xref: /linux/fs/nfs/file.c (revision f3a8b6645dc2e60d11f20c1c23afd964ff4e55ae)
1 /*
2  *  linux/fs/nfs/file.c
3  *
4  *  Copyright (C) 1992  Rick Sladkey
5  *
6  *  Changes Copyright (C) 1994 by Florian La Roche
7  *   - Do not copy data too often around in the kernel.
8  *   - In nfs_file_read the return value of kmalloc wasn't checked.
9  *   - Put in a better version of read look-ahead buffering. Original idea
10  *     and implementation by Wai S Kok elekokws@ee.nus.sg.
11  *
12  *  Expire cache on write to a file by Wai S Kok (Oct 1994).
13  *
14  *  Total rewrite of read side for new NFS buffer cache.. Linus.
15  *
16  *  nfs regular file handling functions
17  */
18 
19 #include <linux/module.h>
20 #include <linux/time.h>
21 #include <linux/kernel.h>
22 #include <linux/errno.h>
23 #include <linux/fcntl.h>
24 #include <linux/stat.h>
25 #include <linux/nfs_fs.h>
26 #include <linux/nfs_mount.h>
27 #include <linux/mm.h>
28 #include <linux/pagemap.h>
29 #include <linux/gfp.h>
30 #include <linux/swap.h>
31 
32 #include <asm/uaccess.h>
33 
34 #include "delegation.h"
35 #include "internal.h"
36 #include "iostat.h"
37 #include "fscache.h"
38 #include "pnfs.h"
39 
40 #include "nfstrace.h"
41 
42 #define NFSDBG_FACILITY		NFSDBG_FILE
43 
44 static const struct vm_operations_struct nfs_file_vm_ops;
45 
46 /* Hack for future NFS swap support */
47 #ifndef IS_SWAPFILE
48 # define IS_SWAPFILE(inode)	(0)
49 #endif
50 
51 int nfs_check_flags(int flags)
52 {
53 	if ((flags & (O_APPEND | O_DIRECT)) == (O_APPEND | O_DIRECT))
54 		return -EINVAL;
55 
56 	return 0;
57 }
58 EXPORT_SYMBOL_GPL(nfs_check_flags);
59 
60 /*
61  * Open file
62  */
63 static int
64 nfs_file_open(struct inode *inode, struct file *filp)
65 {
66 	int res;
67 
68 	dprintk("NFS: open file(%pD2)\n", filp);
69 
70 	nfs_inc_stats(inode, NFSIOS_VFSOPEN);
71 	res = nfs_check_flags(filp->f_flags);
72 	if (res)
73 		return res;
74 
75 	res = nfs_open(inode, filp);
76 	return res;
77 }
78 
79 int
80 nfs_file_release(struct inode *inode, struct file *filp)
81 {
82 	dprintk("NFS: release(%pD2)\n", filp);
83 
84 	nfs_inc_stats(inode, NFSIOS_VFSRELEASE);
85 	nfs_file_clear_open_context(filp);
86 	return 0;
87 }
88 EXPORT_SYMBOL_GPL(nfs_file_release);
89 
90 /**
91  * nfs_revalidate_size - Revalidate the file size
92  * @inode - pointer to inode struct
93  * @file - pointer to struct file
94  *
95  * Revalidates the file length. This is basically a wrapper around
96  * nfs_revalidate_inode() that takes into account the fact that we may
97  * have cached writes (in which case we don't care about the server's
98  * idea of what the file length is), or O_DIRECT (in which case we
99  * shouldn't trust the cache).
