xref: /linux/fs/nfs/nfs4proc.c (revision 2ad3479decccd12301a3f9920a22fa567d4bdae8)
1 /*
2  *  fs/nfs/nfs4proc.c
3  *
4  *  Client-side procedure declarations for NFSv4.
5  *
6  *  Copyright (c) 2002 The Regents of the University of Michigan.
7  *  All rights reserved.
8  *
9  *  Kendrick Smith <kmsmith@umich.edu>
10  *  Andy Adamson   <andros@umich.edu>
11  *
12  *  Redistribution and use in source and binary forms, with or without
13  *  modification, are permitted provided that the following conditions
14  *  are met:
15  *
16  *  1. Redistributions of source code must retain the above copyright
17  *     notice, this list of conditions and the following disclaimer.
18  *  2. Redistributions in binary form must reproduce the above copyright
19  *     notice, this list of conditions and the following disclaimer in the
20  *     documentation and/or other materials provided with the distribution.
21  *  3. Neither the name of the University nor the names of its
22  *     contributors may be used to endorse or promote products derived
23  *     from this software without specific prior written permission.
24  *
25  *  THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED
26  *  WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
27  *  MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
28  *  DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
29  *  FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
30  *  CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
31  *  SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
32  *  BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
33  *  LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
34  *  NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
35  *  SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
36  */
37 
38 #include <linux/mm.h>
39 #include <linux/utsname.h>
40 #include <linux/delay.h>
41 #include <linux/errno.h>
42 #include <linux/string.h>
43 #include <linux/sunrpc/clnt.h>
44 #include <linux/nfs.h>
45 #include <linux/nfs4.h>
46 #include <linux/nfs_fs.h>
47 #include <linux/nfs_page.h>
48 #include <linux/smp_lock.h>
49 #include <linux/namei.h>
50 #include <linux/mount.h>
51 
52 #include "nfs4_fs.h"
53 #include "delegation.h"
54 #include "iostat.h"
55 
56 #define NFSDBG_FACILITY		NFSDBG_PROC
57 
58 #define NFS4_POLL_RETRY_MIN	(HZ/10)
59 #define NFS4_POLL_RETRY_MAX	(15*HZ)
60 
61 struct nfs4_opendata;
62 static int _nfs4_proc_open(struct nfs4_opendata *data);
63 static int nfs4_do_fsinfo(struct nfs_server *, struct nfs_fh *, struct nfs_fsinfo *);
64 static int nfs4_async_handle_error(struct rpc_task *, const struct nfs_server *);
65 static int _nfs4_proc_access(struct inode *inode, struct nfs_access_entry *entry);
66 static int nfs4_handle_exception(const struct nfs_server *server, int errorcode, struct nfs4_exception *exception);
67 static int nfs4_wait_clnt_recover(struct rpc_clnt *clnt, struct nfs_client *clp);
68 
69 /* Prevent leaks of NFSv4 errors into userland */
70 int nfs4_map_errors(int err)
71 {
72 	if (err < -1000) {
73 		dprintk("%s could not handle NFSv4 error %d\n",
74 				__FUNCTION__, -err);
75 		return -EIO;
76 	}
77 	return err;
78 }
79 
80 /*
81  * This is our standard bitmap for GETATTR requests.
82  */
83 const u32 nfs4_fattr_bitmap[2] = {
84 	FATTR4_WORD0_TYPE
85 	| FATTR4_WORD0_CHANGE
86 	| FATTR4_WORD0_SIZE
87 	| FATTR4_WORD0_FSID
88 	| FATTR4_WORD0_FILEID,
89 	FATTR4_WORD1_MODE
90 	| FATTR4_WORD1_NUMLINKS
91 	| FATTR4_WORD1_OWNER
92 	| FATTR4_WORD1_OWNER_GROUP
93 	| FATTR4_WORD1_RAWDEV
94 	| FATTR4_WORD1_SPACE_USED
95 	| FATTR4_WORD1_TIME_ACCESS
96 	| FATTR4_WORD1_TIME_METADATA
97 	| FATTR4_WORD1_TIME_MODIFY
98 };
99 
100 const u32 nfs4_statfs_bitmap[2] = {
101 	FATTR4_WORD0_FILES_AVAIL
102 	| FATTR4_WORD0_FILES_FREE
103 	| FATTR4_WORD0_FILES_TOTAL,
104 	FATTR4_WORD1_SPACE_AVAIL
105 	| FATTR4_WORD1_SPACE_FREE
106 	| FATTR4_WORD1_SPACE_TOTAL
107 };
108 
109 const u32 nfs4_pathconf_bitmap[2] = {
110 	FATTR4_WORD0_MAXLINK
111 	| FATTR4_WORD0_MAXNAME,
112 	0
113 };
114 
115 const u32 nfs4_fsinfo_bitmap[2] = { FATTR4_WORD0_MAXFILESIZE
116 			| FATTR4_WORD0_MAXREAD
117 			| FATTR4_WORD0_MAXWRITE
118 			| FATTR4_WORD0_LEASE_TIME,
119 			0
120 };
121 
122 const u32 nfs4_fs_locations_bitmap[2] = {
123 	FATTR4_WORD0_TYPE
124 	| FATTR4_WORD0_CHANGE
125 	| FATTR4_WORD0_SIZE
126 	| FATTR4_WORD0_FSID
127 	| FATTR4_WORD0_FILEID
128 	| FATTR4_WORD0_FS_LOCATIONS,
129 	FATTR4_WORD1_MODE
130 	| FATTR4_WORD1_NUMLINKS
131 	| FATTR4_WORD1_OWNER
132 	| FATTR4_WORD1_OWNER_GROUP
133 	| FATTR4_WORD1_RAWDEV
134 	| FATTR4_WORD1_SPACE_USED
135 	| FATTR4_WORD1_TIME_ACCESS
136 	| FATTR4_WORD1_TIME_METADATA
137 	| FATTR4_WORD1_TIME_MODIFY
138 	| FATTR4_WORD1_MOUNTED_ON_FILEID
139 };
140 
141 static void nfs4_setup_readdir(u64 cookie, u32 *verifier, struct dentry *dentry,
142 		struct nfs4_readdir_arg *readdir)
143 {
144 	u32 *start, *p;
145 
146 	BUG_ON(readdir->count < 80);
147 	if (cookie > 2) {
148 		readdir->cookie = cookie;
149 		memcpy(&readdir->verifier, verifier, sizeof(readdir->verifier));
150 		return;
151 	}
152 
153 	readdir->cookie = 0;
154 	memset(&readdir->verifier, 0, sizeof(readdir->verifier));
155 	if (cookie == 2)
156 		return;
157 
158 	/*
159 	 * NFSv4 servers do not return entries for '.' and '..'
160 	 * Therefore, we fake these entries here.  We let '.'
161 	 * have cookie 0 and '..' have cookie 1.  Note that
162 	 * when talking to the server, we always send cookie 0
163 	 * instead of 1 or 2.
164 	 */
165 	start = p = (u32 *)kmap_atomic(*readdir->pages, KM_USER0);
166 
167 	if (cookie == 0) {
168 		*p++ = xdr_one;                                  /* next */
169 		*p++ = xdr_zero;                   /* cookie, first word */
170 		*p++ = xdr_one;                   /* cookie, second word */
171 		*p++ = xdr_one;                             /* entry len */
172 		memcpy(p, ".\0\0\0", 4);                        /* entry */
173 		p++;
174 		*p++ = xdr_one;                         /* bitmap length */
175 		*p++ = htonl(FATTR4_WORD0_FILEID);             /* bitmap */
176 		*p++ = htonl(8);              /* attribute buffer length */
177 		p = xdr_encode_hyper(p, dentry->d_inode->i_ino);
178 	}
179 
180 	*p++ = xdr_one;                                  /* next */
181 	*p++ = xdr_zero;                   /* cookie, first word */
182 	*p++ = xdr_two;                   /* cookie, second word */
183 	*p++ = xdr_two;                             /* entry len */
184 	memcpy(p, "..\0\0", 4);                         /* entry */
185 	p++;
186 	*p++ = xdr_one;                         /* bitmap length */
187 	*p++ = htonl(FATTR4_WORD0_FILEID);             /* bitmap */
188 	*p++ = htonl(8);              /* attribute buffer length */
189 	p = xdr_encode_hyper(p, dentry->d_parent->d_inode->i_ino);
190 
191 	readdir->pgbase = (char *)p - (char *)start;
192 	readdir->count -= readdir->pgbase;
193 	kunmap_atomic(start, KM_USER0);
194 }
195 
196 static void renew_lease(const struct nfs_server *server, unsigned long timestamp)
197 {
198 	struct nfs_client *clp = server->nfs_client;
199 	spin_lock(&clp->cl_lock);
200 	if (time_before(clp->cl_last_renewal,timestamp))
201 		clp->cl_last_renewal = timestamp;
202 	spin_unlock(&clp->cl_lock);
203 }
204 
205 static void update_changeattr(struct inode *dir, struct nfs4_change_info *cinfo)
206 {
207 	struct nfs_inode *nfsi = NFS_I(dir);
208 
209 	spin_lock(&dir->i_lock);
210 	nfsi->cache_validity |= NFS_INO_INVALID_ATTR|NFS_INO_REVAL_PAGECACHE|NFS_INO_INVALID_DATA;
211 	if (cinfo->before == nfsi->change_attr && cinfo->atomic)
212 		nfsi->change_attr = cinfo->after;
213 	spin_unlock(&dir->i_lock);
214 }
215 
216 struct nfs4_opendata {
217 	atomic_t count;
218 	struct nfs_openargs o_arg;
219 	struct nfs_openres o_res;
220 	struct nfs_open_confirmargs c_arg;
221 	struct nfs_open_confirmres c_res;
222 	struct nfs_fattr f_attr;
223 	struct nfs_fattr dir_attr;
224 	struct dentry *dentry;
225 	struct dentry *dir;
226 	struct nfs4_state_owner *owner;
227 	struct iattr attrs;
228 	unsigned long timestamp;
229 	int rpc_status;
230 	int cancelled;
231 };
232 
233 static struct nfs4_opendata *nfs4_opendata_alloc(struct dentry *dentry,
234 		struct nfs4_state_owner *sp, int flags,
235 		const struct iattr *attrs)
236 {
237 	struct dentry *parent = dget_parent(dentry);
238 	struct inode *dir = parent->d_inode;
239 	struct nfs_server *server = NFS_SERVER(dir);
240 	struct nfs4_opendata *p;
241 
242 	p = kzalloc(sizeof(*p), GFP_KERNEL);
243 	if (p == NULL)
244 		goto err;
245 	p->o_arg.seqid = nfs_alloc_seqid(&sp->so_seqid);
246 	if (p->o_arg.seqid == NULL)
247 		goto err_free;
248 	atomic_set(&p->count, 1);
249 	p->dentry = dget(dentry);
250 	p->dir = parent;
251 	p->owner = sp;
252 	atomic_inc(&sp->so_count);
253 	p->o_arg.fh = NFS_FH(dir);
254 	p->o_arg.open_flags = flags,
255 	p->o_arg.clientid = server->nfs_client->cl_clientid;
256 	p->o_arg.id = sp->so_id;
257 	p->o_arg.name = &dentry->d_name;
258 	p->o_arg.server = server;
259 	p->o_arg.bitmask = server->attr_bitmask;
260 	p->o_arg.claim = NFS4_OPEN_CLAIM_NULL;
261 	p->o_res.f_attr = &p->f_attr;
262 	p->o_res.dir_attr = &p->dir_attr;
263 	p->o_res.server = server;
264 	nfs_fattr_init(&p->f_attr);
265 	nfs_fattr_init(&p->dir_attr);
266 	if (flags & O_EXCL) {
267 		u32 *s = (u32 *) p->o_arg.u.verifier.data;
268 		s[0] = jiffies;
269 		s[1] = current->pid;
270 	} else if (flags & O_CREAT) {
271 		p->o_arg.u.attrs = &p->attrs;
272 		memcpy(&p->attrs, attrs, sizeof(p->attrs));
273 	}
274 	p->c_arg.fh = &p->o_res.fh;
275 	p->c_arg.stateid = &p->o_res.stateid;
276 	p->c_arg.seqid = p->o_arg.seqid;
277 	return p;
278 err_free:
279 	kfree(p);
280 err:
281 	dput(parent);
282 	return NULL;
283 }
284 
285 static void nfs4_opendata_free(struct nfs4_opendata *p)
286 {
287 	if (p != NULL && atomic_dec_and_test(&p->count)) {
288 		nfs_free_seqid(p->o_arg.seqid);
289 		nfs4_put_state_owner(p->owner);
290 		dput(p->dir);
291 		dput(p->dentry);
292 		kfree(p);
293 	}
294 }
295 
296 /* Helper for asynchronous RPC calls */
297 static int nfs4_call_async(struct rpc_clnt *clnt,
298 		const struct rpc_call_ops *tk_ops, void *calldata)
299 {
300 	struct rpc_task *task;
301 
302 	if (!(task = rpc_new_task(clnt, RPC_TASK_ASYNC, tk_ops, calldata)))
303 		return -ENOMEM;
304 	rpc_execute(task);
305 	return 0;
306 }
307 
308 static int nfs4_wait_for_completion_rpc_task(struct rpc_task *task)
309 {
310 	sigset_t oldset;
311 	int ret;
312 
313 	rpc_clnt_sigmask(task->tk_client, &oldset);
314 	ret = rpc_wait_for_completion_task(task);
315 	rpc_clnt_sigunmask(task->tk_client, &oldset);
316 	return ret;
317 }
318 
319 static inline void update_open_stateflags(struct nfs4_state *state, mode_t open_flags)
320 {
321 	switch (open_flags) {
322 		case FMODE_WRITE:
323 			state->n_wronly++;
324 			break;
325 		case FMODE_READ:
326 			state->n_rdonly++;
327 			break;
328 		case FMODE_READ|FMODE_WRITE:
329 			state->n_rdwr++;
330 	}
331 }
332 
333 static void update_open_stateid(struct nfs4_state *state, nfs4_stateid *stateid, int open_flags)
334 {
335 	struct inode *inode = state->inode;
336 
337 	open_flags &= (FMODE_READ|FMODE_WRITE);
338 	/* Protect against nfs4_find_state_byowner() */
339 	spin_lock(&state->owner->so_lock);
340 	spin_lock(&inode->i_lock);
341 	memcpy(&state->stateid, stateid, sizeof(state->stateid));
342 	update_open_stateflags(state, open_flags);
343 	nfs4_state_set_mode_locked(state, state->state | open_flags);
344 	spin_unlock(&inode->i_lock);
345 	spin_unlock(&state->owner->so_lock);
346 }
347 
348 static struct nfs4_state *nfs4_opendata_to_nfs4_state(struct nfs4_opendata *data)
349 {
350 	struct inode *inode;
351 	struct nfs4_state *state = NULL;
352 
353 	if (!(data->f_attr.valid & NFS_ATTR_FATTR))
354 		goto out;
355 	inode = nfs_fhget(data->dir->d_sb, &data->o_res.fh, &data->f_attr);
356 	if (IS_ERR(inode))
357 		goto out;
358 	state = nfs4_get_open_state(inode, data->owner);
359 	if (state == NULL)
360 		goto put_inode;
361 	update_open_stateid(state, &data->o_res.stateid, data->o_arg.open_flags);
362 put_inode:
363 	iput(inode);
364 out:
365 	return state;
366 }
367 
368 static struct nfs_open_context *nfs4_state_find_open_context(struct nfs4_state *state)
369 {
370 	struct nfs_inode *nfsi = NFS_I(state->inode);
371 	struct nfs_open_context *ctx;
372 
373 	spin_lock(&state->inode->i_lock);
374 	list_for_each_entry(ctx, &nfsi->open_files, list) {
375 		if (ctx->state != state)
376 			continue;
377 		get_nfs_open_context(ctx);
378 		spin_unlock(&state->inode->i_lock);
379 		return ctx;
380 	}
381 	spin_unlock(&state->inode->i_lock);
382 	return ERR_PTR(-ENOENT);
383 }
384 
385 static int nfs4_open_recover_helper(struct nfs4_opendata *opendata, mode_t openflags, nfs4_stateid *stateid)
386 {
387 	int ret;
388 
389 	opendata->o_arg.open_flags = openflags;
390 	ret = _nfs4_proc_open(opendata);
391 	if (ret != 0)
392 		return ret;
393 	memcpy(stateid->data, opendata->o_res.stateid.data,
394 			sizeof(stateid->data));
395 	return 0;
396 }
397 
398 static int nfs4_open_recover(struct nfs4_opendata *opendata, struct nfs4_state *state)
399 {
400 	nfs4_stateid stateid;
401 	struct nfs4_state *newstate;
402 	int mode = 0;
403 	int delegation = 0;
404 	int ret;
405 
406 	/* memory barrier prior to reading state->n_* */
407 	smp_rmb();
408 	if (state->n_rdwr != 0) {
409 		ret = nfs4_open_recover_helper(opendata, FMODE_READ|FMODE_WRITE, &stateid);
410 		if (ret != 0)
411 			return ret;
412 		mode |= FMODE_READ|FMODE_WRITE;
413 		if (opendata->o_res.delegation_type != 0)
414 			delegation = opendata->o_res.delegation_type;
415 		smp_rmb();
416 	}
417 	if (state->n_wronly != 0) {
418 		ret = nfs4_open_recover_helper(opendata, FMODE_WRITE, &stateid);
419 		if (ret != 0)
420 			return ret;
421 		mode |= FMODE_WRITE;
422 		if (opendata->o_res.delegation_type != 0)
423 			delegation = opendata->o_res.delegation_type;
424 		smp_rmb();
425 	}
426 	if (state->n_rdonly != 0) {
427 		ret = nfs4_open_recover_helper(opendata, FMODE_READ, &stateid);
428 		if (ret != 0)
429 			return ret;
430 		mode |= FMODE_READ;
431 	}
432 	clear_bit(NFS_DELEGATED_STATE, &state->flags);
433 	if (mode == 0)
434 		return 0;
435 	if (opendata->o_res.delegation_type == 0)
436 		opendata->o_res.delegation_type = delegation;
437 	opendata->o_arg.open_flags |= mode;
438 	newstate = nfs4_opendata_to_nfs4_state(opendata);
439 	if (newstate != NULL) {
440 		if (opendata->o_res.delegation_type != 0) {
441 			struct nfs_inode *nfsi = NFS_I(newstate->inode);
442 			int delegation_flags = 0;
443 			if (nfsi->delegation)
444 				delegation_flags = nfsi->delegation->flags;
445 			if (!(delegation_flags & NFS_DELEGATION_NEED_RECLAIM))
446 				nfs_inode_set_delegation(newstate->inode,
447 						opendata->owner->so_cred,
448 						&opendata->o_res);
449 			else
450 				nfs_inode_reclaim_delegation(newstate->inode,
451 						opendata->owner->so_cred,
452 						&opendata->o_res);
453 		}
454 		nfs4_close_state(newstate, opendata->o_arg.open_flags);
455 	}
456 	if (newstate != state)
457 		return -ESTALE;
458 	return 0;
459 }
460 
461 /*
462  * OPEN_RECLAIM:
463  * 	reclaim state on the server after a reboot.
