1 /* 2 * linux/fs/nfs/file.c 3 * 4 * Copyright (C) 1992 Rick Sladkey 5 * 6 * Changes Copyright (C) 1994 by Florian La Roche 7 * - Do not copy data too often around in the kernel. 8 * - In nfs_file_read the return value of kmalloc wasn't checked. 9 * - Put in a better version of read look-ahead buffering. Original idea 10 * and implementation by Wai S Kok elekokws@ee.nus.sg. 11 * 12 * Expire cache on write to a file by Wai S Kok (Oct 1994). 13 * 14 * Total rewrite of read side for new NFS buffer cache.. Linus. 15 * 16 * nfs regular file handling functions 17 */ 18 19 #include <linux/time.h> 20 #include <linux/kernel.h> 21 #include <linux/errno.h> 22 #include <linux/fcntl.h> 23 #include <linux/stat.h> 24 #include <linux/nfs_fs.h> 25 #include <linux/nfs_mount.h> 26 #include <linux/mm.h> 27 #include <linux/pagemap.h> 28 #include <linux/aio.h> 29 #include <linux/gfp.h> 30 #include <linux/swap.h> 31 32 #include <asm/uaccess.h> 33 #include <asm/system.h> 34 35 #include "delegation.h" 36 #include "internal.h" 37 #include "iostat.h" 38 #include "fscache.h" 39 40 #define NFSDBG_FACILITY NFSDBG_FILE 41 42 static int nfs_file_open(struct inode *, struct file *); 43 static int nfs_file_release(struct inode *, struct file *); 44 static loff_t nfs_file_llseek(struct file *file, loff_t offset, int origin); 45 static int nfs_file_mmap(struct file *, struct vm_area_struct *); 46 static ssize_t nfs_file_splice_read(struct file *filp, loff_t *ppos, 47 struct pipe_inode_info *pipe, 48 size_t count, unsigned int flags); 49 static ssize_t nfs_file_read(struct kiocb *, const struct iovec *iov, 50 unsigned long nr_segs, loff_t pos); 51 static ssize_t nfs_file_splice_write(struct pipe_inode_info *pipe, 52 struct file *filp, loff_t *ppos, 53 size_t count, unsigned int flags); 54 static ssize_t nfs_file_write(struct kiocb *, const struct iovec *iov, 55 unsigned long nr_segs, loff_t pos); 56 static int nfs_file_flush(struct file *, fl_owner_t id); 57 static int nfs_file_fsync(struct file *, int datasync); 58 static int nfs_check_flags(int flags); 59 static int nfs_lock(struct file *filp, int cmd, struct file_lock *fl); 60 static int nfs_flock(struct file *filp, int cmd, struct file_lock *fl); 61 static int nfs_setlease(struct file *file, long arg, struct file_lock **fl); 62 63 static const struct vm_operations_struct nfs_file_vm_ops; 64 65 const struct file_operations nfs_file_operations = { 66 .llseek = nfs_file_llseek, 67 .read = do_sync_read, 68 .write = do_sync_write, 69 .aio_read = nfs_file_read, 70 .aio_write = nfs_file_write, 71 .mmap = nfs_file_mmap, 72 .open = nfs_file_open, 73 .flush = nfs_file_flush, 74 .release = nfs_file_release, 75 .fsync = nfs_file_fsync, 76 .lock = nfs_lock, 77 .flock = nfs_flock, 78 .splice_read = nfs_file_splice_read, 79 .splice_write = nfs_file_splice_write, 80 .check_flags = nfs_check_flags, 81 .setlease = nfs_setlease, 82 }; 83 84 const struct inode_operations nfs_file_inode_operations = { 85 .permission = nfs_permission, 86 .getattr = nfs_getattr, 87 .setattr = nfs_setattr, 88 }; 89 90 #ifdef CONFIG_NFS_V3 91 const struct inode_operations nfs3_file_inode_operations = { 92 .permission = nfs_permission, 93 .getattr = nfs_getattr, 94 .setattr = nfs_setattr, 95 .listxattr = nfs3_listxattr, 96 .getxattr = nfs3_getxattr, 97 .setxattr = nfs3_setxattr, 98 .removexattr = nfs3_removexattr, 99 }; 100 #endif /* CONFIG_NFS_v3 */ 101 102 /* Hack for future NFS swap support */ 103 #ifndef IS_SWAPFILE 104 # define IS_SWAPFILE(inode) (0) 105 #endif 106 107 static int nfs_check_flags(int flags) 108 { 109 if ((flags & (O_APPEND | O_DIRECT)) == (O_APPEND | O_DIRECT)) 110 return -EINVAL; 111 112 return 0; 113 } 114 115 /* 116 * Open file 117 */ 118 static int 119 nfs_file_open(struct inode *inode, struct file *filp) 120 { 121 int res; 122 123 dprintk("NFS: open file(%s/%s)\n", 124 filp->f_path.dentry->d_parent->d_name.name, 125 filp->f_path.dentry->d_name.name); 126 127 nfs_inc_stats(inode, NFSIOS_VFSOPEN); 128 res = nfs_check_flags(filp->f_flags); 129 if (res) 130 return res; 131 132 res = nfs_open(inode, filp); 133 return res; 134 } 135 136 static int 137 nfs_file_release(struct inode *inode, struct file *filp) 138 { 139 struct dentry *dentry = filp->f_path.dentry; 140 141 dprintk("NFS: release(%s/%s)\n", 142 dentry->d_parent->d_name.name, 143 dentry->d_name.name); 144 145 nfs_inc_stats(inode, NFSIOS_VFSRELEASE); 146 return nfs_release(inode, filp); 147 } 148 149 /** 150 * nfs_revalidate_size - Revalidate the file size 151 * @inode - pointer to inode struct 152 * @file - pointer to struct file 153 * 154 * Revalidates the file length. This is basically a wrapper around 155 * nfs_revalidate_inode() that takes into account the fact that we may 156 * have cached writes (in which case we don't care about the server's 157 * idea of what the file length is), or O_DIRECT (in which case we 158 * shouldn't trust the cache). 159 */ 160 static int nfs_revalidate_file_size(struct inode *inode, struct file *filp) 161 { 162 struct nfs_server *server = NFS_SERVER(inode); 163 struct nfs_inode *nfsi = NFS_I(inode); 164 165 if (nfs_have_delegated_attributes(inode)) 166 goto out_noreval; 167 168 if (filp->f_flags & O_DIRECT) 169 goto force_reval; 170 if (nfsi->cache_validity & NFS_INO_REVAL_PAGECACHE) 171 goto force_reval; 172 if (nfs_attribute_timeout(inode)) 173 goto force_reval; 174 out_noreval: 175 return 0; 176 force_reval: 177 return __nfs_revalidate_inode(server, inode); 178 } 179 180 static loff_t nfs_file_llseek(struct file *filp, loff_t offset, int origin) 181 { 182 loff_t loff; 183 184 dprintk("NFS: llseek file(%s/%s, %lld, %d)\n", 185 filp->f_path.dentry->d_parent->d_name.name, 186 filp->f_path.dentry->d_name.name, 187 offset, origin); 188 189 /* origin == SEEK_END => we must revalidate the cached file length */ 190 if (origin == SEEK_END) { 191 struct inode *inode = filp->f_mapping->host; 192 193 int retval = nfs_revalidate_file_size(inode, filp); 194 if (retval < 0) 195 return (loff_t)retval; 196 197 spin_lock(&inode->i_lock); 198 loff = generic_file_llseek_unlocked(filp, offset, origin); 199 spin_unlock(&inode->i_lock); 200 } else 201 loff = generic_file_llseek_unlocked(filp, offset, origin); 202 return loff; 203 } 204 205 /* 206 * Flush all dirty pages, and check for write errors. 