100  */
101 static int nfs_revalidate_file_size(struct inode *inode, struct file *filp)
102 {
103 	struct nfs_server *server = NFS_SERVER(inode);
104 	struct nfs_inode *nfsi = NFS_I(inode);
105 
106 	if (nfs_have_delegated_attributes(inode))
107 		goto out_noreval;
108 
109 	if (filp->f_flags & O_DIRECT)
110 		goto force_reval;
111 	if (nfsi->cache_validity & NFS_INO_REVAL_PAGECACHE)
112 		goto force_reval;
113 	if (nfs_attribute_timeout(inode))
114 		goto force_reval;
115 out_noreval:
116 	return 0;
117 force_reval:
118 	return __nfs_revalidate_inode(server, inode);
119 }
120 
121 loff_t nfs_file_llseek(struct file *filp, loff_t offset, int whence)
122 {
123 	dprintk("NFS: llseek file(%pD2, %lld, %d)\n",
124 			filp, offset, whence);
125 
126 	/*
127 	 * whence == SEEK_END || SEEK_DATA || SEEK_HOLE => we must revalidate
128 	 * the cached file length
129 	 */
130 	if (whence != SEEK_SET && whence != SEEK_CUR) {
131 		struct inode *inode = filp->f_mapping->host;
132 
133 		int retval = nfs_revalidate_file_size(inode, filp);
134 		if (retval < 0)
135 			return (loff_t)retval;
136 	}
137 
138 	return generic_file_llseek(filp, offset, whence);
139 }
140 EXPORT_SYMBOL_GPL(nfs_file_llseek);
141 
142 /*
143  * Flush all dirty pages, and check for write errors.
144  */
145 static int
146 nfs_file_flush(struct file *file, fl_owner_t id)
147 {
148 	struct inode	*inode = file_inode(file);
149 
150 	dprintk("NFS: flush(%pD2)\n", file);
151 
152 	nfs_inc_stats(inode, NFSIOS_VFSFLUSH);
153 	if ((file->f_mode & FMODE_WRITE) == 0)
154 		return 0;
155 
156 	/* Flush writes to the server and return any errors */
157 	return vfs_fsync(file, 0);
158 }
159 
160 ssize_t
161 nfs_file_read(struct kiocb *iocb, struct iov_iter *to)
162 {
163 	struct inode *inode = file_inode(iocb->ki_filp);
164 	ssize_t result;
165 
166 	if (iocb->ki_flags & IOCB_DIRECT)
167 		return nfs_file_direct_read(iocb, to);
168 
169 	dprintk("NFS: read(%pD2, %zu@%lu)\n",
170 		iocb->ki_filp,
171 		iov_iter_count(to), (unsigned long) iocb->ki_pos);
172 
173 	nfs_start_io_read(inode);
174 	result = nfs_revalidate_mapping(inode, iocb->ki_filp->f_mapping);
175 	if (!result) {
176 		result = generic_file_read_iter(iocb, to);
177 		if (result > 0)
178 			nfs_add_stats(inode, NFSIOS_NORMALREADBYTES, result);
179 	}
180 	nfs_end_io_read(inode);
181 	return result;
182 }
183 EXPORT_SYMBOL_GPL(nfs_file_read);
184 
185 int
186 nfs_file_mmap(struct file * file, struct vm_area_struct * vma)
187 {
188 	struct inode *inode = file_inode(file);
189 	int	status;
190 
191 	dprintk("NFS: mmap(%pD2)\n", file);
192 
193 	/* Note: generic_file_mmap() returns ENOSYS on nommu systems
194 	 *       so we call that before revalidating the mapping
195 	 */
196 	status = generic_file_mmap(file, vma);
197 	if (!status) {
198 		vma->vm_ops = &nfs_file_vm_ops;
199 		status = nfs_revalidate_mapping(inode, file->f_mapping);
200 	}
201 	return status;
202 }
203 EXPORT_SYMBOL_GPL(nfs_file_mmap);
204 
205 /*
206  * Flush any dirty pages for this process, and check for write errors.
207  * The return status from this call provides a reliable indication of
208  * whether any write errors occurred for this process.
209  *
210  * Notice that it clears the NFS_CONTEXT_ERROR_WRITE before synching to
211  * disk, but it retrieves and clears ctx->error after synching, despite
212  * the two being set at the same time in nfs_context_set_write_error().
213  * This is because the former is used to notify the _next_ call to
214  * nfs_file_write() that a write error occurred, and hence cause it to
215  * fall back to doing a synchronous write.