464  */
465 static int _nfs4_do_open_reclaim(struct nfs4_state_owner *sp, struct nfs4_state *state, struct dentry *dentry)
466 {
467 	struct nfs_delegation *delegation = NFS_I(state->inode)->delegation;
468 	struct nfs4_opendata *opendata;
469 	int delegation_type = 0;
470 	int status;
471 
472 	if (delegation != NULL) {
473 		if (!(delegation->flags & NFS_DELEGATION_NEED_RECLAIM)) {
474 			memcpy(&state->stateid, &delegation->stateid,
475 					sizeof(state->stateid));
476 			set_bit(NFS_DELEGATED_STATE, &state->flags);
477 			return 0;
478 		}
479 		delegation_type = delegation->type;
480 	}
481 	opendata = nfs4_opendata_alloc(dentry, sp, 0, NULL);
482 	if (opendata == NULL)
483 		return -ENOMEM;
484 	opendata->o_arg.claim = NFS4_OPEN_CLAIM_PREVIOUS;
485 	opendata->o_arg.fh = NFS_FH(state->inode);
486 	nfs_copy_fh(&opendata->o_res.fh, opendata->o_arg.fh);
487 	opendata->o_arg.u.delegation_type = delegation_type;
488 	status = nfs4_open_recover(opendata, state);
489 	nfs4_opendata_free(opendata);
490 	return status;
491 }
492 
493 static int nfs4_do_open_reclaim(struct nfs4_state_owner *sp, struct nfs4_state *state, struct dentry *dentry)
494 {
495 	struct nfs_server *server = NFS_SERVER(state->inode);
496 	struct nfs4_exception exception = { };
497 	int err;
498 	do {
499 		err = _nfs4_do_open_reclaim(sp, state, dentry);
500 		if (err != -NFS4ERR_DELAY)
501 			break;
502 		nfs4_handle_exception(server, err, &exception);
503 	} while (exception.retry);
504 	return err;
505 }
506 
507 static int nfs4_open_reclaim(struct nfs4_state_owner *sp, struct nfs4_state *state)
508 {
509 	struct nfs_open_context *ctx;
510 	int ret;
511 
512 	ctx = nfs4_state_find_open_context(state);
513 	if (IS_ERR(ctx))
514 		return PTR_ERR(ctx);
515 	ret = nfs4_do_open_reclaim(sp, state, ctx->dentry);
516 	put_nfs_open_context(ctx);
517 	return ret;
518 }
519 
520 static int _nfs4_open_delegation_recall(struct dentry *dentry, struct nfs4_state *state)
521 {
522 	struct nfs4_state_owner  *sp  = state->owner;
523 	struct nfs4_opendata *opendata;
524 	int ret;
525 
526 	if (!test_bit(NFS_DELEGATED_STATE, &state->flags))
527 		return 0;
528 	opendata = nfs4_opendata_alloc(dentry, sp, 0, NULL);
529 	if (opendata == NULL)
530 		return -ENOMEM;
531 	opendata->o_arg.claim = NFS4_OPEN_CLAIM_DELEGATE_CUR;
532 	memcpy(opendata->o_arg.u.delegation.data, state->stateid.data,
533 			sizeof(opendata->o_arg.u.delegation.data));
534 	ret = nfs4_open_recover(opendata, state);
535 	nfs4_opendata_free(opendata);
536 	return ret;
537 }
538 
539 int nfs4_open_delegation_recall(struct dentry *dentry, struct nfs4_state *state)
540 {
541 	struct nfs4_exception exception = { };
542 	struct nfs_server *server = NFS_SERVER(dentry->d_inode);
543 	int err;
544 	do {
545 		err = _nfs4_open_delegation_recall(dentry, state);
546 		switch (err) {
547 			case 0:
548 				return err;
549 			case -NFS4ERR_STALE_CLIENTID:
550 			case -NFS4ERR_STALE_STATEID:
551 			case -NFS4ERR_EXPIRED:
552 				/* Don't recall a delegation if it was lost */
553 				nfs4_schedule_state_recovery(server->nfs_client);
554 				return err;
555 		}
556 		err = nfs4_handle_exception(server, err, &exception);
557 	} while (exception.retry);
558 	return err;
559 }
560 
561 static void nfs4_open_confirm_prepare(struct rpc_task *task, void *calldata)
562 {
563 	struct nfs4_opendata *data = calldata;
564 	struct  rpc_message msg = {
565 		.rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_OPEN_CONFIRM],
566 		.rpc_argp = &data->c_arg,
567 		.rpc_resp = &data->c_res,
568 		.rpc_cred = data->owner->so_cred,
569 	};
570 	data->timestamp = jiffies;
571 	rpc_call_setup(task, &msg, 0);
572 }
573 
574 static void nfs4_open_confirm_done(struct rpc_task *task, void *calldata)
575 {
576 	struct nfs4_opendata *data = calldata;
577 
578 	data->rpc_status = task->tk_status;
579 	if (RPC_ASSASSINATED(task))
580 		return;
581 	if (data->rpc_status == 0) {
582 		memcpy(data->o_res.stateid.data, data->c_res.stateid.data,
583 				sizeof(data->o_res.stateid.data));
584 		renew_lease(data->o_res.server, data->timestamp);
585 	}
586 	nfs_increment_open_seqid(data->rpc_status, data->c_arg.seqid);
587 	nfs_confirm_seqid(&data->owner->so_seqid, data->rpc_status);
588 }
589 
590 static void nfs4_open_confirm_release(void *calldata)
591 {
592 	struct nfs4_opendata *data = calldata;
593 	struct nfs4_state *state = NULL;
594 
595 	/* If this request hasn't been cancelled, do nothing */
596 	if (data->cancelled == 0)
597 		goto out_free;
598 	/* In case of error, no cleanup! */
599 	if (data->rpc_status != 0)
600 		goto out_free;
601 	nfs_confirm_seqid(&data->owner->so_seqid, 0);
602 	state = nfs4_opendata_to_nfs4_state(data);
603 	if (state != NULL)
604 		nfs4_close_state(state, data->o_arg.open_flags);
605 out_free:
606 	nfs4_opendata_free(data);
607 }
608 
609 static const struct rpc_call_ops nfs4_open_confirm_ops = {
610 	.rpc_call_prepare = nfs4_open_confirm_prepare,
611 	.rpc_call_done = nfs4_open_confirm_done,
612 	.rpc_release = nfs4_open_confirm_release,
613 };
614 
615 /*
616  * Note: On error, nfs4_proc_open_confirm will free the struct nfs4_opendata
617  */
618 static int _nfs4_proc_open_confirm(struct nfs4_opendata *data)
619 {
620 	struct nfs_server *server = NFS_SERVER(data->dir->d_inode);
621 	struct rpc_task *task;
622 	int status;
623 
624 	atomic_inc(&data->count);
625 	/*
626 	 * If rpc_run_task() ends up calling ->rpc_release(), we
627 	 * want to ensure that it takes the 'error' code path.
628 	 */
629 	data->rpc_status = -ENOMEM;
630 	task = rpc_run_task(server->client, RPC_TASK_ASYNC, &nfs4_open_confirm_ops, data);
631 	if (IS_ERR(task))
632 		return PTR_ERR(task);
633 	status = nfs4_wait_for_completion_rpc_task(task);
634 	if (status != 0) {
635 		data->cancelled = 1;
636 		smp_wmb();
637 	} else
638 		status = data->rpc_status;
639 	rpc_release_task(task);
640 	return status;
641 }
642 
643 static void nfs4_open_prepare(struct rpc_task *task, void *calldata)
644 {
645 	struct nfs4_opendata *data = calldata;
646 	struct nfs4_state_owner *sp = data->owner;
647 	struct rpc_message msg = {
648 		.rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_OPEN],
649 		.rpc_argp = &data->o_arg,
650 		.rpc_resp = &data->o_res,
651 		.rpc_cred = sp->so_cred,
652 	};
653 
654 	if (nfs_wait_on_sequence(data->o_arg.seqid, task) != 0)
655 		return;
656 	/* Update sequence id. */
657 	data->o_arg.id = sp->so_id;
658 	data->o_arg.clientid = sp->so_client->cl_clientid;
659 	if (data->o_arg.claim == NFS4_OPEN_CLAIM_PREVIOUS)
660 		msg.rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_OPEN_NOATTR];
661 	data->timestamp = jiffies;
662 	rpc_call_setup(task, &msg, 0);
663 }
664 
665 static void nfs4_open_done(struct rpc_task *task, void *calldata)
666 {
667 	struct nfs4_opendata *data = calldata;
668 
669 	data->rpc_status = task->tk_status;
670 	if (RPC_ASSASSINATED(task))
671 		return;
672 	if (task->tk_status == 0) {
673 		switch (data->o_res.f_attr->mode & S_IFMT) {
674 			case S_IFREG:
675 				break;
676 			case S_IFLNK:
677 				data->rpc_status = -ELOOP;
678 				break;
679 			case S_IFDIR:
680 				data->rpc_status = -EISDIR;
681 				break;
682 			default:
683 				data->rpc_status = -ENOTDIR;
684 		}
685 		renew_lease(data->o_res.server, data->timestamp);
686 	}
687 	nfs_increment_open_seqid(data->rpc_status, data->o_arg.seqid);
688 }
689 
690 static void nfs4_open_release(void *calldata)
691 {
692 	struct nfs4_opendata *data = calldata;
693 	struct nfs4_state *state = NULL;
694 
695 	/* If this request hasn't been cancelled, do nothing */
696 	if (data->cancelled == 0)
697 		goto out_free;
698 	/* In case of error, no cleanup! */
699 	if (data->rpc_status != 0)
700 		goto out_free;
701 	/* In case we need an open_confirm, no cleanup! */
702 	if (data->o_res.rflags & NFS4_OPEN_RESULT_CONFIRM)
703 		goto out_free;
704 	nfs_confirm_seqid(&data->owner->so_seqid, 0);
705 	state = nfs4_opendata_to_nfs4_state(data);
706 	if (state != NULL)
707 		nfs4_close_state(state, data->o_arg.open_flags);
708 out_free:
709 	nfs4_opendata_free(data);
710 }
711 
712 static const struct rpc_call_ops nfs4_open_ops = {
713 	.rpc_call_prepare = nfs4_open_prepare,
714 	.rpc_call_done = nfs4_open_done,
715 	.rpc_release = nfs4_open_release,
716 };
717 
718 /*
719  * Note: On error, nfs4_proc_open will free the struct nfs4_opendata
720  */
721 static int _nfs4_proc_open(struct nfs4_opendata *data)
722 {
723 	struct inode *dir = data->dir->d_inode;
724 	struct nfs_server *server = NFS_SERVER(dir);
725 	struct nfs_openargs *o_arg = &data->o_arg;
726 	struct nfs_openres *o_res = &data->o_res;
727 	struct rpc_task *task;
728 	int status;
729 
730 	atomic_inc(&data->count);
731 	/*
732 	 * If rpc_run_task() ends up calling ->rpc_release(), we
733 	 * want to ensure that it takes the 'error' code path.
734 	 */
735 	data->rpc_status = -ENOMEM;
736 	task = rpc_run_task(server->client, RPC_TASK_ASYNC, &nfs4_open_ops, data);
737 	if (IS_ERR(task))
738 		return PTR_ERR(task);
739 	status = nfs4_wait_for_completion_rpc_task(task);
740 	if (status != 0) {
741 		data->cancelled = 1;
742 		smp_wmb();
743 	} else
744 		status = data->rpc_status;
745 	rpc_release_task(task);
746 	if (status != 0)
747 		return status;
748 
749 	if (o_arg->open_flags & O_CREAT) {
750 		update_changeattr(dir, &o_res->cinfo);
751 		nfs_post_op_update_inode(dir, o_res->dir_attr);
752 	} else
753 		nfs_refresh_inode(dir, o_res->dir_attr);
754 	if(o_res->rflags & NFS4_OPEN_RESULT_CONFIRM) {
755 		status = _nfs4_proc_open_confirm(data);
756 		if (status != 0)
757 			return status;
758 	}
759 	nfs_confirm_seqid(&data->owner->so_seqid, 0);
760 	if (!(o_res->f_attr->valid & NFS_ATTR_FATTR))
761 		return server->nfs_client->rpc_ops->getattr(server, &o_res->fh, o_res->f_attr);
762 	return 0;
763 }
764 
765 static int _nfs4_do_access(struct inode *inode, struct rpc_cred *cred, int openflags)
766 {
767 	struct nfs_access_entry cache;
768 	int mask = 0;
769 	int status;
770 
771 	if (openflags & FMODE_READ)
772 		mask |= MAY_READ;
773 	if (openflags & FMODE_WRITE)
774 		mask |= MAY_WRITE;
775 	status = nfs_access_get_cached(inode, cred, &cache);
776 	if (status == 0)
777 		goto out;
778 
779 	/* Be clever: ask server to check for all possible rights */
780 	cache.mask = MAY_EXEC | MAY_WRITE | MAY_READ;
781 	cache.cred = cred;
782 	cache.jiffies = jiffies;
783 	status = _nfs4_proc_access(inode, &cache);
784 	if (status != 0)
785 		return status;
786 	nfs_access_add_cache(inode, &cache);
787 out:
788 	if ((cache.mask & mask) == mask)
789 		return 0;
790 	return -EACCES;
791 }
792 
793 int nfs4_recover_expired_lease(struct nfs_server *server)
794 {
795 	struct nfs_client *clp = server->nfs_client;
796 	int ret;
797 
798 	for (;;) {
799 		ret = nfs4_wait_clnt_recover(server->client, clp);
800 		if (ret != 0)
801 			return ret;
802 		if (!test_and_clear_bit(NFS4CLNT_LEASE_EXPIRED, &clp->cl_state))
803 			break;
804 		nfs4_schedule_state_recovery(clp);
805 	}
806 	return 0;
807 }
808 
809 /*
810  * OPEN_EXPIRED:
811  * 	reclaim state on the server after a network partition.
812  * 	Assumes caller holds the appropriate lock
813  */
814 static int _nfs4_open_expired(struct nfs4_state_owner *sp, struct nfs4_state *state, struct dentry *dentry)
815 {
816 	struct inode *inode = state->inode;
817 	struct nfs_delegation *delegation = NFS_I(inode)->delegation;
818 	struct nfs4_opendata *opendata;
819 	int openflags = state->state & (FMODE_READ|FMODE_WRITE);
820 	int ret;
821 
822 	if (delegation != NULL && !(delegation->flags & NFS_DELEGATION_NEED_RECLAIM)) {
823 		ret = _nfs4_do_access(inode, sp->so_cred, openflags);
824 		if (ret < 0)
825 			return ret;
826 		memcpy(&state->stateid, &delegation->stateid, sizeof(state->stateid));
827 		set_bit(NFS_DELEGATED_STATE, &state->flags);
828 		return 0;
829 	}
830 	opendata = nfs4_opendata_alloc(dentry, sp, openflags, NULL);
831 	if (opendata == NULL)
832 		return -ENOMEM;
833 	ret = nfs4_open_recover(opendata, state);
834 	if (ret == -ESTALE) {
835 		/* Invalidate the state owner so we don't ever use it again */
836 		nfs4_drop_state_owner(sp);
837 		d_drop(dentry);
838 	}
839 	nfs4_opendata_free(opendata);
840 	return ret;
841 }
842 
843 static inline int nfs4_do_open_expired(struct nfs4_state_owner *sp, struct nfs4_state *state, struct dentry *dentry)
844 {
845 	struct nfs_server *server = NFS_SERVER(dentry->d_inode);
846 	struct nfs4_exception exception = { };
847 	int err;
848 
849 	do {
850 		err = _nfs4_open_expired(sp, state, dentry);
851 		if (err == -NFS4ERR_DELAY)
852 			nfs4_handle_exception(server, err, &exception);
853 	} while (exception.retry);
854 	return err;
855 }
856 
857 static int nfs4_open_expired(struct nfs4_state_owner *sp, struct nfs4_state *state)
858 {
859 	struct nfs_open_context *ctx;
860 	int ret;
861 
862 	ctx = nfs4_state_find_open_context(state);
863 	if (IS_ERR(ctx))
864 		return PTR_ERR(ctx);
865 	ret = nfs4_do_open_expired(sp, state, ctx->dentry);
866 	put_nfs_open_context(ctx);
867 	return ret;
868 }
869 
870 /*
871  * Returns a referenced nfs4_state if there is an open delegation on the file
872  */
873 static int _nfs4_open_delegated(struct inode *inode, int flags, struct rpc_cred *cred, struct nfs4_state **res)
874 {
875 	struct nfs_delegation *delegation;
876 	struct nfs_server *server = NFS_SERVER(inode);
877 	struct nfs_client *clp = server->nfs_client;
878 	struct nfs_inode *nfsi = NFS_I(inode);
879 	struct nfs4_state_owner *sp = NULL;
880 	struct nfs4_state *state = NULL;
881 	int open_flags = flags & (FMODE_READ|FMODE_WRITE);
882 	int err;
883 
884 	err = -ENOMEM;
885 	if (!(sp = nfs4_get_state_owner(server, cred))) {
886 		dprintk("%s: nfs4_get_state_owner failed!\n", __FUNCTION__);
887 		return err;
888 	}
889 	err = nfs4_recover_expired_lease(server);
890 	if (err != 0)
891 		goto out_put_state_owner;
892 	/* Protect against reboot recovery - NOTE ORDER! */
893 	down_read(&clp->cl_sem);
894 	/* Protect against delegation recall */
895 	down_read(&nfsi->rwsem);
896 	delegation = NFS_I(inode)->delegation;
897 	err = -ENOENT;
898 	if (delegation == NULL || (delegation->type & open_flags) != open_flags)
899 		goto out_err;
900 	err = -ENOMEM;
901 	state = nfs4_get_open_state(inode, sp);
902 	if (state == NULL)
903 		goto out_err;
904 
905 	err = -ENOENT;
906 	if ((state->state & open_flags) == open_flags) {
907 		spin_lock(&inode->i_lock);
908 		update_open_stateflags(state, open_flags);
909 		spin_unlock(&inode->i_lock);
910 		goto out_ok;
911 	} else if (state->state != 0)
912 		goto out_put_open_state;
913 
914 	lock_kernel();
915 	err = _nfs4_do_access(inode, cred, open_flags);
916 	unlock_kernel();
917 	if (err != 0)
918 		goto out_put_open_state;
919 	set_bit(NFS_DELEGATED_STATE, &state->flags);
920 	update_open_stateid(state, &delegation->stateid, open_flags);
921 out_ok:
922 	nfs4_put_state_owner(sp);
923 	up_read(&nfsi->rwsem);
924 	up_read(&clp->cl_sem);
925 	*res = state;
926 	return 0;
927 out_put_open_state:
928 	nfs4_put_open_state(state);
929 out_err:
930 	up_read(&nfsi->rwsem);
931 	up_read(&clp->cl_sem);
932 	if (err != -EACCES)
933 		nfs_inode_return_delegation(inode);
934 out_put_state_owner:
935 	nfs4_put_state_owner(sp);
936 	return err;
937 }
938 
939 static struct nfs4_state *nfs4_open_delegated(struct inode *inode, int flags, struct rpc_cred *cred)
940 {
941 	struct nfs4_exception exception = { };
942 	struct nfs4_state *res = ERR_PTR(-EIO);
943 	int err;
944 
945 	do {
946 		err = _nfs4_open_delegated(inode, flags, cred, &res);
947 		if (err == 0)
948 			break;
949 		res = ERR_PTR(nfs4_handle_exception(NFS_SERVER(inode),
950 					err, &exception));
951 	} while (exception.retry);
952 	return res;
953 }
954 
955 /*
956  * Returns a referenced nfs4_state
957  */
958 static int _nfs4_do_open(struct inode *dir, struct dentry *dentry, int flags, struct iattr *sattr, struct rpc_cred *cred, struct nfs4_state **res)
959 {
960 	struct nfs4_state_owner  *sp;
961 	struct nfs4_state     *state = NULL;
962 	struct nfs_server       *server = NFS_SERVER(dir);
963 	struct nfs_client *clp = server->nfs_client;
964 	struct nfs4_opendata *opendata;
965 	int                     status;
966 
967 	/* Protect against reboot recovery conflicts */
968 	status = -ENOMEM;
969 	if (!(sp = nfs4_get_state_owner(server, cred))) {
970 		dprintk("nfs4_do_open: nfs4_get_state_owner failed!\n");
971 		goto out_err;
972 	}
973 	status = nfs4_recover_expired_lease(server);
974 	if (status != 0)
975 		goto err_put_state_owner;
976 	down_read(&clp->cl_sem);
977 	status = -ENOMEM;
978 	opendata = nfs4_opendata_alloc(dentry, sp, flags, sattr);
979 	if (opendata == NULL)
980 		goto err_release_rwsem;
981 
982 	status = _nfs4_proc_open(opendata);
983 	if (status != 0)
984 		goto err_opendata_free;
985 
986 	status = -ENOMEM;
987 	state = nfs4_opendata_to_nfs4_state(opendata);
988 	if (state == NULL)
989 		goto err_opendata_free;
990 	if (opendata->o_res.delegation_type != 0)
991 		nfs_inode_set_delegation(state->inode, cred, &opendata->o_res);
992 	nfs4_opendata_free(opendata);
993 	nfs4_put_state_owner(sp);
994 	up_read(&clp->cl_sem);
995 	*res = state;
996 	return 0;
997 err_opendata_free:
998 	nfs4_opendata_free(opendata);
999 err_release_rwsem:
1000 	up_read(&clp->cl_sem);
1001 err_put_state_owner:
1002 	nfs4_put_state_owner(sp);
1003 out_err:
1004 	*res = NULL;
1005 	return status;
1006 }
1007 
1008 
1009 static struct nfs4_state *nfs4_do_open(struct inode *dir, struct dentry *dentry, int flags, struct iattr *sattr, struct rpc_cred *cred)
1010 {
1011 	struct nfs4_exception exception = { };
1012 	struct nfs4_state *res;
1013 	int status;
1014 
1015 	do {
1016 		status = _nfs4_do_open(dir, dentry, flags, sattr, cred, &res);
1017 		if (status == 0)
1018 			break;
1019 		/* NOTE: BAD_SEQID means the server and client disagree about the
1020 		 * book-keeping w.r.t. state-changing operations
1021 		 * (OPEN/CLOSE/LOCK/LOCKU...)
