opendata_put(struct nfs4_opendata *p) 314 { 315 if (p != NULL) 316 kref_put(&p->kref, nfs4_opendata_free); 317 } 318 319 static int nfs4_wait_for_completion_rpc_task(struct rpc_task *task) 320 { 321 int ret; 322 323 ret = rpc_wait_for_completion_task(task); 324 return ret; 325 } 326 327 static int can_open_cached(struct nfs4_state *state, int mode) 328 { 329 int ret = 0; 330 switch (mode & (FMODE_READ|FMODE_WRITE|O_EXCL)) { 331 case FMODE_READ: 332 ret |= test_bit(NFS_O_RDONLY_STATE, &state->flags) != 0; 333 break; 334 case FMODE_WRITE: 335 ret |= test_bit(NFS_O_WRONLY_STATE, &state->flags) != 0; 336 break; 337 case FMODE_READ|FMODE_WRITE: 338 ret |= test_bit(NFS_O_RDWR_STATE, &state->flags) != 0; 339 } 340 return ret; 341 } 342 343 static int can_open_delegated(struct nfs_delegation *delegation, mode_t open_flags) 344 { 345 if ((delegation->type & open_flags) != open_flags) 346 return 0; 347 if (delegation->flags & NFS_DELEGATION_NEED_RECLAIM) 348 return 0; 349 return 1; 350 } 351 352 static void update_open_stateflags(struct nfs4_state *state, mode_t open_flags) 353 { 354 switch (open_flags) { 355 case FMODE_WRITE: 356 state->n_wronly++; 357 break; 358 case FMODE_READ: 359 state->n_rdonly++; 360 break; 361 case FMODE_READ|FMODE_WRITE: 362 state->n_rdwr++; 363 } 364 nfs4_state_set_mode_locked(state, state->state | open_flags); 365 } 366 367 static void nfs_set_open_stateid_locked(struct nfs4_state *state, nfs4_stateid *stateid, int open_flags) 368 { 369 if (test_bit(NFS_DELEGATED_STATE, &state->flags) == 0) 370 memcpy(state->stateid.data, stateid->data, sizeof(state->stateid.data)); 371 memcpy(state->open_stateid.data, stateid->data, sizeof(state->open_stateid.data)); 372 switch (open_flags) { 373 case FMODE_READ: 374 set_bit(NFS_O_RDONLY_STATE, &state->flags); 375 break; 376 case FMODE_WRITE: 377 set_bit(NFS_O_WRONLY_STATE, &state->flags); 378 break; 379 case FMODE_READ|FMODE_WRITE: 380 set_bit(NFS_O_RDWR_STATE, &state->flags); 381 } 382 } 383 384 static void nfs_set_open_stateid(struct nfs4_state *state, nfs4_stateid *stateid, int open_flags) 385 { 386 write_seqlock(&state->seqlock); 387 nfs_set_open_stateid_locked(state, stateid, open_flags); 388 write_sequnlock(&state->seqlock); 389 } 390 391 static void update_open_stateid(struct nfs4_state *state, nfs4_stateid *open_stateid, nfs4_stateid *deleg_stateid, int open_flags) 392 { 393 open_flags &= (FMODE_READ|FMODE_WRITE); 394 /* 395 * Protect the call to nfs4_state_set_mode_locked and 396 * serialise the stateid update 397 */ 398 write_seqlock(&state->seqlock); 399 if (deleg_stateid != NULL) { 400 memcpy(state->stateid.data, deleg_stateid->data, sizeof(state->stateid.data)); 401 set_bit(NFS_DELEGATED_STATE, &state->flags); 402 } 403 if (open_stateid != NULL) 404 nfs_set_open_stateid_locked(state, open_stateid, open_flags); 405 write_sequnlock(&state->seqlock); 406 spin_lock(&state->owner->so_lock); 407 update_open_stateflags(state, open_flags); 408 spin_unlock(&state->owner->so_lock); 409 } 410 411 static void nfs4_return_incompatible_delegation(struct inode *inode, mode_t open_flags) 412 { 413 struct nfs_delegation *delegation; 414 415 rcu_read_lock(); 416 delegation = rcu_dereference(NFS_I(inode)->delegation); 417 if (delegation == NULL || (delegation->type & open_flags) == open_flags) { 418 rcu_read_unlock(); 419 return; 420 } 421 rcu_read_unlock(); 422 nfs_inode_return_delegation(inode); 423 } 424 425 static struct nfs4_state *nfs4_try_open_cached(struct nfs4_opendata *opendata) 426 { 427 struct nfs4_state *state = opendata->state; 428 struct nfs_inode *nfsi = NFS_I(state->inode); 429 struct nfs_delegation *delegation; 430 int open_mode = opendata->o_arg.open_flags & (FMODE_READ|FMODE_WRITE|O_EXCL); 431 nfs4_stateid stateid; 432 int ret = -EAGAIN; 433 434 rcu_read_lock(); 435 delegation = rcu_dereference(nfsi->delegation); 436 for (;;) { 437 if (can_open_cached(state, open_mode)) { 438 spin_lock(&state->owner->so_lock); 439 if (can_open_cached(state, open_mode)) { 440 update_open_stateflags(state, open_mode); 441 spin_unlock(&state->owner->so_lock); 442 rcu_read_unlock(); 443 goto out_return_state; 444 } 445 spin_unlock(&state->owner->so_lock); 446 } 447 if (delegation == NULL) 448 break; 449 if (!can_open_delegated(delegation, open_mode)) 450 break; 451 /* Save the delegation */ 452 memcpy(stateid.data, delegation->stateid.data, sizeof(stateid.data)); 453 rcu_read_unlock(); 454 ret = nfs_may_open(state->inode, state->owner->so_cred, open_mode); 455 if (ret != 0) 456 goto out; 457 ret = -EAGAIN; 458 rcu_read_lock(); 459 delegation = rcu_dereference(nfsi->delegation); 460 /* If no delegation, try a cached open */ 461 if (delegation == NULL) 462 continue; 463 /* Is the delegation still valid? */ 464 if (memcmp(stateid.data, delegation->stateid.data, sizeof(stateid.data)) != 0) 465 continue; 466 rcu_read_unlock(); 467 update_open_stateid(state, NULL, &stateid, open_mode); 468 goto out_return_state; 469 } 470 rcu_read_unlock(); 471 out: 472 return ERR_PTR(ret); 473 out_return_state: 474 atomic_inc(&state->count); 475 return state; 476 } 477 478 static struct nfs4_state *nfs4_opendata_to_nfs4_state(struct nfs4_opendata *data) 479 { 480 struct inode *inode; 481 struct nfs4_state *state = NULL; 482 struct nfs_delegation *delegation; 483 nfs4_stateid *deleg_stateid = NULL; 484 int ret; 485 486 if (!data->rpc_done) { 487 state = nfs4_try_open_cached(data); 488 goto out; 489 } 490 491 ret = -EAGAIN; 492 if (!(data->f_attr.valid & NFS_ATTR_FATTR)) 493 goto err; 494 inode = nfs_fhget(data->dir->d_sb, &data->o_res.fh, &data->f_attr); 495 ret = PTR_ERR(inode); 496 if (IS_ERR(inode)) 497 goto err; 498 ret = -ENOMEM; 499 state = nfs4_get_open_state(inode, data->owner); 500 if (state == NULL) 501 goto err_put_inode; 502 if (data->o_res.delegation_type != 0) { 503 int delegation_flags = 0; 504 505 rcu_read_lock(); 506 delegation = rcu_dereference(NFS_I(inode)->delegation); 507 if (delegation) 508 delegation_flags = delegation->flags; 509 rcu_read_unlock(); 510 if (!(delegation_flags & NFS_DELEGATION_NEED_RECLAIM)) 511 nfs_inode_set_delegation(state->inode, 512 data->owner->so_cred, 513 &data->o_res); 514 else 515 nfs_inode_reclaim_delegation(state->inode, 516 data->owner->so_cred, 517 &data->o_res); 518 } 519 rcu_read_lock(); 520 delegation = rcu_dereference(NFS_I(inode)->delegation); 521 if (delegation != NULL) 522 deleg_stateid = &delegation->stateid; 523 update_open_stateid(state, &data->o_res.stateid, deleg_stateid, data->o_arg.open_flags); 524 rcu_read_unlock(); 525 iput(inode); 526 out: 527 return state; 528 err_put_inode: 529 iput(inode); 530 err: 531 return ERR_PTR(ret); 532 } 533 534 static struct nfs_open_context *nfs4_state_find_open_context(struct nfs4_state *state) 535 { 536 struct nfs_inode *nfsi = NFS_I(state->inode); 537 struct nfs_open_context *ctx; 538 539 spin_lock(&state->inode->i_lock); 540 list_for_each_entry(ctx, &nfsi->open_files, list) { 541 if (ctx->state != state) 542 continue; 543 get_nfs_open_context(ctx); 544 spin_unlock(&state->inode->i_lock); 545 return ctx; 546 } 547 spin_unlock(&state->inode->i_lock); 548 return ERR_PTR(-ENOENT); 549 } 550 551 static struct nfs4_opendata *nfs4_open_recoverdata_alloc(struct nfs_open_context *ctx, struct nfs4_state *state) 552 { 553 struct nfs4_opendata *opendata; 554 555 opendata = nfs4_opendata_alloc(&ctx->path, state->owner, 0, NULL); 556 if (opendata == NULL) 557 return ERR_PTR(-ENOMEM); 558 opendata->state = state; 559 atomic_inc(&state->count); 560 return opendata; 561 } 562 563 static int nfs4_open_recover_helper(struct nfs4_opendata *opendata, mode_t openflags, struct nfs4_state **res) 564 { 565 struct nfs4_state *newstate; 566 int ret; 567 568 opendata->o_arg.open_flags = openflags; 569 memset(&opendata->o_res, 0, sizeof(opendata->o_res)); 570 memset(&opendata->c_res, 0, sizeof(opendata->c_res)); 571 nfs4_init_opendata_res(opendata); 572 ret = _nfs4_proc_open(opendata); 573 if (ret != 0) 574 return ret; 575 newstate = nfs4_opendata_to_nfs4_state(opendata); 576 if (IS_ERR(newstate)) 577 return PTR_ERR(newstate); 578 nfs4_close_state(&opendata->path, newstate, openflags); 579 *res = newstate; 580 return 0; 581 } 582 583 static int nfs4_open_recover(struct nfs4_opendata *opendata, struct nfs4_state *state) 584 { 585 struct nfs4_state *newstate; 586 int ret; 587 588 /* memory barrier prior to reading state->n_* */ 589 clear_bit(NFS_DELEGATED_STATE, &state->flags); 590 smp_rmb(); 591 if (state->n_rdwr != 0) { 592 ret = nfs4_open_recover_helper(opendata, FMODE_READ|FMODE_WRITE, &newstate); 593 if (ret != 0) 594 return ret; 595 if (newstate != state) 596 return -ESTALE; 597 } 598 if (state->n_wronly != 0) { 599 ret = nfs4_open_recover_helper(opendata, FMODE_WRITE, &newstate); 600 if (ret != 0) 601 return ret; 602 if (newstate != state) 603 return -ESTALE; 604 } 605 if (state->n_rdonly != 0) { 606 ret = nfs4_open_recover_helper(opendata, FMODE_READ, &newstate); 607 if (ret != 0) 608 return ret; 609 if (newstate != state) 610 return -ESTALE; 611 } 612 /* 613 * We may have performed cached opens for all three recoveries. 614 * Check if we need to update the current stateid. 615 */ 616 if (test_bit(NFS_DELEGATED_STATE, &state->flags) == 0 && 617 memcmp(state->stateid.data, state->open_stateid.data, sizeof(state->stateid.data)) != 0) { 618 write_seqlock(&state->seqlock); 619 if (test_bit(NFS_DELEGATED_STATE, &state->flags) == 0) 620 memcpy(state->stateid.data, state->open_stateid.data, sizeof(state->stateid.data)); 621 write_sequnlock(&state->seqlock); 622 } 623 return 0; 624 } 625 626 /* 627 * OPEN_RECLAIM: 628 * reclaim state on the server after a reboot. 629 */ 630 static int _nfs4_do_open_reclaim(struct nfs_open_context *ctx, struct nfs4_state *state) 631 { 632 struct nfs_delegation *delegation; 633 struct nfs4_opendata *opendata; 634 int delegation_type = 0; 635 int status; 636 637 opendata = nfs4_open_recoverdata_alloc(ctx, state); 638 if (IS_ERR(opendata)) 639 return PTR_ERR(opendata); 640 opendata->o_arg.claim = NFS4_OPEN_CLAIM_PREVIOUS; 641 opendata->o_arg.fh = NFS_FH(state->inode); 642 rcu_read_lock(); 643 delegation = rcu_dereference(NFS_I(state->inode)->delegation); 644 if (delegation != NULL && (delegation->flags & NFS_DELEGATION_NEED_RECLAIM) != 0) 645 delegation_type = delegation->type; 646 rcu_read_unlock(); 647 opendata->o_arg.u.delegation_type = delegation_type; 648 status = nfs4_open_recover(opendata, state); 649 nfs4_opendata_put(opendata); 650 return status; 651 } 652 653 static int nfs4_do_open_reclaim(struct nfs_open_context *ctx, struct nfs4_state *state) 654 { 655 struct nfs_server *server = NFS_SERVER(state->inode); 656 struct nfs4_exception exception = { }; 657 int err; 658 do { 659 err = _nfs4_do_open_reclaim(ctx, state); 660 if (err != -NFS4ERR_DELAY) 661 break; 662 nfs4_handle_exception(server, err, &exception); 663 } while (exception.retry); 664 return err; 665 } 666 667 static int nfs4_open_reclaim(struct nfs4_state_owner *sp, struct nfs4_state *state) 668 { 669 struct nfs_open_context *ctx; 670 int ret; 671 672 ctx = nfs4_state_find_open_context(state); 673 if (IS_ERR(ctx)) 674 return PTR_ERR(ctx); 675 ret = nfs4_do_open_reclaim(ctx, state); 676 put_nfs_open_context(ctx); 677 return ret; 678 } 679 680 static int _nfs4_open_delegation_recall(struct nfs_open_context *ctx, struct nfs4_state *state, const nfs4_stateid *stateid) 681 { 682 struct nfs4_opendata *opendata; 683 int ret; 684 685 opendata = nfs4_open_recoverdata_alloc(ctx, state); 686 if (IS_ERR(opendata)) 687 return PTR_ERR(opendata); 688 opendata->o_arg.claim = NFS4_OPEN_CLAIM_DELEGATE_CUR; 689 memcpy(opendata->o_arg.u.delegation.data, stateid->data, 690 sizeof(opendata->o_arg.u.delegation.data)); 691 ret = nfs4_open_recover(opendata, state); 692 nfs4_opendata_put(opendata); 693 return ret; 694 } 695 696 int nfs4_open_delegation_recall(struct nfs_open_context *ctx, struct nfs4_state *state, const nfs4_stateid *stateid) 697 { 698 struct nfs4_exception exception = { }; 699 struct nfs_server *server = NFS_SERVER(state->inode); 700 int err; 701 do { 702 err = _nfs4_open_delegation_recall(ctx, state, stateid); 703 switch (err) { 704 case 0: 705 return err; 706 case -NFS4ERR_STALE_CLIENTID: 707 case -NFS4ERR_STALE_STATEID: 708 case -NFS4ERR_EXPIRED: 709 /* Don't recall a delegation if it was lost */ 710 nfs4_schedule_state_recovery(server->nfs_client); 711 return err; 712 } 713 err = nfs4_handle_exception(server, err, &exception); 714 } while (exception.retry); 715 return err; 716 } 717 718 static void nfs4_open_confirm_done(struct rpc_task *task, void *calldata) 719 { 720 struct nfs4_opendata *data = calldata; 721 722 data->rpc_status = task->tk_status; 723 if (RPC_ASSASSINATED(task)) 724 return; 725 if (data->rpc_status == 0) { 726 memcpy(data->o_res.stateid.data, data->c_res.stateid.data, 727 sizeof(data->o_res.stateid.data)); 728 nfs_confirm_seqid(&data->owner->so_seqid, 0); 729 renew_lease(data->o_res.server, data->timestamp); 730 data->rpc_done = 1; 731 } 732 } 733 734 static