216  */
217 static int
218 nfs_file_fsync_commit(struct file *file, loff_t start, loff_t end, int datasync)
219 {
220 	struct nfs_open_context *ctx = nfs_file_open_context(file);
221 	struct inode *inode = file_inode(file);
222 	int have_error, do_resend, status;
223 	int ret = 0;
224 
225 	dprintk("NFS: fsync file(%pD2) datasync %d\n", file, datasync);
226 
227 	nfs_inc_stats(inode, NFSIOS_VFSFSYNC);
228 	do_resend = test_and_clear_bit(NFS_CONTEXT_RESEND_WRITES, &ctx->flags);
229 	have_error = test_and_clear_bit(NFS_CONTEXT_ERROR_WRITE, &ctx->flags);
230 	status = nfs_commit_inode(inode, FLUSH_SYNC);
231 	have_error |= test_bit(NFS_CONTEXT_ERROR_WRITE, &ctx->flags);
232 	if (have_error) {
233 		ret = xchg(&ctx->error, 0);
234 		if (ret)
235 			goto out;
236 	}
237 	if (status < 0) {
238 		ret = status;
239 		goto out;
240 	}
241 	do_resend |= test_bit(NFS_CONTEXT_RESEND_WRITES, &ctx->flags);
242 	if (do_resend)
243 		ret = -EAGAIN;
244 out:
245 	return ret;
246 }
247 
248 int
249 nfs_file_fsync(struct file *file, loff_t start, loff_t end, int datasync)
250 {
251 	int ret;
252 	struct inode *inode = file_inode(file);
253 
254 	trace_nfs_fsync_enter(inode);
255 
256 	do {
257 		ret = filemap_write_and_wait_range(inode->i_mapping, start, end);
258 		if (ret != 0)
259 			break;
260 		ret = nfs_file_fsync_commit(file, start, end, datasync);
261 		if (!ret)
262 			ret = pnfs_sync_inode(inode, !!datasync);
263 		/*
264 		 * If nfs_file_fsync_commit detected a server reboot, then
265 		 * resend all dirty pages that might have been covered by
266 		 * the NFS_CONTEXT_RESEND_WRITES flag
267 		 */
268 		start = 0;
269 		end = LLONG_MAX;
270 	} while (ret == -EAGAIN);
271 
272 	trace_nfs_fsync_exit(inode, ret);
273 	return ret;
274 }
275 EXPORT_SYMBOL_GPL(nfs_file_fsync);
276 
277 /*
278  * Decide whether a read/modify/write cycle may be more efficient
279  * then a modify/write/read cycle when writing to a page in the
280  * page cache.
281  *
282  * The modify/write/read cycle may occur if a page is read before
283  * being completely filled by the writer.  In this situation, the
284  * page must be completely written to stable storage on the server
285  * before it can be refilled by reading in the page from the server.
286  * This can lead to expensive, small, FILE_SYNC mode writes being
287  * done.
288  *
289  * It may be more efficient to read the page first if the file is
290  * open for reading in addition to writing, the page is not marked
291  * as Uptodate, it is not dirty or waiting to be committed,
292  * indicating that it was previously allocated and then modified,
293  * that there were valid bytes of data in that range of the file,
294  * and that the new data won't completely replace the old data in
295  * that range of the file.
296  */
297 static int nfs_want_read_modify_write(struct file *file, struct page *page,
298 			loff_t pos, unsigned len)
299 {
300 	unsigned int pglen = nfs_page_length(page);
301 	unsigned int offset = pos & (PAGE_SIZE - 1);
302 	unsigned int end = offset + len;
303 
304 	if (pnfs_ld_read_whole_page(file->f_mapping->host)) {
305 		if (!PageUptodate(page))
306 			return 1;
307 		return 0;
308 	}
309 
310 	if ((file->f_mode & FMODE_READ) &&	/* open for read? */
311 	    !PageUptodate(page) &&		/* Uptodate? */
312 	    !PagePrivate(page) &&		/* i/o request already? */
313 	    pglen &&				/* valid bytes of file? */
314 	    (end < pglen || offset))		/* replace all valid bytes? */
315 		return 1;
316 	return 0;
317 }
318 
319 /*
320  * This does the "real" work of the write. We must allocate and lock the
321  * page to be sent back to the generic routine, which then copies the
322  * data from user space.