1022 		 * It is actually a sign of a bug on the client or on the server.
1023 		 *
1024 		 * If we receive a BAD_SEQID error in the particular case of
1025 		 * doing an OPEN, we assume that nfs_increment_open_seqid() will
1026 		 * have unhashed the old state_owner for us, and that we can
1027 		 * therefore safely retry using a new one. We should still warn
1028 		 * the user though...
1029 		 */
1030 		if (status == -NFS4ERR_BAD_SEQID) {
1031 			printk(KERN_WARNING "NFS: v4 server returned a bad sequence-id error!\n");
1032 			exception.retry = 1;
1033 			continue;
1034 		}
1035 		/*
1036 		 * BAD_STATEID on OPEN means that the server cancelled our
1037 		 * state before it received the OPEN_CONFIRM.
1038 		 * Recover by retrying the request as per the discussion
1039 		 * on Page 181 of RFC3530.
1040 		 */
1041 		if (status == -NFS4ERR_BAD_STATEID) {
1042 			exception.retry = 1;
1043 			continue;
1044 		}
1045 		res = ERR_PTR(nfs4_handle_exception(NFS_SERVER(dir),
1046 					status, &exception));
1047 	} while (exception.retry);
1048 	return res;
1049 }
1050 
1051 static int _nfs4_do_setattr(struct inode *inode, struct nfs_fattr *fattr,
1052                 struct iattr *sattr, struct nfs4_state *state)
1053 {
1054 	struct nfs_server *server = NFS_SERVER(inode);
1055         struct nfs_setattrargs  arg = {
1056                 .fh             = NFS_FH(inode),
1057                 .iap            = sattr,
1058 		.server		= server,
1059 		.bitmask = server->attr_bitmask,
1060         };
1061         struct nfs_setattrres  res = {
1062 		.fattr		= fattr,
1063 		.server		= server,
1064         };
1065         struct rpc_message msg = {
1066                 .rpc_proc       = &nfs4_procedures[NFSPROC4_CLNT_SETATTR],
1067                 .rpc_argp       = &arg,
1068                 .rpc_resp       = &res,
1069         };
1070 	unsigned long timestamp = jiffies;
1071 	int status;
1072 
1073 	nfs_fattr_init(fattr);
1074 
1075 	if (nfs4_copy_delegation_stateid(&arg.stateid, inode)) {
1076 		/* Use that stateid */
1077 	} else if (state != NULL) {
1078 		msg.rpc_cred = state->owner->so_cred;
1079 		nfs4_copy_stateid(&arg.stateid, state, current->files);
1080 	} else
1081 		memcpy(&arg.stateid, &zero_stateid, sizeof(arg.stateid));
1082 
1083 	status = rpc_call_sync(server->client, &msg, 0);
1084 	if (status == 0 && state != NULL)
1085 		renew_lease(server, timestamp);
1086 	return status;
1087 }
1088 
1089 static int nfs4_do_setattr(struct inode *inode, struct nfs_fattr *fattr,
1090                 struct iattr *sattr, struct nfs4_state *state)
1091 {
1092 	struct nfs_server *server = NFS_SERVER(inode);
1093 	struct nfs4_exception exception = { };
1094 	int err;
1095 	do {
1096 		err = nfs4_handle_exception(server,
1097 				_nfs4_do_setattr(inode, fattr, sattr, state),
1098 				&exception);
1099 	} while (exception.retry);
1100 	return err;
1101 }
1102 
1103 struct nfs4_closedata {
1104 	struct inode *inode;
1105 	struct nfs4_state *state;
1106 	struct nfs_closeargs arg;
1107 	struct nfs_closeres res;
1108 	struct nfs_fattr fattr;
1109 	unsigned long timestamp;
1110 };
1111 
1112 static void nfs4_free_closedata(void *data)
1113 {
1114 	struct nfs4_closedata *calldata = data;
1115 	struct nfs4_state_owner *sp = calldata->state->owner;
1116 
1117 	nfs4_put_open_state(calldata->state);
1118 	nfs_free_seqid(calldata->arg.seqid);
1119 	nfs4_put_state_owner(sp);
1120 	kfree(calldata);
1121 }
1122 
1123 static void nfs4_close_done(struct rpc_task *task, void *data)
1124 {
1125 	struct nfs4_closedata *calldata = data;
1126 	struct nfs4_state *state = calldata->state;
1127 	struct nfs_server *server = NFS_SERVER(calldata->inode);
1128 
1129 	if (RPC_ASSASSINATED(task))
1130 		return;
1131         /* hmm. we are done with the inode, and in the process of freeing
1132 	 * the state_owner. we keep this around to process errors
1133 	 */
1134 	nfs_increment_open_seqid(task->tk_status, calldata->arg.seqid);
1135 	switch (task->tk_status) {
1136 		case 0:
1137 			memcpy(&state->stateid, &calldata->res.stateid,
1138 					sizeof(state->stateid));
1139 			renew_lease(server, calldata->timestamp);
1140 			break;
1141 		case -NFS4ERR_STALE_STATEID:
1142 		case -NFS4ERR_EXPIRED:
1143 			nfs4_schedule_state_recovery(server->nfs_client);
1144 			break;
1145 		default:
1146 			if (nfs4_async_handle_error(task, server) == -EAGAIN) {
1147 				rpc_restart_call(task);
1148 				return;
1149 			}
1150 	}
1151 	nfs_refresh_inode(calldata->inode, calldata->res.fattr);
1152 }
1153 
1154 static void nfs4_close_prepare(struct rpc_task *task, void *data)
1155 {
1156 	struct nfs4_closedata *calldata = data;
1157 	struct nfs4_state *state = calldata->state;
1158 	struct rpc_message msg = {
1159 		.rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_CLOSE],
1160 		.rpc_argp = &calldata->arg,
1161 		.rpc_resp = &calldata->res,
1162 		.rpc_cred = state->owner->so_cred,
1163 	};
1164 	int mode = 0, old_mode;
1165 
1166 	if (nfs_wait_on_sequence(calldata->arg.seqid, task) != 0)
1167 		return;
1168 	/* Recalculate the new open mode in case someone reopened the file
1169 	 * while we were waiting in line to be scheduled.
1170 	 */
1171 	spin_lock(&state->owner->so_lock);
1172 	spin_lock(&calldata->inode->i_lock);
1173 	mode = old_mode = state->state;
1174 	if (state->n_rdwr == 0) {
1175 		if (state->n_rdonly == 0)
1176 			mode &= ~FMODE_READ;
1177 		if (state->n_wronly == 0)
1178 			mode &= ~FMODE_WRITE;
1179 	}
1180 	nfs4_state_set_mode_locked(state, mode);
1181 	spin_unlock(&calldata->inode->i_lock);
1182 	spin_unlock(&state->owner->so_lock);
1183 	if (mode == old_mode || test_bit(NFS_DELEGATED_STATE, &state->flags)) {
1184 		/* Note: exit _without_ calling nfs4_close_done */
1185 		task->tk_action = NULL;
1186 		return;
1187 	}
1188 	nfs_fattr_init(calldata->res.fattr);
1189 	if (mode != 0)
1190 		msg.rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_OPEN_DOWNGRADE];
1191 	calldata->arg.open_flags = mode;
1192 	calldata->timestamp = jiffies;
1193 	rpc_call_setup(task, &msg, 0);
1194 }
1195 
1196 static const struct rpc_call_ops nfs4_close_ops = {
1197 	.rpc_call_prepare = nfs4_close_prepare,
1198 	.rpc_call_done = nfs4_close_done,
1199 	.rpc_release = nfs4_free_closedata,
1200 };
1201 
1202 /*
1203  * It is possible for data to be read/written from a mem-mapped file
1204  * after the sys_close call (which hits the vfs layer as a flush).
1205  * This means that we can't safely call nfsv4 close on a file until
1206  * the inode is cleared. This in turn means that we are not good
1207  * NFSv4 citizens - we do not indicate to the server to update the file's
1208  * share state even when we are done with one of the three share
1209  * stateid's in the inode.
1210  *
1211  * NOTE: Caller must be holding the sp->so_owner semaphore!
1212  */
1213 int nfs4_do_close(struct inode *inode, struct nfs4_state *state)
1214 {
1215 	struct nfs_server *server = NFS_SERVER(inode);
1216 	struct nfs4_closedata *calldata;
1217 	int status = -ENOMEM;
1218 
1219 	calldata = kmalloc(sizeof(*calldata), GFP_KERNEL);
1220 	if (calldata == NULL)
1221 		goto out;
1222 	calldata->inode = inode;
1223 	calldata->state = state;
1224 	calldata->arg.fh = NFS_FH(inode);
1225 	calldata->arg.stateid = &state->stateid;
1226 	/* Serialization for the sequence id */
1227 	calldata->arg.seqid = nfs_alloc_seqid(&state->owner->so_seqid);
1228 	if (calldata->arg.seqid == NULL)
1229 		goto out_free_calldata;
1230 	calldata->arg.bitmask = server->attr_bitmask;
1231 	calldata->res.fattr = &calldata->fattr;
1232 	calldata->res.server = server;
1233 
1234 	status = nfs4_call_async(server->client, &nfs4_close_ops, calldata);
1235 	if (status == 0)
1236 		goto out;
1237 
1238 	nfs_free_seqid(calldata->arg.seqid);
1239 out_free_calldata:
1240 	kfree(calldata);
1241 out:
1242 	return status;
1243 }
1244 
1245 static int nfs4_intent_set_file(struct nameidata *nd, struct dentry *dentry, struct nfs4_state *state)
1246 {
1247 	struct file *filp;
1248 
1249 	filp = lookup_instantiate_filp(nd, dentry, NULL);
1250 	if (!IS_ERR(filp)) {
1251 		struct nfs_open_context *ctx;
1252 		ctx = (struct nfs_open_context *)filp->private_data;
1253 		ctx->state = state;
1254 		return 0;
1255 	}
1256 	nfs4_close_state(state, nd->intent.open.flags);
1257 	return PTR_ERR(filp);
1258 }
1259 
1260 struct dentry *
1261 nfs4_atomic_open(struct inode *dir, struct dentry *dentry, struct nameidata *nd)
1262 {
1263 	struct iattr attr;
1264 	struct rpc_cred *cred;
1265 	struct nfs4_state *state;
1266 	struct dentry *res;
1267 
1268 	if (nd->flags & LOOKUP_CREATE) {
1269 		attr.ia_mode = nd->intent.open.create_mode;
1270 		attr.ia_valid = ATTR_MODE;
1271 		if (!IS_POSIXACL(dir))
1272 			attr.ia_mode &= ~current->fs->umask;
1273 	} else {
1274 		attr.ia_valid = 0;
1275 		BUG_ON(nd->intent.open.flags & O_CREAT);
1276 	}
1277 
1278 	cred = rpcauth_lookupcred(NFS_CLIENT(dir)->cl_auth, 0);
1279 	if (IS_ERR(cred))
1280 		return (struct dentry *)cred;
1281 	state = nfs4_do_open(dir, dentry, nd->intent.open.flags, &attr, cred);
1282 	put_rpccred(cred);
1283 	if (IS_ERR(state)) {
1284 		if (PTR_ERR(state) == -ENOENT)
1285 			d_add(dentry, NULL);
1286 		return (struct dentry *)state;
1287 	}
1288 	res = d_add_unique(dentry, igrab(state->inode));
1289 	if (res != NULL)
1290 		dentry = res;
1291 	nfs4_intent_set_file(nd, dentry, state);
1292 	return res;
1293 }
1294 
1295 int
1296 nfs4_open_revalidate(struct inode *dir, struct dentry *dentry, int openflags, struct nameidata *nd)
1297 {
1298 	struct rpc_cred *cred;
1299 	struct nfs4_state *state;
1300 
1301 	cred = rpcauth_lookupcred(NFS_CLIENT(dir)->cl_auth, 0);
1302 	if (IS_ERR(cred))
1303 		return PTR_ERR(cred);
1304 	state = nfs4_open_delegated(dentry->d_inode, openflags, cred);
1305 	if (IS_ERR(state))
1306 		state = nfs4_do_open(dir, dentry, openflags, NULL, cred);
1307 	put_rpccred(cred);
1308 	if (IS_ERR(state)) {
1309 		switch (PTR_ERR(state)) {
1310 			case -EPERM:
1311 			case -EACCES:
1312 			case -EDQUOT:
1313 			case -ENOSPC:
1314 			case -EROFS:
1315 				lookup_instantiate_filp(nd, (struct dentry *)state, NULL);
1316 				return 1;
1317 			case -ENOENT:
1318 				if (dentry->d_inode == NULL)
1319 					return 1;
1320 		}
1321 		goto out_drop;
1322 	}
1323 	if (state->inode == dentry->d_inode) {
1324 		nfs4_intent_set_file(nd, dentry, state);
1325 		return 1;
1326 	}
1327 	nfs4_close_state(state, openflags);
1328 out_drop:
1329 	d_drop(dentry);
1330 	return 0;
1331 }
1332 
1333 
1334 static int _nfs4_server_capabilities(struct nfs_server *server, struct nfs_fh *fhandle)
1335 {
1336 	struct nfs4_server_caps_res res = {};
1337 	struct rpc_message msg = {
1338 		.rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_SERVER_CAPS],
1339 		.rpc_argp = fhandle,
1340 		.rpc_resp = &res,
1341 	};
1342 	int status;
1343 
1344 	status = rpc_call_sync(server->client, &msg, 0);
1345 	if (status == 0) {
1346 		memcpy(server->attr_bitmask, res.attr_bitmask, sizeof(server->attr_bitmask));
1347 		if (res.attr_bitmask[0] & FATTR4_WORD0_ACL)
1348 			server->caps |= NFS_CAP_ACLS;
1349 		if (res.has_links != 0)
1350 			server->caps |= NFS_CAP_HARDLINKS;
1351 		if (res.has_symlinks != 0)
1352 			server->caps |= NFS_CAP_SYMLINKS;
1353 		server->acl_bitmask = res.acl_bitmask;
1354 	}
1355 	return status;
1356 }
1357 
1358 int nfs4_server_capabilities(struct nfs_server *server, struct nfs_fh *fhandle)
1359 {
1360 	struct nfs4_exception exception = { };
1361 	int err;
1362 	do {
1363 		err = nfs4_handle_exception(server,
1364 				_nfs4_server_capabilities(server, fhandle),
1365 				&exception);
1366 	} while (exception.retry);
1367 	return err;
1368 }
1369 
1370 static int _nfs4_lookup_root(struct nfs_server *server, struct nfs_fh *fhandle,
1371 		struct nfs_fsinfo *info)
1372 {
1373 	struct nfs4_lookup_root_arg args = {
1374 		.bitmask = nfs4_fattr_bitmap,
1375 	};
1376 	struct nfs4_lookup_res res = {
1377 		.server = server,
1378 		.fattr = info->fattr,
1379 		.fh = fhandle,
1380 	};
1381 	struct rpc_message msg = {
1382 		.rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_LOOKUP_ROOT],
1383 		.rpc_argp = &args,
1384 		.rpc_resp = &res,
1385 	};
1386 	nfs_fattr_init(info->fattr);
1387 	return rpc_call_sync(server->client, &msg, 0);
1388 }
1389 
1390 static int nfs4_lookup_root(struct nfs_server *server, struct nfs_fh *fhandle,
1391 		struct nfs_fsinfo *info)
1392 {
1393 	struct nfs4_exception exception = { };
1394 	int err;
1395 	do {
1396 		err = nfs4_handle_exception(server,
1397 				_nfs4_lookup_root(server, fhandle, info),
1398 				&exception);
1399 	} while (exception.retry);
1400 	return err;
1401 }
1402 
1403 /*
1404  * get the file handle for the "/" directory on the server
1405  */
1406 static int nfs4_proc_get_root(struct nfs_server *server, struct nfs_fh *fhandle,
1407 			      struct nfs_fsinfo *info)
1408 {
1409 	int status;
1410 
1411 	status = nfs4_lookup_root(server, fhandle, info);
1412 	if (status == 0)
1413 		status = nfs4_server_capabilities(server, fhandle);
1414 	if (status == 0)
1415 		status = nfs4_do_fsinfo(server, fhandle, info);
1416 	return nfs4_map_errors(status);
1417 }
1418 
1419 /*
1420  * Get locations and (maybe) other attributes of a referral.