void nfs4_open_confirm_release(void *calldata) 735 { 736 struct nfs4_opendata *data = calldata; 737 struct nfs4_state *state = NULL; 738 739 /* If this request hasn't been cancelled, do nothing */ 740 if (data->cancelled == 0) 741 goto out_free; 742 /* In case of error, no cleanup! */ 743 if (!data->rpc_done) 744 goto out_free; 745 state = nfs4_opendata_to_nfs4_state(data); 746 if (!IS_ERR(state)) 747 nfs4_close_state(&data->path, state, data->o_arg.open_flags); 748 out_free: 749 nfs4_opendata_put(data); 750 } 751 752 static const struct rpc_call_ops nfs4_open_confirm_ops = { 753 .rpc_call_done = nfs4_open_confirm_done, 754 .rpc_release = nfs4_open_confirm_release, 755 }; 756 757 /* 758 * Note: On error, nfs4_proc_open_confirm will free the struct nfs4_opendata 759 */ 760 static int _nfs4_proc_open_confirm(struct nfs4_opendata *data) 761 { 762 struct nfs_server *server = NFS_SERVER(data->dir->d_inode); 763 struct rpc_task *task; 764 struct rpc_message msg = { 765 .rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_OPEN_CONFIRM], 766 .rpc_argp = &data->c_arg, 767 .rpc_resp = &data->c_res, 768 .rpc_cred = data->owner->so_cred, 769 }; 770 struct rpc_task_setup task_setup_data = { 771 .rpc_client = server->client, 772 .rpc_message = &msg, 773 .callback_ops = &nfs4_open_confirm_ops, 774 .callback_data = data, 775 .workqueue = nfsiod_workqueue, 776 .flags = RPC_TASK_ASYNC, 777 }; 778 int status; 779 780 kref_get(&data->kref); 781 data->rpc_done = 0; 782 data->rpc_status = 0; 783 data->timestamp = jiffies; 784 task = rpc_run_task(&task_setup_data); 785 if (IS_ERR(task)) 786 return PTR_ERR(task); 787 status = nfs4_wait_for_completion_rpc_task(task); 788 if (status != 0) { 789 data->cancelled = 1; 790 smp_wmb(); 791 } else 792 status = data->rpc_status; 793 rpc_put_task(task); 794 return status; 795 } 796 797 static void nfs4_open_prepare(struct rpc_task *task, void *calldata) 798 { 799 struct nfs4_opendata *data = calldata; 800 struct nfs4_state_owner *sp = data->owner; 801 802 if (nfs_wait_on_sequence(data->o_arg.seqid, task) != 0) 803 return; 804 /* 805 * Check if we still need to send an OPEN call, or if we can use 806 * a delegation instead. 807 */ 808 if (data->state != NULL) { 809 struct nfs_delegation *delegation; 810 811 if (can_open_cached(data->state, data->o_arg.open_flags & (FMODE_READ|FMODE_WRITE|O_EXCL))) 812 goto out_no_action; 813 rcu_read_lock(); 814 delegation = rcu_dereference(NFS_I(data->state->inode)->delegation); 815 if (delegation != NULL && 816 (delegation->flags & NFS_DELEGATION_NEED_RECLAIM) == 0) { 817 rcu_read_unlock(); 818 goto out_no_action; 819 } 820 rcu_read_unlock(); 821 } 822 /* Update sequence id. */ 823 data->o_arg.id = sp->so_owner_id.id; 824 data->o_arg.clientid = sp->so_client->cl_clientid; 825 if (data->o_arg.claim == NFS4_OPEN_CLAIM_PREVIOUS) { 826 task->tk_msg.rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_OPEN_NOATTR]; 827 nfs_copy_fh(&data->o_res.fh, data->o_arg.fh); 828 } 829 data->timestamp = jiffies; 830 rpc_call_start(task); 831 return; 832 out_no_action: 833 task->tk_action = NULL; 834 835 } 836 837 static void nfs4_open_done(struct rpc_task *task, void *calldata) 838 { 839 struct nfs4_opendata *data = calldata; 840 841 data->rpc_status = task->tk_status; 842 if (RPC_ASSASSINATED(task)) 843 return; 844 if (task->tk_status == 0) { 845 switch (data->o_res.f_attr->mode & S_IFMT) { 846 case S_IFREG: 847 break; 848 case S_IFLNK: 849 data->rpc_status = -ELOOP; 850 break; 851 case S_IFDIR: 852 data->rpc_status = -EISDIR; 853 break; 854 default: 855 data->rpc_status = -ENOTDIR; 856 } 857 renew_lease(data->o_res.server, data->timestamp); 858 if (!(data->o_res.rflags & NFS4_OPEN_RESULT_CONFIRM)) 859 nfs_confirm_seqid(&data->owner->so_seqid, 0); 860 } 861 data->rpc_done = 1; 862 } 863 864 static void nfs4_open_release(void *calldata) 865 { 866 struct nfs4_opendata *data = calldata; 867 struct nfs4_state *state = NULL; 868 869 /* If this request hasn't been cancelled, do nothing */ 870 if (data->cancelled == 0) 871 goto out_free; 872 /* In case of error, no cleanup! */ 873 if (data->rpc_status != 0 || !data->rpc_done) 874 goto out_free; 875 /* In case we need an open_confirm, no cleanup! */ 876 if (data->o_res.rflags & NFS4_OPEN_RESULT_CONFIRM) 877 goto out_free; 878 state = nfs4_opendata_to_nfs4_state(data); 879 if (!IS_ERR(state)) 880 nfs4_close_state(&data->path, state, data->o_arg.open_flags); 881 out_free: 882 nfs4_opendata_put(data); 883 } 884 885 static const struct rpc_call_ops nfs4_open_ops = { 886 .rpc_call_prepare = nfs4_open_prepare, 887 .rpc_call_done = nfs4_open_done, 888 .rpc_release = nfs4_open_release, 889 }; 890 891 /* 892 * Note: On error, nfs4_proc_open will free the struct nfs4_opendata 893 */ 894 static int _nfs4_proc_open(struct nfs4_opendata *data) 895 { 896 struct inode *dir = data->dir->d_inode; 897 struct nfs_server *server = NFS_SERVER(dir); 898 struct nfs_openargs *o_arg = &data->o_arg; 899 struct nfs_openres *o_res = &data->o_res; 900 struct rpc_task *task; 901 struct rpc_message msg = { 902 .rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_OPEN], 903 .rpc_argp = o_arg, 904 .rpc_resp = o_res, 905 .rpc_cred = data->owner->so_cred, 906 }; 907 struct rpc_task_setup task_setup_data = { 908 .rpc_client = server->client, 909 .rpc_message = &msg, 910 .callback_ops = &nfs4_open_ops, 911 .callback_data = data, 912 .workqueue = nfsiod_workqueue, 913 .flags = RPC_TASK_ASYNC, 914 }; 915 int status; 916 917 kref_get(&data->kref); 918 data->rpc_done = 0; 919 data->rpc_status = 0; 920 data->cancelled = 0; 921 task = rpc_run_task(&task_setup_data); 922 if (IS_ERR(task)) 923 return PTR_ERR(task); 924 status = nfs4_wait_for_completion_rpc_task(task); 925 if (status != 0) { 926 data->cancelled = 1; 927 smp_wmb(); 928 } else 929 status = data->rpc_status; 930 rpc_put_task(task); 931 if (status != 0 || !data->rpc_done) 932 return status; 933 934 if (o_res->fh.size == 0) 935 _nfs4_proc_lookup(dir, o_arg->name, &o_res->fh, o_res->f_attr); 936 937 if (o_arg->open_flags & O_CREAT) { 938 update_changeattr(dir, &o_res->cinfo); 939 nfs_post_op_update_inode(dir, o_res->dir_attr); 940 } else 941 nfs_refresh_inode(dir, o_res->dir_attr); 942 if(o_res->rflags & NFS4_OPEN_RESULT_CONFIRM) { 943 status = _nfs4_proc_open_confirm(data); 944 if (status != 0) 945 return status; 946 } 947 if (!(o_res->f_attr->valid & NFS_ATTR_FATTR)) 948 _nfs4_proc_getattr(server, &o_res->fh, o_res->f_attr); 949 return 0; 950 } 951 952 static int nfs4_recover_expired_lease(struct nfs_server *server) 953 { 954 struct nfs_client *clp = server->nfs_client; 955 int ret; 956 957 for (;;) { 958 ret = nfs4_wait_clnt_recover(server->client, clp); 959 if (ret != 0) 960 return ret; 961 if (!test_and_clear_bit(NFS4CLNT_LEASE_EXPIRED, &clp->cl_state)) 962 break; 963 nfs4_schedule_state_recovery(clp); 964 } 965 return 0; 966 } 967 968 /* 969 * OPEN_EXPIRED: 970 * reclaim state on the server after a network partition. 971 * Assumes caller holds the appropriate lock 972 */ 973 static int _nfs4_open_expired(struct nfs_open_context *ctx, struct nfs4_state *state) 974 { 975 struct nfs4_opendata *opendata; 976 int ret; 977 978 opendata = nfs4_open_recoverdata_alloc(ctx, state); 979 if (IS_ERR(opendata)) 980 return PTR_ERR(opendata); 981 ret = nfs4_open_recover(opendata, state); 982 if (ret == -ESTALE) 983 d_drop(ctx->path.dentry); 984 nfs4_opendata_put(opendata); 985 return ret; 986 } 987 988 static inline int nfs4_do_open_expired(struct nfs_open_context *ctx, struct nfs4_state *state) 989 { 990 struct nfs_server *server = NFS_SERVER(state->inode); 991 struct nfs4_exception exception = { }; 992 int err; 993 994 do { 995 err = _nfs4_open_expired(ctx, state); 996 if (err == -NFS4ERR_DELAY) 997 nfs4_handle_exception(server, err, &exception); 998 } while (exception.retry); 999 return err; 1000 } 1001 1002 static int nfs4_open_expired(struct nfs4_state_owner *sp, struct nfs4_state *state) 1003 { 1004 struct nfs_open_context *ctx; 1005 int ret; 1006 1007 ctx = nfs4_state_find_open_context(state); 1008 if (IS_ERR(ctx)) 1009 return PTR_ERR(ctx); 1010 ret = nfs4_do_open_expired(ctx, state); 1011 put_nfs_open_context(ctx); 1012 return ret; 1013 } 1014 1015 /* 1016 * on an EXCLUSIVE create, the server should send back a bitmask with FATTR4-* 1017 * fields corresponding to attributes that were used to store the verifier. 1018 * Make sure we clobber those fields in the later setattr call 1019 */ 1020 static inline void nfs4_exclusive_attrset(struct nfs4_opendata *opendata, struct iattr *sattr) 1021 { 1022 if ((opendata->o_res.attrset[1] & FATTR4_WORD1_TIME_ACCESS) && 1023 !(sattr->ia_valid & ATTR_ATIME_SET)) 1024 sattr->ia_valid |= ATTR_ATIME; 1025 1026 if ((opendata->o_res.attrset[1] & FATTR4_WORD1_TIME_MODIFY) && 1027 !(sattr->ia_valid & ATTR_MTIME_SET)) 1028 sattr->ia_valid |= ATTR_MTIME; 1029 } 1030 1031 /* 1032 * Returns a referenced nfs4_state 1033 */ 1034 static int _nfs4_do_open(struct inode *dir, struct path *path, int flags, struct iattr *sattr, struct rpc_cred *cred, struct nfs4_state **res) 1035 { 1036 struct nfs4_state_owner *sp; 1037 struct nfs4_state *state = NULL; 1038 struct nfs_server *server = NFS_SERVER(dir); 1039 struct nfs_client *clp = server->nfs_client; 1040 struct nfs4_opendata *opendata; 1041 int status; 1042 1043 /* Protect against reboot recovery conflicts */ 1044 status = -ENOMEM; 1045 if (!(sp = nfs4_get_state_owner(server, cred))) { 1046 dprintk("nfs4_do_open: nfs4_get_state_owner failed!\n"); 1047 goto out_err; 1048 } 1049 status = nfs4_recover_expired_lease(server); 1050 if (status != 0) 1051 goto err_put_state_owner; 1052 if (path->dentry->d_inode != NULL) 1053 nfs4_return_incompatible_delegation(path->dentry->d_inode, flags & (FMODE_READ|FMODE_WRITE)); 1054 down_read(&clp->cl_sem); 1055 status = -ENOMEM; 1056 opendata = nfs4_opendata_alloc(path, sp, flags, sattr); 1057 if (opendata == NULL) 1058 goto err_release_rwsem; 1059 1060 if (path->dentry->d_inode != NULL) 1061 opendata->state = nfs4_get_open_state(path->dentry->d_inode, sp); 1062 1063 status = _nfs4_proc_open(opendata); 1064 if (status != 0) 1065 goto err_opendata_put; 1066 1067 if (opendata->o_arg.open_flags & O_EXCL) 1068 nfs4_exclusive_attrset(opendata, sattr); 1069 1070 state = nfs4_opendata_to_nfs4_state(opendata); 1071 status = PTR_ERR(state); 1072 if (IS_ERR(state)) 1073 goto err_opendata_put; 1074 nfs4_opendata_put(opendata); 1075 nfs4_put_state_owner(sp); 1076 up_read(&clp->cl_sem); 1077 *res = state; 1078 return 0; 1079 err_opendata_put: 1080 nfs4_opendata_put(opendata); 1081 err_release_rwsem: 1082 up_read(&clp->cl_sem); 1083 err_put_state_owner: 1084 nfs4_put_state_owner(sp); 1085 out_err: 1086 *res = NULL; 1087 return status; 1088 } 1089 1090 1091 static struct nfs4_state *nfs4_do_open(struct inode *dir, struct path *path, int flags, struct iattr *sattr, struct rpc_cred *cred) 1092 { 1093 struct nfs4_exception exception = { }; 1094 struct nfs4_state *res; 1095 int status; 1096 1097 do { 1098 status = _nfs4_do_open(dir, path, flags, sattr, cred, &res); 1099 if (status == 0) 1100 break; 1101 /* NOTE: BAD_SEQID means the server and client disagree about the 1102 * book-keeping w.r.t. state-changing operations 1103 * (OPEN/CLOSE/LOCK/LOCKU...) 1104 * It is actually a sign of a bug on the client or on the server. 1105 * 1106 * If we receive a BAD_SEQID error in the particular case of 1107 * doing an OPEN, we assume that nfs_increment_open_seqid() will 1108 * have unhashed the old state_owner for us, and that we can 1109 * therefore safely retry using a new one. We should still warn 1110 * the user though... 1111 */ 1112 if (status == -NFS4ERR_BAD_SEQID) { 1113 printk(KERN_WARNING "NFS: v4 server %s " 1114 " returned a bad sequence-id error!\n", 1115 NFS_SERVER(dir)->nfs_client->cl_hostname); 1116 exception.retry = 1; 1117 continue; 1118 } 1119 /* 1120 * BAD_STATEID on OPEN means that the server cancelled our 1121 * state before it received the OPEN_CONFIRM. 1122 * Recover by retrying the request as per the discussion 1123 * on Page 181 of RFC3530. 