323  *
324  * If the writer ends up delaying the write, the writer needs to
325  * increment the page use counts until he is done with the page.
326  */
327 static int nfs_write_begin(struct file *file, struct address_space *mapping,
328 			loff_t pos, unsigned len, unsigned flags,
329 			struct page **pagep, void **fsdata)
330 {
331 	int ret;
332 	pgoff_t index = pos >> PAGE_SHIFT;
333 	struct page *page;
334 	int once_thru = 0;
335 
336 	dfprintk(PAGECACHE, "NFS: write_begin(%pD2(%lu), %u@%lld)\n",
337 		file, mapping->host->i_ino, len, (long long) pos);
338 
339 start:
340 	page = grab_cache_page_write_begin(mapping, index, flags);
341 	if (!page)
342 		return -ENOMEM;
343 	*pagep = page;
344 
345 	ret = nfs_flush_incompatible(file, page);
346 	if (ret) {
347 		unlock_page(page);
348 		put_page(page);
349 	} else if (!once_thru &&
350 		   nfs_want_read_modify_write(file, page, pos, len)) {
351 		once_thru = 1;
352 		ret = nfs_readpage(file, page);
353 		put_page(page);
354 		if (!ret)
355 			goto start;
356 	}
357 	return ret;
358 }
359 
360 static int nfs_write_end(struct file *file, struct address_space *mapping,
361 			loff_t pos, unsigned len, unsigned copied,
362 			struct page *page, void *fsdata)
363 {
364 	unsigned offset = pos & (PAGE_SIZE - 1);
365 	struct nfs_open_context *ctx = nfs_file_open_context(file);
366 	int status;
367 
368 	dfprintk(PAGECACHE, "NFS: write_end(%pD2(%lu), %u@%lld)\n",
369 		file, mapping->host->i_ino, len, (long long) pos);
370 
371 	/*
372 	 * Zero any uninitialised parts of the page, and then mark the page
373 	 * as up to date if it turns out that we're extending the file.
374 	 */
375 	if (!PageUptodate(page)) {
376 		unsigned pglen = nfs_page_length(page);
377 		unsigned end = offset + len;
378 
379 		if (pglen == 0) {
380 			zero_user_segments(page, 0, offset,
381 					end, PAGE_SIZE);
382 			SetPageUptodate(page);
383 		} else if (end >= pglen) {
384 			zero_user_segment(page, end, PAGE_SIZE);
385 			if (offset == 0)
386 				SetPageUptodate(page);
387 		} else
388 			zero_user_segment(page, pglen, PAGE_SIZE);
389 	}
390 
391 	status = nfs_updatepage(file, page, offset, copied);
392 
393 	unlock_page(page);
394 	put_page(page);
395 
396 	if (status < 0)
397 		return status;
398 	NFS_I(mapping->host)->write_io += copied;
399 
400 	if (nfs_ctx_key_to_expire(ctx, mapping->host)) {
401 		status = nfs_wb_all(mapping->host);
402 		if (status < 0)
403 			return status;
404 	}
405 
406 	return copied;
407 }
408 
409 /*
410  * Partially or wholly invalidate a page
411  * - Release the private state associated with a page if undergoing complete
412  *   page invalidation
413  * - Called if either PG_private or PG_fscache is set on the page
414  * - Caller holds page lock
415  */
416 static void nfs_invalidate_page(struct page *page, unsigned int offset,
417 				unsigned int length)
418 {
419 	dfprintk(PAGECACHE, "NFS: invalidate_page(%p, %u, %u)\n",
420 		 page, offset, length);
421 
422 	if (offset != 0 || length < PAGE_SIZE)
423 		return;
424 	/* Cancel any unstarted writes on this page */
425 	nfs_wb_page_cancel(page_file_mapping(page)->host, page);
426 
427 	nfs_fscache_invalidate_page(page, page->mapping->host);
428 }
429 
430 /*
431  * Attempt to release the private state associated with a page
432  * - Called if either PG_private or PG_fscache is set on the page
433  * - Caller holds page lock
434  * - Return true (may release page) or false (may not)
435  */
436 static int nfs_release_page(struct page *page, gfp_t gfp)
437 {
438 	dfprintk(PAGECACHE, "NFS: release_page(%p)\n", page);
439 
440 	/* If PagePrivate() is set, then the page is not freeable */
441 	if (PagePrivate(page))
442 		return 0;
443 	return nfs_fscache_release_page(page, gfp);
444 }
445 
446 static void nfs_check_dirty_writeback(struct page *page,
447 				bool *dirty, bool *writeback)
448 {
449 	struct nfs_inode *nfsi;
450 	struct address_space *mapping = page_file_mapping(page);
451 
452 	if (!mapping || PageSwapCache(page))
453 		return;
454 
455 	/*
456 	 * Check if an unstable page is currently being committed and
457 	 * if so, have the VM treat it as if the page is under writeback
458 	 * so it will not block due to pages that will shortly be freeable.