1421  * Note that we'll actually follow the referral later when
1422  * we detect fsid mismatch in inode revalidation
1423  */
1424 static int nfs4_get_referral(struct inode *dir, struct qstr *name, struct nfs_fattr *fattr, struct nfs_fh *fhandle)
1425 {
1426 	int status = -ENOMEM;
1427 	struct page *page = NULL;
1428 	struct nfs4_fs_locations *locations = NULL;
1429 	struct dentry dentry = {};
1430 
1431 	page = alloc_page(GFP_KERNEL);
1432 	if (page == NULL)
1433 		goto out;
1434 	locations = kmalloc(sizeof(struct nfs4_fs_locations), GFP_KERNEL);
1435 	if (locations == NULL)
1436 		goto out;
1437 
1438 	dentry.d_name.name = name->name;
1439 	dentry.d_name.len = name->len;
1440 	status = nfs4_proc_fs_locations(dir, &dentry, locations, page);
1441 	if (status != 0)
1442 		goto out;
1443 	/* Make sure server returned a different fsid for the referral */
1444 	if (nfs_fsid_equal(&NFS_SERVER(dir)->fsid, &locations->fattr.fsid)) {
1445 		dprintk("%s: server did not return a different fsid for a referral at %s\n", __FUNCTION__, name->name);
1446 		status = -EIO;
1447 		goto out;
1448 	}
1449 
1450 	memcpy(fattr, &locations->fattr, sizeof(struct nfs_fattr));
1451 	fattr->valid |= NFS_ATTR_FATTR_V4_REFERRAL;
1452 	if (!fattr->mode)
1453 		fattr->mode = S_IFDIR;
1454 	memset(fhandle, 0, sizeof(struct nfs_fh));
1455 out:
1456 	if (page)
1457 		__free_page(page);
1458 	if (locations)
1459 		kfree(locations);
1460 	return status;
1461 }
1462 
1463 static int _nfs4_proc_getattr(struct nfs_server *server, struct nfs_fh *fhandle, struct nfs_fattr *fattr)
1464 {
1465 	struct nfs4_getattr_arg args = {
1466 		.fh = fhandle,
1467 		.bitmask = server->attr_bitmask,
1468 	};
1469 	struct nfs4_getattr_res res = {
1470 		.fattr = fattr,
1471 		.server = server,
1472 	};
1473 	struct rpc_message msg = {
1474 		.rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_GETATTR],
1475 		.rpc_argp = &args,
1476 		.rpc_resp = &res,
1477 	};
1478 
1479 	nfs_fattr_init(fattr);
1480 	return rpc_call_sync(server->client, &msg, 0);
1481 }
1482 
1483 static int nfs4_proc_getattr(struct nfs_server *server, struct nfs_fh *fhandle, struct nfs_fattr *fattr)
1484 {
1485 	struct nfs4_exception exception = { };
1486 	int err;
1487 	do {
1488 		err = nfs4_handle_exception(server,
1489 				_nfs4_proc_getattr(server, fhandle, fattr),
1490 				&exception);
1491 	} while (exception.retry);
1492 	return err;
1493 }
1494 
1495 /*
1496  * The file is not closed if it is opened due to the a request to change
1497  * the size of the file. The open call will not be needed once the
1498  * VFS layer lookup-intents are implemented.
1499  *
1500  * Close is called when the inode is destroyed.
1501  * If we haven't opened the file for O_WRONLY, we
1502  * need to in the size_change case to obtain a stateid.
1503  *
1504  * Got race?
1505  * Because OPEN is always done by name in nfsv4, it is
1506  * possible that we opened a different file by the same
1507  * name.  We can recognize this race condition, but we
1508  * can't do anything about it besides returning an error.
1509  *
1510  * This will be fixed with VFS changes (lookup-intent).
1511  */
1512 static int
1513 nfs4_proc_setattr(struct dentry *dentry, struct nfs_fattr *fattr,
1514 		  struct iattr *sattr)
1515 {
1516 	struct rpc_cred *cred;
1517 	struct inode *inode = dentry->d_inode;
1518 	struct nfs_open_context *ctx;
1519 	struct nfs4_state *state = NULL;
1520 	int status;
1521 
1522 	nfs_fattr_init(fattr);
1523 
1524 	cred = rpcauth_lookupcred(NFS_CLIENT(inode)->cl_auth, 0);
1525 	if (IS_ERR(cred))
1526 		return PTR_ERR(cred);
1527 
1528 	/* Search for an existing open(O_WRITE) file */
1529 	ctx = nfs_find_open_context(inode, cred, FMODE_WRITE);
1530 	if (ctx != NULL)
1531 		state = ctx->state;
1532 
1533 	status = nfs4_do_setattr(inode, fattr, sattr, state);
1534 	if (status == 0)
1535 		nfs_setattr_update_inode(inode, sattr);
1536 	if (ctx != NULL)
1537 		put_nfs_open_context(ctx);
1538 	put_rpccred(cred);
1539 	return status;
1540 }
1541 
1542 static int _nfs4_proc_lookupfh(struct nfs_server *server, struct nfs_fh *dirfh,
1543 		struct qstr *name, struct nfs_fh *fhandle,
1544 		struct nfs_fattr *fattr)
1545 {
1546 	int		       status;
1547 	struct nfs4_lookup_arg args = {
1548 		.bitmask = server->attr_bitmask,
1549 		.dir_fh = dirfh,
1550 		.name = name,
1551 	};
1552 	struct nfs4_lookup_res res = {
1553 		.server = server,
1554 		.fattr = fattr,
1555 		.fh = fhandle,
1556 	};
1557 	struct rpc_message msg = {
1558 		.rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_LOOKUP],
1559 		.rpc_argp = &args,
1560 		.rpc_resp = &res,
1561 	};
1562 
1563 	nfs_fattr_init(fattr);
1564 
1565 	dprintk("NFS call  lookupfh %s\n", name->name);
1566 	status = rpc_call_sync(server->client, &msg, 0);
1567 	dprintk("NFS reply lookupfh: %d\n", status);
1568 	if (status == -NFS4ERR_MOVED)
1569 		status = -EREMOTE;
1570 	return status;
1571 }
1572 
1573 static int nfs4_proc_lookupfh(struct nfs_server *server, struct nfs_fh *dirfh,
1574 			      struct qstr *name, struct nfs_fh *fhandle,
1575 			      struct nfs_fattr *fattr)
1576 {
1577 	struct nfs4_exception exception = { };
1578 	int err;
1579 	do {
1580 		err = nfs4_handle_exception(server,
1581 				_nfs4_proc_lookupfh(server, dirfh, name,
1582 						    fhandle, fattr),
1583 				&exception);
1584 	} while (exception.retry);
1585 	return err;
1586 }
1587 
1588 static int _nfs4_proc_lookup(struct inode *dir, struct qstr *name,
1589 		struct nfs_fh *fhandle, struct nfs_fattr *fattr)
1590 {
1591 	int		       status;
1592 	struct nfs_server *server = NFS_SERVER(dir);
1593 	struct nfs4_lookup_arg args = {
1594 		.bitmask = server->attr_bitmask,
1595 		.dir_fh = NFS_FH(dir),
1596 		.name = name,
1597 	};
1598 	struct nfs4_lookup_res res = {
1599 		.server = server,
1600 		.fattr = fattr,
1601 		.fh = fhandle,
1602 	};
1603 	struct rpc_message msg = {
1604 		.rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_LOOKUP],
1605 		.rpc_argp = &args,
1606 		.rpc_resp = &res,
1607 	};
1608 
1609 	nfs_fattr_init(fattr);
1610 
1611 	dprintk("NFS call  lookup %s\n", name->name);
1612 	status = rpc_call_sync(NFS_CLIENT(dir), &msg, 0);
1613 	if (status == -NFS4ERR_MOVED)
1614 		status = nfs4_get_referral(dir, name, fattr, fhandle);
1615 	dprintk("NFS reply lookup: %d\n", status);
1616 	return status;
1617 }
1618 
1619 static int nfs4_proc_lookup(struct inode *dir, struct qstr *name, struct nfs_fh *fhandle, struct nfs_fattr *fattr)
1620 {
1621 	struct nfs4_exception exception = { };
1622 	int err;
1623 	do {
1624 		err = nfs4_handle_exception(NFS_SERVER(dir),
1625 				_nfs4_proc_lookup(dir, name, fhandle, fattr),
1626 				&exception);
1627 	} while (exception.retry);
1628 	return err;
1629 }
1630 
1631 static int _nfs4_proc_access(struct inode *inode, struct nfs_access_entry *entry)
1632 {
1633 	struct nfs4_accessargs args = {
1634 		.fh = NFS_FH(inode),
1635 	};
1636 	struct nfs4_accessres res = { 0 };
1637 	struct rpc_message msg = {
1638 		.rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_ACCESS],
1639 		.rpc_argp = &args,
1640 		.rpc_resp = &res,
1641 		.rpc_cred = entry->cred,
1642 	};
1643 	int mode = entry->mask;
1644 	int status;
1645 
1646 	/*
1647 	 * Determine which access bits we want to ask for...
1648 	 */
1649 	if (mode & MAY_READ)
1650 		args.access |= NFS4_ACCESS_READ;
1651 	if (S_ISDIR(inode->i_mode)) {
1652 		if (mode & MAY_WRITE)
1653 			args.access |= NFS4_ACCESS_MODIFY | NFS4_ACCESS_EXTEND | NFS4_ACCESS_DELETE;
1654 		if (mode & MAY_EXEC)
1655 			args.access |= NFS4_ACCESS_LOOKUP;
1656 	} else {
1657 		if (mode & MAY_WRITE)
1658 			args.access |= NFS4_ACCESS_MODIFY | NFS4_ACCESS_EXTEND;
1659 		if (mode & MAY_EXEC)
1660 			args.access |= NFS4_ACCESS_EXECUTE;
1661 	}
1662 	status = rpc_call_sync(NFS_CLIENT(inode), &msg, 0);
1663 	if (!status) {
1664 		entry->mask = 0;
1665 		if (res.access & NFS4_ACCESS_READ)
1666 			entry->mask |= MAY_READ;
1667 		if (res.access & (NFS4_ACCESS_MODIFY | NFS4_ACCESS_EXTEND | NFS4_ACCESS_DELETE))
1668 			entry->mask |= MAY_WRITE;
1669 		if (res.access & (NFS4_ACCESS_LOOKUP|NFS4_ACCESS_EXECUTE))
1670 			entry->mask |= MAY_EXEC;
1671 	}
1672 	return status;
1673 }
1674 
1675 static int nfs4_proc_access(struct inode *inode, struct nfs_access_entry *entry)
1676 {
1677 	struct nfs4_exception exception = { };
1678 	int err;
1679 	do {
1680 		err = nfs4_handle_exception(NFS_SERVER(inode),
1681 				_nfs4_proc_access(inode, entry),
1682 				&exception);
1683 	} while (exception.retry);
1684 	return err;
1685 }
1686 
1687 /*
1688  * TODO: For the time being, we don't try to get any attributes
1689  * along with any of the zero-copy operations READ, READDIR,
1690  * READLINK, WRITE.
1691  *
1692  * In the case of the first three, we want to put the GETATTR
1693  * after the read-type operation -- this is because it is hard
1694  * to predict the length of a GETATTR response in v4, and thus
1695  * align the READ data correctly.  This means that the GETATTR
1696  * may end up partially falling into the page cache, and we should
1697  * shift it into the 'tail' of the xdr_buf before processing.
1698  * To do this efficiently, we need to know the total length
1699  * of data received, which doesn't seem to be available outside
1700  * of the RPC layer.
1701  *
1702  * In the case of WRITE, we also want to put the GETATTR after
1703  * the operation -- in this case because we want to make sure
1704  * we get the post-operation mtime and size.  This means that
1705  * we can't use xdr_encode_pages() as written: we need a variant
1706  * of it which would leave room in the 'tail' iovec.
1707  *
1708  * Both of these changes to the XDR layer would in fact be quite
1709  * minor, but I decided to leave them for a subsequent patch.
1710  */
1711 static int _nfs4_proc_readlink(struct inode *inode, struct page *page,
1712 		unsigned int pgbase, unsigned int pglen)
1713 {
1714 	struct nfs4_readlink args = {
1715 		.fh       = NFS_FH(inode),
1716 		.pgbase	  = pgbase,
1717 		.pglen    = pglen,
1718 		.pages    = &page,
1719 	};
1720 	struct rpc_message msg = {
1721 		.rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_READLINK],
1722 		.rpc_argp = &args,
1723 		.rpc_resp = NULL,
1724 	};
1725 
1726 	return rpc_call_sync(NFS_CLIENT(inode), &msg, 0);
1727 }
1728 
1729 static int nfs4_proc_readlink(struct inode *inode, struct page *page,
1730 		unsigned int pgbase, unsigned int pglen)
1731 {
1732 	struct nfs4_exception exception = { };
1733 	int err;
1734 	do {
1735 		err = nfs4_handle_exception(NFS_SERVER(inode),
1736 				_nfs4_proc_readlink(inode, page, pgbase, pglen),
1737 				&exception);
1738 	} while (exception.retry);
1739 	return err;
1740 }
1741 
1742 static int _nfs4_proc_read(struct nfs_read_data *rdata)
1743 {
1744 	int flags = rdata->flags;
1745 	struct inode *inode = rdata->inode;
1746 	struct nfs_fattr *fattr = rdata->res.fattr;
1747 	struct nfs_server *server = NFS_SERVER(inode);
1748 	struct rpc_message msg = {
1749 		.rpc_proc	= &nfs4_procedures[NFSPROC4_CLNT_READ],
1750 		.rpc_argp	= &rdata->args,
1751 		.rpc_resp	= &rdata->res,
1752 		.rpc_cred	= rdata->cred,
1753 	};
1754 	unsigned long timestamp = jiffies;
1755 	int status;
1756 
1757 	dprintk("NFS call  read %d @ %Ld\n", rdata->args.count,
1758 			(long long) rdata->args.offset);
1759 
1760 	nfs_fattr_init(fattr);
1761 	status = rpc_call_sync(server->client, &msg, flags);
1762 	if (!status)
1763 		renew_lease(server, timestamp);
1764 	dprintk("NFS reply read: %d\n", status);
1765 	return status;
1766 }
1767 
1768 static int nfs4_proc_read(struct nfs_read_data *rdata)
1769 {
1770 	struct nfs4_exception exception = { };
1771 	int err;
1772 	do {
1773 		err = nfs4_handle_exception(NFS_SERVER(rdata->inode),
1774 				_nfs4_proc_read(rdata),
1775 				&exception);
1776 	} while (exception.retry);
1777 	return err;
1778 }
1779 
1780 static int _nfs4_proc_write(struct nfs_write_data *wdata)
1781 {
1782 	int rpcflags = wdata->flags;
1783 	struct inode *inode = wdata->inode;
1784 	struct nfs_fattr *fattr = wdata->res.fattr;
1785 	struct nfs_server *server = NFS_SERVER(inode);
1786 	struct rpc_message msg = {
1787 		.rpc_proc	= &nfs4_procedures[NFSPROC4_CLNT_WRITE],
1788 		.rpc_argp	= &wdata->args,
1789 		.rpc_resp	= &wdata->res,
1790 		.rpc_cred	= wdata->cred,
1791 	};
1792 	int status;
1793 
1794 	dprintk("NFS call  write %d @ %Ld\n", wdata->args.count,
1795 			(long long) wdata->args.offset);
1796 
1797 	wdata->args.bitmask = server->attr_bitmask;
1798 	wdata->res.server = server;
1799 	wdata->timestamp = jiffies;
1800 	nfs_fattr_init(fattr);
1801 	status = rpc_call_sync(server->client, &msg, rpcflags);
1802 	dprintk("NFS reply write: %d\n", status);
1803 	if (status < 0)
1804 		return status;
1805 	renew_lease(server, wdata->timestamp);
1806 	nfs_post_op_update_inode(inode, fattr);
1807 	return wdata->res.count;
1808 }
1809 
1810 static int nfs4_proc_write(struct nfs_write_data *wdata)
1811 {
1812 	struct nfs4_exception exception = { };
1813 	int err;
1814 	do {
1815 		err = nfs4_handle_exception(NFS_SERVER(wdata->inode),
1816 				_nfs4_proc_write(wdata),
1817 				&exception);
1818 	} while (exception.retry);
1819 	return err;
1820 }
1821 
1822 static int _nfs4_proc_commit(struct nfs_write_data *cdata)
1823 {
1824 	struct inode *inode = cdata->inode;
1825 	struct nfs_fattr *fattr = cdata->res.fattr;
1826 	struct nfs_server *server = NFS_SERVER(inode);
1827 	struct rpc_message msg = {
1828 		.rpc_proc	= &nfs4_procedures[NFSPROC4_CLNT_COMMIT],
1829 		.rpc_argp	= &cdata->args,
1830 		.rpc_resp	= &cdata->res,
1831 		.rpc_cred	= cdata->cred,
1832 	};
1833 	int status;
1834 
1835 	dprintk("NFS call  commit %d @ %Ld\n", cdata->args.count,
1836 			(long long) cdata->args.offset);
1837 
1838 	cdata->args.bitmask = server->attr_bitmask;
1839 	cdata->res.server = server;
1840 	cdata->timestamp = jiffies;
1841 	nfs_fattr_init(fattr);
1842 	status = rpc_call_sync(server->client, &msg, 0);
1843 	if (status >= 0)
1844 		renew_lease(server, cdata->timestamp);
1845 	dprintk("NFS reply commit: %d\n", status);
1846 	if (status >= 0)
1847 		nfs_post_op_update_inode(inode, fattr);
1848 	return status;
1849 }
1850 
1851 static int nfs4_proc_commit(struct nfs_write_data *cdata)
1852 {
1853 	struct nfs4_exception exception = { };
1854 	int err;
1855 	do {
1856 		err = nfs4_handle_exception(NFS_SERVER(cdata->inode),
1857 				_nfs4_proc_commit(cdata),
1858 				&exception);
1859 	} while (exception.retry);
1860 	return err;
1861 }
1862 
1863 /*
1864  * Got race?
1865  * We will need to arrange for the VFS layer to provide an atomic open.
1866  * Until then, this create/open method is prone to inefficiency and race
1867  * conditions due to the lookup, create, and open VFS calls from sys_open()
1868  * placed on the wire.
1869  *
1870  * Given the above sorry state of affairs, I'm simply sending an OPEN.
1871  * The file will be opened again in the subsequent VFS open call
1872  * (nfs4_proc_file_open).
1873  *
1874  * The open for read will just hang around to be used by any process that
1875  * opens the file O_RDONLY. This will all be resolved with the VFS changes.