207 */ 208 static int 209 nfs_file_flush(struct file *file, fl_owner_t id) 210 { 211 struct dentry *dentry = file->f_path.dentry; 212 struct inode *inode = dentry->d_inode; 213 214 dprintk("NFS: flush(%s/%s)\n", 215 dentry->d_parent->d_name.name, 216 dentry->d_name.name); 217 218 nfs_inc_stats(inode, NFSIOS_VFSFLUSH); 219 if ((file->f_mode & FMODE_WRITE) == 0) 220 return 0; 221 222 /* Flush writes to the server and return any errors */ 223 return vfs_fsync(file, 0); 224 } 225 226 static ssize_t 227 nfs_file_read(struct kiocb *iocb, const struct iovec *iov, 228 unsigned long nr_segs, loff_t pos) 229 { 230 struct dentry * dentry = iocb->ki_filp->f_path.dentry; 231 struct inode * inode = dentry->d_inode; 232 ssize_t result; 233 size_t count = iov_length(iov, nr_segs); 234 235 if (iocb->ki_filp->f_flags & O_DIRECT) 236 return nfs_file_direct_read(iocb, iov, nr_segs, pos); 237 238 dprintk("NFS: read(%s/%s, %lu@%lu)\n", 239 dentry->d_parent->d_name.name, dentry->d_name.name, 240 (unsigned long) count, (unsigned long) pos); 241 242 result = nfs_revalidate_mapping(inode, iocb->ki_filp->f_mapping); 243 if (!result) { 244 result = generic_file_aio_read(iocb, iov, nr_segs, pos); 245 if (result > 0) 246 nfs_add_stats(inode, NFSIOS_NORMALREADBYTES, result); 247 } 248 return result; 249 } 250 251 static ssize_t 252 nfs_file_splice_read(struct file *filp, loff_t *ppos, 253 struct pipe_inode_info *pipe, size_t count, 254 unsigned int flags) 255 { 256 struct dentry *dentry = filp->f_path.dentry; 257 struct inode *inode = dentry->d_inode; 258 ssize_t res; 259 260 dprintk("NFS: splice_read(%s/%s, %lu@%Lu)\n", 261 dentry->d_parent->d_name.name, dentry->d_name.name, 262 (unsigned long) count, (unsigned long long) *ppos); 263 264 res = nfs_revalidate_mapping(inode, filp->f_mapping); 265 if (!res) { 266 res = generic_file_splice_read(filp, ppos, pipe, count, flags); 267 if (res > 0) 268 nfs_add_stats(inode, NFSIOS_NORMALREADBYTES, res); 269 } 270 return res; 271 } 272 273 static int 274 nfs_file_mmap(struct file * file, struct vm_area_struct * vma) 275 { 276 struct dentry *dentry = file->f_path.dentry; 277 struct inode *inode = dentry->d_inode; 278 int status; 279 280 dprintk("NFS: mmap(%s/%s)\n", 281 dentry->d_parent->d_name.name, dentry->d_name.name); 282 283 /* Note: generic_file_mmap() returns ENOSYS on nommu systems 284 * so we call that before revalidating the mapping 285 */ 286 status = generic_file_mmap(file, vma); 287 if (!status) { 288 vma->vm_ops = &nfs_file_vm_ops; 289 status = nfs_revalidate_mapping(inode, file->f_mapping); 290 } 291 return status; 292 } 293 294 /* 295 * Flush any dirty pages for this process, and check for write errors. 296 * The return status from this call provides a reliable indication of 297 * whether any write errors occurred for this process. 298 * 299 * Notice that it clears the NFS_CONTEXT_ERROR_WRITE before synching to 300 * disk, but it retrieves and clears ctx->error after synching, despite 301 * the two being set at the same time in nfs_context_set_write_error(). 302 * This is because the former is used to notify the _next_ call to 303 * nfs_file_write() that a write error occured, and hence cause it to 304 * fall back to doing a synchronous write. 