1124 */ 1125 if (status == -NFS4ERR_BAD_STATEID) { 1126 exception.retry = 1; 1127 continue; 1128 } 1129 if (status == -EAGAIN) { 1130 /* We must have found a delegation */ 1131 exception.retry = 1; 1132 continue; 1133 } 1134 res = ERR_PTR(nfs4_handle_exception(NFS_SERVER(dir), 1135 status, &exception)); 1136 } while (exception.retry); 1137 return res; 1138 } 1139 1140 static int _nfs4_do_setattr(struct inode *inode, struct rpc_cred *cred, 1141 struct nfs_fattr *fattr, struct iattr *sattr, 1142 struct nfs4_state *state) 1143 { 1144 struct nfs_server *server = NFS_SERVER(inode); 1145 struct nfs_setattrargs arg = { 1146 .fh = NFS_FH(inode), 1147 .iap = sattr, 1148 .server = server, 1149 .bitmask = server->attr_bitmask, 1150 }; 1151 struct nfs_setattrres res = { 1152 .fattr = fattr, 1153 .server = server, 1154 }; 1155 struct rpc_message msg = { 1156 .rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_SETATTR], 1157 .rpc_argp = &arg, 1158 .rpc_resp = &res, 1159 .rpc_cred = cred, 1160 }; 1161 unsigned long timestamp = jiffies; 1162 int status; 1163 1164 nfs_fattr_init(fattr); 1165 1166 if (nfs4_copy_delegation_stateid(&arg.stateid, inode)) { 1167 /* Use that stateid */ 1168 } else if (state != NULL) { 1169 nfs4_copy_stateid(&arg.stateid, state, current->files); 1170 } else 1171 memcpy(&arg.stateid, &zero_stateid, sizeof(arg.stateid)); 1172 1173 status = rpc_call_sync(server->client, &msg, 0); 1174 if (status == 0 && state != NULL) 1175 renew_lease(server, timestamp); 1176 return status; 1177 } 1178 1179 static int nfs4_do_setattr(struct inode *inode, struct rpc_cred *cred, 1180 struct nfs_fattr *fattr, struct iattr *sattr, 1181 struct nfs4_state *state) 1182 { 1183 struct nfs_server *server = NFS_SERVER(inode); 1184 struct nfs4_exception exception = { }; 1185 int err; 1186 do { 1187 err = nfs4_handle_exception(server, 1188 _nfs4_do_setattr(inode, cred, fattr, sattr, state), 1189 &exception); 1190 } while (exception.retry); 1191 return err; 1192 } 1193 1194 struct nfs4_closedata { 1195 struct path path; 1196 struct inode *inode; 1197 struct nfs4_state *state; 1198 struct nfs_closeargs arg; 1199 struct nfs_closeres res; 1200 struct nfs_fattr fattr; 1201 unsigned long timestamp; 1202 }; 1203 1204 static void nfs4_free_closedata(void *data) 1205 { 1206 struct nfs4_closedata *calldata = data; 1207 struct nfs4_state_owner *sp = calldata->state->owner; 1208 1209 nfs4_put_open_state(calldata->state); 1210 nfs_free_seqid(calldata->arg.seqid); 1211 nfs4_put_state_owner(sp); 1212 path_put(&calldata->path); 1213 kfree(calldata); 1214 } 1215 1216 static void nfs4_close_done(struct rpc_task *task, void *data) 1217 { 1218 struct nfs4_closedata *calldata = data; 1219 struct nfs4_state *state = calldata->state; 1220 struct nfs_server *server = NFS_SERVER(calldata->inode); 1221 1222 if (RPC_ASSASSINATED(task)) 1223 return; 1224 /* hmm. we are done with the inode, and in the process of freeing 1225 * the state_owner. we keep this around to process errors 1226 */ 1227 switch (task->tk_status) { 1228 case 0: 1229 nfs_set_open_stateid(state, &calldata->res.stateid, 0); 1230 renew_lease(server, calldata->timestamp); 1231 break; 1232 case -NFS4ERR_STALE_STATEID: 1233 case -NFS4ERR_EXPIRED: 1234 break; 1235 default: 1236 if (nfs4_async_handle_error(task, server) == -EAGAIN) { 1237 rpc_restart_call(task); 1238 return; 1239 } 1240 } 1241 nfs_refresh_inode(calldata->inode, calldata->res.fattr); 1242 } 1243 1244 static void nfs4_close_prepare(struct rpc_task *task, void *data) 1245 { 1246 struct nfs4_closedata *calldata = data; 1247 struct nfs4_state *state = calldata->state; 1248 int clear_rd, clear_wr, clear_rdwr; 1249 1250 if (nfs_wait_on_sequence(calldata->arg.seqid, task) != 0) 1251 return; 1252 1253 clear_rd = clear_wr = clear_rdwr = 0; 1254 spin_lock(&state->owner->so_lock); 1255 /* Calculate the change in open mode */ 1256 if (state->n_rdwr == 0) { 1257 if (state->n_rdonly == 0) { 1258 clear_rd |= test_and_clear_bit(NFS_O_RDONLY_STATE, &state->flags); 1259 clear_rdwr |= test_and_clear_bit(NFS_O_RDWR_STATE, &state->flags); 1260 } 1261 if (state->n_wronly == 0) { 1262 clear_wr |= test_and_clear_bit(NFS_O_WRONLY_STATE, &state->flags); 1263 clear_rdwr |= test_and_clear_bit(NFS_O_RDWR_STATE, &state->flags); 1264 } 1265 } 1266 spin_unlock(&state->owner->so_lock); 1267 if (!clear_rd && !clear_wr && !clear_rdwr) { 1268 /* Note: exit _without_ calling nfs4_close_done */ 1269 task->tk_action = NULL; 1270 return; 1271 } 1272 nfs_fattr_init(calldata->res.fattr); 1273 if (test_bit(NFS_O_RDONLY_STATE, &state->flags) != 0) { 1274 task->tk_msg.rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_OPEN_DOWNGRADE]; 1275 calldata->arg.open_flags = FMODE_READ; 1276 } else if (test_bit(NFS_O_WRONLY_STATE, &state->flags) != 0) { 1277 task->tk_msg.rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_OPEN_DOWNGRADE]; 1278 calldata->arg.open_flags = FMODE_WRITE; 1279 } 1280 calldata->timestamp = jiffies; 1281 rpc_call_start(task); 1282 } 1283 1284 static const struct rpc_call_ops nfs4_close_ops = { 1285 .rpc_call_prepare = nfs4_close_prepare, 1286 .rpc_call_done = nfs4_close_done, 1287 .rpc_release = nfs4_free_closedata, 1288 }; 1289 1290 /* 1291 * It is possible for data to be read/written from a mem-mapped file 1292 * after the sys_close call (which hits the vfs layer as a flush). 1293 * This means that we can't safely call nfsv4 close on a file until 1294 * the inode is cleared. This in turn means that we are not good 1295 * NFSv4 citizens - we do not indicate to the server to update the file's 1296 * share state even when we are done with one of the three share 1297 * stateid's in the inode. 1298 * 1299 * NOTE: Caller must be holding the sp->so_owner semaphore! 1300 */ 1301 int nfs4_do_close(struct path *path, struct nfs4_state *state, int wait) 1302 { 1303 struct nfs_server *server = NFS_SERVER(state->inode); 1304 struct nfs4_closedata *calldata; 1305 struct nfs4_state_owner *sp = state->owner; 1306 struct rpc_task *task; 1307 struct rpc_message msg = { 1308 .rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_CLOSE], 1309 .rpc_cred = state->owner->so_cred, 1310 }; 1311 struct rpc_task_setup task_setup_data = { 1312 .rpc_client = server->client, 1313 .rpc_message = &msg, 1314 .callback_ops = &nfs4_close_ops, 1315 .workqueue = nfsiod_workqueue, 1316 .flags = RPC_TASK_ASYNC, 1317 }; 1318 int status = -ENOMEM; 1319 1320 calldata = kmalloc(sizeof(*calldata), GFP_KERNEL); 1321 if (calldata == NULL) 1322 goto out; 1323 calldata->inode = state->inode; 1324 calldata->state = state; 1325 calldata->arg.fh = NFS_FH(state->inode); 1326 calldata->arg.stateid = &state->open_stateid; 1327 /* Serialization for the sequence id */ 1328 calldata->arg.seqid = nfs_alloc_seqid(&state->owner->so_seqid); 1329 if (calldata->arg.seqid == NULL) 1330 goto out_free_calldata; 1331 calldata->arg.bitmask = server->attr_bitmask; 1332 calldata->res.fattr = &calldata->fattr; 1333 calldata->res.seqid = calldata->arg.seqid; 1334 calldata->res.server = server; 1335 calldata->path.mnt = mntget(path->mnt); 1336 calldata->path.dentry = dget(path->dentry); 1337 1338 msg.rpc_argp = &calldata->arg, 1339 msg.rpc_resp = &calldata->res, 1340 task_setup_data.callback_data = calldata; 1341 task = rpc_run_task(&task_setup_data); 1342 if (IS_ERR(task)) 1343 return PTR_ERR(task); 1344 status = 0; 1345 if (wait) 1346 status = rpc_wait_for_completion_task(task); 1347 rpc_put_task(task); 1348 return status; 1349 out_free_calldata: 1350 kfree(calldata); 1351 out: 1352 nfs4_put_open_state(state); 1353 nfs4_put_state_owner(sp); 1354 return status; 1355 } 1356 1357 static int nfs4_intent_set_file(struct nameidata *nd, struct path *path, struct nfs4_state *state) 1358 { 1359 struct file *filp; 1360 int ret; 1361 1362 /* If the open_intent is for execute, we have an extra check to make */ 1363 if (nd->intent.open.flags & FMODE_EXEC) { 1364 ret = nfs_may_open(state->inode, 1365 state->owner->so_cred, 1366 nd->intent.open.flags); 1367 if (ret < 0) 1368 goto out_close; 1369 } 1370 filp = lookup_instantiate_filp(nd, path->dentry, NULL); 1371 if (!IS_ERR(filp)) { 1372 struct nfs_open_context *ctx; 1373 ctx = nfs_file_open_context(filp); 1374 ctx->state = state; 1375 return 0; 1376 } 1377 ret = PTR_ERR(filp); 1378 out_close: 1379 nfs4_close_sync(path, state, nd->intent.open.flags); 1380 return ret; 1381 } 1382 1383 struct dentry * 1384 nfs4_atomic_open(struct inode *dir, struct dentry *dentry, struct nameidata *nd) 1385 { 1386 struct path path = { 1387 .mnt = nd->path.mnt, 1388 .dentry = dentry, 1389 }; 1390 struct dentry *parent; 1391 struct iattr attr; 1392 struct rpc_cred *cred; 1393 struct nfs4_state *state; 1394 struct dentry *res; 1395 1396 if (nd->flags & LOOKUP_CREATE) { 1397 attr.ia_mode = nd->intent.open.create_mode; 1398 attr.ia_valid = ATTR_MODE; 1399 if (!IS_POSIXACL(dir)) 1400 attr.ia_mode &= ~current->fs->umask; 1401 } else { 1402 attr.ia_valid = 0; 1403 BUG_ON(nd->intent.open.flags & O_CREAT); 1404 } 1405 1406 cred = rpc_lookup_cred(); 1407 if (IS_ERR(cred)) 1408 return (struct dentry *)cred; 1409 parent = dentry->d_parent; 1410 /* Protect against concurrent sillydeletes */ 1411 nfs_block_sillyrename(parent); 1412 state = nfs4_do_open(dir, &path, nd->intent.open.flags, &attr, cred); 1413 put_rpccred(cred); 1414 if (IS_ERR(state)) { 1415 if (PTR_ERR(state) == -ENOENT) { 1416 d_add(dentry, NULL); 1417 nfs_set_verifier(dentry, nfs_save_change_attribute(dir)); 1418 } 1419 nfs_unblock_sillyrename(parent); 1420 return (struct dentry *)state; 1421 } 1422 res = d_add_unique(dentry, igrab(state->inode)); 1423 if (res != NULL) 1424 path.dentry = res; 1425 nfs_set_verifier(path.dentry, nfs_save_change_attribute(dir)); 1426 nfs_unblock_sillyrename(parent); 1427 nfs4_intent_set_file(nd, &path, state); 1428 return res; 1429 } 1430 1431 int 1432 nfs4_open_revalidate(struct inode *dir, struct dentry *dentry, int openflags, struct nameidata *nd) 1433 { 1434 struct path path = { 1435 .mnt = nd->path.mnt, 1436 .dentry = dentry, 1437 }; 1438 struct rpc_cred *cred; 1439 struct nfs4_state *state; 1440 1441 cred = rpc_lookup_cred(); 1442 if (IS_ERR(cred)) 1443 return PTR_ERR(cred); 1444 state = nfs4_do_open(dir, &path, openflags, NULL, cred); 1445 put_rpccred(cred); 1446 if (IS_ERR(state)) { 1447 switch (PTR_ERR(state)) { 1448 case -EPERM: 1449 case -EACCES: 1450 case -EDQUOT: 1451 case -ENOSPC: 1452 case -EROFS: 1453 lookup_instantiate_filp(nd, (struct dentry *)state, NULL); 1454 return 1; 1455 default: 1456 goto out_drop; 1457 } 1458 } 1459 if (state->inode == dentry->d_inode) { 1460 nfs_set_verifier(dentry, nfs_save_change_attribute(dir)); 1461 nfs4_intent_set_file(nd, &path, state); 1462 return 1; 1463 } 1464 nfs4_close_sync(&path, state, openflags); 1465 out_drop: 1466 d_drop(dentry); 1467 return 0; 1468 } 1469 1470 1471 static int _nfs4_server_capabilities(struct nfs_server *server, struct nfs_fh *fhandle) 1472 { 1473 struct nfs4_server_caps_res res = {}; 1474 struct rpc_message msg = { 1475 .rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_SERVER_CAPS], 1476 .rpc_argp = fhandle, 1477 .rpc_resp = &res, 1478 }; 1479 int status; 1480 1481 status = rpc_call_sync(server->client, &msg, 0); 1482 if (status == 0) { 1483 memcpy(server->attr_bitmask, res.attr_bitmask, sizeof(server->attr_bitmask)); 1484 if (res.attr_bitmask[0] & FATTR4_WORD0_ACL) 1485 server->caps |= NFS_CAP_ACLS; 1486 if (res.has_links != 0) 1487 server->caps |= NFS_CAP_HARDLINKS; 1488 if (res.has_symlinks != 0) 1489 server->caps |= NFS_CAP_SYMLINKS; 1490 server->acl_bitmask = res.acl_bitmask; 1491 } 1492 return status; 1493 } 1494 1495 int nfs4_server_capabilities(struct nfs_server *server, struct nfs_fh *fhandle) 1496 { 1497 struct nfs4_exception exception = { }; 1498 int err; 1499 do { 1500 err = nfs4_handle_exception(server, 1501 _nfs4_server_capabilities(server, fhandle), 1502 &exception); 1503 } while (exception.retry); 1504 return err; 1505 } 1506 1507 static int _nfs4_lookup_root(struct nfs_server *server, struct nfs_fh *fhandle, 1508 struct nfs_fsinfo *info) 1509 { 1510 struct nfs4_lookup_root_arg args = { 1511 .bitmask = nfs4_fattr_bitmap, 1512 }; 1513 struct nfs4_lookup_res res = { 1514 .server = server, 1515 .fattr = info->fattr, 1516 .fh = fhandle, 1517 }; 1518 struct rpc_message msg = { 1519 .rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_LOOKUP_ROOT], 1520 .rpc_argp = &args, 1521 .rpc_resp = &res, 1522 }; 1523 nfs_fattr_init(info->fattr); 1524 return rpc_call_sync(server->client, &msg, 0); 1525 } 1526 1527 static int nfs4_lookup_root(struct nfs_server *server, struct nfs_fh *fhandle, 1528 struct nfs_fsinfo *info) 1529 { 1530 struct nfs4_exception exception = { }; 1531 int err; 1532 do { 1533 err = nfs4_handle_exception(server, 1534 _nfs4_lookup_root(server, fhandle, info), 1535 &exception); 1536 } while (exception.retry); 1537 return err; 1538 } 1539 1540 /* 1541 * get the file handle for the "/" directory on the server 1542 */ 1543 static int nfs4_proc_get_root(struct nfs_server *server, struct nfs_fh *fhandle, 1544 struct nfs_fsinfo *info) 1545 { 1546 int status; 1547 1548 status = nfs4_lookup_root(server, fhandle, info); 1549 if (status == 0) 1550 status = nfs4_server_capabilities(server, fhandle); 1551 if (status == 0) 1552 status = nfs4_do_fsinfo(server, fhandle, info); 1553 return nfs4_map_errors(status); 1554 } 1555 1556 /* 1557 * Get locations and (maybe) other attributes of a referral. 