1876  */
1877 
1878 static int
1879 nfs4_proc_create(struct inode *dir, struct dentry *dentry, struct iattr *sattr,
1880                  int flags, struct nameidata *nd)
1881 {
1882 	struct nfs4_state *state;
1883 	struct rpc_cred *cred;
1884 	int status = 0;
1885 
1886 	cred = rpcauth_lookupcred(NFS_CLIENT(dir)->cl_auth, 0);
1887 	if (IS_ERR(cred)) {
1888 		status = PTR_ERR(cred);
1889 		goto out;
1890 	}
1891 	state = nfs4_do_open(dir, dentry, flags, sattr, cred);
1892 	put_rpccred(cred);
1893 	if (IS_ERR(state)) {
1894 		status = PTR_ERR(state);
1895 		goto out;
1896 	}
1897 	d_instantiate(dentry, igrab(state->inode));
1898 	if (flags & O_EXCL) {
1899 		struct nfs_fattr fattr;
1900 		status = nfs4_do_setattr(state->inode, &fattr, sattr, state);
1901 		if (status == 0)
1902 			nfs_setattr_update_inode(state->inode, sattr);
1903 	}
1904 	if (status == 0 && nd != NULL && (nd->flags & LOOKUP_OPEN))
1905 		status = nfs4_intent_set_file(nd, dentry, state);
1906 	else
1907 		nfs4_close_state(state, flags);
1908 out:
1909 	return status;
1910 }
1911 
1912 static int _nfs4_proc_remove(struct inode *dir, struct qstr *name)
1913 {
1914 	struct nfs_server *server = NFS_SERVER(dir);
1915 	struct nfs4_remove_arg args = {
1916 		.fh = NFS_FH(dir),
1917 		.name = name,
1918 		.bitmask = server->attr_bitmask,
1919 	};
1920 	struct nfs_fattr dir_attr;
1921 	struct nfs4_remove_res	res = {
1922 		.server = server,
1923 		.dir_attr = &dir_attr,
1924 	};
1925 	struct rpc_message msg = {
1926 		.rpc_proc	= &nfs4_procedures[NFSPROC4_CLNT_REMOVE],
1927 		.rpc_argp	= &args,
1928 		.rpc_resp	= &res,
1929 	};
1930 	int			status;
1931 
1932 	nfs_fattr_init(res.dir_attr);
1933 	status = rpc_call_sync(server->client, &msg, 0);
1934 	if (status == 0) {
1935 		update_changeattr(dir, &res.cinfo);
1936 		nfs_post_op_update_inode(dir, res.dir_attr);
1937 	}
1938 	return status;
1939 }
1940 
1941 static int nfs4_proc_remove(struct inode *dir, struct qstr *name)
1942 {
1943 	struct nfs4_exception exception = { };
1944 	int err;
1945 	do {
1946 		err = nfs4_handle_exception(NFS_SERVER(dir),
1947 				_nfs4_proc_remove(dir, name),
1948 				&exception);
1949 	} while (exception.retry);
1950 	return err;
1951 }
1952 
1953 struct unlink_desc {
1954 	struct nfs4_remove_arg	args;
1955 	struct nfs4_remove_res	res;
1956 	struct nfs_fattr dir_attr;
1957 };
1958 
1959 static int nfs4_proc_unlink_setup(struct rpc_message *msg, struct dentry *dir,
1960 		struct qstr *name)
1961 {
1962 	struct nfs_server *server = NFS_SERVER(dir->d_inode);
1963 	struct unlink_desc *up;
1964 
1965 	up = (struct unlink_desc *) kmalloc(sizeof(*up), GFP_KERNEL);
1966 	if (!up)
1967 		return -ENOMEM;
1968 
1969 	up->args.fh = NFS_FH(dir->d_inode);
1970 	up->args.name = name;
1971 	up->args.bitmask = server->attr_bitmask;
1972 	up->res.server = server;
1973 	up->res.dir_attr = &up->dir_attr;
1974 
1975 	msg->rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_REMOVE];
1976 	msg->rpc_argp = &up->args;
1977 	msg->rpc_resp = &up->res;
1978 	return 0;
1979 }
1980 
1981 static int nfs4_proc_unlink_done(struct dentry *dir, struct rpc_task *task)
1982 {
1983 	struct rpc_message *msg = &task->tk_msg;
1984 	struct unlink_desc *up;
1985 
1986 	if (msg->rpc_resp != NULL) {
1987 		up = container_of(msg->rpc_resp, struct unlink_desc, res);
1988 		update_changeattr(dir->d_inode, &up->res.cinfo);
1989 		nfs_post_op_update_inode(dir->d_inode, up->res.dir_attr);
1990 		kfree(up);
1991 		msg->rpc_resp = NULL;
1992 		msg->rpc_argp = NULL;
1993 	}
1994 	return 0;
1995 }
1996 
1997 static int _nfs4_proc_rename(struct inode *old_dir, struct qstr *old_name,
1998 		struct inode *new_dir, struct qstr *new_name)
1999 {
2000 	struct nfs_server *server = NFS_SERVER(old_dir);
2001 	struct nfs4_rename_arg arg = {
2002 		.old_dir = NFS_FH(old_dir),
2003 		.new_dir = NFS_FH(new_dir),
2004 		.old_name = old_name,
2005 		.new_name = new_name,
2006 		.bitmask = server->attr_bitmask,
2007 	};
2008 	struct nfs_fattr old_fattr, new_fattr;
2009 	struct nfs4_rename_res res = {
2010 		.server = server,
2011 		.old_fattr = &old_fattr,
2012 		.new_fattr = &new_fattr,
2013 	};
2014 	struct rpc_message msg = {
2015 		.rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_RENAME],
2016 		.rpc_argp = &arg,
2017 		.rpc_resp = &res,
2018 	};
2019 	int			status;
2020 
2021 	nfs_fattr_init(res.old_fattr);
2022 	nfs_fattr_init(res.new_fattr);
2023 	status = rpc_call_sync(server->client, &msg, 0);
2024 
2025 	if (!status) {
2026 		update_changeattr(old_dir, &res.old_cinfo);
2027 		nfs_post_op_update_inode(old_dir, res.old_fattr);
2028 		update_changeattr(new_dir, &res.new_cinfo);
2029 		nfs_post_op_update_inode(new_dir, res.new_fattr);
2030 	}
2031 	return status;
2032 }
2033 
2034 static int nfs4_proc_rename(struct inode *old_dir, struct qstr *old_name,
2035 		struct inode *new_dir, struct qstr *new_name)
2036 {
2037 	struct nfs4_exception exception = { };
2038 	int err;
2039 	do {
2040 		err = nfs4_handle_exception(NFS_SERVER(old_dir),
2041 				_nfs4_proc_rename(old_dir, old_name,
2042 					new_dir, new_name),
2043 				&exception);
2044 	} while (exception.retry);
2045 	return err;
2046 }
2047 
2048 static int _nfs4_proc_link(struct inode *inode, struct inode *dir, struct qstr *name)
2049 {
2050 	struct nfs_server *server = NFS_SERVER(inode);
2051 	struct nfs4_link_arg arg = {
2052 		.fh     = NFS_FH(inode),
2053 		.dir_fh = NFS_FH(dir),
2054 		.name   = name,
2055 		.bitmask = server->attr_bitmask,
2056 	};
2057 	struct nfs_fattr fattr, dir_attr;
2058 	struct nfs4_link_res res = {
2059 		.server = server,
2060 		.fattr = &fattr,
2061 		.dir_attr = &dir_attr,
2062 	};
2063 	struct rpc_message msg = {
2064 		.rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_LINK],
2065 		.rpc_argp = &arg,
2066 		.rpc_resp = &res,
2067 	};
2068 	int			status;
2069 
2070 	nfs_fattr_init(res.fattr);
2071 	nfs_fattr_init(res.dir_attr);
2072 	status = rpc_call_sync(server->client, &msg, 0);
2073 	if (!status) {
2074 		update_changeattr(dir, &res.cinfo);
2075 		nfs_post_op_update_inode(dir, res.dir_attr);
2076 		nfs_post_op_update_inode(inode, res.fattr);
2077 	}
2078 
2079 	return status;
2080 }
2081 
2082 static int nfs4_proc_link(struct inode *inode, struct inode *dir, struct qstr *name)
2083 {
2084 	struct nfs4_exception exception = { };
2085 	int err;
2086 	do {
2087 		err = nfs4_handle_exception(NFS_SERVER(inode),
2088 				_nfs4_proc_link(inode, dir, name),
2089 				&exception);
2090 	} while (exception.retry);
2091 	return err;
2092 }
2093 
2094 static int _nfs4_proc_symlink(struct inode *dir, struct dentry *dentry,
2095 		struct page *page, unsigned int len, struct iattr *sattr)
2096 {
2097 	struct nfs_server *server = NFS_SERVER(dir);
2098 	struct nfs_fh fhandle;
2099 	struct nfs_fattr fattr, dir_fattr;
2100 	struct nfs4_create_arg arg = {
2101 		.dir_fh = NFS_FH(dir),
2102 		.server = server,
2103 		.name = &dentry->d_name,
2104 		.attrs = sattr,
2105 		.ftype = NF4LNK,
2106 		.bitmask = server->attr_bitmask,
2107 	};
2108 	struct nfs4_create_res res = {
2109 		.server = server,
2110 		.fh = &fhandle,
2111 		.fattr = &fattr,
2112 		.dir_fattr = &dir_fattr,
2113 	};
2114 	struct rpc_message msg = {
2115 		.rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_SYMLINK],
2116 		.rpc_argp = &arg,
2117 		.rpc_resp = &res,
2118 	};
2119 	int			status;
2120 
2121 	if (len > NFS4_MAXPATHLEN)
2122 		return -ENAMETOOLONG;
2123 
2124 	arg.u.symlink.pages = &page;
2125 	arg.u.symlink.len = len;
2126 	nfs_fattr_init(&fattr);
2127 	nfs_fattr_init(&dir_fattr);
2128 
2129 	status = rpc_call_sync(NFS_CLIENT(dir), &msg, 0);
2130 	if (!status) {
2131 		update_changeattr(dir, &res.dir_cinfo);
2132 		nfs_post_op_update_inode(dir, res.dir_fattr);
2133 		status = nfs_instantiate(dentry, &fhandle, &fattr);
2134 	}
2135 	return status;
2136 }
2137 
2138 static int nfs4_proc_symlink(struct inode *dir, struct dentry *dentry,
2139 		struct page *page, unsigned int len, struct iattr *sattr)
2140 {
2141 	struct nfs4_exception exception = { };
2142 	int err;
2143 	do {
2144 		err = nfs4_handle_exception(NFS_SERVER(dir),
2145 				_nfs4_proc_symlink(dir, dentry, page,
2146 							len, sattr),
2147 				&exception);
2148 	} while (exception.retry);
2149 	return err;
2150 }
2151 
2152 static int _nfs4_proc_mkdir(struct inode *dir, struct dentry *dentry,
2153 		struct iattr *sattr)
2154 {
2155 	struct nfs_server *server = NFS_SERVER(dir);
2156 	struct nfs_fh fhandle;
2157 	struct nfs_fattr fattr, dir_fattr;
2158 	struct nfs4_create_arg arg = {
2159 		.dir_fh = NFS_FH(dir),
2160 		.server = server,
2161 		.name = &dentry->d_name,
2162 		.attrs = sattr,
2163 		.ftype = NF4DIR,
2164 		.bitmask = server->attr_bitmask,
2165 	};
2166 	struct nfs4_create_res res = {
2167 		.server = server,
2168 		.fh = &fhandle,
2169 		.fattr = &fattr,
2170 		.dir_fattr = &dir_fattr,
2171 	};
2172 	struct rpc_message msg = {
2173 		.rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_CREATE],
2174 		.rpc_argp = &arg,
2175 		.rpc_resp = &res,
2176 	};
2177 	int			status;
2178 
2179 	nfs_fattr_init(&fattr);
2180 	nfs_fattr_init(&dir_fattr);
2181 
2182 	status = rpc_call_sync(NFS_CLIENT(dir), &msg, 0);
2183 	if (!status) {
2184 		update_changeattr(dir, &res.dir_cinfo);
2185 		nfs_post_op_update_inode(dir, res.dir_fattr);
2186 		status = nfs_instantiate(dentry, &fhandle, &fattr);
2187 	}
2188 	return status;
2189 }
2190 
2191 static int nfs4_proc_mkdir(struct inode *dir, struct dentry *dentry,
2192 		struct iattr *sattr)
2193 {
2194 	struct nfs4_exception exception = { };
2195 	int err;
2196 	do {
2197 		err = nfs4_handle_exception(NFS_SERVER(dir),
2198 				_nfs4_proc_mkdir(dir, dentry, sattr),
2199 				&exception);
2200 	} while (exception.retry);
2201 	return err;
2202 }
2203 
2204 static int _nfs4_proc_readdir(struct dentry *dentry, struct rpc_cred *cred,
2205                   u64 cookie, struct page *page, unsigned int count, int plus)
2206 {
2207 	struct inode		*dir = dentry->d_inode;
2208 	struct nfs4_readdir_arg args = {
2209 		.fh = NFS_FH(dir),
2210 		.pages = &page,
2211 		.pgbase = 0,
2212 		.count = count,
2213 		.bitmask = NFS_SERVER(dentry->d_inode)->attr_bitmask,
2214 	};
2215 	struct nfs4_readdir_res res;
2216 	struct rpc_message msg = {
2217 		.rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_READDIR],
2218 		.rpc_argp = &args,
2219 		.rpc_resp = &res,
2220 		.rpc_cred = cred,
2221 	};
2222 	int			status;
2223 
2224 	dprintk("%s: dentry = %s/%s, cookie = %Lu\n", __FUNCTION__,
2225 			dentry->d_parent->d_name.name,
2226 			dentry->d_name.name,
2227 			(unsigned long long)cookie);
2228 	lock_kernel();
2229 	nfs4_setup_readdir(cookie, NFS_COOKIEVERF(dir), dentry, &args);
2230 	res.pgbase = args.pgbase;
2231 	status = rpc_call_sync(NFS_CLIENT(dir), &msg, 0);
2232 	if (status == 0)
2233 		memcpy(NFS_COOKIEVERF(dir), res.verifier.data, NFS4_VERIFIER_SIZE);
2234 	unlock_kernel();
2235 	dprintk("%s: returns %d\n", __FUNCTION__, status);
2236 	return status;
2237 }
2238 
2239 static int nfs4_proc_readdir(struct dentry *dentry, struct rpc_cred *cred,
2240                   u64 cookie, struct page *page, unsigned int count, int plus)
2241 {
2242 	struct nfs4_exception exception = { };
2243 	int err;
2244 	do {
2245 		err = nfs4_handle_exception(NFS_SERVER(dentry->d_inode),
2246 				_nfs4_proc_readdir(dentry, cred, cookie,
2247 					page, count, plus),
2248 				&exception);
2249 	} while (exception.retry);
2250 	return err;
2251 }
2252 
2253 static int _nfs4_proc_mknod(struct inode *dir, struct dentry *dentry,
2254 		struct iattr *sattr, dev_t rdev)
2255 {
2256 	struct nfs_server *server = NFS_SERVER(dir);
2257 	struct nfs_fh fh;
2258 	struct nfs_fattr fattr, dir_fattr;
2259 	struct nfs4_create_arg arg = {
2260 		.dir_fh = NFS_FH(dir),
2261 		.server = server,
2262 		.name = &dentry->d_name,
2263 		.attrs = sattr,
2264 		.bitmask = server->attr_bitmask,
2265 	};
2266 	struct nfs4_create_res res = {
2267 		.server = server,
2268 		.fh = &fh,
2269 		.fattr = &fattr,
2270 		.dir_fattr = &dir_fattr,
2271 	};
2272 	struct rpc_message msg = {
2273 		.rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_CREATE],
2274 		.rpc_argp = &arg,
2275 		.rpc_resp = &res,
2276 	};
2277 	int			status;
2278 	int                     mode = sattr->ia_mode;
2279 
2280 	nfs_fattr_init(&fattr);
2281 	nfs_fattr_init(&dir_fattr);
2282 
2283 	BUG_ON(!(sattr->ia_valid & ATTR_MODE));
2284 	BUG_ON(!S_ISFIFO(mode) && !S_ISBLK(mode) && !S_ISCHR(mode) && !S_ISSOCK(mode));
2285 	if (S_ISFIFO(mode))
2286 		arg.ftype = NF4FIFO;
2287 	else if (S_ISBLK(mode)) {
2288 		arg.ftype = NF4BLK;
2289 		arg.u.device.specdata1 = MAJOR(rdev);
2290 		arg.u.device.specdata2 = MINOR(rdev);
2291 	}
2292 	else if (S_ISCHR(mode)) {
2293 		arg.ftype = NF4CHR;
2294 		arg.u.device.specdata1 = MAJOR(rdev);
2295 		arg.u.device.specdata2 = MINOR(rdev);
2296 	}
2297 	else
2298 		arg.ftype = NF4SOCK;
2299 
2300 	status = rpc_call_sync(NFS_CLIENT(dir), &msg, 0);
2301 	if (status == 0) {
2302 		update_changeattr(dir, &res.dir_cinfo);
2303 		nfs_post_op_update_inode(dir, res.dir_fattr);
2304 		status = nfs_instantiate(dentry, &fh, &fattr);
2305 	}
2306 	return status;
2307 }
2308 
2309 static int nfs4_proc_mknod(struct inode *dir, struct dentry *dentry,
2310 		struct iattr *sattr, dev_t rdev)
2311 {
2312 	struct nfs4_exception exception = { };
2313 	int err;
2314 	do {
2315 		err = nfs4_handle_exception(NFS_SERVER(dir),
2316 				_nfs4_proc_mknod(dir, dentry, sattr, rdev),
2317 				&exception);
2318 	} while (exception.retry);
2319 	return err;
2320 }
2321 
2322 static int _nfs4_proc_statfs(struct nfs_server *server, struct nfs_fh *fhandle,
2323 		 struct nfs_fsstat *fsstat)
2324 {
2325 	struct nfs4_statfs_arg args = {
2326 		.fh = fhandle,
2327 		.bitmask = server->attr_bitmask,
2328 	};
2329 	struct rpc_message msg = {
2330 		.rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_STATFS],
2331 		.rpc_argp = &args,
2332 		.rpc_resp = fsstat,
2333 	};
2334 
2335 	nfs_fattr_init(fsstat->fattr);
2336 	return rpc_call_sync(server->client, &msg, 0);
2337 }
2338 
2339 static int nfs4_proc_statfs(struct nfs_server *server, struct nfs_fh *fhandle, struct nfs_fsstat *fsstat)
2340 {
2341 	struct nfs4_exception exception = { };
2342 	int err;
2343 	do {
2344 		err = nfs4_handle_exception(server,
2345 				_nfs4_proc_statfs(server, fhandle, fsstat),
2346 				&exception);
2347 	} while (exception.retry);
2348 	return err;
2349 }
2350 
2351 static int _nfs4_do_fsinfo(struct nfs_server *server, struct nfs_fh *fhandle,
2352 		struct nfs_fsinfo *fsinfo)
2353 {
2354 	struct nfs4_fsinfo_arg args = {
2355 		.fh = fhandle,
2356 		.bitmask = server->attr_bitmask,
2357 	};
2358 	struct rpc_message msg = {
2359 		.rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_FSINFO],
2360 		.rpc_argp = &args,
2361 		.rpc_resp = fsinfo,
2362 	};
2363 
2364 	return rpc_call_sync(server->client, &msg, 0);
2365 }
2366 
2367 static int nfs4_do_fsinfo(struct nfs_server *server, struct nfs_fh *fhandle, struct nfs_fsinfo *fsinfo)
2368 {
2369 	struct nfs4_exception exception = { };
2370 	int err;
2371 
2372 	do {
2373 		err = nfs4_handle_exception(server,
2374 				_nfs4_do_fsinfo(server, fhandle, fsinfo),
2375 				&exception);
2376 	} while (exception.retry);
2377 	return err;
2378 }
2379 
2380 static int nfs4_proc_fsinfo(struct nfs_server *server, struct nfs_fh *fhandle, struct nfs_fsinfo *fsinfo)
2381 {
2382 	nfs_fattr_init(fsinfo->fattr);
2383 	return nfs4_do_fsinfo(server, fhandle, fsinfo);
2384 }
2385 
2386 static int _nfs4_proc_pathconf(struct nfs_server *server, struct nfs_fh *fhandle,
2387 		struct nfs_pathconf *pathconf)
2388 {
2389 	struct nfs4_pathconf_arg args = {
2390 		.fh = fhandle,
2391 		.bitmask = server->attr_bitmask,
2392 	};
2393 	struct rpc_message msg = {
2394 		.rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_PATHCONF],
2395 		.rpc_argp = &args,
2396 		.rpc_resp = pathconf,
2397 	};
2398 
2399 	/* None of the pathconf attributes are mandatory to implement */
2400 	if ((args.bitmask[0] & nfs4_pathconf_bitmap[0]) == 0) {
2401 		memset(pathconf, 0, sizeof(*pathconf));
2402 		return 0;
2403 	}
2404 
2405 	nfs_fattr_init(pathconf->fattr);
2406 	return rpc_call_sync(server->client, &msg, 0);
2407 }
2408 
2409 static int nfs4_proc_pathconf(struct nfs_server *server, struct nfs_fh *fhandle,
2410 		struct nfs_pathconf *pathconf)
2411 {
2412 	struct nfs4_exception exception = { };
2413 	int err;
2414 
2415 	do {
2416 		err = nfs4_handle_exception(server,
2417 				_nfs4_proc_pathconf(server, fhandle, pathconf),
2418 				&exception);
2419 	} while (exception.retry);
2420 	return err;
2421 }
2422 
2423 static int nfs4_read_done(struct rpc_task *task, struct nfs_read_data *data)
2424 {
2425 	struct nfs_server *server = NFS_SERVER(data->inode);
2426 
2427 	if (nfs4_async_handle_error(task, server) == -EAGAIN) {
2428 		rpc_restart_call(task);
2429 		return -EAGAIN;
2430 	}
2431 	if (task->tk_status > 0)
2432 		renew_lease(server, data->timestamp);
2433 	return 0;
2434 }
2435 
2436 static void nfs4_proc_read_setup(struct nfs_read_data *data)
2437 {
2438 	struct rpc_message msg = {
2439 		.rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_READ],
2440 		.rpc_argp = &data->args,
2441 		.rpc_resp = &data->res,
2442 		.rpc_cred = data->cred,
2443 	};
2444 
2445 	data->timestamp   = jiffies;
2446 
2447 	rpc_call_setup(&data->task, &msg, 0);
2448 }
2449 
2450 static int nfs4_write_done(struct rpc_task *task, struct nfs_write_data *data)
2451 {
2452 	struct inode *inode = data->inode;
2453 
2454 	if (nfs4_async_handle_error(task, NFS_SERVER(inode)) == -EAGAIN) {
2455 		rpc_restart_call(task);
2456 		return -EAGAIN;
2457 	}
2458 	if (task->tk_status >= 0) {
2459 		renew_lease(NFS_SERVER(inode), data->timestamp);
2460 		nfs_post_op_update_inode(inode, data->res.fattr);
2461 	}
2462 	return 0;
2463 }
2464 
2465 static void nfs4_proc_write_setup(struct nfs_write_data *data, int how)
2466 {
2467 	struct rpc_message msg = {
2468 		.rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_WRITE],
2469 		.rpc_argp = &data->args,
2470 		.rpc_resp = &data->res,
2471 		.rpc_cred = data->cred,
2472 	};
2473 	struct inode *inode = data->inode;
2474 	struct nfs_server *server = NFS_SERVER(inode);
2475 	int stable;
2476 
2477 	if (how & FLUSH_STABLE) {
2478 		if (!NFS_I(inode)->ncommit)
2479 			stable = NFS_FILE_SYNC;
2480 		else
2481 			stable = NFS_DATA_SYNC;
2482 	} else
2483 		stable = NFS_UNSTABLE;
2484 	data->args.stable = stable;
2485 	data->args.bitmask = server->attr_bitmask;
2486 	data->res.server = server;
2487 
2488 	data->timestamp   = jiffies;
2489 
2490 	/* Finalize the task. */
2491 	rpc_call_setup(&data->task, &msg, 0);
2492 }
2493 
2494 static int nfs4_commit_done(struct rpc_task *task, struct nfs_write_data *data)
2495 {
2496 	struct inode *inode = data->inode;
2497 
2498 	if (nfs4_async_handle_error(task, NFS_SERVER(inode)) == -EAGAIN) {
2499 		rpc_restart_call(task);
2500 		return -EAGAIN;
2501 	}
2502 	if (task->tk_status >= 0)
2503 		nfs_post_op_update_inode(inode, data->res.fattr);
2504 	return 0;
2505 }
2506 
2507 static void nfs4_proc_commit_setup(struct nfs_write_data *data, int how)
2508 {
2509 	struct rpc_message msg = {
2510 		.rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_COMMIT],
2511 		.rpc_argp = &data->args,
2512 		.rpc_resp = &data->res,
2513 		.rpc_cred = data->cred,
2514 	};
2515 	struct nfs_server *server = NFS_SERVER(data->inode);
2516 
2517 	data->args.bitmask = server->attr_bitmask;
2518 	data->res.server = server;
2519 
2520 	rpc_call_setup(&data->task, &msg, 0);
2521 }
2522 
2523 /*
2524  * nfs4_proc_async_renew(): This is not one of the nfs_rpc_ops; it is a special
2525  * standalone procedure for queueing an asynchronous RENEW.