459 	 */
460 	nfsi = NFS_I(mapping->host);
461 	if (atomic_read(&nfsi->commit_info.rpcs_out)) {
462 		*writeback = true;
463 		return;
464 	}
465 
466 	/*
467 	 * If PagePrivate() is set, then the page is not freeable and as the
468 	 * inode is not being committed, it's not going to be cleaned in the
469 	 * near future so treat it as dirty
470 	 */
471 	if (PagePrivate(page))
472 		*dirty = true;
473 }
474 
475 /*
476  * Attempt to clear the private state associated with a page when an error
477  * occurs that requires the cached contents of an inode to be written back or
478  * destroyed
479  * - Called if either PG_private or fscache is set on the page
480  * - Caller holds page lock
481  * - Return 0 if successful, -error otherwise
482  */
483 static int nfs_launder_page(struct page *page)
484 {
485 	struct inode *inode = page_file_mapping(page)->host;
486 	struct nfs_inode *nfsi = NFS_I(inode);
487 
488 	dfprintk(PAGECACHE, "NFS: launder_page(%ld, %llu)\n",
489 		inode->i_ino, (long long)page_offset(page));
490 
491 	nfs_fscache_wait_on_page_write(nfsi, page);
492 	return nfs_wb_launder_page(inode, page);
493 }
494 
495 static int nfs_swap_activate(struct swap_info_struct *sis, struct file *file,
496 						sector_t *span)
497 {
498 	struct rpc_clnt *clnt = NFS_CLIENT(file->f_mapping->host);
499 
500 	*span = sis->pages;
501 
502 	return rpc_clnt_swap_activate(clnt);
503 }
504 
505 static void nfs_swap_deactivate(struct file *file)
506 {
507 	struct rpc_clnt *clnt = NFS_CLIENT(file->f_mapping->host);
508 
509 	rpc_clnt_swap_deactivate(clnt);
510 }
511 
512 const struct address_space_operations nfs_file_aops = {
513 	.readpage = nfs_readpage,
514 	.readpages = nfs_readpages,
515 	.set_page_dirty = __set_page_dirty_nobuffers,
516 	.writepage = nfs_writepage,
517 	.writepages = nfs_writepages,
518 	.write_begin = nfs_write_begin,
519 	.write_end = nfs_write_end,
520 	.invalidatepage = nfs_invalidate_page,
521 	.releasepage = nfs_release_page,
522 	.direct_IO = nfs_direct_IO,
523 #ifdef CONFIG_MIGRATION
524 	.migratepage = nfs_migrate_page,
525 #endif
526 	.launder_page = nfs_launder_page,
527 	.is_dirty_writeback = nfs_check_dirty_writeback,
528 	.error_remove_page = generic_error_remove_page,
529 	.swap_activate = nfs_swap_activate,
530 	.swap_deactivate = nfs_swap_deactivate,
531 };
532 
533 /*
534  * Notification that a PTE pointing to an NFS page is about to be made
535  * writable, implying that someone is about to modify the page through a