1558 * Note that we'll actually follow the referral later when 1559 * we detect fsid mismatch in inode revalidation 1560 */ 1561 static int nfs4_get_referral(struct inode *dir, const struct qstr *name, struct nfs_fattr *fattr, struct nfs_fh *fhandle) 1562 { 1563 int status = -ENOMEM; 1564 struct page *page = NULL; 1565 struct nfs4_fs_locations *locations = NULL; 1566 1567 page = alloc_page(GFP_KERNEL); 1568 if (page == NULL) 1569 goto out; 1570 locations = kmalloc(sizeof(struct nfs4_fs_locations), GFP_KERNEL); 1571 if (locations == NULL) 1572 goto out; 1573 1574 status = nfs4_proc_fs_locations(dir, name, locations, page); 1575 if (status != 0) 1576 goto out; 1577 /* Make sure server returned a different fsid for the referral */ 1578 if (nfs_fsid_equal(&NFS_SERVER(dir)->fsid, &locations->fattr.fsid)) { 1579 dprintk("%s: server did not return a different fsid for a referral at %s\n", __func__, name->name); 1580 status = -EIO; 1581 goto out; 1582 } 1583 1584 memcpy(fattr, &locations->fattr, sizeof(struct nfs_fattr)); 1585 fattr->valid |= NFS_ATTR_FATTR_V4_REFERRAL; 1586 if (!fattr->mode) 1587 fattr->mode = S_IFDIR; 1588 memset(fhandle, 0, sizeof(struct nfs_fh)); 1589 out: 1590 if (page) 1591 __free_page(page); 1592 if (locations) 1593 kfree(locations); 1594 return status; 1595 } 1596 1597 static int _nfs4_proc_getattr(struct nfs_server *server, struct nfs_fh *fhandle, struct nfs_fattr *fattr) 1598 { 1599 struct nfs4_getattr_arg args = { 1600 .fh = fhandle, 1601 .bitmask = server->attr_bitmask, 1602 }; 1603 struct nfs4_getattr_res res = { 1604 .fattr = fattr, 1605 .server = server, 1606 }; 1607 struct rpc_message msg = { 1608 .rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_GETATTR], 1609 .rpc_argp = &args, 1610 .rpc_resp = &res, 1611 }; 1612 1613 nfs_fattr_init(fattr); 1614 return rpc_call_sync(server->client, &msg, 0); 1615 } 1616 1617 static int nfs4_proc_getattr(struct nfs_server *server, struct nfs_fh *fhandle, struct nfs_fattr *fattr) 1618 { 1619 struct nfs4_exception exception = { }; 1620 int err; 1621 do { 1622 err = nfs4_handle_exception(server, 1623 _nfs4_proc_getattr(server, fhandle, fattr), 1624 &exception); 1625 } while (exception.retry); 1626 return err; 1627 } 1628 1629 /* 1630 * The file is not closed if it is opened due to the a request to change 1631 * the size of the file. The open call will not be needed once the 1632 * VFS layer lookup-intents are implemented. 1633 * 1634 * Close is called when the inode is destroyed. 1635 * If we haven't opened the file for O_WRONLY, we 1636 * need to in the size_change case to obtain a stateid. 1637 * 1638 * Got race? 1639 * Because OPEN is always done by name in nfsv4, it is 1640 * possible that we opened a different file by the same 1641 * name. We can recognize this race condition, but we 1642 * can't do anything about it besides returning an error. 1643 * 1644 * This will be fixed with VFS changes (lookup-intent). 1645 */ 1646 static int 1647 nfs4_proc_setattr(struct dentry *dentry, struct nfs_fattr *fattr, 1648 struct iattr *sattr) 1649 { 1650 struct inode *inode = dentry->d_inode; 1651 struct rpc_cred *cred = NULL; 1652 struct nfs4_state *state = NULL; 1653 int status; 1654 1655 nfs_fattr_init(fattr); 1656 1657 /* Search for an existing open(O_WRITE) file */ 1658 if (sattr->ia_valid & ATTR_FILE) { 1659 struct nfs_open_context *ctx; 1660 1661 ctx = nfs_file_open_context(sattr->ia_file); 1662 if (ctx) { 1663 cred = ctx->cred; 1664 state = ctx->state; 1665 } 1666 } 1667 1668 status = nfs4_do_setattr(inode, cred, fattr, sattr, state); 1669 if (status == 0) 1670 nfs_setattr_update_inode(inode, sattr); 1671 return status; 1672 } 1673 1674 static int _nfs4_proc_lookupfh(struct nfs_server *server, const struct nfs_fh *dirfh, 1675 const struct qstr *name, struct nfs_fh *fhandle, 1676 struct nfs_fattr *fattr) 1677 { 1678 int status; 1679 struct nfs4_lookup_arg args = { 1680 .bitmask = server->attr_bitmask, 1681 .dir_fh = dirfh, 1682 .name = name, 1683 }; 1684 struct nfs4_lookup_res res = { 1685 .server = server, 1686 .fattr = fattr, 1687 .fh = fhandle, 1688 }; 1689 struct rpc_message msg = { 1690 .rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_LOOKUP], 1691 .rpc_argp = &args, 1692 .rpc_resp = &res, 1693 }; 1694 1695 nfs_fattr_init(fattr); 1696 1697 dprintk("NFS call lookupfh %s\n", name->name); 1698 status = rpc_call_sync(server->client, &msg, 0); 1699 dprintk("NFS reply lookupfh: %d\n", status); 1700 return status; 1701 } 1702 1703 static int nfs4_proc_lookupfh(struct nfs_server *server, struct nfs_fh *dirfh, 1704 struct qstr *name, struct nfs_fh *fhandle, 1705 struct nfs_fattr *fattr) 1706 { 1707 struct nfs4_exception exception = { }; 1708 int err; 1709 do { 1710 err = _nfs4_proc_lookupfh(server, dirfh, name, fhandle, fattr); 1711 /* FIXME: !!!! */ 1712 if (err == -NFS4ERR_MOVED) { 1713 err = -EREMOTE; 1714 break; 1715 } 1716 err = nfs4_handle_exception(server, err, &exception); 1717 } while (exception.retry); 1718 return err; 1719 } 1720 1721 static int _nfs4_proc_lookup(struct inode *dir, const struct qstr *name, 1722 struct nfs_fh *fhandle, struct nfs_fattr *fattr) 1723 { 1724 int status; 1725 1726 dprintk("NFS call lookup %s\n", name->name); 1727 status = _nfs4_proc_lookupfh(NFS_SERVER(dir), NFS_FH(dir), name, fhandle, fattr); 1728 if (status == -NFS4ERR_MOVED) 1729 status = nfs4_get_referral(dir, name, fattr, fhandle); 1730 dprintk("NFS reply lookup: %d\n", status); 1731 return status; 1732 } 1733 1734 static int nfs4_proc_lookup(struct inode *dir, struct qstr *name, struct nfs_fh *fhandle, struct nfs_fattr *fattr) 1735 { 1736 struct nfs4_exception exception = { }; 1737 int err; 1738 do { 1739 err = nfs4_handle_exception(NFS_SERVER(dir), 1740 _nfs4_proc_lookup(dir, name, fhandle, fattr), 1741 &exception); 1742 } while (exception.retry); 1743 return err; 1744 } 1745 1746 static int _nfs4_proc_access(struct inode *inode, struct nfs_access_entry *entry) 1747 { 1748 struct nfs_server *server = NFS_SERVER(inode); 1749 struct nfs_fattr fattr; 1750 struct nfs4_accessargs args = { 1751 .fh = NFS_FH(inode), 1752 .bitmask = server->attr_bitmask, 1753 }; 1754 struct nfs4_accessres res = { 1755 .server = server, 1756 .fattr = &fattr, 1757 }; 1758 struct rpc_message msg = { 1759 .rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_ACCESS], 1760 .rpc_argp = &args, 1761 .rpc_resp = &res, 1762 .rpc_cred = entry->cred, 1763 }; 1764 int mode = entry->mask; 1765 int status; 1766 1767 /* 1768 * Determine which access bits we want to ask for... 1769 */ 1770 if (mode & MAY_READ) 1771 args.access |= NFS4_ACCESS_READ; 1772 if (S_ISDIR(inode->i_mode)) { 1773 if (mode & MAY_WRITE) 1774 args.access |= NFS4_ACCESS_MODIFY | NFS4_ACCESS_EXTEND | NFS4_ACCESS_DELETE; 1775 if (mode & MAY_EXEC) 1776 args.access |= NFS4_ACCESS_LOOKUP; 1777 } else { 1778 if (mode & MAY_WRITE) 1779 args.access |= NFS4_ACCESS_MODIFY | NFS4_ACCESS_EXTEND; 1780 if (mode & MAY_EXEC) 1781 args.access |= NFS4_ACCESS_EXECUTE; 1782 } 1783 nfs_fattr_init(&fattr); 1784 status = rpc_call_sync(NFS_CLIENT(inode), &msg, 0); 1785 if (!status) { 1786 entry->mask = 0; 1787 if (res.access & NFS4_ACCESS_READ) 1788 entry->mask |= MAY_READ; 1789 if (res.access & (NFS4_ACCESS_MODIFY | NFS4_ACCESS_EXTEND | NFS4_ACCESS_DELETE)) 1790 entry->mask |= MAY_WRITE; 1791 if (res.access & (NFS4_ACCESS_LOOKUP|NFS4_ACCESS_EXECUTE)) 1792 entry->mask |= MAY_EXEC; 1793 nfs_refresh_inode(inode, &fattr); 1794 } 1795 return status; 1796 } 1797 1798 static int nfs4_proc_access(struct inode *inode, struct nfs_access_entry *entry) 1799 { 1800 struct nfs4_exception exception = { }; 1801 int err; 1802 do { 1803 err = nfs4_handle_exception(NFS_SERVER(inode), 1804 _nfs4_proc_access(inode, entry), 1805 &exception); 1806 } while (exception.retry); 1807 return err; 1808 } 1809 1810 /* 1811 * TODO: For the time being, we don't try to get any attributes 1812 * along with any of the zero-copy operations READ, READDIR, 1813 * READLINK, WRITE. 1814 * 1815 * In the case of the first three, we want to put the GETATTR 1816 * after the read-type operation -- this is because it is hard 1817 * to predict the length of a GETATTR response in v4, and thus 1818 * align the READ data correctly. This means that the GETATTR 1819 * may end up partially falling into the page cache, and we should 1820 * shift it into the 'tail' of the xdr_buf before processing. 1821 * To do this efficiently, we need to know the total length 1822 * of data received, which doesn't seem to be available outside 1823 * of the RPC layer. 1824 * 1825 * In the case of WRITE, we also want to put the GETATTR after 1826 * the operation -- in this case because we want to make sure 1827 * we get the post-operation mtime and size. This means that 1828 * we can't use xdr_encode_pages() as written: we need a variant 1829 * of it which would leave room in the 'tail' iovec. 1830 * 1831 * Both of these changes to the XDR layer would in fact be quite 1832 * minor, but I decided to leave them for a subsequent patch. 1833 */ 1834 static int _nfs4_proc_readlink(struct inode *inode, struct page *page, 1835 unsigned int pgbase, unsigned int pglen) 1836 { 1837 struct nfs4_readlink args = { 1838 .fh = NFS_FH(inode), 1839 .pgbase = pgbase, 1840 .pglen = pglen, 1841 .pages = &page, 1842 }; 1843 struct rpc_message msg = { 1844 .rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_READLINK], 1845 .rpc_argp = &args, 1846 .rpc_resp = NULL, 1847 }; 1848 1849 return rpc_call_sync(NFS_CLIENT(inode), &msg, 0); 1850 } 1851 1852 static int nfs4_proc_readlink(struct inode *inode, struct page *page, 1853 unsigned int pgbase, unsigned int pglen) 1854 { 1855 struct nfs4_exception exception = { }; 1856 int err; 1857 do { 1858 err = nfs4_handle_exception(NFS_SERVER(inode), 1859 _nfs4_proc_readlink(inode, page, pgbase, pglen), 1860 &exception); 1861 } while (exception.retry); 1862 return err; 1863 } 1864 1865 /* 1866 * Got race? 1867 * We will need to arrange for the VFS layer to provide an atomic open. 1868 * Until then, this create/open method is prone to inefficiency and race 1869 * conditions due to the lookup, create, and open VFS calls from sys_open() 1870 * placed on the wire. 1871 * 1872 * Given the above sorry state of affairs, I'm simply sending an OPEN. 1873 * The file will be opened again in the subsequent VFS open call 1874 * (nfs4_proc_file_open). 1875 * 1876 * The open for read will just hang around to be used by any process that 1877 * opens the file O_RDONLY. This will all be resolved with the VFS changes. 1878 */ 1879 1880 static int 1881 nfs4_proc_create(struct inode *dir, struct dentry *dentry, struct iattr *sattr, 1882 int flags, struct nameidata *nd) 1883 { 1884 struct path path = { 1885 .mnt = nd->path.mnt, 1886 .dentry = dentry, 1887 }; 1888 struct nfs4_state *state; 1889 struct rpc_cred *cred; 1890 int status = 0; 1891 1892 cred = rpc_lookup_cred(); 1893 if (IS_ERR(cred)) { 1894 status = PTR_ERR(cred); 1895 goto out; 1896 } 1897 state = nfs4_do_open(dir, &path, flags, sattr, cred); 1898 d_drop(dentry); 1899 if (IS_ERR(state)) { 1900 status = PTR_ERR(state); 1901 goto out_putcred; 1902 } 1903 d_add(dentry, igrab(state->inode)); 1904 nfs_set_verifier(dentry, nfs_save_change_attribute(dir)); 1905 if (flags & O_EXCL) { 1906 struct nfs_fattr fattr; 1907 status = nfs4_do_setattr(state->inode, cred, &fattr, sattr, state); 1908 if (status == 0) 1909 nfs_setattr_update_inode(state->inode, sattr); 1910 nfs_post_op_update_inode(state->inode, &fattr); 1911 } 1912 if (status == 0 && (nd->flags & LOOKUP_OPEN) != 0) 1913 status = nfs4_intent_set_file(nd, &path, state); 1914 else 1915 nfs4_close_sync(&path, state, flags); 1916 out_putcred: 1917 put_rpccred(cred); 1918 out: 1919 return status; 1920 } 1921 1922 static int _nfs4_proc_remove(struct inode *dir, struct qstr *name) 1923 { 1924 struct nfs_server *server = NFS_SERVER(dir); 1925 struct nfs_removeargs args = { 1926 .fh = NFS_FH(dir), 1927 .name.len = name->len, 1928 .name.name = name->name, 1929 .bitmask = server->attr_bitmask, 1930 }; 1931 struct nfs_removeres res = { 1932 .server = server, 1933 }; 1934 struct rpc_message msg = { 1935 .rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_REMOVE], 1936 .rpc_argp = &args, 1937 .rpc_resp = &res, 1938 }; 1939 int status; 1940 1941 nfs_fattr_init(&res.dir_attr); 1942 status = rpc_call_sync(server->client, &msg, 0); 1943 if (status == 0) { 1944 update_changeattr(dir, &res.cinfo); 1945 nfs_post_op_update_inode(dir, &res.dir_attr); 1946 } 1947 return status; 1948 } 1949 1950 static int nfs4_proc_remove(struct inode *dir, struct qstr *name) 1951 { 1952 struct nfs4_exception exception = { }; 1953 int err; 1954 do { 1955 err = nfs4_handle_exception(NFS_SERVER(dir), 1956 _nfs4_proc_remove(dir, name), 1957 &exception); 1958 } while (exception.retry); 1959 return err; 1960 } 1961 1962 static void nfs4_proc_unlink_setup(struct rpc_message *msg, struct inode *dir) 1963 { 1964 struct nfs_server *server = NFS_SERVER(dir); 1965 struct nfs_removeargs *args = msg->rpc_argp; 1966 struct nfs_removeres *res = msg->rpc_resp; 1967 1968 args->bitmask = server->attr_bitmask; 1969 res->server = server; 1970 msg->rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_REMOVE]; 1971 } 1972 1973 static int nfs4_proc_unlink_done(struct rpc_task *task, struct inode *dir) 1974 { 1975 struct nfs_removeres *res = task->tk_msg.rpc_resp; 1976 1977 if (nfs4_async_handle_error(task, res->server) == -EAGAIN) 1978 return 0; 1979 update_changeattr(dir, &res->cinfo); 1980 nfs_post_op_update_inode(dir, &res->dir_attr); 1981 return 