2526  */
2527 static void nfs4_renew_done(struct rpc_task *task, void *data)
2528 {
2529 	struct nfs_client *clp = (struct nfs_client *)task->tk_msg.rpc_argp;
2530 	unsigned long timestamp = (unsigned long)data;
2531 
2532 	if (task->tk_status < 0) {
2533 		switch (task->tk_status) {
2534 			case -NFS4ERR_STALE_CLIENTID:
2535 			case -NFS4ERR_EXPIRED:
2536 			case -NFS4ERR_CB_PATH_DOWN:
2537 				nfs4_schedule_state_recovery(clp);
2538 		}
2539 		return;
2540 	}
2541 	spin_lock(&clp->cl_lock);
2542 	if (time_before(clp->cl_last_renewal,timestamp))
2543 		clp->cl_last_renewal = timestamp;
2544 	spin_unlock(&clp->cl_lock);
2545 }
2546 
2547 static const struct rpc_call_ops nfs4_renew_ops = {
2548 	.rpc_call_done = nfs4_renew_done,
2549 };
2550 
2551 int nfs4_proc_async_renew(struct nfs_client *clp, struct rpc_cred *cred)
2552 {
2553 	struct rpc_message msg = {
2554 		.rpc_proc	= &nfs4_procedures[NFSPROC4_CLNT_RENEW],
2555 		.rpc_argp	= clp,
2556 		.rpc_cred	= cred,
2557 	};
2558 
2559 	return rpc_call_async(clp->cl_rpcclient, &msg, RPC_TASK_SOFT,
2560 			&nfs4_renew_ops, (void *)jiffies);
2561 }
2562 
2563 int nfs4_proc_renew(struct nfs_client *clp, struct rpc_cred *cred)
2564 {
2565 	struct rpc_message msg = {
2566 		.rpc_proc	= &nfs4_procedures[NFSPROC4_CLNT_RENEW],
2567 		.rpc_argp	= clp,
2568 		.rpc_cred	= cred,
2569 	};
2570 	unsigned long now = jiffies;
2571 	int status;
2572 
2573 	status = rpc_call_sync(clp->cl_rpcclient, &msg, 0);
2574 	if (status < 0)
2575 		return status;
2576 	spin_lock(&clp->cl_lock);
2577 	if (time_before(clp->cl_last_renewal,now))
2578 		clp->cl_last_renewal = now;
2579 	spin_unlock(&clp->cl_lock);
2580 	return 0;
2581 }
2582 
2583 static inline int nfs4_server_supports_acls(struct nfs_server *server)
2584 {
2585 	return (server->caps & NFS_CAP_ACLS)
2586 		&& (server->acl_bitmask & ACL4_SUPPORT_ALLOW_ACL)
2587 		&& (server->acl_bitmask & ACL4_SUPPORT_DENY_ACL);
2588 }
2589 
2590 /* Assuming that XATTR_SIZE_MAX is a multiple of PAGE_CACHE_SIZE, and that
2591  * it's OK to put sizeof(void) * (XATTR_SIZE_MAX/PAGE_CACHE_SIZE) bytes on
2592  * the stack.
2593  */
2594 #define NFS4ACL_MAXPAGES (XATTR_SIZE_MAX >> PAGE_CACHE_SHIFT)
2595 
2596 static void buf_to_pages(const void *buf, size_t buflen,
2597 		struct page **pages, unsigned int *pgbase)
2598 {
2599 	const void *p = buf;
2600 
2601 	*pgbase = offset_in_page(buf);
2602 	p -= *pgbase;
2603 	while (p < buf + buflen) {
2604 		*(pages++) = virt_to_page(p);
2605 		p += PAGE_CACHE_SIZE;
2606 	}
2607 }
2608 
2609 struct nfs4_cached_acl {
2610 	int cached;
2611 	size_t len;
2612 	char data[0];
2613 };
2614 
2615 static void nfs4_set_cached_acl(struct inode *inode, struct nfs4_cached_acl *acl)
2616 {
2617 	struct nfs_inode *nfsi = NFS_I(inode);
2618 
2619 	spin_lock(&inode->i_lock);
2620 	kfree(nfsi->nfs4_acl);
2621 	nfsi->nfs4_acl = acl;
2622 	spin_unlock(&inode->i_lock);
2623 }
2624 
2625 static void nfs4_zap_acl_attr(struct inode *inode)
2626 {
2627 	nfs4_set_cached_acl(inode, NULL);
2628 }
2629 
2630 static inline ssize_t nfs4_read_cached_acl(struct inode *inode, char *buf, size_t buflen)
2631 {
2632 	struct nfs_inode *nfsi = NFS_I(inode);
2633 	struct nfs4_cached_acl *acl;
2634 	int ret = -ENOENT;
2635 
2636 	spin_lock(&inode->i_lock);
2637 	acl = nfsi->nfs4_acl;
2638 	if (acl == NULL)
2639 		goto out;
2640 	if (buf == NULL) /* user is just asking for length */
2641 		goto out_len;
2642 	if (acl->cached == 0)
2643 		goto out;
2644 	ret = -ERANGE; /* see getxattr(2) man page */
2645 	if (acl->len > buflen)
2646 		goto out;
2647 	memcpy(buf, acl->data, acl->len);
2648 out_len:
2649 	ret = acl->len;
2650 out:
2651 	spin_unlock(&inode->i_lock);
2652 	return ret;
2653 }
2654 
2655 static void nfs4_write_cached_acl(struct inode *inode, const char *buf, size_t acl_len)
2656 {
2657 	struct nfs4_cached_acl *acl;
2658 
2659 	if (buf && acl_len <= PAGE_SIZE) {
2660 		acl = kmalloc(sizeof(*acl) + acl_len, GFP_KERNEL);
2661 		if (acl == NULL)
2662 			goto out;
2663 		acl->cached = 1;
2664 		memcpy(acl->data, buf, acl_len);
2665 	} else {
2666 		acl = kmalloc(sizeof(*acl), GFP_KERNEL);
2667 		if (acl == NULL)
2668 			goto out;
2669 		acl->cached = 0;
2670 	}
2671 	acl->len = acl_len;
2672 out:
2673 	nfs4_set_cached_acl(inode, acl);
2674 }
2675 
2676 static ssize_t __nfs4_get_acl_uncached(struct inode *inode, void *buf, size_t buflen)
2677 {
2678 	struct page *pages[NFS4ACL_MAXPAGES];
2679 	struct nfs_getaclargs args = {
2680 		.fh = NFS_FH(inode),
2681 		.acl_pages = pages,
2682 		.acl_len = buflen,
2683 	};
2684 	size_t resp_len = buflen;
2685 	void *resp_buf;
2686 	struct rpc_message msg = {
2687 		.rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_GETACL],
2688 		.rpc_argp = &args,
2689 		.rpc_resp = &resp_len,
2690 	};
2691 	struct page *localpage = NULL;
2692 	int ret;
2693 
2694 	if (buflen < PAGE_SIZE) {
2695 		/* As long as we're doing a round trip to the server anyway,
2696 		 * let's be prepared for a page of acl data. */
2697 		localpage = alloc_page(GFP_KERNEL);
2698 		resp_buf = page_address(localpage);
2699 		if (localpage == NULL)
2700 			return -ENOMEM;
2701 		args.acl_pages[0] = localpage;
2702 		args.acl_pgbase = 0;
2703 		resp_len = args.acl_len = PAGE_SIZE;
2704 	} else {
2705 		resp_buf = buf;
2706 		buf_to_pages(buf, buflen, args.acl_pages, &args.acl_pgbase);
2707 	}
2708 	ret = rpc_call_sync(NFS_CLIENT(inode), &msg, 0);
2709 	if (ret)
2710 		goto out_free;
2711 	if (resp_len > args.acl_len)
2712 		nfs4_write_cached_acl(inode, NULL, resp_len);
2713 	else
2714 		nfs4_write_cached_acl(inode, resp_buf, resp_len);
2715 	if (buf) {
2716 		ret = -ERANGE;
2717 		if (resp_len > buflen)
2718 			goto out_free;
2719 		if (localpage)
2720 			memcpy(buf, resp_buf, resp_len);
2721 	}
2722 	ret = resp_len;
2723 out_free:
2724 	if (localpage)
2725 		__free_page(localpage);
2726 	return ret;
2727 }
2728 
2729 static ssize_t nfs4_get_acl_uncached(struct inode *inode, void *buf, size_t buflen)
2730 {
2731 	struct nfs4_exception exception = { };
2732 	ssize_t ret;
2733 	do {
2734 		ret = __nfs4_get_acl_uncached(inode, buf, buflen);
2735 		if (ret >= 0)
2736 			break;
2737 		ret = nfs4_handle_exception(NFS_SERVER(inode), ret, &exception);
2738 	} while (exception.retry);
2739 	return ret;
2740 }
2741 
2742 static ssize_t nfs4_proc_get_acl(struct inode *inode, void *buf, size_t buflen)
2743 {
2744 	struct nfs_server *server = NFS_SERVER(inode);
2745 	int ret;
2746 
2747 	if (!nfs4_server_supports_acls(server))
2748 		return -EOPNOTSUPP;
2749 	ret = nfs_revalidate_inode(server, inode);
2750 	if (ret < 0)
2751 		return ret;
2752 	ret = nfs4_read_cached_acl(inode, buf, buflen);
2753 	if (ret != -ENOENT)
2754 		return ret;
2755 	return nfs4_get_acl_uncached(inode, buf, buflen);
2756 }
2757 
2758 static int __nfs4_proc_set_acl(struct inode *inode, const void *buf, size_t buflen)
2759 {
2760 	struct nfs_server *server = NFS_SERVER(inode);
2761 	struct page *pages[NFS4ACL_MAXPAGES];
2762 	struct nfs_setaclargs arg = {
2763 		.fh		= NFS_FH(inode),
2764 		.acl_pages	= pages,
2765 		.acl_len	= buflen,
2766 	};
2767 	struct rpc_message msg = {
2768 		.rpc_proc	= &nfs4_procedures[NFSPROC4_CLNT_SETACL],
2769 		.rpc_argp	= &arg,
2770 		.rpc_resp	= NULL,
2771 	};
2772 	int ret;
2773 
2774 	if (!nfs4_server_supports_acls(server))
2775 		return -EOPNOTSUPP;
2776 	nfs_inode_return_delegation(inode);
2777 	buf_to_pages(buf, buflen, arg.acl_pages, &arg.acl_pgbase);
2778 	ret = rpc_call_sync(NFS_CLIENT(inode), &msg, 0);
2779 	if (ret == 0)
2780 		nfs4_write_cached_acl(inode, buf, buflen);
2781 	return ret;
2782 }
2783 
2784 static int nfs4_proc_set_acl(struct inode *inode, const void *buf, size_t buflen)
2785 {
2786 	struct nfs4_exception exception = { };
2787 	int err;
2788 	do {
2789 		err = nfs4_handle_exception(NFS_SERVER(inode),
2790 				__nfs4_proc_set_acl(inode, buf, buflen),
2791 				&exception);
2792 	} while (exception.retry);
2793 	return err;
2794 }
2795 
2796 static int
2797 nfs4_async_handle_error(struct rpc_task *task, const struct nfs_server *server)
2798 {
2799 	struct nfs_client *clp = server->nfs_client;
2800 
2801 	if (!clp || task->tk_status >= 0)
2802 		return 0;
2803 	switch(task->tk_status) {
2804 		case -NFS4ERR_STALE_CLIENTID:
2805 		case -NFS4ERR_STALE_STATEID:
2806 		case -NFS4ERR_EXPIRED:
2807 			rpc_sleep_on(&clp->cl_rpcwaitq, task, NULL, NULL);
2808 			nfs4_schedule_state_recovery(clp);
2809 			if (test_bit(NFS4CLNT_STATE_RECOVER, &clp->cl_state) == 0)
2810 				rpc_wake_up_task(task);
2811 			task->tk_status = 0;
2812 			return -EAGAIN;
2813 		case -NFS4ERR_DELAY:
2814 			nfs_inc_server_stats((struct nfs_server *) server,
2815 						NFSIOS_DELAY);
2816 		case -NFS4ERR_GRACE:
2817 			rpc_delay(task, NFS4_POLL_RETRY_MAX);
2818 			task->tk_status = 0;
2819 			return -EAGAIN;
2820 		case -NFS4ERR_OLD_STATEID:
2821 			task->tk_status = 0;
2822 			return -EAGAIN;
2823 	}
2824 	task->tk_status = nfs4_map_errors(task->tk_status);
2825 	return 0;
2826 }
2827 
2828 static int nfs4_wait_bit_interruptible(void *word)
2829 {
2830 	if (signal_pending(current))
2831 		return -ERESTARTSYS;
2832 	schedule();
2833 	return 0;
2834 }
2835 
2836 static int nfs4_wait_clnt_recover(struct rpc_clnt *clnt, struct nfs_client *clp)
2837 {
2838 	sigset_t oldset;
2839 	int res;
2840 
2841 	might_sleep();
2842 
2843 	rpc_clnt_sigmask(clnt, &oldset);
2844 	res = wait_on_bit(&clp->cl_state, NFS4CLNT_STATE_RECOVER,
2845 			nfs4_wait_bit_interruptible,
2846 			TASK_INTERRUPTIBLE);
2847 	rpc_clnt_sigunmask(clnt, &oldset);
2848 	return res;
2849 }
2850 
2851 static int nfs4_delay(struct rpc_clnt *clnt, long *timeout)
2852 {
2853 	sigset_t oldset;
2854 	int res = 0;
2855 
2856 	might_sleep();
2857 
2858 	if (*timeout <= 0)
2859 		*timeout = NFS4_POLL_RETRY_MIN;
2860 	if (*timeout > NFS4_POLL_RETRY_MAX)
2861 		*timeout = NFS4_POLL_RETRY_MAX;
2862 	rpc_clnt_sigmask(clnt, &oldset);
2863 	if (clnt->cl_intr) {
2864 		schedule_timeout_interruptible(*timeout);
2865 		if (signalled())
2866 			res = -ERESTARTSYS;
2867 	} else
2868 		schedule_timeout_uninterruptible(*timeout);
2869 	rpc_clnt_sigunmask(clnt, &oldset);
2870 	*timeout <<= 1;
2871 	return res;
2872 }
2873 
2874 /* This is the error handling routine for processes that are allowed
2875  * to sleep.