536  * shared-writable mapping
537  */
538 static int nfs_vm_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
539 {
540 	struct page *page = vmf->page;
541 	struct file *filp = vma->vm_file;
542 	struct inode *inode = file_inode(filp);
543 	unsigned pagelen;
544 	int ret = VM_FAULT_NOPAGE;
545 	struct address_space *mapping;
546 
547 	dfprintk(PAGECACHE, "NFS: vm_page_mkwrite(%pD2(%lu), offset %lld)\n",
548 		filp, filp->f_mapping->host->i_ino,
549 		(long long)page_offset(page));
550 
551 	sb_start_pagefault(inode->i_sb);
552 
553 	/* make sure the cache has finished storing the page */
554 	nfs_fscache_wait_on_page_write(NFS_I(inode), page);
555 
556 	wait_on_bit_action(&NFS_I(inode)->flags, NFS_INO_INVALIDATING,
557 			nfs_wait_bit_killable, TASK_KILLABLE);
558 
559 	lock_page(page);
560 	mapping = page_file_mapping(page);
561 	if (mapping != inode->i_mapping)
562 		goto out_unlock;
563 
564 	wait_on_page_writeback(page);
565 
566 	pagelen = nfs_page_length(page);
567 	if (pagelen == 0)
568 		goto out_unlock;
569 
570 	ret = VM_FAULT_LOCKED;
571 	if (nfs_flush_incompatible(filp, page) == 0 &&
572 	    nfs_updatepage(filp, page, 0, pagelen) == 0)
573 		goto out;
574 
575 	ret = VM_FAULT_SIGBUS;
576 out_unlock:
577 	unlock_page(page);
578 out:
579 	sb_end_pagefault(inode->i_sb);
580 	return ret;
581 }
582 
583 static const struct vm_operations_struct nfs_file_vm_ops = {
584 	.fault = filemap_fault,
585 	.map_pages = filemap_map_pages,
586 	.page_mkwrite = nfs_vm_page_mkwrite,
587 };
588 
589 static int nfs_need_check_write(struct file *filp, struct inode *inode)
590 {
591 	struct nfs_open_context *ctx;
592 
593 	ctx = nfs_file_open_context(filp);
594 	if (test_bit(NFS_CONTEXT_ERROR_WRITE, &ctx->flags) ||
595 	    nfs_ctx_key_to_expire(ctx, inode))
596 		return 1;
597 	return 0;
598 }
599 
600 ssize_t nfs_file_write(struct kiocb *iocb, struct iov_iter *from)
601 {
602 	struct file *file = iocb->ki_filp;
603 	struct inode *inode = file_inode(file);
604 	unsigned long written = 0;
605 	ssize_t result;
606 
607 	result = nfs_key_timeout_notify(file, inode);
608 	if (result)
609 		return result;
610 
611 	if (iocb->ki_flags & IOCB_DIRECT)
612 		return nfs_file_direct_write(iocb, from);
613 
614 	dprintk("NFS: write(%pD2, %zu@%Ld)\n",
615 		file, iov_iter_count(from), (long long) iocb->ki_pos);
616 
617 	if (IS_SWAPFILE(inode))
618 		goto out_swapfile;
619 	/*
620 	 * O_APPEND implies that we must revalidate the file length.