1; 1982 } 1983 1984 static int _nfs4_proc_rename(struct inode *old_dir, struct qstr *old_name, 1985 struct inode *new_dir, struct qstr *new_name) 1986 { 1987 struct nfs_server *server = NFS_SERVER(old_dir); 1988 struct nfs4_rename_arg arg = { 1989 .old_dir = NFS_FH(old_dir), 1990 .new_dir = NFS_FH(new_dir), 1991 .old_name = old_name, 1992 .new_name = new_name, 1993 .bitmask = server->attr_bitmask, 1994 }; 1995 struct nfs_fattr old_fattr, new_fattr; 1996 struct nfs4_rename_res res = { 1997 .server = server, 1998 .old_fattr = &old_fattr, 1999 .new_fattr = &new_fattr, 2000 }; 2001 struct rpc_message msg = { 2002 .rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_RENAME], 2003 .rpc_argp = &arg, 2004 .rpc_resp = &res, 2005 }; 2006 int status; 2007 2008 nfs_fattr_init(res.old_fattr); 2009 nfs_fattr_init(res.new_fattr); 2010 status = rpc_call_sync(server->client, &msg, 0); 2011 2012 if (!status) { 2013 update_changeattr(old_dir, &res.old_cinfo); 2014 nfs_post_op_update_inode(old_dir, res.old_fattr); 2015 update_changeattr(new_dir, &res.new_cinfo); 2016 nfs_post_op_update_inode(new_dir, res.new_fattr); 2017 } 2018 return status; 2019 } 2020 2021 static int nfs4_proc_rename(struct inode *old_dir, struct qstr *old_name, 2022 struct inode *new_dir, struct qstr *new_name) 2023 { 2024 struct nfs4_exception exception = { }; 2025 int err; 2026 do { 2027 err = nfs4_handle_exception(NFS_SERVER(old_dir), 2028 _nfs4_proc_rename(old_dir, old_name, 2029 new_dir, new_name), 2030 &exception); 2031 } while (exception.retry); 2032 return err; 2033 } 2034 2035 static int _nfs4_proc_link(struct inode *inode, struct inode *dir, struct qstr *name) 2036 { 2037 struct nfs_server *server = NFS_SERVER(inode); 2038 struct nfs4_link_arg arg = { 2039 .fh = NFS_FH(inode), 2040 .dir_fh = NFS_FH(dir), 2041 .name = name, 2042 .bitmask = server->attr_bitmask, 2043 }; 2044 struct nfs_fattr fattr, dir_attr; 2045 struct nfs4_link_res res = { 2046 .server = server, 2047 .fattr = &fattr, 2048 .dir_attr = &dir_attr, 2049 }; 2050 struct rpc_message msg = { 2051 .rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_LINK], 2052 .rpc_argp = &arg, 2053 .rpc_resp = &res, 2054 }; 2055 int status; 2056 2057 nfs_fattr_init(res.fattr); 2058 nfs_fattr_init(res.dir_attr); 2059 status = rpc_call_sync(server->client, &msg, 0); 2060 if (!status) { 2061 update_changeattr(dir, &res.cinfo); 2062 nfs_post_op_update_inode(dir, res.dir_attr); 2063 nfs_post_op_update_inode(inode, res.fattr); 2064 } 2065 2066 return status; 2067 } 2068 2069 static int nfs4_proc_link(struct inode *inode, struct inode *dir, struct qstr *name) 2070 { 2071 struct nfs4_exception exception = { }; 2072 int err; 2073 do { 2074 err = nfs4_handle_exception(NFS_SERVER(inode), 2075 _nfs4_proc_link(inode, dir, name), 2076 &exception); 2077 } while (exception.retry); 2078 return err; 2079 } 2080 2081 struct nfs4_createdata { 2082 struct rpc_message msg; 2083 struct nfs4_create_arg arg; 2084 struct nfs4_create_res res; 2085 struct nfs_fh fh; 2086 struct nfs_fattr fattr; 2087 struct nfs_fattr dir_fattr; 2088 }; 2089 2090 static struct nfs4_createdata *nfs4_alloc_createdata(struct inode *dir, 2091 struct qstr *name, struct iattr *sattr, u32 ftype) 2092 { 2093 struct nfs4_createdata *data; 2094 2095 data = kzalloc(sizeof(*data), GFP_KERNEL); 2096 if (data != NULL) { 2097 struct nfs_server *server = NFS_SERVER(dir); 2098 2099 data->msg.rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_CREATE]; 2100 data->msg.rpc_argp = &data->arg; 2101 data->msg.rpc_resp = &data->res; 2102 data->arg.dir_fh = NFS_FH(dir); 2103 data->arg.server = server; 2104 data->arg.name = name; 2105 data->arg.attrs = sattr; 2106 data->arg.ftype = ftype; 2107 data->arg.bitmask = server->attr_bitmask; 2108 data->res.server = server; 2109 data->res.fh = &data->fh; 2110 data->res.fattr = &data->fattr; 2111 data->res.dir_fattr = &data->dir_fattr; 2112 nfs_fattr_init(data->res.fattr); 2113 nfs_fattr_init(data->res.dir_fattr); 2114 } 2115 return data; 2116 } 2117 2118 static int nfs4_do_create(struct inode *dir, struct dentry *dentry, struct nfs4_createdata *data) 2119 { 2120 int status = rpc_call_sync(NFS_CLIENT(dir), &data->msg, 0); 2121 if (status == 0) { 2122 update_changeattr(dir, &data->res.dir_cinfo); 2123 nfs_post_op_update_inode(dir, data->res.dir_fattr); 2124 status = nfs_instantiate(dentry, data->res.fh, data->res.fattr); 2125 } 2126 return status; 2127 } 2128 2129 static void nfs4_free_createdata(struct nfs4_createdata *data) 2130 { 2131 kfree(data); 2132 } 2133 2134 static int _nfs4_proc_symlink(struct inode *dir, struct dentry *dentry, 2135 struct page *page, unsigned int len, struct iattr *sattr) 2136 { 2137 struct nfs4_createdata *data; 2138 int status = -ENAMETOOLONG; 2139 2140 if (len > NFS4_MAXPATHLEN) 2141 goto out; 2142 2143 status = -ENOMEM; 2144 data = nfs4_alloc_createdata(dir, &dentry->d_name, sattr, NF4LNK); 2145 if (data == NULL) 2146 goto out; 2147 2148 data->msg.rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_SYMLINK]; 2149 data->arg.u.symlink.pages = &page; 2150 data->arg.u.symlink.len = len; 2151 2152 status = nfs4_do_create(dir, dentry, data); 2153 2154 nfs4_free_createdata(data); 2155 out: 2156 return status; 2157 } 2158 2159 static int nfs4_proc_symlink(struct inode *dir, struct dentry *dentry, 2160 struct page *page, unsigned int len, struct iattr *sattr) 2161 { 2162 struct nfs4_exception exception = { }; 2163 int err; 2164 do { 2165 err = nfs4_handle_exception(NFS_SERVER(dir), 2166 _nfs4_proc_symlink(dir, dentry, page, 2167 len, sattr), 2168 &exception); 2169 } while (exception.retry); 2170 return err; 2171 } 2172 2173 static int _nfs4_proc_mkdir(struct inode *dir, struct dentry *dentry, 2174 struct iattr *sattr) 2175 { 2176 struct nfs4_createdata *data; 2177 int status = -ENOMEM; 2178 2179 data = nfs4_alloc_createdata(dir, &dentry->d_name, sattr, NF4DIR); 2180 if (data == NULL) 2181 goto out; 2182 2183 status = nfs4_do_create(dir, dentry, data); 2184 2185 nfs4_free_createdata(data); 2186 out: 2187 return status; 2188 } 2189 2190 static int nfs4_proc_mkdir(struct inode *dir, struct dentry *dentry, 2191 struct iattr *sattr) 2192 { 2193 struct nfs4_exception exception = { }; 2194 int err; 2195 do { 2196 err = nfs4_handle_exception(NFS_SERVER(dir), 2197 _nfs4_proc_mkdir(dir, dentry, sattr), 2198 &exception); 2199 } while (exception.retry); 2200 return err; 2201 } 2202 2203 static int _nfs4_proc_readdir(struct dentry *dentry, struct rpc_cred *cred, 2204 u64 cookie, struct page *page, unsigned int count, int plus) 2205 { 2206 struct inode *dir = dentry->d_inode; 2207 struct nfs4_readdir_arg args = { 2208 .fh = NFS_FH(dir), 2209 .pages = &page, 2210 .pgbase = 0, 2211 .count = count, 2212 .bitmask = NFS_SERVER(dentry->d_inode)->attr_bitmask, 2213 }; 2214 struct nfs4_readdir_res res; 2215 struct rpc_message msg = { 2216 .rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_READDIR], 2217 .rpc_argp = &args, 2218 .rpc_resp = &res, 2219 .rpc_cred = cred, 2220 }; 2221 int status; 2222 2223 dprintk("%s: dentry = %s/%s, cookie = %Lu\n", __func__, 2224 dentry->d_parent->d_name.name, 2225 dentry->d_name.name, 2226 (unsigned long long)cookie); 2227 nfs4_setup_readdir(cookie, NFS_COOKIEVERF(dir), dentry, &args); 2228 res.pgbase = args.pgbase; 2229 status = rpc_call_sync(NFS_CLIENT(dir), &msg, 0); 2230 if (status == 0) 2231 memcpy(NFS_COOKIEVERF(dir), res.verifier.data, NFS4_VERIFIER_SIZE); 2232 2233 nfs_invalidate_atime(dir); 2234 2235 dprintk("%s: returns %d\n", __func__, status); 2236 return status; 2237 } 2238 2239 static int nfs4_proc_readdir(struct dentry *dentry, struct rpc_cred *cred, 2240 u64 cookie, struct page *page, unsigned int count, int plus) 2241 { 2242 struct nfs4_exception exception = { }; 2243 int err; 2244 do { 2245 err = nfs4_handle_exception(NFS_SERVER(dentry->d_inode), 2246 _nfs4_proc_readdir(dentry, cred, cookie, 2247 page, count, plus), 2248 &exception); 2249 } while (exception.retry); 2250 return err; 2251 } 2252 2253 static int _nfs4_proc_mknod(struct inode *dir, struct dentry *dentry, 2254 struct iattr *sattr, dev_t rdev) 2255 { 2256 struct nfs4_createdata *data; 2257 int mode = sattr->ia_mode; 2258 int status = -ENOMEM; 2259 2260 BUG_ON(!(sattr->ia_valid & ATTR_MODE)); 2261 BUG_ON(!S_ISFIFO(mode) && !S_ISBLK(mode) && !S_ISCHR(mode) && !S_ISSOCK(mode)); 2262 2263 data = nfs4_alloc_createdata(dir, &dentry->d_name, sattr, NF4SOCK); 2264 if (data == NULL) 2265 goto out; 2266 2267 if (S_ISFIFO(mode)) 2268 data->arg.ftype = NF4FIFO; 2269 else if (S_ISBLK(mode)) { 2270 data->arg.ftype = NF4BLK; 2271 data->arg.u.device.specdata1 = MAJOR(rdev); 2272 data->arg.u.device.specdata2 = MINOR(rdev); 2273 } 2274 else if (S_ISCHR(mode)) { 2275 data->arg.ftype = NF4CHR; 2276 data->arg.u.device.specdata1 = MAJOR(rdev); 2277 data->arg.u.device.specdata2 = MINOR(rdev); 2278 } 2279 2280 status = nfs4_do_create(dir, dentry, data); 2281 2282 nfs4_free_createdata(data); 2283 out: 2284 return status; 2285 } 2286 2287 static int nfs4_proc_mknod(struct inode *dir, struct dentry *dentry, 2288 struct iattr *sattr, dev_t rdev) 2289 { 2290 struct nfs4_exception exception = { }; 2291 int err; 2292 do { 2293 err = nfs4_handle_exception(NFS_SERVER(dir), 2294 _nfs4_proc_mknod(dir, dentry, sattr, rdev), 2295 &exception); 2296 } while (exception.retry); 2297 return err; 2298 } 2299 2300 static int _nfs4_proc_statfs(struct nfs_server *server, struct nfs_fh *fhandle, 2301 struct nfs_fsstat *fsstat) 2302 { 2303 struct nfs4_statfs_arg args = { 2304 .fh = fhandle, 2305 .bitmask = server->attr_bitmask, 2306 }; 2307 struct rpc_message msg = { 2308 .rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_STATFS], 2309 .rpc_argp = &args, 2310 .rpc_resp = fsstat, 2311 }; 2312 2313 nfs_fattr_init(fsstat->fattr); 2314 return rpc_call_sync(server->client, &msg, 0); 2315 } 2316 2317 static int nfs4_proc_statfs(struct nfs_server *server, struct nfs_fh *fhandle, struct nfs_fsstat *fsstat) 2318 { 2319 struct nfs4_exception exception = { }; 2320 int err; 2321 do { 2322 err = nfs4_handle_exception(server, 2323 _nfs4_proc_statfs(server, fhandle, fsstat), 2324 &exception); 2325 } while (exception.retry); 2326 return err; 2327 } 2328 2329 static int _nfs4_do_fsinfo(struct nfs_server *server, struct nfs_fh *fhandle, 2330 struct nfs_fsinfo *fsinfo) 2331 { 2332 struct nfs4_fsinfo_arg args = { 2333 .fh = fhandle, 2334 .bitmask = server->attr_bitmask, 2335 }; 2336 struct rpc_message msg = { 2337 .rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_FSINFO], 2338 .rpc_argp = &args, 2339 .rpc_resp = fsinfo, 2340 }; 2341 2342 return rpc_call_sync(server->client, &msg, 0); 2343 } 2344 2345 static int nfs4_do_fsinfo(struct nfs_server *server, struct nfs_fh *fhandle, struct nfs_fsinfo *fsinfo) 2346 { 2347 struct nfs4_exception exception = { }; 2348 int err; 2349 2350 do { 2351 err = nfs4_handle_exception(server, 2352 _nfs4_do_fsinfo(server, fhandle, fsinfo), 2353 &exception); 2354 } while (exception.retry); 2355 return err; 2356 } 2357 2358 static int nfs4_proc_fsinfo(struct nfs_server *server, struct nfs_fh *fhandle, struct nfs_fsinfo *fsinfo) 2359 { 2360 nfs_fattr_init(fsinfo->fattr); 2361 return nfs4_do_fsinfo(server, fhandle, fsinfo); 2362 } 2363 2364 static int _nfs4_proc_pathconf(struct nfs_server *server, struct nfs_fh *fhandle, 2365 struct nfs_pathconf *pathconf) 2366 { 2367 struct nfs4_pathconf_arg args = { 2368 .fh = fhandle, 2369 .bitmask = server->attr_bitmask, 2370 }; 2371 struct rpc_message msg = { 2372 .rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_PATHCONF], 2373 .rpc_argp = &args, 2374 .rpc_resp = pathconf, 2375 }; 2376 2377 /* None of the pathconf attributes are mandatory to implement */ 2378 if ((args.bitmask[0] & nfs4_pathconf_bitmap[0]) == 0) { 2379 memset(pathconf, 0, sizeof(*pathconf)); 2380 return 0; 2381 } 2382 2383 nfs_fattr_init(pathconf->fattr); 2384 return rpc_call_sync(server->client, &msg, 0); 2385 } 2386 2387 static int nfs4_proc_pathconf(struct nfs_server *server, struct nfs_fh *fhandle, 2388 struct nfs_pathconf *pathconf) 2389 { 2390 struct nfs4_exception exception = { }; 2391 int err; 2392 2393 do { 2394 err = nfs4_handle_exception(server, 2395 _nfs4_proc_pathconf(server, fhandle, pathconf), 2396 &exception); 2397 } while (exception.retry); 2398 return err; 2399 } 2400 2401 static int nfs4_read_done(struct rpc_task *task, struct nfs_read_data *data) 2402 { 2403 struct nfs_server *server = NFS_SERVER(data->inode); 2404 2405 if (nfs4_async_handle_error(task, server) == -EAGAIN) { 2406 rpc_restart_call(task); 2407 return -EAGAIN; 2408 } 2409 2410 nfs_invalidate_atime(data->inode); 2411 if (task->tk_status > 0) 2412 renew_lease(server, data->timestamp); 2413 return 0; 2414 } 2415 2416 static void nfs4_proc_read_setup(struct nfs_read_data *data, struct rpc_message *msg) 2417 { 2418 data->timestamp = jiffies; 2419 msg->rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_READ]; 2420 } 2421 2422 static int nfs4_write_done(struct rpc_task *task, struct nfs_write_data *data) 2423 { 2424 struct inode *inode = data->inode; 2425 2426 if (nfs4_async_handle_error(task, NFS_SERVER(inode)) == -EAGAIN) { 2427 rpc_restart_call(task); 2428 return -EAGAIN; 2429 } 2430 if (task->tk_status >= 0) { 2431 renew_lease(NFS_SERVER(inode), data->timestamp); 2432 nfs_post_op_update_inode_force_wcc(inode, data->res.fattr); 2433 } 2434 return 0; 2435 } 2436 2437 static void nfs4_proc_write_setup(struct nfs_write_data *data, struct rpc_message *msg) 2438 { 2439 struct nfs_server *server = NFS_SERVER(data->inode); 2440 2441 data->args.bitmask = server->attr_bitmask; 2442 data->res.server = server; 2443 data->timestamp = jiffies; 2444 2445 msg->rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_WRITE]; 2446 } 2447 2448 static int nfs4_commit_done(struct rpc_task *task, struct nfs_write_data *data) 2449 { 2450 struct inode *inode = data->inode; 2451 2452 if (nfs4_async_handle_error(task, NFS_SERVER(inode)) == -EAGAIN) { 2453 rpc_restart_call(task); 2454 return -EAGAIN; 2455 } 2456 nfs_refresh_inode(inode, data->res.fattr); 2457 return 0; 2458 } 2459 2460 static void nfs4_proc_commit_setup(struct nfs_write_data *data, struct rpc_message *msg) 2461 { 2462 struct nfs_server *server = NFS_SERVER(data->inode); 2463 2464 data->args.bitmask = server->attr_bitmask; 2465 data->res.server = server; 2466 msg->rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_COMMIT]; 2467 } 2468 2469 /* 2470 * nfs4_proc_async_renew(): This is not one of the nfs_rpc_ops; it is a special 2471 * standalone procedure for queueing an asynchronous RENEW. 