2876  */
2877 int nfs4_handle_exception(const struct nfs_server *server, int errorcode, struct nfs4_exception *exception)
2878 {
2879 	struct nfs_client *clp = server->nfs_client;
2880 	int ret = errorcode;
2881 
2882 	exception->retry = 0;
2883 	switch(errorcode) {
2884 		case 0:
2885 			return 0;
2886 		case -NFS4ERR_STALE_CLIENTID:
2887 		case -NFS4ERR_STALE_STATEID:
2888 		case -NFS4ERR_EXPIRED:
2889 			nfs4_schedule_state_recovery(clp);
2890 			ret = nfs4_wait_clnt_recover(server->client, clp);
2891 			if (ret == 0)
2892 				exception->retry = 1;
2893 			break;
2894 		case -NFS4ERR_FILE_OPEN:
2895 		case -NFS4ERR_GRACE:
2896 		case -NFS4ERR_DELAY:
2897 			ret = nfs4_delay(server->client, &exception->timeout);
2898 			if (ret != 0)
2899 				break;
2900 		case -NFS4ERR_OLD_STATEID:
2901 			exception->retry = 1;
2902 	}
2903 	/* We failed to handle the error */
2904 	return nfs4_map_errors(ret);
2905 }
2906 
2907 int nfs4_proc_setclientid(struct nfs_client *clp, u32 program, unsigned short port, struct rpc_cred *cred)
2908 {
2909 	nfs4_verifier sc_verifier;
2910 	struct nfs4_setclientid setclientid = {
2911 		.sc_verifier = &sc_verifier,
2912 		.sc_prog = program,
2913 	};
2914 	struct rpc_message msg = {
2915 		.rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_SETCLIENTID],
2916 		.rpc_argp = &setclientid,
2917 		.rpc_resp = clp,
2918 		.rpc_cred = cred,
2919 	};
2920 	u32 *p;
2921 	int loop = 0;
2922 	int status;
2923 
2924 	p = (u32*)sc_verifier.data;
2925 	*p++ = htonl((u32)clp->cl_boot_time.tv_sec);
2926 	*p = htonl((u32)clp->cl_boot_time.tv_nsec);
2927 
2928 	for(;;) {
2929 		setclientid.sc_name_len = scnprintf(setclientid.sc_name,
2930 				sizeof(setclientid.sc_name), "%s/%u.%u.%u.%u %s %u",
2931 				clp->cl_ipaddr, NIPQUAD(clp->cl_addr.sin_addr),
2932 				cred->cr_ops->cr_name,
2933 				clp->cl_id_uniquifier);
2934 		setclientid.sc_netid_len = scnprintf(setclientid.sc_netid,
2935 				sizeof(setclientid.sc_netid), "tcp");
2936 		setclientid.sc_uaddr_len = scnprintf(setclientid.sc_uaddr,
2937 				sizeof(setclientid.sc_uaddr), "%s.%d.%d",
2938 				clp->cl_ipaddr, port >> 8, port & 255);
2939 
2940 		status = rpc_call_sync(clp->cl_rpcclient, &msg, 0);
2941 		if (status != -NFS4ERR_CLID_INUSE)
2942 			break;
2943 		if (signalled())
2944 			break;
2945 		if (loop++ & 1)
2946 			ssleep(clp->cl_lease_time + 1);
2947 		else
2948 			if (++clp->cl_id_uniquifier == 0)
2949 				break;
2950 	}
2951 	return status;
2952 }
2953 
2954 static int _nfs4_proc_setclientid_confirm(struct nfs_client *clp, struct rpc_cred *cred)
2955 {
2956 	struct nfs_fsinfo fsinfo;
2957 	struct rpc_message msg = {
2958 		.rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_SETCLIENTID_CONFIRM],
2959 		.rpc_argp = clp,
2960 		.rpc_resp = &fsinfo,
2961 		.rpc_cred = cred,
2962 	};
2963 	unsigned long now;
2964 	int status;
2965 
2966 	now = jiffies;
2967 	status = rpc_call_sync(clp->cl_rpcclient, &msg, 0);
2968 	if (status == 0) {
2969 		spin_lock(&clp->cl_lock);
2970 		clp->cl_lease_time = fsinfo.lease_time * HZ;
2971 		clp->cl_last_renewal = now;
2972 		clear_bit(NFS4CLNT_LEASE_EXPIRED, &clp->cl_state);
2973 		spin_unlock(&clp->cl_lock);
2974 	}
2975 	return status;
2976 }
2977 
2978 int nfs4_proc_setclientid_confirm(struct nfs_client *clp, struct rpc_cred *cred)
2979 {
2980 	long timeout;
2981 	int err;
2982 	do {
2983 		err = _nfs4_proc_setclientid_confirm(clp, cred);
2984 		switch (err) {
2985 			case 0:
2986 				return err;
2987 			case -NFS4ERR_RESOURCE:
2988 				/* The IBM lawyers misread another document! */
2989 			case -NFS4ERR_DELAY:
2990 				err = nfs4_delay(clp->cl_rpcclient, &timeout);
2991 		}
2992 	} while (err == 0);
2993 	return err;
2994 }
2995 
2996 struct nfs4_delegreturndata {
2997 	struct nfs4_delegreturnargs args;
2998 	struct nfs4_delegreturnres res;
2999 	struct nfs_fh fh;
3000 	nfs4_stateid stateid;
3001 	struct rpc_cred *cred;
3002 	unsigned long timestamp;
3003 	struct nfs_fattr fattr;
3004 	int rpc_status;
3005 };
3006 
3007 static void nfs4_delegreturn_prepare(struct rpc_task *task, void *calldata)
3008 {
3009 	struct nfs4_delegreturndata *data = calldata;
3010 	struct rpc_message msg = {
3011 		.rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_DELEGRETURN],
3012 		.rpc_argp = &data->args,
3013 		.rpc_resp = &data->res,
3014 		.rpc_cred = data->cred,
3015 	};
3016 	nfs_fattr_init(data->res.fattr);
3017 	rpc_call_setup(task, &msg, 0);
3018 }
3019 
3020 static void nfs4_delegreturn_done(struct rpc_task *task, void *calldata)
3021 {
3022 	struct nfs4_delegreturndata *data = calldata;
3023 	data->rpc_status = task->tk_status;
3024 	if (data->rpc_status == 0)
3025 		renew_lease(data->res.server, data->timestamp);
3026 }
3027 
3028 static void nfs4_delegreturn_release(void *calldata)
3029 {
3030 	struct nfs4_delegreturndata *data = calldata;
3031 
3032 	put_rpccred(data->cred);
3033 	kfree(calldata);
3034 }
3035 
3036 static const struct rpc_call_ops nfs4_delegreturn_ops = {
3037 	.rpc_call_prepare = nfs4_delegreturn_prepare,
3038 	.rpc_call_done = nfs4_delegreturn_done,
3039 	.rpc_release = nfs4_delegreturn_release,
3040 };
3041 
3042 static int _nfs4_proc_delegreturn(struct inode *inode, struct rpc_cred *cred, const nfs4_stateid *stateid)
3043 {
3044 	struct nfs4_delegreturndata *data;
3045 	struct nfs_server *server = NFS_SERVER(inode);
3046 	struct rpc_task *task;
3047 	int status;
3048 
3049 	data = kmalloc(sizeof(*data), GFP_KERNEL);
3050 	if (data == NULL)
3051 		return -ENOMEM;
3052 	data->args.fhandle = &data->fh;
3053 	data->args.stateid = &data->stateid;
3054 	data->args.bitmask = server->attr_bitmask;
3055 	nfs_copy_fh(&data->fh, NFS_FH(inode));
3056 	memcpy(&data->stateid, stateid, sizeof(data->stateid));
3057 	data->res.fattr = &data->fattr;
3058 	data->res.server = server;
3059 	data->cred = get_rpccred(cred);
3060 	data->timestamp = jiffies;
3061 	data->rpc_status = 0;
3062 
3063 	task = rpc_run_task(NFS_CLIENT(inode), RPC_TASK_ASYNC, &nfs4_delegreturn_ops, data);
3064 	if (IS_ERR(task))
3065 		return PTR_ERR(task);
3066 	status = nfs4_wait_for_completion_rpc_task(task);
3067 	if (status == 0) {
3068 		status = data->rpc_status;
3069 		if (status == 0)
3070 			nfs_post_op_update_inode(inode, &data->fattr);
3071 	}
3072 	rpc_release_task(task);
3073 	return status;
3074 }
3075 
3076 int nfs4_proc_delegreturn(struct inode *inode, struct rpc_cred *cred, const nfs4_stateid *stateid)
3077 {
3078 	struct nfs_server *server = NFS_SERVER(inode);
3079 	struct nfs4_exception exception = { };
3080 	int err;
3081 	do {
3082 		err = _nfs4_proc_delegreturn(inode, cred, stateid);
3083 		switch (err) {
3084 			case -NFS4ERR_STALE_STATEID:
3085 			case -NFS4ERR_EXPIRED:
3086 				nfs4_schedule_state_recovery(server->nfs_client);
3087 			case 0:
3088 				return 0;
3089 		}
3090 		err = nfs4_handle_exception(server, err, &exception);
3091 	} while (exception.retry);
3092 	return err;
3093 }
3094 
3095 #define NFS4_LOCK_MINTIMEOUT (1 * HZ)
3096 #define NFS4_LOCK_MAXTIMEOUT (30 * HZ)
3097 
3098 /*
3099  * sleep, with exponential backoff, and retry the LOCK operation.
3100  */
3101 static unsigned long
3102 nfs4_set_lock_task_retry(unsigned long timeout)
3103 {
3104 	schedule_timeout_interruptible(timeout);
3105 	timeout <<= 1;
3106 	if (timeout > NFS4_LOCK_MAXTIMEOUT)
3107 		return NFS4_LOCK_MAXTIMEOUT;
3108 	return timeout;
3109 }
3110 
3111 static int _nfs4_proc_getlk(struct nfs4_state *state, int cmd, struct file_lock *request)
3112 {
3113 	struct inode *inode = state->inode;
3114 	struct nfs_server *server = NFS_SERVER(inode);
3115 	struct nfs_client *clp = server->nfs_client;
3116 	struct nfs_lockt_args arg = {
3117 		.fh = NFS_FH(inode),
3118 		.fl = request,
3119 	};
3120 	struct nfs_lockt_res res = {
3121 		.denied = request,
3122 	};
3123 	struct rpc_message msg = {
3124 		.rpc_proc	= &nfs4_procedures[NFSPROC4_CLNT_LOCKT],
3125 		.rpc_argp       = &arg,
3126 		.rpc_resp       = &res,
3127 		.rpc_cred	= state->owner->so_cred,
3128 	};
3129 	struct nfs4_lock_state *lsp;
3130 	int status;
3131 
3132 	down_read(&clp->cl_sem);
3133 	arg.lock_owner.clientid = clp->cl_clientid;
3134 	status = nfs4_set_lock_state(state, request);
3135 	if (status != 0)
3136 		goto out;
3137 	lsp = request->fl_u.nfs4_fl.owner;
3138 	arg.lock_owner.id = lsp->ls_id;
3139 	status = rpc_call_sync(server->client, &msg, 0);
3140 	switch (status) {
3141 		case 0:
3142 			request->fl_type = F_UNLCK;
3143 			break;
3144 		case -NFS4ERR_DENIED:
3145 			status = 0;
3146 	}
3147 out:
3148 	up_read(&clp->cl_sem);
3149 	return status;
3150 }
3151 
3152 static int nfs4_proc_getlk(struct nfs4_state *state, int cmd, struct file_lock *request)
3153 {
3154 	struct nfs4_exception exception = { };
3155 	int err;
3156 
3157 	do {
3158 		err = nfs4_handle_exception(NFS_SERVER(state->inode),
3159 				_nfs4_proc_getlk(state, cmd, request),
3160 				&exception);
3161 	} while (exception.retry);
3162 	return err;
3163 }
3164 
3165 static int do_vfs_lock(struct file *file, struct file_lock *fl)
3166 {
3167 	int res = 0;
3168 	switch (fl->fl_flags & (FL_POSIX|FL_FLOCK)) {
3169 		case FL_POSIX:
3170 			res = posix_lock_file_wait(file, fl);
3171 			break;
3172 		case FL_FLOCK:
3173 			res = flock_lock_file_wait(file, fl);
3174 			break;
3175 		default:
3176 			BUG();
3177 	}
3178 	return res;
3179 }
3180 
3181 struct nfs4_unlockdata {
3182 	struct nfs_locku_args arg;
3183 	struct nfs_locku_res res;
3184 	struct nfs4_lock_state *lsp;
3185 	struct nfs_open_context *ctx;
3186 	struct file_lock fl;
3187 	const struct nfs_server *server;
3188 	unsigned long timestamp;
3189 };
3190 
3191 static struct nfs4_unlockdata *nfs4_alloc_unlockdata(struct file_lock *fl,
3192 		struct nfs_open_context *ctx,
3193 		struct nfs4_lock_state *lsp,
3194 		struct nfs_seqid *seqid)
3195 {
3196 	struct nfs4_unlockdata *p;
3197 	struct inode *inode = lsp->ls_state->inode;
3198 
3199 	p = kmalloc(sizeof(*p), GFP_KERNEL);
3200 	if (p == NULL)
3201 		return NULL;
3202 	p->arg.fh = NFS_FH(inode);
3203 	p->arg.fl = &p->fl;
3204 	p->arg.seqid = seqid;
3205 	p->arg.stateid = &lsp->ls_stateid;
3206 	p->lsp = lsp;
3207 	atomic_inc(&lsp->ls_count);
3208 	/* Ensure we don't close file until we're done freeing locks! */
3209 	p->ctx = get_nfs_open_context(ctx);
3210 	memcpy(&p->fl, fl, sizeof(p->fl));
3211 	p->server = NFS_SERVER(inode);
3212 	return p;
3213 }
3214 
3215 static void nfs4_locku_release_calldata(void *data)
3216 {
3217 	struct nfs4_unlockdata *calldata = data;
3218 	nfs_free_seqid(calldata->arg.seqid);
3219 	nfs4_put_lock_state(calldata->lsp);
3220 	put_nfs_open_context(calldata->ctx);
3221 	kfree(calldata);
3222 }
3223 
3224 static void nfs4_locku_done(struct rpc_task *task, void *data)
3225 {
3226 	struct nfs4_unlockdata *calldata = data;
3227 
3228 	if (RPC_ASSASSINATED(task))
3229 		return;
3230 	nfs_increment_lock_seqid(task->tk_status, calldata->arg.seqid);
3231 	switch (task->tk_status) {
3232 		case 0:
3233 			memcpy(calldata->lsp->ls_stateid.data,
3234 					calldata->res.stateid.data,
3235 					sizeof(calldata->lsp->ls_stateid.data));
3236 			renew_lease(calldata->server, calldata->timestamp);
3237 			break;
3238 		case -NFS4ERR_STALE_STATEID:
3239 		case -NFS4ERR_EXPIRED:
3240 			nfs4_schedule_state_recovery(calldata->server->nfs_client);
3241 			break;
3242 		default:
3243 			if (nfs4_async_handle_error(task, calldata->server) == -EAGAIN) {
3244 				rpc_restart_call(task);
3245 			}
3246 	}
3247 }
3248 
3249 static void nfs4_locku_prepare(struct rpc_task *task, void *data)
3250 {
3251 	struct nfs4_unlockdata *calldata = data;
3252 	struct rpc_message msg = {
3253 		.rpc_proc	= &nfs4_procedures[NFSPROC4_CLNT_LOCKU],
3254 		.rpc_argp       = &calldata->arg,
3255 		.rpc_resp       = &calldata->res,
3256 		.rpc_cred	= calldata->lsp->ls_state->owner->so_cred,
3257 	};
3258 
3259 	if (nfs_wait_on_sequence(calldata->arg.seqid, task) != 0)
3260 		return;
3261 	if ((calldata->lsp->ls_flags & NFS_LOCK_INITIALIZED) == 0) {
3262 		/* Note: exit _without_ running nfs4_locku_done */
3263 		task->tk_action = NULL;
3264 		return;
3265 	}
3266 	calldata->timestamp = jiffies;
3267 	rpc_call_setup(task, &msg, 0);
3268 }
3269 
3270 static const struct rpc_call_ops nfs4_locku_ops = {
3271 	.rpc_call_prepare = nfs4_locku_prepare,
3272 	.rpc_call_done = nfs4_locku_done,
3273 	.rpc_release = nfs4_locku_release_calldata,
3274 };
3275 
3276 static struct rpc_task *nfs4_do_unlck(struct file_lock *fl,
3277 		struct nfs_open_context *ctx,
3278 		struct nfs4_lock_state *lsp,
3279 		struct nfs_seqid *seqid)
3280 {
3281 	struct nfs4_unlockdata *data;
3282 
3283 	data = nfs4_alloc_unlockdata(fl, ctx, lsp, seqid);
3284 	if (data == NULL) {
3285 		nfs_free_seqid(seqid);
3286 		return ERR_PTR(-ENOMEM);
3287 	}
3288 
3289 	return rpc_run_task(NFS_CLIENT(lsp->ls_state->inode), RPC_TASK_ASYNC, &nfs4_locku_ops, data);
3290 }
3291 
3292 static int nfs4_proc_unlck(struct nfs4_state *state, int cmd, struct file_lock *request)
3293 {
3294 	struct nfs_seqid *seqid;
3295 	struct nfs4_lock_state *lsp;
3296 	struct rpc_task *task;
3297 	int status = 0;
3298 
3299 	status = nfs4_set_lock_state(state, request);
3300 	/* Unlock _before_ we do the RPC call */
3301 	request->fl_flags |= FL_EXISTS;
3302 	if (do_vfs_lock(request->fl_file, request) == -ENOENT)
3303 		goto out;
3304 	if (status != 0)
3305 		goto out;
3306 	/* Is this a delegated lock? */
3307 	if (test_bit(NFS_DELEGATED_STATE, &state->flags))
3308 		goto out;
3309 	lsp = request->fl_u.nfs4_fl.owner;
3310 	seqid = nfs_alloc_seqid(&lsp->ls_seqid);
3311 	status = -ENOMEM;
3312 	if (seqid == NULL)
3313 		goto out;
3314 	task = nfs4_do_unlck(request, request->fl_file->private_data, lsp, seqid);
3315 	status = PTR_ERR(task);
3316 	if (IS_ERR(task))
3317 		goto out;
3318 	status = nfs4_wait_for_completion_rpc_task(task);
3319 	rpc_release_task(task);
3320 out:
3321 	return status;
3322 }
3323 
3324 struct nfs4_lockdata {
3325 	struct nfs_lock_args arg;
3326 	struct nfs_lock_res res;
3327 	struct nfs4_lock_state *lsp;
3328 	struct nfs_open_context *ctx;
3329 	struct file_lock fl;
3330 	unsigned long timestamp;
3331 	int rpc_status;
3332 	int cancelled;
3333 };
3334 
3335 static struct nfs4_lockdata *nfs4_alloc_lockdata(struct file_lock *fl,