305 */ 306 static int 307 nfs_file_fsync(struct file *file, int datasync) 308 { 309 struct dentry *dentry = file->f_path.dentry; 310 struct nfs_open_context *ctx = nfs_file_open_context(file); 311 struct inode *inode = dentry->d_inode; 312 int have_error, status; 313 int ret = 0; 314 315 316 dprintk("NFS: fsync file(%s/%s) datasync %d\n", 317 dentry->d_parent->d_name.name, dentry->d_name.name, 318 datasync); 319 320 nfs_inc_stats(inode, NFSIOS_VFSFSYNC); 321 have_error = test_and_clear_bit(NFS_CONTEXT_ERROR_WRITE, &ctx->flags); 322 status = nfs_commit_inode(inode, FLUSH_SYNC); 323 have_error |= test_bit(NFS_CONTEXT_ERROR_WRITE, &ctx->flags); 324 if (have_error) 325 ret = xchg(&ctx->error, 0); 326 if (!ret) 327 ret = status; 328 return ret; 329 } 330 331 /* 332 * Decide whether a read/modify/write cycle may be more efficient 333 * then a modify/write/read cycle when writing to a page in the 334 * page cache. 335 * 336 * The modify/write/read cycle may occur if a page is read before 337 * being completely filled by the writer. In this situation, the 338 * page must be completely written to stable storage on the server 339 * before it can be refilled by reading in the page from the server. 340 * This can lead to expensive, small, FILE_SYNC mode writes being 341 * done. 342 * 343 * It may be more efficient to read the page first if the file is 344 * open for reading in addition to writing, the page is not marked 345 * as Uptodate, it is not dirty or waiting to be committed, 346 * indicating that it was previously allocated and then modified, 347 * that there were valid bytes of data in that range of the file, 348 * and that the new data won't completely replace the old data in 349 * that range of the file. 350 */ 351 static int nfs_want_read_modify_write(struct file *file, struct page *page, 352 loff_t pos, unsigned len) 353 { 354 unsigned int pglen = nfs_page_length(page); 355 unsigned int offset = pos & (PAGE_CACHE_SIZE - 1); 356 unsigned int end = offset + len; 357 358 if ((file->f_mode & FMODE_READ) && /* open for read? */ 359 !PageUptodate(page) && /* Uptodate? */ 360 !PagePrivate(page) && /* i/o request already? */ 361 pglen && /* valid bytes of file? */ 362 (end < pglen || offset)) /* replace all valid bytes? */ 363 return 1; 364 return 0; 365 } 366 367 /* 368 * This does the "real" work of the write. We must allocate and lock the 369 * page to be sent back to the generic routine, which then copies the 370 * data from user space. 371 * 372 * If the writer ends up delaying the write, the writer needs to 373 * increment the page use counts until he is done with the page. 374 */ 375 static int nfs_write_begin(struct file *file, struct address_space *mapping, 376 loff_t pos, unsigned len, unsigned flags, 377 struct page **pagep, void **fsdata) 378 { 379 int ret; 380 pgoff_t index = pos >> PAGE_CACHE_SHIFT; 381 struct page *page; 382 int once_thru = 0; 383 384 dfprintk(PAGECACHE, "NFS: write_begin(%s/%s(%ld), %u@%lld)\n", 385 file->f_path.dentry->d_parent->d_name.name, 386 file->f_path.dentry->d_name.name, 387 mapping->host->i_ino, len, (long long) pos); 388 389 start: 390 /* 391 * Prevent starvation issues if someone is doing a consistency 392 * sync-to-disk 393 */ 394 ret = wait_on_bit(&NFS_I(mapping->host)->flags, NFS_INO_FLUSHING, 395 nfs_wait_bit_killable, TASK_KILLABLE); 396 if (ret) 397 return ret; 398 399 page = grab_cache_page_write_begin(mapping, index, flags); 400 if (!page) 401 return -ENOMEM; 402 *pagep = page; 403 404 ret = nfs_flush_incompatible(file, page); 405 if (ret) { 406 unlock_page(page); 407 page_cache_release(page); 408 } else if (!once_thru && 409 nfs_want_read_modify_write(file, page, pos, len)) { 410 once_thru = 1; 411 ret = nfs_readpage(file, page); 412 page_cache_release(page); 413 if (!ret) 414 goto start; 415 } 416 return ret; 417 } 418 419 static int nfs_write_end(struct file *file, struct address_space *mapping, 420 loff_t pos, unsigned len, unsigned copied, 421 struct page *page, void *fsdata) 422 { 423 unsigned offset = pos & (PAGE_CACHE_SIZE - 1); 424 int status; 425 426 dfprintk(PAGECACHE, "NFS: write_end(%s/%s(%ld), %u@%lld)\n", 427 file->f_path.dentry->d_parent->d_name.name, 428 file->f_path.dentry->d_name.name, 429 mapping->host->i_ino, len, (long long) pos); 430 431 /* 432 * Zero any uninitialised parts of the page, and then mark the page 433 * as up to date if it turns out that we're extending the file. 434 */ 435 if (!PageUptodate(page)) { 436 unsigned pglen = nfs_page_length(page); 437 unsigned end = offset + len; 438 439 if (pglen == 0) { 440 zero_user_segments(page, 0, offset, 441 end, PAGE_CACHE_SIZE); 442 SetPageUptodate(page); 443 } else if (end >= pglen) { 444 zero_user_segment(page, end, PAGE_CACHE_SIZE); 445 if (offset == 0) 446 SetPageUptodate(page); 447 } else 448 zero_user_segment(page, pglen, PAGE_CACHE_SIZE); 449 } 450 451 status = nfs_updatepage(file, page, offset, copied); 452 453 unlock_page(page); 454 page_cache_release(page); 455 456 if (status < 0) 457 return status; 458 return copied; 459 } 460 461 /* 462 * Partially or wholly invalidate a page 463 * - Release the private state associated with a page if undergoing complete 464 * page invalidation 465 * - Called if either PG_private or PG_fscache is set on the page 466 * - Caller holds page lock 467 */ 468 static void nfs_invalidate_page(struct page *page, unsigned long offset) 469 { 470 dfprintk(PAGECACHE, "NFS: invalidate_page(%p, %lu)\n", page, offset); 471 472 if (offset != 0) 473 return; 474 /* Cancel any unstarted writes on this page */ 475 nfs_wb_page_cancel(page->mapping->host, page); 476 477 nfs_fscache_invalidate_page(page, page->mapping->host); 478 } 479 480 /* 481 * Attempt to release the private state associated with a page 482 * - Called if either PG_private or PG_fscache is set on the page 483 * - Caller holds page lock 484 * - Return true (may release page) or false (may not) 485 */ 486 static int nfs_release_page(struct page *page, gfp_t gfp) 487 { 488 struct address_space *mapping = page->mapping; 489 490 dfprintk(PAGECACHE, "NFS: release_page(%p)\n", page); 491 492 /* Only do I/O if gfp is a superset of GFP_KERNEL */ 493 if (mapping && (gfp & GFP_KERNEL) == GFP_KERNEL) { 494 int how = FLUSH_SYNC; 495 496 /* Don't let kswapd deadlock waiting for OOM RPC calls */ 497 if (current_is_kswapd()) 498 how = 0; 499 nfs_commit_inode(mapping->host, how); 500 } 501 /* If PagePrivate() is set, then the page is not freeable */ 502 if (PagePrivate(page)) 503 return 0; 504 return nfs_fscache_release_page(page, gfp); 505 } 506 507 /* 508 * Attempt to clear the private state associated with a page when an error 509 * occurs that requires the cached contents of an inode to be written back or 510 * destroyed 511 * - Called if either