621 	 */
622 	if (iocb->ki_flags & IOCB_APPEND) {
623 		result = nfs_revalidate_file_size(inode, file);
624 		if (result)
625 			goto out;
626 	}
627 
628 	nfs_start_io_write(inode);
629 	result = generic_write_checks(iocb, from);
630 	if (result > 0) {
631 		current->backing_dev_info = inode_to_bdi(inode);
632 		result = generic_perform_write(file, from, iocb->ki_pos);
633 		current->backing_dev_info = NULL;
634 	}
635 	nfs_end_io_write(inode);
636 	if (result <= 0)
637 		goto out;
638 
639 	result = generic_write_sync(iocb, result);
640 	if (result < 0)
641 		goto out;
642 	written = result;
643 	iocb->ki_pos += written;
644 
645 	/* Return error values */
646 	if (nfs_need_check_write(file, inode)) {
647 		int err = vfs_fsync(file, 0);
648 		if (err < 0)
649 			result = err;
650 	}
651 	nfs_add_stats(inode, NFSIOS_NORMALWRITTENBYTES, written);
652 out:
653 	return result;
654 
655 out_swapfile:
656 	printk(KERN_INFO "NFS: attempt to write to active swap file!\n");
657 	return -EBUSY;
658 }
659 EXPORT_SYMBOL_GPL(nfs_file_write);
660 
661 static int
662 do_getlk(struct file *filp, int cmd, struct file_lock *fl, int is_local)
663 {
664 	struct inode *inode = filp->f_mapping->host;
665 	int status = 0;
666 	unsigned int saved_type = fl->fl_type;
667 
668 	/* Try local locking first */
669 	posix_test_lock(filp, fl);
670 	if (fl->fl_type != F_UNLCK) {
671 		/* found a conflict */
672 		goto out;
673 	}
674 	fl->fl_type = saved_type;
675 
676 	if (NFS_PROTO(inode)->have_delegation(inode, FMODE_READ))
677 		goto out_noconflict;
678 
679 	if (is_local)
680 		goto out_noconflict;
681 
682 	status = NFS_PROTO(inode)->lock(filp, cmd, fl);
683 out:
684 	return status;
685 out_noconflict:
686 	fl->fl_type = F_UNLCK;
687 	goto out;
688 }
689 
690 static int
691 do_unlk(struct file *filp, int cmd, struct file_lock *fl, int is_local)
692 {
693 	struct inode *inode = filp->f_mapping->host;
694 	struct nfs_lock_context *l_ctx;
695 	int status;
696 
697 	/*
698 	 * Flush all pending writes before doing anything
699 	 * with locks..
700 	 */
701 	vfs_fsync(filp, 0);
702 
703 	l_ctx = nfs_get_lock_context(nfs_file_open_context(filp));
704 	if (!IS_ERR(l_ctx)) {
705 		status = nfs_iocounter_wait(l_ctx);
706 		nfs_put_lock_context(l_ctx);
707 		if (status < 0)
708 			return status;
709 	}
710 
711 	/* NOTE: special case
712 	 * 	If we're signalled while cleaning up locks on process exit, we
713 	 * 	still need to complete the unlock.
714 	 */
715 	/*
716 	 * Use local locking if mounted with "-onolock" or with appropriate
717 	 * "-olocal_lock="
718 	 */
719 	if (!is_local)
720 		status = NFS_PROTO(inode)->lock(filp, cmd, fl);
721 	else
722 		status = locks_lock_file_wait(filp, fl);
723 	return status;
724 }
725 
726 static int
727 do_setlk(struct file *filp, int cmd, struct file_lock *fl, int is_local)
728 {
729 	struct inode *inode = filp->f_mapping->host;
730 	int status;
731 
732 	/*
733 	 * Flush all pending writes before doing anything
734 	 * with locks..
735 	 */
736 	status = nfs_sync_mapping(filp->f_mapping);
737 	if (status != 0)
738 		goto out;
739 
740 	/*
741 	 * Use local locking if mounted with "-onolock" or with appropriate
742 	 * "-olocal_lock="
743 	 */
744 	if (!is_local)
745 		status = NFS_PROTO(inode)->lock(filp, cmd, fl);
746 	else
747 		status = locks_lock_file_wait(filp, fl);
748 	if (status < 0)
749 		goto out;
750 
751 	/*
752 	 * Revalidate the cache if the server has time stamps granular
753 	 * enough to detect subsecond changes.  Otherwise, clear the
754 	 * cache to prevent missing any changes.
755 	 *
756 	 * This makes locking act as a cache coherency point.