3336 		struct nfs_open_context *ctx, struct nfs4_lock_state *lsp)
3337 {
3338 	struct nfs4_lockdata *p;
3339 	struct inode *inode = lsp->ls_state->inode;
3340 	struct nfs_server *server = NFS_SERVER(inode);
3341 
3342 	p = kzalloc(sizeof(*p), GFP_KERNEL);
3343 	if (p == NULL)
3344 		return NULL;
3345 
3346 	p->arg.fh = NFS_FH(inode);
3347 	p->arg.fl = &p->fl;
3348 	p->arg.lock_seqid = nfs_alloc_seqid(&lsp->ls_seqid);
3349 	if (p->arg.lock_seqid == NULL)
3350 		goto out_free;
3351 	p->arg.lock_stateid = &lsp->ls_stateid;
3352 	p->arg.lock_owner.clientid = server->nfs_client->cl_clientid;
3353 	p->arg.lock_owner.id = lsp->ls_id;
3354 	p->lsp = lsp;
3355 	atomic_inc(&lsp->ls_count);
3356 	p->ctx = get_nfs_open_context(ctx);
3357 	memcpy(&p->fl, fl, sizeof(p->fl));
3358 	return p;
3359 out_free:
3360 	kfree(p);
3361 	return NULL;
3362 }
3363 
3364 static void nfs4_lock_prepare(struct rpc_task *task, void *calldata)
3365 {
3366 	struct nfs4_lockdata *data = calldata;
3367 	struct nfs4_state *state = data->lsp->ls_state;
3368 	struct nfs4_state_owner *sp = state->owner;
3369 	struct rpc_message msg = {
3370 		.rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_LOCK],
3371 		.rpc_argp = &data->arg,
3372 		.rpc_resp = &data->res,
3373 		.rpc_cred = sp->so_cred,
3374 	};
3375 
3376 	if (nfs_wait_on_sequence(data->arg.lock_seqid, task) != 0)
3377 		return;
3378 	dprintk("%s: begin!\n", __FUNCTION__);
3379 	/* Do we need to do an open_to_lock_owner? */
3380 	if (!(data->arg.lock_seqid->sequence->flags & NFS_SEQID_CONFIRMED)) {
3381 		data->arg.open_seqid = nfs_alloc_seqid(&sp->so_seqid);
3382 		if (data->arg.open_seqid == NULL) {
3383 			data->rpc_status = -ENOMEM;
3384 			task->tk_action = NULL;
3385 			goto out;
3386 		}
3387 		data->arg.open_stateid = &state->stateid;
3388 		data->arg.new_lock_owner = 1;
3389 	}
3390 	data->timestamp = jiffies;
3391 	rpc_call_setup(task, &msg, 0);
3392 out:
3393 	dprintk("%s: done!, ret = %d\n", __FUNCTION__, data->rpc_status);
3394 }
3395 
3396 static void nfs4_lock_done(struct rpc_task *task, void *calldata)
3397 {
3398 	struct nfs4_lockdata *data = calldata;
3399 
3400 	dprintk("%s: begin!\n", __FUNCTION__);
3401 
3402 	data->rpc_status = task->tk_status;
3403 	if (RPC_ASSASSINATED(task))
3404 		goto out;
3405 	if (data->arg.new_lock_owner != 0) {
3406 		nfs_increment_open_seqid(data->rpc_status, data->arg.open_seqid);
3407 		if (data->rpc_status == 0)
3408 			nfs_confirm_seqid(&data->lsp->ls_seqid, 0);
3409 		else
3410 			goto out;
3411 	}
3412 	if (data->rpc_status == 0) {
3413 		memcpy(data->lsp->ls_stateid.data, data->res.stateid.data,
3414 					sizeof(data->lsp->ls_stateid.data));
3415 		data->lsp->ls_flags |= NFS_LOCK_INITIALIZED;
3416 		renew_lease(NFS_SERVER(data->ctx->dentry->d_inode), data->timestamp);
3417 	}
3418 	nfs_increment_lock_seqid(data->rpc_status, data->arg.lock_seqid);
3419 out:
3420 	dprintk("%s: done, ret = %d!\n", __FUNCTION__, data->rpc_status);
3421 }
3422 
3423 static void nfs4_lock_release(void *calldata)
3424 {
3425 	struct nfs4_lockdata *data = calldata;
3426 
3427 	dprintk("%s: begin!\n", __FUNCTION__);
3428 	if (data->arg.open_seqid != NULL)
3429 		nfs_free_seqid(data->arg.open_seqid);
3430 	if (data->cancelled != 0) {
3431 		struct rpc_task *task;
3432 		task = nfs4_do_unlck(&data->fl, data->ctx, data->lsp,
3433 				data->arg.lock_seqid);
3434 		if (!IS_ERR(task))
3435 			rpc_release_task(task);
3436 		dprintk("%s: cancelling lock!\n", __FUNCTION__);
3437 	} else
3438 		nfs_free_seqid(data->arg.lock_seqid);
3439 	nfs4_put_lock_state(data->lsp);
3440 	put_nfs_open_context(data->ctx);
3441 	kfree(data);
3442 	dprintk("%s: done!\n", __FUNCTION__);
3443 }
3444 
3445 static const struct rpc_call_ops nfs4_lock_ops = {
3446 	.rpc_call_prepare = nfs4_lock_prepare,
3447 	.rpc_call_done = nfs4_lock_done,
3448 	.rpc_release = nfs4_lock_release,
3449 };
3450 
3451 static int _nfs4_do_setlk(struct nfs4_state *state, int cmd, struct file_lock *fl, int reclaim)
3452 {
3453 	struct nfs4_lockdata *data;
3454 	struct rpc_task *task;
3455 	int ret;
3456 
3457 	dprintk("%s: begin!\n", __FUNCTION__);
3458 	data = nfs4_alloc_lockdata(fl, fl->fl_file->private_data,
3459 			fl->fl_u.nfs4_fl.owner);
3460 	if (data == NULL)
3461 		return -ENOMEM;
3462 	if (IS_SETLKW(cmd))
3463 		data->arg.block = 1;
3464 	if (reclaim != 0)
3465 		data->arg.reclaim = 1;
3466 	task = rpc_run_task(NFS_CLIENT(state->inode), RPC_TASK_ASYNC,
3467 			&nfs4_lock_ops, data);
3468 	if (IS_ERR(task))
3469 		return PTR_ERR(task);
3470 	ret = nfs4_wait_for_completion_rpc_task(task);
3471 	if (ret == 0) {
3472 		ret = data->rpc_status;
3473 		if (ret == -NFS4ERR_DENIED)
3474 			ret = -EAGAIN;
3475 	} else
3476 		data->cancelled = 1;
3477 	rpc_release_task(task);
3478 	dprintk("%s: done, ret = %d!\n", __FUNCTION__, ret);
3479 	return ret;
3480 }
3481 
3482 static int nfs4_lock_reclaim(struct nfs4_state *state, struct file_lock *request)
3483 {
3484 	struct nfs_server *server = NFS_SERVER(state->inode);
3485 	struct nfs4_exception exception = { };
3486 	int err;
3487 
3488 	do {
3489 		/* Cache the lock if possible... */
3490 		if (test_bit(NFS_DELEGATED_STATE, &state->flags) != 0)
3491 			return 0;
3492 		err = _nfs4_do_setlk(state, F_SETLK, request, 1);
3493 		if (err != -NFS4ERR_DELAY)
3494 			break;
3495 		nfs4_handle_exception(server, err, &exception);
3496 	} while (exception.retry);
3497 	return err;
3498 }
3499 
3500 static int nfs4_lock_expired(struct nfs4_state *state, struct file_lock *request)
3501 {
3502 	struct nfs_server *server = NFS_SERVER(state->inode);
3503 	struct nfs4_exception exception = { };
3504 	int err;
3505 
3506 	err = nfs4_set_lock_state(state, request);
3507 	if (err != 0)
3508 		return err;
3509 	do {
3510 		if (test_bit(NFS_DELEGATED_STATE, &state->flags) != 0)
3511 			return 0;
3512 		err = _nfs4_do_setlk(state, F_SETLK, request, 0);
3513 		if (err != -NFS4ERR_DELAY)
3514 			break;
3515 		nfs4_handle_exception(server, err, &exception);
3516 	} while (exception.retry);
3517 	return err;
3518 }
3519 
3520 static int _nfs4_proc_setlk(struct nfs4_state *state, int cmd, struct file_lock *request)
3521 {
3522 	struct nfs_client *clp = state->owner->so_client;
3523 	unsigned char fl_flags = request->fl_flags;
3524 	int status;
3525 
3526 	/* Is this a delegated open? */
3527 	status = nfs4_set_lock_state(state, request);
3528 	if (status != 0)
3529 		goto out;
3530 	request->fl_flags |= FL_ACCESS;
3531 	status = do_vfs_lock(request->fl_file, request);
3532 	if (status < 0)
3533 		goto out;
3534 	down_read(&clp->cl_sem);
3535 	if (test_bit(NFS_DELEGATED_STATE, &state->flags)) {
3536 		struct nfs_inode *nfsi = NFS_I(state->inode);
3537 		/* Yes: cache locks! */
3538 		down_read(&nfsi->rwsem);
3539 		/* ...but avoid races with delegation recall... */
3540 		if (test_bit(NFS_DELEGATED_STATE, &state->flags)) {
3541 			request->fl_flags = fl_flags & ~FL_SLEEP;
3542 			status = do_vfs_lock(request->fl_file, request);
3543 			up_read(&nfsi->rwsem);
3544 			goto out_unlock;
3545 		}
3546 		up_read(&nfsi->rwsem);
3547 	}
3548 	status = _nfs4_do_setlk(state, cmd, request, 0);
3549 	if (status != 0)
3550 		goto out_unlock;
3551 	/* Note: we always want to sleep here! */
3552 	request->fl_flags = fl_flags | FL_SLEEP;
3553 	if (do_vfs_lock(request->fl_file, request) < 0)
3554 		printk(KERN_WARNING "%s: VFS is out of sync with lock manager!\n", __FUNCTION__);
3555 out_unlock:
3556 	up_read(&clp->cl_sem);
3557 out:
3558 	request->fl_flags = fl_flags;
3559 	return status;
3560 }
3561 
3562 static int nfs4_proc_setlk(struct nfs4_state *state, int cmd, struct file_lock *request)
3563 {
3564 	struct nfs4_exception exception = { };
3565 	int err;
3566 
3567 	do {
3568 		err = nfs4_handle_exception(NFS_SERVER(state->inode),
3569 				_nfs4_proc_setlk(state, cmd, request),
3570 				&exception);
3571 	} while (exception.retry);
3572 	return err;
3573 }
3574 
3575 static int
3576 nfs4_proc_lock(struct file *filp, int cmd, struct file_lock *request)
3577 {
3578 	struct nfs_open_context *ctx;
3579 	struct nfs4_state *state;
3580 	unsigned long timeout = NFS4_LOCK_MINTIMEOUT;
3581 	int status;
3582 
3583 	/* verify open state */
3584 	ctx = (struct nfs_open_context *)filp->private_data;
3585 	state = ctx->state;
3586 
3587 	if (request->fl_start < 0 || request->fl_end < 0)
3588 		return -EINVAL;
3589 
3590 	if (IS_GETLK(cmd))
3591 		return nfs4_proc_getlk(state, F_GETLK, request);
3592 
3593 	if (!(IS_SETLK(cmd) || IS_SETLKW(cmd)))
3594 		return -EINVAL;
3595 
3596 	if (request->fl_type == F_UNLCK)
3597 		return nfs4_proc_unlck(state, cmd, request);
3598 
3599 	do {
3600 		status = nfs4_proc_setlk(state, cmd, request);
3601 		if ((status != -EAGAIN) || IS_SETLK(cmd))
3602 			break;
3603 		timeout = nfs4_set_lock_task_retry(timeout);
3604 		status = -ERESTARTSYS;
3605 		if (signalled())
3606 			break;
3607 	} while(status < 0);
3608 	return status;
3609 }
3610 
3611 int nfs4_lock_delegation_recall(struct nfs4_state *state, struct file_lock *fl)
3612 {
3613 	struct nfs_server *server = NFS_SERVER(state->inode);
3614 	struct nfs4_exception exception = { };
3615 	int err;
3616 
3617 	err = nfs4_set_lock_state(state, fl);
3618 	if (err != 0)
3619 		goto out;
3620 	do {
3621 		err = _nfs4_do_setlk(state, F_SETLK, fl, 0);
3622 		if (err != -NFS4ERR_DELAY)
3623 			break;
3624 		err = nfs4_handle_exception(server, err, &exception);
3625 	} while (exception.retry);
3626 out:
3627 	return err;
3628 }
3629 
3630 #define XATTR_NAME_NFSV4_ACL "system.nfs4_acl"
3631 
3632 int nfs4_setxattr(struct dentry *dentry, const char *key, const void *buf,
3633 		size_t buflen, int flags)
3634 {
3635 	struct inode *inode = dentry->d_inode;
3636 
3637 	if (strcmp(key, XATTR_NAME_NFSV4_ACL) != 0)
3638 		return -EOPNOTSUPP;
3639 
3640 	if (!S_ISREG(inode->i_mode) &&
3641 	    (!S_ISDIR(inode->i_mode) || inode->i_mode & S_ISVTX))
3642 		return -EPERM;
3643 
3644 	return nfs4_proc_set_acl(inode, buf, buflen);
3645 }
3646 
3647 /* The getxattr man page suggests returning -ENODATA for unknown attributes,
3648  * and that's what we'll do for e.g. user attributes that haven't been set.
3649  * But we'll follow ext2/ext3's lead by returning -EOPNOTSUPP for unsupported
3650  * attributes in kernel-managed attribute namespaces. */
3651 ssize_t nfs4_getxattr(struct dentry *dentry, const char *key, void *buf,
3652 		size_t buflen)
3653 {
3654 	struct inode *inode = dentry->d_inode;
3655 
3656 	if (strcmp(key, XATTR_NAME_NFSV4_ACL) != 0)
3657 		return -EOPNOTSUPP;
3658 
3659 	return nfs4_proc_get_acl(inode, buf, buflen);
3660 }
3661 
3662 ssize_t nfs4_listxattr(struct dentry *dentry, char *buf, size_t buflen)
3663 {
3664 	size_t len = strlen(XATTR_NAME_NFSV4_ACL) + 1;
3665 
3666 	if (!nfs4_server_supports_acls(NFS_SERVER(dentry->d_inode)))
3667 		return 0;
3668 	if (buf && buflen < len)
3669 		return -ERANGE;
3670 	if (buf)
3671 		memcpy(buf, XATTR_NAME_NFSV4_ACL, len);
3672 	return len;
3673 }
3674 
3675 int nfs4_proc_fs_locations(struct inode *dir, struct dentry *dentry,
3676 		struct nfs4_fs_locations *fs_locations, struct page *page)
3677 {
3678 	struct nfs_server *server = NFS_SERVER(dir);
3679 	u32 bitmask[2] = {
3680 		[0] = FATTR4_WORD0_FSID | FATTR4_WORD0_FS_LOCATIONS,
3681 		[1] = FATTR4_WORD1_MOUNTED_ON_FILEID,
3682 	};
3683 	struct nfs4_fs_locations_arg args = {
3684 		.dir_fh = NFS_FH(dir),
3685 		.name = &dentry->d_name,
3686 		.page = page,
3687 		.bitmask = bitmask,
3688 	};
3689 	struct rpc_message msg = {
3690 		.rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_FS_LOCATIONS],
3691 		.rpc_argp = &args,
3692 		.rpc_resp = fs_locations,
3693 	};
3694 	int status;
3695 
3696 	dprintk("%s: start\n", __FUNCTION__);
3697 	fs_locations->fattr.valid = 0;
3698 	fs_locations->server = server;
3699 	fs_locations->nlocations = 0;
3700 	status = rpc_call_sync(server->client, &msg, 0);
3701 	dprintk("%s: returned status = %d\n", __FUNCTION__, status);
3702 	return status;
3703 }
3704 
3705 struct nfs4_state_recovery_ops nfs4_reboot_recovery_ops = {
3706 	.recover_open	= nfs4_open_reclaim,
3707 	.recover_lock	= nfs4_lock_reclaim,
3708 };
3709 
3710 struct nfs4_state_recovery_ops nfs4_network_partition_recovery_ops = {
3711 	.recover_open	= nfs4_open_expired,
3712 	.recover_lock	= nfs4_lock_expired,
3713 };
3714 
3715 static struct inode_operations nfs4_file_inode_operations = {
3716 	.permission	= nfs_permission,
3717 	.getattr	= nfs_getattr,
3718 	.setattr	= nfs_setattr,
3719 	.getxattr	= nfs4_getxattr,
3720 	.setxattr	= nfs4_setxattr,
3721 	.listxattr	= nfs4_listxattr,
3722 };
3723 
3724 const struct nfs_rpc_ops nfs_v4_clientops = {
3725 	.version	= 4,			/* protocol version */
3726 	.dentry_ops	= &nfs4_dentry_operations,
3727 	.dir_inode_ops	= &nfs4_dir_inode_operations,
3728 	.file_inode_ops	= &nfs4_file_inode_operations,
3729 	.getroot	= nfs4_proc_get_root,
3730 	.getattr	= nfs4_proc_getattr,
3731 	.setattr	= nfs4_proc_setattr,
3732 	.lookupfh	= nfs4_proc_lookupfh,
3733 	.lookup		= nfs4_proc_lookup,
3734 	.access		= nfs4_proc_access,
3735 	.readlink	= nfs4_proc_readlink,
3736 	.read		= nfs4_proc_read,
3737 	.write		= nfs4_proc_write,
3738 	.commit		= nfs4_proc_commit,
3739 	.create		= nfs4_proc_create,
3740 	.remove		= nfs4_proc_remove,
3741 	.unlink_setup	= nfs4_proc_unlink_setup,
3742 	.unlink_done	= nfs4_proc_unlink_done,
3743 	.rename		= nfs4_proc_rename,
3744 	.link		= nfs4_proc_link,
3745 	.symlink	= nfs4_proc_symlink,
3746 	.mkdir		= nfs4_proc_mkdir,
3747 	.rmdir		= nfs4_proc_remove,
3748 	.readdir	= nfs4_proc_readdir,
3749 	.mknod		= nfs4_proc_mknod,
3750 	.statfs		= nfs4_proc_statfs,
3751 	.fsinfo		= nfs4_proc_fsinfo,
3752 	.pathconf	= nfs4_proc_pathconf,
3753 	.set_capabilities = nfs4_server_capabilities,
3754 	.decode_dirent	= nfs4_decode_dirent,
3755 	.read_setup	= nfs4_proc_read_setup,
3756 	.read_done	= nfs4_read_done,
3757 	.write_setup	= nfs4_proc_write_setup,
3758 	.write_done	= nfs4_write_done,
3759 	.commit_setup	= nfs4_proc_commit_setup,
3760 	.commit_done	= nfs4_commit_done,
3761 	.file_open      = nfs_open,
3762 	.file_release   = nfs_release,
3763 	.lock		= nfs4_proc_lock,
3764 	.clear_acl_cache = nfs4_zap_acl_attr,
3765 };
3766 
3767 /*
3768  * Local variables:
3769  *  c-basic-offset: 8
3770  * End:
3771  */
3772