PG_private or fscache is set on the page 512 * - Caller holds page lock 513 * - Return 0 if successful, -error otherwise 514 */ 515 static int nfs_launder_page(struct page *page) 516 { 517 struct inode *inode = page->mapping->host; 518 struct nfs_inode *nfsi = NFS_I(inode); 519 520 dfprintk(PAGECACHE, "NFS: launder_page(%ld, %llu)\n", 521 inode->i_ino, (long long)page_offset(page)); 522 523 nfs_fscache_wait_on_page_write(nfsi, page); 524 return nfs_wb_page(inode, page); 525 } 526 527 const struct address_space_operations nfs_file_aops = { 528 .readpage = nfs_readpage, 529 .readpages = nfs_readpages, 530 .set_page_dirty = __set_page_dirty_nobuffers, 531 .writepage = nfs_writepage, 532 .writepages = nfs_writepages, 533 .write_begin = nfs_write_begin, 534 .write_end = nfs_write_end, 535 .invalidatepage = nfs_invalidate_page, 536 .releasepage = nfs_release_page, 537 .direct_IO = nfs_direct_IO, 538 .migratepage = nfs_migrate_page, 539 .launder_page = nfs_launder_page, 540 .error_remove_page = generic_error_remove_page, 541 }; 542 543 /* 544 * Notification that a PTE pointing to an NFS page is about to be made 545 * writable, implying that someone is about to modify the page through a 546 * shared-writable mapping 547 */ 548 static int nfs_vm_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf) 549 { 550 struct page *page = vmf->page; 551 struct file *filp = vma->vm_file; 552 struct dentry *dentry = filp->f_path.dentry; 553 unsigned pagelen; 554 int ret = -EINVAL; 555 struct address_space *mapping; 556 557 dfprintk(PAGECACHE, "NFS: vm_page_mkwrite(%s/%s(%ld), offset %lld)\n", 558 dentry->d_parent->d_name.name, dentry->d_name.name, 559 filp->f_mapping->host->i_ino, 560 (long long)page_offset(page)); 561 562 /* make sure the cache has finished storing the page */ 563 nfs_fscache_wait_on_page_write(NFS_I(dentry->d_inode), page); 564 565 lock_page(page); 566 mapping = page->mapping; 567 if (mapping != dentry->d_inode->i_mapping) 568 goto out_unlock; 569 570 ret = 0; 571 pagelen = nfs_page_length(page); 572 if (pagelen == 0) 573 goto out_unlock; 574 575 ret = nfs_flush_incompatible(filp, page); 576 if (ret != 0) 577 goto out_unlock; 578 579 ret = nfs_updatepage(filp, page, 0, pagelen); 580 out_unlock: 581 if (!ret) 582 return VM_FAULT_LOCKED; 583 unlock_page(page); 584 return VM_FAULT_SIGBUS; 585 } 586 587 static const struct vm_operations_struct nfs_file_vm_ops = { 588 .fault = filemap_fault, 589 .page_mkwrite = nfs_vm_page_mkwrite, 590 }; 591 592 static int nfs_need_sync_write(struct file *filp, struct inode *inode) 593 { 594 struct nfs_open_context *ctx; 595 596 if (IS_SYNC(inode) || (filp->f_flags & O_DSYNC)) 597 return 1; 598 ctx = nfs_file_open_context(filp); 599 if (test_bit(NFS_CONTEXT_ERROR_WRITE, &ctx->flags)) 600 return 1; 601 return 0; 602 } 603 604 static ssize_t nfs_file_write(struct kiocb *iocb, const struct iovec *iov, 605 unsigned long nr_segs, loff_t pos) 606 { 607 struct dentry * dentry = iocb->ki_filp->f_path.dentry; 608 struct inode * inode = dentry->d_inode; 609 unsigned long written = 0; 610 ssize_t result; 611 size_t count = iov_length(iov, nr_segs); 612 613 if (iocb->ki_filp->f_flags & O_DIRECT) 614 return nfs_file_direct_write(iocb, iov, nr_segs, pos); 615 616 dprintk("NFS: write(%s/%s, %lu@%Ld)\n", 617 dentry->d_parent->d_name.name, dentry->d_name.name, 618 (unsigned long) count, (long long) pos); 619 620 result = -EBUSY; 621 if (IS_SWAPFILE(inode)) 622 goto out_swapfile; 623 /* 624 * O_APPEND implies that we must revalidate the file length. 