2472 */ 2473 static void nfs4_renew_done(struct rpc_task *task, void *data) 2474 { 2475 struct nfs_client *clp = (struct nfs_client *)task->tk_msg.rpc_argp; 2476 unsigned long timestamp = (unsigned long)data; 2477 2478 if (task->tk_status < 0) { 2479 switch (task->tk_status) { 2480 case -NFS4ERR_STALE_CLIENTID: 2481 case -NFS4ERR_EXPIRED: 2482 case -NFS4ERR_CB_PATH_DOWN: 2483 nfs4_schedule_state_recovery(clp); 2484 } 2485 return; 2486 } 2487 spin_lock(&clp->cl_lock); 2488 if (time_before(clp->cl_last_renewal,timestamp)) 2489 clp->cl_last_renewal = timestamp; 2490 spin_unlock(&clp->cl_lock); 2491 } 2492 2493 static const struct rpc_call_ops nfs4_renew_ops = { 2494 .rpc_call_done = nfs4_renew_done, 2495 }; 2496 2497 int nfs4_proc_async_renew(struct nfs_client *clp, struct rpc_cred *cred) 2498 { 2499 struct rpc_message msg = { 2500 .rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_RENEW], 2501 .rpc_argp = clp, 2502 .rpc_cred = cred, 2503 }; 2504 2505 return rpc_call_async(clp->cl_rpcclient, &msg, RPC_TASK_SOFT, 2506 &nfs4_renew_ops, (void *)jiffies); 2507 } 2508 2509 int nfs4_proc_renew(struct nfs_client *clp, struct rpc_cred *cred) 2510 { 2511 struct rpc_message msg = { 2512 .rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_RENEW], 2513 .rpc_argp = clp, 2514 .rpc_cred = cred, 2515 }; 2516 unsigned long now = jiffies; 2517 int status; 2518 2519 status = rpc_call_sync(clp->cl_rpcclient, &msg, 0); 2520 if (status < 0) 2521 return status; 2522 spin_lock(&clp->cl_lock); 2523 if (time_before(clp->cl_last_renewal,now)) 2524 clp->cl_last_renewal = now; 2525 spin_unlock(&clp->cl_lock); 2526 return 0; 2527 } 2528 2529 static inline int nfs4_server_supports_acls(struct nfs_server *server) 2530 { 2531 return (server->caps & NFS_CAP_ACLS) 2532 && (server->acl_bitmask & ACL4_SUPPORT_ALLOW_ACL) 2533 && (server->acl_bitmask & ACL4_SUPPORT_DENY_ACL); 2534 } 2535 2536 /* Assuming that XATTR_SIZE_MAX is a multiple of PAGE_CACHE_SIZE, and that 2537 * it's OK to put sizeof(void) * (XATTR_SIZE_MAX/PAGE_CACHE_SIZE) bytes on 2538 * the stack. 2539 */ 2540 #define NFS4ACL_MAXPAGES (XATTR_SIZE_MAX >> PAGE_CACHE_SHIFT) 2541 2542 static void buf_to_pages(const void *buf, size_t buflen, 2543 struct page **pages, unsigned int *pgbase) 2544 { 2545 const void *p = buf; 2546 2547 *pgbase = offset_in_page(buf); 2548 p -= *pgbase; 2549 while (p < buf + buflen) { 2550 *(pages++) = virt_to_page(p); 2551 p += PAGE_CACHE_SIZE; 2552 } 2553 } 2554 2555 struct nfs4_cached_acl { 2556 int cached; 2557 size_t len; 2558 char data[0]; 2559 }; 2560 2561 static void nfs4_set_cached_acl(struct inode *inode, struct nfs4_cached_acl *acl) 2562 { 2563 struct nfs_inode *nfsi = NFS_I(inode); 2564 2565 spin_lock(&inode->i_lock); 2566 kfree(nfsi->nfs4_acl); 2567 nfsi->nfs4_acl = acl; 2568 spin_unlock(&inode->i_lock); 2569 } 2570 2571 static void nfs4_zap_acl_attr(struct inode *inode) 2572 { 2573 nfs4_set_cached_acl(inode, NULL); 2574 } 2575 2576 static inline ssize_t nfs4_read_cached_acl(struct inode *inode, char *buf, size_t buflen) 2577 { 2578 struct nfs_inode *nfsi = NFS_I(inode); 2579 struct nfs4_cached_acl *acl; 2580 int ret = -ENOENT; 2581 2582 spin_lock(&inode->i_lock); 2583 acl = nfsi->nfs4_acl; 2584 if (acl == NULL) 2585 goto out; 2586 if (buf == NULL) /* user is just asking for length */ 2587 goto out_len; 2588 if (acl->cached == 0) 2589 goto out; 2590 ret = -ERANGE; /* see getxattr(2) man page */ 2591 if (acl->len > buflen) 2592 goto out; 2593 memcpy(buf, acl->data, acl->len); 2594 out_len: 2595 ret = acl->len; 2596 out: 2597 spin_unlock(&inode->i_lock); 2598 return ret; 2599 } 2600 2601 static void nfs4_write_cached_acl(struct inode *inode, const char *buf, size_t acl_len) 2602 { 2603 struct nfs4_cached_acl *acl; 2604 2605 if (buf && acl_len <= PAGE_SIZE) { 2606 acl = kmalloc(sizeof(*acl) + acl_len, GFP_KERNEL); 2607 if (acl == NULL) 2608 goto out; 2609 acl->cached = 1; 2610 memcpy(acl->data, buf, acl_len); 2611 } else { 2612 acl = kmalloc(sizeof(*acl), GFP_KERNEL); 2613 if (acl == NULL) 2614 goto out; 2615 acl->cached = 0; 2616 } 2617 acl->len = acl_len; 2618 out: 2619 nfs4_set_cached_acl(inode, acl); 2620 } 2621 2622 static ssize_t __nfs4_get_acl_uncached(struct inode *inode, void *buf, size_t buflen) 2623 { 2624 struct page *pages[NFS4ACL_MAXPAGES]; 2625 struct nfs_getaclargs args = { 2626 .fh = NFS_FH(inode), 2627 .acl_pages = pages, 2628 .acl_len = buflen, 2629 }; 2630 size_t resp_len = buflen; 2631 void *resp_buf; 2632 struct rpc_message msg = { 2633 .rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_GETACL], 2634 .rpc_argp = &args, 2635 .rpc_resp = &resp_len, 2636 }; 2637 struct page *localpage = NULL; 2638 int ret; 2639 2640 if (buflen < PAGE_SIZE) { 2641 /* As long as we're doing a round trip to the server anyway, 2642 * let's be prepared for a page of acl data. */ 2643 localpage = alloc_page(GFP_KERNEL); 2644 resp_buf = page_address(localpage); 2645 if (localpage == NULL) 2646 return -ENOMEM; 2647 args.acl_pages[0] = localpage; 2648 args.acl_pgbase = 0; 2649 resp_len = args.acl_len = PAGE_SIZE; 2650 } else { 2651 resp_buf = buf; 2652 buf_to_pages(buf, buflen, args.acl_pages, &args.acl_pgbase); 2653 } 2654 ret = rpc_call_sync(NFS_CLIENT(inode), &msg, 0); 2655 if (ret) 2656 goto out_free; 2657 if (resp_len > args.acl_len) 2658 nfs4_write_cached_acl(inode, NULL, resp_len); 2659 else 2660 nfs4_write_cached_acl(inode, resp_buf, resp_len); 2661 if (buf) { 2662 ret = -ERANGE; 2663 if (resp_len > buflen) 2664 goto out_free; 2665 if (localpage) 2666 memcpy(buf, resp_buf, resp_len); 2667 } 2668 ret = resp_len; 2669 out_free: 2670 if (localpage) 2671 __free_page(localpage); 2672 return ret; 2673 } 2674 2675 static ssize_t nfs4_get_acl_uncached(struct inode *inode, void *buf, size_t buflen) 2676 { 2677 struct nfs4_exception exception = { }; 2678 ssize_t ret; 2679 do { 2680 ret = __nfs4_get_acl_uncached(inode, buf, buflen); 2681 if (ret >= 0) 2682 break; 2683 ret = nfs4_handle_exception(NFS_SERVER(inode), ret, &exception); 2684 } while (exception.retry); 2685 return ret; 2686 } 2687 2688 static ssize_t nfs4_proc_get_acl(struct inode *inode, void *buf, size_t buflen) 2689 { 2690 struct nfs_server *server = NFS_SERVER(inode); 2691 int ret; 2692 2693 if (!nfs4_server_supports_acls(server)) 2694 return -EOPNOTSUPP; 2695 ret = nfs_revalidate_inode(server, inode); 2696 if (ret < 0) 2697 return ret; 2698 if (NFS_I(inode)->cache_validity & NFS_INO_INVALID_ACL) 2699 nfs_zap_acl_cache(inode); 2700 ret = nfs4_read_cached_acl(inode, buf, buflen); 2701 if (ret != -ENOENT) 2702 return ret; 2703 return nfs4_get_acl_uncached(inode, buf, buflen); 2704 } 2705 2706 static int __nfs4_proc_set_acl(struct inode *inode, const void *buf, size_t buflen) 2707 { 2708 struct nfs_server *server = NFS_SERVER(inode); 2709 struct page *pages[NFS4ACL_MAXPAGES]; 2710 struct nfs_setaclargs arg = { 2711 .fh = NFS_FH(inode), 2712 .acl_pages = pages, 2713 .acl_len = buflen, 2714 }; 2715 struct rpc_message msg = { 2716 .rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_SETACL], 2717 .rpc_argp = &arg, 2718 .rpc_resp = NULL, 2719 }; 2720 int ret; 2721 2722 if (!nfs4_server_supports_acls(server)) 2723 return -EOPNOTSUPP; 2724 nfs_inode_return_delegation(inode); 2725 buf_to_pages(buf, buflen, arg.acl_pages, &arg.acl_pgbase); 2726 ret = rpc_call_sync(NFS_CLIENT(inode), &msg, 0); 2727 nfs_access_zap_cache(inode); 2728 nfs_zap_acl_cache(inode); 2729 return ret; 2730 } 2731 2732 static int nfs4_proc_set_acl(struct inode *inode, const void *buf, size_t buflen) 2733 { 2734 struct nfs4_exception exception = { }; 2735 int err; 2736 do { 2737 err = nfs4_handle_exception(NFS_SERVER(inode), 2738 __nfs4_proc_set_acl(inode, buf, buflen), 2739 &exception); 2740 } while (exception.retry); 2741 return err; 2742 } 2743 2744 static int 2745 nfs4_async_handle_error(struct rpc_task *task, const struct nfs_server *server) 2746 { 2747 struct nfs_client *clp = server->nfs_client; 2748 2749 if (!clp || task->tk_status >= 0) 2750 return 0; 2751 switch(task->tk_status) { 2752 case -NFS4ERR_STALE_CLIENTID: 2753 case -NFS4ERR_STALE_STATEID: 2754 case -NFS4ERR_EXPIRED: 2755 rpc_sleep_on(&clp->cl_rpcwaitq, task, NULL); 2756 nfs4_schedule_state_recovery(clp); 2757 if (test_bit(NFS4CLNT_STATE_RECOVER, &clp->cl_state) == 0) 2758 rpc_wake_up_queued_task(&clp->cl_rpcwaitq, task); 2759 task->tk_status = 0; 2760 return -EAGAIN; 2761 case -NFS4ERR_DELAY: 2762 nfs_inc_server_stats(server, NFSIOS_DELAY); 2763 case -NFS4ERR_GRACE: 2764 rpc_delay(task, NFS4_POLL_RETRY_MAX); 2765 task->tk_status = 0; 2766 return -EAGAIN; 2767 case -NFS4ERR_OLD_STATEID: 2768 task->tk_status = 0; 2769 return -EAGAIN; 2770 } 2771 task->tk_status = nfs4_map_errors(task->tk_status); 2772 return 0; 2773 } 2774 2775 static int nfs4_wait_bit_killable(void *word) 2776 { 2777 if (fatal_signal_pending(current)) 2778 return -ERESTARTSYS; 2779 schedule(); 2780 return 0; 2781 } 2782 2783 static int nfs4_wait_clnt_recover(struct rpc_clnt *clnt, struct nfs_client *clp) 2784 { 2785 int res; 2786 2787 might_sleep(); 2788 2789 rwsem_acquire(&clp->cl_sem.dep_map, 0, 0, _RET_IP_); 2790 2791 res = wait_on_bit(&clp->cl_state, NFS4CLNT_STATE_RECOVER, 2792 nfs4_wait_bit_killable, TASK_KILLABLE); 2793 2794 rwsem_release(&clp->cl_sem.dep_map, 1, _RET_IP_); 2795 return res; 2796 } 2797 2798 static int nfs4_delay(struct rpc_clnt *clnt, long *timeout) 2799 { 2800 int res = 0; 2801 2802 might_sleep(); 2803 2804 if (*timeout <= 0) 2805 *timeout = NFS4_POLL_RETRY_MIN; 2806 if (*timeout > NFS4_POLL_RETRY_MAX) 2807 *timeout = NFS4_POLL_RETRY_MAX; 2808 schedule_timeout_killable(*timeout); 2809 if (fatal_signal_pending(current)) 2810 res = -ERESTARTSYS; 2811 *timeout <<= 1; 2812 return res; 2813 } 2814 2815 /* This is the error handling routine for processes that are allowed 2816 * to sleep. 2817 */ 2818 static int nfs4_handle_exception(const struct nfs_server *server, int errorcode, struct nfs4_exception *exception) 2819 { 2820 struct nfs_client *clp = server->nfs_client; 2821 int ret = errorcode; 2822 2823 exception->retry = 0; 2824 switch(errorcode) { 2825 case 0: 2826 return 0; 2827 case -NFS4ERR_STALE_CLIENTID: 2828 case -NFS4ERR_STALE_STATEID: 2829 case -NFS4ERR_EXPIRED: 2830 nfs4_schedule_state_recovery(clp); 2831 ret = nfs4_wait_clnt_recover(server->client, clp); 2832 if (ret == 0) 2833 exception->retry = 1; 2834 break; 2835 case -NFS4ERR_FILE_OPEN: 2836 case -NFS4ERR_GRACE: 2837 case -NFS4ERR_DELAY: 2838 ret = nfs4_delay(server->client, &exception->timeout); 2839 if (ret != 0) 2840 break; 2841 case -NFS4ERR_OLD_STATEID: 2842 exception->retry = 1; 2843 } 2844 /* We failed to handle the error */ 2845 return nfs4_map_errors(ret); 2846 } 2847 2848 int nfs4_proc_setclientid(struct nfs_client *clp, u32 program, unsigned short port, struct rpc_cred *cred) 2849 { 2850 nfs4_verifier sc_verifier; 2851 struct nfs4_setclientid setclientid = { 2852 .sc_verifier = &sc_verifier, 2853 .sc_prog = program, 2854 }; 2855 struct rpc_message msg = { 2856 .rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_SETCLIENTID], 2857 .rpc_argp = &setclientid, 2858 .rpc_resp = clp, 2859 .rpc_cred = cred, 2860 }; 2861 __be32 *p; 2862 int loop = 0; 2863 int status; 2864 2865 p = (__be32*)sc_verifier.data; 2866 *p++ = htonl((u32)clp->cl_boot_time.tv_sec); 2867 *p = htonl((u32)clp->cl_boot_time.tv_nsec); 2868 2869 for(;;) { 2870 setclientid.sc_name_len = scnprintf(setclientid.sc_name, 2871 sizeof(setclientid.sc_name), "%s/%s %s %s %u", 2872 clp->cl_ipaddr, 2873 rpc_peeraddr2str(clp->cl_rpcclient, 2874 RPC_DISPLAY_ADDR), 2875 rpc_peeraddr2str(clp->cl_rpcclient, 2876 RPC_DISPLAY_PROTO), 2877 clp->cl_rpcclient->cl_auth->au_ops->au_name, 2878 clp->cl_id_uniquifier); 2879 setclientid.sc_netid_len = scnprintf(setclientid.sc_netid, 2880 sizeof(setclientid.sc_netid), 2881 rpc_peeraddr2str(clp->cl_rpcclient, 2882 RPC_DISPLAY_NETID)); 2883 setclientid.sc_uaddr_len = scnprintf(setclientid.sc_uaddr, 2884 sizeof(setclientid.sc_uaddr), "%s.