757 	 */
758 	nfs_sync_mapping(filp->f_mapping);
759 	if (!NFS_PROTO(inode)->have_delegation(inode, FMODE_READ))
760 		nfs_zap_mapping(inode, filp->f_mapping);
761 out:
762 	return status;
763 }
764 
765 /*
766  * Lock a (portion of) a file
767  */
768 int nfs_lock(struct file *filp, int cmd, struct file_lock *fl)
769 {
770 	struct inode *inode = filp->f_mapping->host;
771 	int ret = -ENOLCK;
772 	int is_local = 0;
773 
774 	dprintk("NFS: lock(%pD2, t=%x, fl=%x, r=%lld:%lld)\n",
775 			filp, fl->fl_type, fl->fl_flags,
776 			(long long)fl->fl_start, (long long)fl->fl_end);
777 
778 	nfs_inc_stats(inode, NFSIOS_VFSLOCK);
779 
780 	/* No mandatory locks over NFS */
781 	if (__mandatory_lock(inode) && fl->fl_type != F_UNLCK)
782 		goto out_err;
783 
784 	if (NFS_SERVER(inode)->flags & NFS_MOUNT_LOCAL_FCNTL)
785 		is_local = 1;
786 
787 	if (NFS_PROTO(inode)->lock_check_bounds != NULL) {
788 		ret = NFS_PROTO(inode)->lock_check_bounds(fl);
789 		if (ret < 0)
790 			goto out_err;
791 	}
792 
793 	if (IS_GETLK(cmd))
794 		ret = do_getlk(filp, cmd, fl, is_local);
795 	else if (fl->fl_type == F_UNLCK)
796 		ret = do_unlk(filp, cmd, fl, is_local);
797 	else
798 		ret = do_setlk(filp, cmd, fl, is_local);
799 out_err:
800 	return ret;
801 }
802 EXPORT_SYMBOL_GPL(nfs_lock);
803 
804 /*
805  * Lock a (portion of) a file
806  */
807 int nfs_flock(struct file *filp, int cmd, struct file_lock *fl)
808 {
809 	struct inode *inode = filp->f_mapping->host;
810 	int is_local = 0;
811 
812 	dprintk("NFS: flock(%pD2, t=%x, fl=%x)\n",
813 			filp, fl->fl_type, fl->fl_flags);
814 
815 	if (!(fl->fl_flags & FL_FLOCK))
816 		return -ENOLCK;
817 
818 	/*
819 	 * The NFSv4 protocol doesn't support LOCK_MAND, which is not part of
820 	 * any standard. In principle we might be able to support LOCK_MAND
821 	 * on NFSv2/3 since NLMv3/4 support DOS share modes, but for now the
822 	 * NFS code is not set up for it.
823 	 */
824 	if (fl->fl_type & LOCK_MAND)
825 		return -EINVAL;
826 
827 	if (NFS_SERVER(inode)->flags & NFS_MOUNT_LOCAL_FLOCK)
828 		is_local = 1;
829 
830 	/* We're simulating flock() locks using posix locks on the server */
831 	if (fl->fl_type == F_UNLCK)
832 		return do_unlk(filp, cmd, fl, is_local);
833 	return do_setlk(filp, cmd, fl, is_local);
834 }
835 EXPORT_SYMBOL_GPL(nfs_flock);
836 
837 const struct file_operations nfs_file_operations = {
838 	.llseek		= nfs_file_llseek,
839 	.read_iter	= nfs_file_read,
840 	.write_iter	= nfs_file_write,
841 	.mmap		= nfs_file_mmap,
842 	.open		= nfs_file_open,
843 	.flush		= nfs_file_flush,
844 	.release	= nfs_file_release,
845 	.fsync		= nfs_file_fsync,
846 	.lock		= nfs_lock,
847 	.flock		= nfs_flock,
848 	.splice_read	= generic_file_splice_read,
849 	.splice_write	= iter_file_splice_write,
850 	.check_flags	= nfs_check_flags,
851 	.setlease	= simple_nosetlease,
852 };
853 EXPORT_SYMBOL_GPL(nfs_file_operations);
854