625 */ 626 if (iocb->ki_filp->f_flags & O_APPEND) { 627 result = nfs_revalidate_file_size(inode, iocb->ki_filp); 628 if (result) 629 goto out; 630 } 631 632 result = count; 633 if (!count) 634 goto out; 635 636 result = generic_file_aio_write(iocb, iov, nr_segs, pos); 637 if (result > 0) 638 written = result; 639 640 /* Return error values for O_DSYNC and IS_SYNC() */ 641 if (result >= 0 && nfs_need_sync_write(iocb->ki_filp, inode)) { 642 int err = vfs_fsync(iocb->ki_filp, 0); 643 if (err < 0) 644 result = err; 645 } 646 if (result > 0) 647 nfs_add_stats(inode, NFSIOS_NORMALWRITTENBYTES, written); 648 out: 649 return result; 650 651 out_swapfile: 652 printk(KERN_INFO "NFS: attempt to write to active swap file!\n"); 653 goto out; 654 } 655 656 static ssize_t nfs_file_splice_write(struct pipe_inode_info *pipe, 657 struct file *filp, loff_t *ppos, 658 size_t count, unsigned int flags) 659 { 660 struct dentry *dentry = filp->f_path.dentry; 661 struct inode *inode = dentry->d_inode; 662 unsigned long written = 0; 663 ssize_t ret; 664 665 dprintk("NFS splice_write(%s/%s, %lu@%llu)\n", 666 dentry->d_parent->d_name.name, dentry->d_name.name, 667 (unsigned long) count, (unsigned long long) *ppos); 668 669 /* 670 * The combination of splice and an O_APPEND destination is disallowed. 671 */ 672 673 ret = generic_file_splice_write(pipe, filp, ppos, count, flags); 674 if (ret > 0) 675 written = ret; 676 677 if (ret >= 0 && nfs_need_sync_write(filp, inode)) { 678 int err = vfs_fsync(filp, 0); 679 if (err < 0) 680 ret = err; 681 } 682 if (ret > 0) 683 nfs_add_stats(inode, NFSIOS_NORMALWRITTENBYTES, written); 684 return ret; 685 } 686 687 static int do_getlk(struct file *filp, int cmd, struct file_lock *fl) 688 { 689 struct inode *inode = filp->f_mapping->host; 690 int status = 0; 691 692 /* Try local locking first */ 693 posix_test_lock(filp, fl); 694 if (fl->fl_type != F_UNLCK) { 695 /* found a conflict */ 696 goto out; 697 } 698 699 if (nfs_have_delegation(inode, FMODE_READ)) 700 goto out_noconflict; 701 702 if (NFS_SERVER(inode)->flags & NFS_MOUNT_NONLM) 703 goto out_noconflict; 704 705 status = NFS_PROTO(inode)->lock(filp, cmd, fl); 706 out: 707 return status; 708 out_noconflict: 709 fl->fl_type = F_UNLCK; 710 goto out; 711 } 712 713 static int do_vfs_lock(struct file *file, struct file_lock *fl) 714 { 715 int res = 0; 716 switch (fl->fl_flags & (FL_POSIX|FL_FLOCK)) { 717 case FL_POSIX: 718 res = posix_lock_file_wait(file, fl); 719 break; 720 case FL_FLOCK: 721 res = flock_lock_file_wait(file, fl); 722 break; 723 default: 724 BUG(); 725 } 726 if (res < 0) 727 dprintk(KERN_WARNING "%s: VFS is out of sync with lock manager" 728 " - error %d!\n", 729 __func__, res); 730 return res; 731 } 732 733 static int do_unlk(struct file *filp, int cmd, struct file_lock *fl) 734 { 735 struct inode *inode = filp->f_mapping->host; 736 int status; 737 738 /* 739 * Flush all pending writes before doing anything 740 * with locks.. 