%u.%u", 2885 clp->cl_ipaddr, port >> 8, port & 255); 2886 2887 status = rpc_call_sync(clp->cl_rpcclient, &msg, 0); 2888 if (status != -NFS4ERR_CLID_INUSE) 2889 break; 2890 if (signalled()) 2891 break; 2892 if (loop++ & 1) 2893 ssleep(clp->cl_lease_time + 1); 2894 else 2895 if (++clp->cl_id_uniquifier == 0) 2896 break; 2897 } 2898 return status; 2899 } 2900 2901 static int _nfs4_proc_setclientid_confirm(struct nfs_client *clp, struct rpc_cred *cred) 2902 { 2903 struct nfs_fsinfo fsinfo; 2904 struct rpc_message msg = { 2905 .rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_SETCLIENTID_CONFIRM], 2906 .rpc_argp = clp, 2907 .rpc_resp = &fsinfo, 2908 .rpc_cred = cred, 2909 }; 2910 unsigned long now; 2911 int status; 2912 2913 now = jiffies; 2914 status = rpc_call_sync(clp->cl_rpcclient, &msg, 0); 2915 if (status == 0) { 2916 spin_lock(&clp->cl_lock); 2917 clp->cl_lease_time = fsinfo.lease_time * HZ; 2918 clp->cl_last_renewal = now; 2919 clear_bit(NFS4CLNT_LEASE_EXPIRED, &clp->cl_state); 2920 spin_unlock(&clp->cl_lock); 2921 } 2922 return status; 2923 } 2924 2925 int nfs4_proc_setclientid_confirm(struct nfs_client *clp, struct rpc_cred *cred) 2926 { 2927 long timeout = 0; 2928 int err; 2929 do { 2930 err = _nfs4_proc_setclientid_confirm(clp, cred); 2931 switch (err) { 2932 case 0: 2933 return err; 2934 case -NFS4ERR_RESOURCE: 2935 /* The IBM lawyers misread another document! */ 2936 case -NFS4ERR_DELAY: 2937 err = nfs4_delay(clp->cl_rpcclient, &timeout); 2938 } 2939 } while (err == 0); 2940 return err; 2941 } 2942 2943 struct nfs4_delegreturndata { 2944 struct nfs4_delegreturnargs args; 2945 struct nfs4_delegreturnres res; 2946 struct nfs_fh fh; 2947 nfs4_stateid stateid; 2948 unsigned long timestamp; 2949 struct nfs_fattr fattr; 2950 int rpc_status; 2951 }; 2952 2953 static void nfs4_delegreturn_done(struct rpc_task *task, void *calldata) 2954 { 2955 struct nfs4_delegreturndata *data = calldata; 2956 data->rpc_status = task->tk_status; 2957 if (data->rpc_status == 0) 2958 renew_lease(data->res.server, data->timestamp); 2959 } 2960 2961 static void nfs4_delegreturn_release(void *calldata) 2962 { 2963 kfree(calldata); 2964 } 2965 2966 static const struct rpc_call_ops nfs4_delegreturn_ops = { 2967 .rpc_call_done = nfs4_delegreturn_done, 2968 .rpc_release = nfs4_delegreturn_release, 2969 }; 2970 2971 static int _nfs4_proc_delegreturn(struct inode *inode, struct rpc_cred *cred, const nfs4_stateid *stateid, int issync) 2972 { 2973 struct nfs4_delegreturndata *data; 2974 struct nfs_server *server = NFS_SERVER(inode); 2975 struct rpc_task *task; 2976 struct rpc_message msg = { 2977 .rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_DELEGRETURN], 2978 .rpc_cred = cred, 2979 }; 2980 struct rpc_task_setup task_setup_data = { 2981 .rpc_client = server->client, 2982 .rpc_message = &msg, 2983 .callback_ops = &nfs4_delegreturn_ops, 2984 .flags = RPC_TASK_ASYNC, 2985 }; 2986 int status = 0; 2987 2988 data = kmalloc(sizeof(*data), GFP_KERNEL); 2989 if (data == NULL) 2990 return -ENOMEM; 2991 data->args.fhandle = &data->fh; 2992 data->args.stateid = &data->stateid; 2993 data->args.bitmask = server->attr_bitmask; 2994 nfs_copy_fh(&data->fh, NFS_FH(inode)); 2995 memcpy(&data->stateid, stateid, sizeof(data->stateid)); 2996 data->res.fattr = &data->fattr; 2997 data->res.server = server; 2998 nfs_fattr_init(data->res.fattr); 2999 data->timestamp = jiffies; 3000 data->rpc_status = 0; 3001 3002 task_setup_data.callback_data = data; 3003 msg.rpc_argp = &data->args, 3004 msg.rpc_resp = &data->res, 3005 task = rpc_run_task(&task_setup_data); 3006 if (IS_ERR(task)) 3007 return PTR_ERR(task); 3008 if (!issync) 3009 goto out; 3010 status = nfs4_wait_for_completion_rpc_task(task); 3011 if (status != 0) 3012 goto out; 3013 status = data->rpc_status; 3014 if (status != 0) 3015 goto out; 3016 nfs_refresh_inode(inode, &data->fattr); 3017 out: 3018 rpc_put_task(task); 3019 return status; 3020 } 3021 3022 int nfs4_proc_delegreturn(struct inode *inode, struct rpc_cred *cred, const nfs4_stateid *stateid, int issync) 3023 { 3024 struct nfs_server *server = NFS_SERVER(inode); 3025 struct nfs4_exception exception = { }; 3026 int err; 3027 do { 3028 err = _nfs4_proc_delegreturn(inode, cred, stateid, issync); 3029 switch (err) { 3030 case -NFS4ERR_STALE_STATEID: 3031 case -NFS4ERR_EXPIRED: 3032 case 0: 3033 return 0; 3034 } 3035 err = nfs4_handle_exception(server, err, &exception); 3036 } while (exception.retry); 3037 return err; 3038 } 3039 3040 #define NFS4_LOCK_MINTIMEOUT (1 * HZ) 3041 #define NFS4_LOCK_MAXTIMEOUT (30 * HZ) 3042 3043 /* 3044 * sleep, with exponential backoff, and retry the LOCK operation. 3045 */ 3046 static unsigned long 3047 nfs4_set_lock_task_retry(unsigned long timeout) 3048 { 3049 schedule_timeout_killable(timeout); 3050 timeout <<= 1; 3051 if (timeout > NFS4_LOCK_MAXTIMEOUT) 3052 return NFS4_LOCK_MAXTIMEOUT; 3053 return timeout; 3054 } 3055 3056 static int _nfs4_proc_getlk(struct nfs4_state *state, int cmd, struct file_lock *request) 3057 { 3058 struct inode *inode = state->inode; 3059 struct nfs_server *server = NFS_SERVER(inode); 3060 struct nfs_client *clp = server->nfs_client; 3061 struct nfs_lockt_args arg = { 3062 .fh = NFS_FH(inode), 3063 .fl = request, 3064 }; 3065 struct nfs_lockt_res res = { 3066 .denied = request, 3067 }; 3068 struct rpc_message msg = { 3069 .rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_LOCKT], 3070 .rpc_argp = &arg, 3071 .rpc_resp = &res, 3072 .rpc_cred = state->owner->so_cred, 3073 }; 3074 struct nfs4_lock_state *lsp; 3075 int status; 3076 3077 down_read(&clp->cl_sem); 3078 arg.lock_owner.clientid = clp->cl_clientid; 3079 status = nfs4_set_lock_state(state, request); 3080 if (status != 0) 3081 goto out; 3082 lsp = request->fl_u.nfs4_fl.owner; 3083 arg.lock_owner.id = lsp->ls_id.id; 3084 status = rpc_call_sync(server->client, &msg, 0); 3085 switch (status) { 3086 case 0: 3087 request->fl_type = F_UNLCK; 3088 break; 3089 case -NFS4ERR_DENIED: 3090 status = 0; 3091 } 3092 request->fl_ops->fl_release_private(request); 3093 out: 3094 up_read(&clp->cl_sem); 3095 return status; 3096 } 3097 3098 static int nfs4_proc_getlk(struct nfs4_state *state, int cmd, struct file_lock *request) 3099 { 3100 struct nfs4_exception exception = { }; 3101 int err; 3102 3103 do { 3104 err = nfs4_handle_exception(NFS_SERVER(state->inode), 3105 _nfs4_proc_getlk(state, cmd, request), 3106 &exception); 3107 } while (exception.retry); 3108 return err; 3109 } 3110 3111 static int do_vfs_lock(struct file *file, struct file_lock *fl) 3112 { 3113 int res = 0; 3114 switch (fl->fl_flags & (FL_POSIX|FL_FLOCK)) { 3115 case FL_POSIX: 3116 res = posix_lock_file_wait(file, fl); 3117 break; 3118 case FL_FLOCK: 3119 res = flock_lock_file_wait(file, fl); 3120 break; 3121 default: 3122 BUG(); 3123 } 3124 return res; 3125 } 3126 3127 struct nfs4_unlockdata { 3128 struct nfs_locku_args arg; 3129 struct nfs_locku_res res; 3130 struct nfs4_lock_state *lsp; 3131 struct nfs_open_context *ctx; 3132 struct file_lock fl; 3133 const struct nfs_server *server; 3134 unsigned long timestamp; 3135 }; 3136 3137 static struct nfs4_unlockdata *nfs4_alloc_unlockdata(struct file_lock *fl, 3138 struct nfs_open_context *ctx, 3139 struct nfs4_lock_state *lsp, 3140 struct nfs_seqid *seqid) 3141 { 3142 struct nfs4_unlockdata *p; 3143 struct inode *inode = lsp->ls_state->inode; 3144 3145 p = kmalloc(sizeof(*p), GFP_KERNEL); 3146 if (p == NULL) 3147 return NULL; 3148 p->arg.fh = NFS_FH(inode); 3149 p->arg.fl = &p->fl; 3150 p->arg.seqid = seqid; 3151 p->res.seqid = seqid; 3152 p->arg.stateid = &lsp->ls_stateid; 3153 p->lsp = lsp; 3154 atomic_inc(&lsp->ls_count); 3155 /* Ensure we don't close file until we're done freeing locks! */ 3156 p->ctx = get_nfs_open_context(ctx); 3157 memcpy(&p->fl, fl, sizeof(p->fl)); 3158 p->server = NFS_SERVER(inode); 3159 return p; 3160 } 3161 3162 static void nfs4_locku_release_calldata(void *data) 3163 { 3164 struct nfs4_unlockdata *calldata = data; 3165 nfs_free_seqid(calldata->arg.seqid); 3166 nfs4_put_lock_state(calldata->lsp); 3167 put_nfs_open_context(calldata->ctx); 3168 kfree(calldata); 3169 } 3170 3171 static void nfs4_locku_done(struct rpc_task *task, void *data) 3172 { 3173 struct nfs4_unlockdata *calldata = data; 3174 3175 if (RPC_ASSASSINATED(task)) 3176 return; 3177 switch (task->tk_status) { 3178 case 0: 3179 memcpy(calldata->lsp->ls_stateid.data, 3180 calldata->res.stateid.data, 3181 sizeof(calldata->lsp->ls_stateid.data)); 3182 renew_lease(calldata->server, calldata->timestamp); 3183 break; 3184 case -NFS4ERR_STALE_STATEID: 3185 case -NFS4ERR_EXPIRED: 3186 break; 3187 default: 3188 if (nfs4_async_handle_error(task, calldata->server) == -EAGAIN) 3189 rpc_restart_call(task); 3190 } 3191 } 3192 3193 static void nfs4_locku_prepare(struct rpc_task *task, void *data) 3194 { 3195 struct nfs4_unlockdata *calldata = data; 3196 3197 if (nfs_wait_on_sequence(calldata->arg.seqid, task) != 0) 3198 return; 3199 if ((calldata->lsp->ls_flags & NFS_LOCK_INITIALIZED) == 0) { 3200 /* Note: exit _without_ running nfs4_locku_done */ 3201 task->tk_action = NULL; 3202 return; 3203 } 3204 calldata->timestamp = jiffies; 3205 rpc_call_start(task); 3206 } 3207 3208 static const struct rpc_call_ops nfs4_locku_ops = { 3209 .rpc_call_prepare = nfs4_locku_prepare, 3210 .rpc_call_done = nfs4_locku_done, 3211 .rpc_release = nfs4_locku_release_calldata, 3212 }; 3213 3214 static struct rpc_task *nfs4_do_unlck(struct file_lock *fl, 3215 struct nfs_open_context *ctx, 3216 struct nfs4_lock_state *lsp, 3217 struct nfs_seqid *seqid) 3218 { 3219 struct nfs4_unlockdata *data; 3220 struct rpc_message msg = { 3221 .rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_LOCKU], 3222 .rpc_cred = ctx->cred, 3223 }; 3224 struct rpc_task_setup task_setup_data = { 3225 .rpc_client = NFS_CLIENT(lsp->ls_state->inode), 3226 .rpc_message = &msg, 3227 .callback_ops = &nfs4_locku_ops, 3228 .workqueue = nfsiod_workqueue, 3229 .flags = RPC_TASK_ASYNC, 3230 }; 3231 3232 /* Ensure this is an unlock - when canceling a lock, the 3233 * canceled lock is passed in, and it won't be an unlock. 3234 */ 3235 fl->fl_type = F_UNLCK; 3236 3237 data = nfs4_alloc_unlockdata(fl, ctx, lsp, seqid); 3238 if (data == NULL) { 3239 nfs_free_seqid(seqid); 3240 return ERR_PTR(-ENOMEM); 3241 } 3242 3243 msg.rpc_argp = &data->arg, 3244 msg.rpc_resp = &data->res, 3245 task_setup_data.callback_data = data; 3246 return rpc_run_task(&task_setup_data); 3247 } 3248 3249 static int nfs4_proc_unlck(struct nfs4_state *state, int cmd, struct file_lock *request) 3250 { 3251 struct nfs_seqid *seqid; 3252 struct nfs4_lock_state *lsp; 3253 struct rpc_task *task; 3254 int status = 0; 3255 unsigned char fl_flags = request->fl_flags; 3256 3257 status = nfs4_set_lock_state(state, request); 3258 /* Unlock _before_ we do the RPC call */ 3259 request->fl_flags |= FL_EXISTS; 3260 if (do_vfs_lock(request->fl_file, request) == -ENOENT) 3261 goto out; 3262 if (status != 0) 3263 goto out; 3264 /* Is this a delegated lock? */ 3265 if (test_bit(NFS_DELEGATED_STATE, &state->flags)) 3266 goto out; 3267 lsp = request->fl_u.nfs4_fl.owner; 3268 seqid = nfs_alloc_seqid(&lsp->ls_seqid); 3269 status = -ENOMEM; 3270 if (seqid == NULL) 3271 goto out; 3272 task = nfs4_do_unlck(request, nfs_file_open_context(request->fl_file), lsp, seqid); 3273 status = PTR_ERR(task); 3274 if (IS_ERR(task)) 3275 goto out; 3276 status = nfs4_wait_for_completion_rpc_task(task); 3277 rpc_put_task(task); 3278 out: 3279 request->fl_flags = fl_flags; 3280 return status; 3281 } 3282 3283 struct nfs4_lockdata { 3284 struct nfs_lock_args arg; 3285 struct nfs_lock_res res; 3286 struct nfs4_lock_state *lsp; 3287 struct nfs_open_context *ctx; 3288 struct file_lock fl; 3289 unsigned long timestamp; 3290 int rpc_status; 3291 int cancelled; 3292 }; 3293 3294 static struct nfs4_lockdata *nfs4_alloc_lockdata(struct file_lock *fl, 3295 struct nfs_open_context *ctx, struct nfs4_lock_state *lsp) 3296 { 3297 struct nfs4_lockdata *p; 3298 struct inode *inode = lsp->ls_state->inode; 3299 struct nfs_server *server = NFS_SERVER(inode); 3300 3301 p = kzalloc(sizeof(*p), GFP_KERNEL); 3302 if (p == NULL) 3303 return NULL; 3304 3305 p->arg.fh = NFS_FH(inode); 3306 p->arg.fl = &p->fl; 3307 p->arg.open_seqid = nfs_alloc_seqid(&lsp->ls_state->owner->so_seqid); 3308 if (p->arg.open_seqid == NULL) 3309 goto out_free; 3310 p->arg.lock_seqid = nfs_alloc_seqid(&lsp->ls_seqid); 3311 if (p->arg.lock_seqid == NULL) 3312 goto out_free_seqid; 3313 p->arg.lock_stateid = &lsp->ls_stateid; 3314 p->arg.lock_owner.clientid = server->nfs_client->cl_clientid; 3315 p->arg.lock_owner.id = lsp->ls_id.id; 3316 p->res.lock_seqid = p->arg.lock_seqid; 3317 p->lsp = lsp; 3318 atomic_inc(&lsp->ls_count); 3319 p->ctx = get_nfs_open_context(ctx); 3320 memcpy(&p->fl, fl, sizeof(p->fl)); 3321 return p; 3322 out_free_seqid: 3323 nfs_free_seqid(p->arg.open_seqid); 3324 out_free: 3325 kfree(p); 3326 return NULL; 3327 } 3328 3329 static void nfs4_lock_prepare(struct rpc_task *task, void *calldata) 3330 { 3331 struct nfs4_lockdata *data = calldata; 3332 struct nfs4_state *state = data->lsp->ls_state; 3333 3334 dprintk("%s: begin!\n", __func__); 3335 if (nfs_wait_on_sequence(data->arg.lock_seqid, task) != 0) 3336 return; 3337 /* Do we need to do an open_to_lock_owner? */ 3338 if (!(data->arg.lock_seqid->sequence->flags & NFS_SEQID_CONFIRMED)) { 3339 if (nfs_wait_on_sequence(data->arg.open_seqid, task) != 0) 3340 return; 3341 data->arg.open_stateid = &state->stateid; 3342 data->arg.new_lock_owner = 1; 3343 data->res.open_seqid = data->arg.open_seqid; 3344 } else 3345 data->arg.new_lock_owner = 0; 3346 data->timestamp = jiffies; 3347 rpc_call_start(task); 3348 dprintk("%s: done!, ret = %d\n", __func__, data->rpc_status); 3349 } 3350 3351 static void nfs4_lock_done(struct rpc_task *task, void *calldata) 3352 { 3353 struct nfs4_lockdata *data = calldata; 3354 3355 dprintk("%s: begin!\n", __func__); 3356 3357 data->rpc_status = task->tk_status; 3358 if (RPC_ASSASSINATED(task)) 3359 goto out; 3360 if (data->arg.new_lock_owner != 0) { 3361 if (data->rpc_status == 0) 3362 nfs_confirm_seqid(&data->lsp->ls_seqid, 0); 3363 else 3364 goto out; 3365 } 3366 if (data->rpc_status == 0) { 3367 memcpy(data->lsp->ls_stateid.data, data->res.stateid.data, 3368 sizeof(data->lsp->ls_stateid.data)); 3369 data->lsp->ls_flags |= NFS_LOCK_INITIALIZED; 3370 renew_lease(NFS_SERVER(data->ctx->path.dentry->d_inode), data->timestamp); 3371 } 3372 out: 3373 dprintk("%s: done, ret = %d!\n", __func__, data->rpc_status); 3374 } 3375 3376 static void nfs4_lock_release(void *calldata) 3377 { 3378 struct nfs4_lockdata *data = calldata; 3379 3380 dprintk("%s: begin!\n", __func__); 3381 nfs_free_seqid(data->arg.open_seqid); 3382 if (data->cancelled != 0) { 3383 struct rpc_task *task; 3384 task = nfs4_do_unlck(&data->fl, data->ctx, data->lsp, 3385 data->arg.lock_seqid); 3386 if (!IS_ERR(task)) 3387 rpc_put_task(task); 3388 dprintk("%s: cancelling lock!\n", __func__); 3389 } else 3390 nfs_free_seqid(data->arg.lock_seqid); 3391 nfs4_put_lock_state(data->lsp); 3392 put_nfs_open_context(data->ctx); 3393 kfree(data); 3394 dprintk("%s: done!\n", __func__); 3395 } 3396 3397 static const struct rpc_call_ops nfs4_lock_ops = { 3398 .rpc_call_prepare = nfs4_lock_prepare, 3399 .rpc_call_done = nfs4_lock_done, 3400 .rpc_release = nfs4_lock_release, 3401 }; 3402 3403 static int _nfs4_do_setlk(struct nfs4_state *state, int cmd, struct file_lock *fl, int reclaim) 3404 { 3405 struct nfs4_lockdata *data; 3406 struct rpc_task *task; 3407 struct rpc_message msg = { 3408 .rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_LOCK], 3409 .rpc_cred = state->owner->so_cred, 3410 }; 3411 struct rpc_task_setup task_setup_data = { 3412 .rpc_client = NFS_CLIENT(state->inode), 3413 .rpc_message = &msg, 3414 .callback_ops = &nfs4_lock_ops, 3415 .workqueue = nfsiod_workqueue, 3416 .flags = RPC_TASK_ASYNC, 3417 }; 3418 int ret; 3419 3420 dprintk("%s: begin!\n", __func__); 3421 data = nfs4_alloc_lockdata(fl, nfs_file_open_context(fl->fl_file), 3422 fl->fl_u.nfs4_fl.owner); 3423 if (data == NULL) 3424 return -ENOMEM; 3425 if (IS_SETLKW(cmd)) 3426 data->arg.block = 1; 3427 if (reclaim != 0) 3428 data->arg.reclaim = 1; 3429 msg.rpc_argp = &data->arg, 3430 msg.rpc_resp = &data->res, 3431 task_setup_data.callback_data = data; 3432 task = rpc_run_task(&task_setup_data); 3433 if (IS_ERR(task)) 3434 return PTR_ERR(task); 3435 ret = nfs4_wait_for_completion_rpc_task(task); 3436 if (ret == 0) { 3437 ret = data->rpc_status; 3438 if (ret == -NFS4ERR_DENIED) 3439 ret = -EAGAIN; 3440 } else 3441 data->cancelled = 1; 3442 rpc_put_task(task); 3443 dprintk("%s: done, ret = %d!\n", __func__, ret); 3444 return ret; 3445 } 3446 3447 static int nfs4_lock_reclaim(struct nfs4_state *state, struct file_lock *request) 3448 { 3449 struct nfs_server *server = NFS_SERVER(state->inode); 3450 struct nfs4_exception exception = { }; 3451 int err; 3452 3453 do { 3454 /* Cache the lock if possible... */ 3455 if (test_bit(NFS_DELEGATED_STATE, &state->flags) != 0) 3456 return 0; 3457 err = _nfs4_do_setlk(state, F_SETLK, request, 1); 3458 if (err != -NFS4ERR_DELAY) 3459 break; 3460 nfs4_handle_exception(server, err, &exception); 3461 } while (exception.retry); 3462 return err; 3463 } 3464 3465 static int nfs4_lock_expired(struct nfs4_state *state, struct file_lock *request) 3466 { 3467 struct nfs_server *server = NFS_SERVER(state->inode); 3468 struct nfs4_exception exception = { }; 3469 int err; 3470 3471 err = nfs4_set_lock_state(state, request); 3472 if (err != 0) 3473 return err; 3474 do { 3475 if (test_bit(NFS_DELEGATED_STATE, &state->flags) != 0) 3476 return 0; 3477 err = _nfs4_do_setlk(state, F_SETLK, request, 0); 3478 if (err != -NFS4ERR_DELAY) 3479 break; 3480 nfs4_handle_exception(server, err, &exception); 3481 } while (exception.retry); 3482 return err; 3483 } 3484 3485 static int _nfs4_proc_setlk(struct nfs4_state *state, int cmd, struct file_lock *request) 3486 { 3487 struct nfs_client *clp = state->owner->so_client; 3488 unsigned char fl_flags = request->fl_flags; 3489 int status; 3490 3491 /* Is this a delegated open? */ 3492 status = nfs4_set_lock_state(state, request); 3493 if (status != 0) 3494 goto out; 3495 request->fl_flags |= FL_ACCESS; 3496 status = do_vfs_lock(request->fl_file, request); 3497 if (status < 0) 3498 goto out; 3499 down_read(&clp->cl_sem); 3500 if (test_bit(NFS_DELEGATED_STATE, &state->flags)) { 3501 struct nfs_inode *nfsi = NFS_I(state->inode); 3502 /* Yes: cache locks! */ 3503 down_read(&nfsi->rwsem); 3504 /* ...but avoid races with delegation recall... */ 3505 if (test_bit(NFS_DELEGATED_STATE, &state->flags)) { 3506 request->fl_flags = fl_flags & ~FL_SLEEP; 3507 status = do_vfs_lock(request->fl_file, request); 3508 up_read(&nfsi->rwsem); 3509 goto out_unlock; 3510 } 3511 up_read(&nfsi->rwsem); 3512 } 3513 status = _nfs4_do_setlk(state, cmd, request, 0); 3514 if (status != 0) 3515 goto out_unlock; 3516 /* Note: we always want to sleep here! */ 3517 request->fl_flags = fl_flags | FL_SLEEP; 3518 if (do_vfs_lock(request->fl_file, request) < 0) 3519 printk(KERN_WARNING "%s: VFS is out of sync with lock manager!\n", __func__); 3520 out_unlock: 3521 up_read(&clp->cl_sem); 3522 out: 3523 request->fl_flags = fl_flags; 3524 return status; 3525 } 3526 3527 static int nfs4_proc_setlk(struct nfs4_state *state, int cmd, struct file_lock *request) 3528 { 3529 struct nfs4_exception exception = { }; 3530 int err; 3531 3532 do { 3533 err = nfs4_handle_exception(NFS_SERVER(state->inode), 3534 _nfs4_proc_setlk(state, cmd, request), 3535 &exception); 3536 } while (exception.retry); 3537 return err; 3538 } 3539 3540 static int 3541 nfs4_proc_lock(struct file *filp, int cmd, struct file_lock *request) 3542 { 3543 struct nfs_open_context *ctx; 3544 struct nfs4_state *state; 3545 unsigned long timeout = NFS4_LOCK_MINTIMEOUT; 3546 int status; 3547 3548 /* verify open state */ 3549 ctx = nfs_file_open_context(filp); 3550 state = ctx->state; 3551 3552 if (request->fl_start < 0 || request->fl_end < 0) 3553 return -EINVAL; 3554 3555 if (IS_GETLK(cmd)) 3556 return nfs4_proc_getlk(state, F_GETLK, request); 3557 3558 if (!(IS_SETLK(cmd) || IS_SETLKW(cmd))) 3559 return -EINVAL; 3560 3561 if (request->fl_type == F_UNLCK) 3562 return nfs4_proc_unlck(state, cmd, request); 3563 3564 do { 3565 status = nfs4_proc_setlk(state, cmd, request); 3566 if ((status != -EAGAIN) || IS_SETLK(cmd)) 3567 break; 3568 timeout = nfs4_set_lock_task_retry(timeout); 3569 status = -ERESTARTSYS; 3570 if (signalled()) 3571 break; 3572 } while(status < 0); 3573 return status; 3574 } 3575 3576 int nfs4_lock_delegation_recall(struct nfs4_state *state, struct file_lock *fl) 3577 { 3578 struct nfs_server *server = NFS_SERVER(state->inode); 3579 struct nfs4_exception exception = { }; 3580 int err; 3581 3582 err = nfs4_set_lock_state(state, fl); 3583 if (err != 0) 3584 goto out; 3585 do { 3586 err = _nfs4_do_setlk(state, F_SETLK, fl, 0); 3587 if (err != -NFS4ERR_DELAY) 3588 break; 3589 err = nfs4_handle_exception(server, err, &exception); 3590 } while (exception.retry); 3591 out: 3592 return err; 3593 } 3594 3595 #define XATTR_NAME_NFSV4_ACL "system.nfs4_acl" 3596 3597 int nfs4_setxattr(struct dentry *dentry, const char *key, const void *buf, 3598 size_t buflen, int flags) 3599 { 3600 struct inode *inode = dentry->d_inode; 3601 3602 if (strcmp(key, XATTR_NAME_NFSV4_ACL) != 0) 3603 return -EOPNOTSUPP; 3604 3605 return nfs4_proc_set_acl(inode, buf, buflen); 3606 } 3607 3608 /* The getxattr man page suggests returning -ENODATA for unknown attributes, 3609 * and that's what we'll do for e.g. user attributes that haven't been set. 3610 * But we'll follow ext2/ext3's lead by returning -EOPNOTSUPP for unsupported 3611 * attributes in kernel-managed attribute namespaces. */ 3612 ssize_t nfs4_getxattr(struct dentry *dentry, const char *key, void *buf, 3613 size_t buflen) 3614 { 3615 struct inode *inode = dentry->d_inode; 3616 3617 if (strcmp(key, XATTR_NAME_NFSV4_ACL) != 0) 3618 return -EOPNOTSUPP; 3619 3620 return nfs4_proc_get_acl(inode, buf, buflen); 3621 } 3622 3623 ssize_t nfs4_listxattr(struct dentry *dentry, char *buf, size_t buflen) 3624 { 3625 size_t len = strlen(XATTR_NAME_NFSV4_ACL) + 1; 3626 3627 if (!nfs4_server_supports_acls(NFS_SERVER(dentry->d_inode))) 3628 return 0; 3629 if (buf && buflen < len) 3630 return -ERANGE; 3631 if (buf) 3632 memcpy(buf, XATTR_NAME_NFSV4_ACL, len); 3633 return len; 3634 } 3635 3636 int nfs4_proc_fs_locations(struct inode *dir, const struct qstr *name, 3637 struct nfs4_fs_locations *fs_locations, struct page *page) 3638 { 3639 struct nfs_server *server = NFS_SERVER(dir); 3640 u32 bitmask[2] = { 3641 [0] = FATTR4_WORD0_FSID | FATTR4_WORD0_FS_LOCATIONS, 3642 [1] = FATTR4_WORD1_MOUNTED_ON_FILEID, 3643 }; 3644 struct nfs4_fs_locations_arg args = { 3645 .dir_fh = NFS_FH(dir), 3646 .name = name, 3647 .page = page, 3648 .bitmask = bitmask, 3649 }; 3650 struct rpc_message msg = { 3651 .rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_FS_LOCATIONS], 3652 .rpc_argp = &args, 3653 .rpc_resp = fs_locations, 3654 }; 3655 int status; 3656 3657 dprintk("%s: start\n", __func__); 3658 nfs_fattr_init(&fs_locations->fattr); 3659 fs_locations->server = server; 3660 fs_locations->nlocations = 0; 3661 status = rpc_call_sync(server->client, &msg, 0); 3662 dprintk("%s: returned status = %d\n", __func__, status); 3663 return status; 3664 } 3665 3666 struct nfs4_state_recovery_ops nfs4_reboot_recovery_ops = { 3667 .recover_open = nfs4_open_reclaim, 3668 .recover_lock = nfs4_lock_reclaim, 3669 }; 3670 3671 struct nfs4_state_recovery_ops nfs4_network_partition_recovery_ops = { 3672 .recover_open = nfs4_open_expired, 3673 .recover_lock = nfs4_lock_expired, 3674 }; 3675 3676 static const struct inode_operations nfs4_file_inode_operations = { 3677 .permission = nfs_permission, 3678 .getattr = nfs_getattr, 3679 .setattr = nfs_setattr, 3680 .getxattr = nfs4_getxattr, 3681 .setxattr = nfs4_setxattr, 3682 .listxattr = nfs4_listxattr, 3683 }; 3684 3685 const struct nfs_rpc_ops nfs_v4_clientops = { 3686 .version = 4, /* protocol version */ 3687 .dentry_ops = &nfs4_dentry_operations, 3688 .dir_inode_ops = &nfs4_dir_inode_operations, 3689 .file_inode_ops = &nfs4_file_inode_operations, 3690 .getroot = nfs4_proc_get_root, 3691 .getattr = nfs4_proc_getattr, 3692 .setattr = nfs4_proc_setattr, 3693 .lookupfh = nfs4_proc_lookupfh, 3694 .lookup = nfs4_proc_lookup, 3695 .access = nfs4_proc_access, 3696 .readlink = nfs4_proc_readlink, 3697 .create = nfs4_proc_create, 3698 .remove = nfs4_proc_remove, 3699 .unlink_setup = nfs4_proc_unlink_setup, 3700 .unlink_done = nfs4_proc_unlink_done, 3701 .rename = nfs4_proc_rename, 3702 .link = nfs4_proc_link, 3703 .symlink = nfs4_proc_symlink, 3704 .mkdir = nfs4_proc_mkdir, 3705 .rmdir = nfs4_proc_remove, 3706 .readdir = nfs4_proc_readdir, 3707 .mknod = nfs4_proc_mknod, 3708 .statfs = nfs4_proc_statfs, 3709 .fsinfo = nfs4_proc_fsinfo, 3710 .pathconf = nfs4_proc_pathconf, 3711 .set_capabilities = nfs4_server_capabilities, 3712 .decode_dirent = nfs4_decode_dirent, 3713 .read_setup = nfs4_proc_read_setup, 3714 .read_done = nfs4_read_done, 3715 .write_setup = nfs4_proc_write_setup, 3716 .write_done = nfs4_write_done, 3717 .commit_setup = nfs4_proc_commit_setup, 3718 .commit_done = nfs4_commit_done, 3719 .lock = nfs4_proc_lock, 3720 .clear_acl_cache = nfs4_zap_acl_attr, 3721 }; 3722 3723 /* 3724 * Local variables: 3725 * c-basic-offset: 8 3726 * End: 3727 */ 3728