741 */ 742 nfs_sync_mapping(filp->f_mapping); 743 744 /* NOTE: special case 745 * If we're signalled while cleaning up locks on process exit, we 746 * still need to complete the unlock. 747 */ 748 /* Use local locking if mounted with "-onolock" */ 749 if (!(NFS_SERVER(inode)->flags & NFS_MOUNT_NONLM)) 750 status = NFS_PROTO(inode)->lock(filp, cmd, fl); 751 else 752 status = do_vfs_lock(filp, fl); 753 return status; 754 } 755 756 static int do_setlk(struct file *filp, int cmd, struct file_lock *fl) 757 { 758 struct inode *inode = filp->f_mapping->host; 759 int status; 760 761 /* 762 * Flush all pending writes before doing anything 763 * with locks.. 764 */ 765 status = nfs_sync_mapping(filp->f_mapping); 766 if (status != 0) 767 goto out; 768 769 /* Use local locking if mounted with "-onolock" */ 770 if (!(NFS_SERVER(inode)->flags & NFS_MOUNT_NONLM)) 771 status = NFS_PROTO(inode)->lock(filp, cmd, fl); 772 else 773 status = do_vfs_lock(filp, fl); 774 if (status < 0) 775 goto out; 776 /* 777 * Make sure we clear the cache whenever we try to get the lock. 778 * This makes locking act as a cache coherency point. 779 */ 780 nfs_sync_mapping(filp->f_mapping); 781 if (!nfs_have_delegation(inode, FMODE_READ)) 782 nfs_zap_caches(inode); 783 out: 784 return status; 785 } 786 787 /* 788 * Lock a (portion of) a file 789 */ 790 static int nfs_lock(struct file *filp, int cmd, struct file_lock *fl) 791 { 792 struct inode *inode = filp->f_mapping->host; 793 int ret = -ENOLCK; 794 795 dprintk("NFS: lock(%s/%s, t=%x, fl=%x, r=%lld:%lld)\n", 796 filp->f_path.dentry->d_parent->d_name.name, 797 filp->f_path.dentry->d_name.name, 798 fl->fl_type, fl->fl_flags, 799 (long long)fl->fl_start, (long long)fl->fl_end); 800 801 nfs_inc_stats(inode, NFSIOS_VFSLOCK); 802 803 /* No mandatory locks over NFS */ 804 if (__mandatory_lock(inode) && fl->fl_type != F_UNLCK) 805 goto out_err; 806 807 if (NFS_PROTO(inode)->lock_check_bounds != NULL) { 808 ret = NFS_PROTO(inode)->lock_check_bounds(fl); 809 if (ret < 0) 810 goto out_err; 811 } 812 813 if (IS_GETLK(cmd)) 814 ret = do_getlk(filp, cmd, fl); 815 else if (fl->fl_type == F_UNLCK) 816 ret = do_unlk(filp, cmd, fl); 817 else 818 ret = do_setlk(filp, cmd, fl); 819 out_err: 820 return ret; 821 } 822 823 /* 824 * Lock a (portion of) a file 825 */ 826 static int nfs_flock(struct file *filp, int cmd, struct file_lock *fl) 827 { 828 dprintk("NFS: flock(%s/%s, t=%x, fl=%x)\n", 829 filp->f_path.dentry->d_parent->d_name.name, 830 filp->f_path.dentry->d_name.name, 831 fl->fl_type, fl->fl_flags); 832 833 if (!(fl->fl_flags & FL_FLOCK)) 834 return -ENOLCK; 835 836 /* We're simulating flock() locks using posix locks on the server */ 837 fl->fl_owner = (fl_owner_t)filp; 838 fl->fl_start = 0; 839 fl->fl_end = OFFSET_MAX; 840 841 if (fl->fl_type == F_UNLCK) 842 return do_unlk(filp, cmd, fl); 843 return do_setlk(filp, cmd, fl); 844 } 845 846 /* 847 * There is no protocol support for leases, so we have no way to implement 848 * them correctly in the face of opens by other clients. 849 */ 850 static int nfs_setlease(struct file *file, long arg, struct file_lock **fl) 851 { 852 dprintk("NFS: setlease(%s/%s, arg=%ld)\n", 853 file->f_path.dentry->d_parent->d_name.name, 854 file->f_path.dentry->d_name.name, arg); 855 856 return -EINVAL; 857 } 858