xref: /linux/fs/nfs/file.c (revision c4ee0af3fa0dc65f690fc908f02b8355f9576ea0)
1 /*
2  *  linux/fs/nfs/file.c
3  *
4  *  Copyright (C) 1992  Rick Sladkey
5  *
6  *  Changes Copyright (C) 1994 by Florian La Roche
7  *   - Do not copy data too often around in the kernel.
8  *   - In nfs_file_read the return value of kmalloc wasn't checked.
9  *   - Put in a better version of read look-ahead buffering. Original idea
10  *     and implementation by Wai S Kok elekokws@ee.nus.sg.
11  *
12  *  Expire cache on write to a file by Wai S Kok (Oct 1994).
13  *
14  *  Total rewrite of read side for new NFS buffer cache.. Linus.
15  *
16  *  nfs regular file handling functions
17  */
18 
19 #include <linux/module.h>
20 #include <linux/time.h>
21 #include <linux/kernel.h>
22 #include <linux/errno.h>
23 #include <linux/fcntl.h>
24 #include <linux/stat.h>
25 #include <linux/nfs_fs.h>
26 #include <linux/nfs_mount.h>
27 #include <linux/mm.h>
28 #include <linux/pagemap.h>
29 #include <linux/aio.h>
30 #include <linux/gfp.h>
31 #include <linux/swap.h>
32 
33 #include <asm/uaccess.h>
34 
35 #include "delegation.h"
36 #include "internal.h"
37 #include "iostat.h"
38 #include "fscache.h"
39 
40 #include "nfstrace.h"
41 
42 #define NFSDBG_FACILITY		NFSDBG_FILE
43 
44 static const struct vm_operations_struct nfs_file_vm_ops;
45 
46 /* Hack for future NFS swap support */
47 #ifndef IS_SWAPFILE
48 # define IS_SWAPFILE(inode)	(0)
49 #endif
50 
51 int nfs_check_flags(int flags)
52 {
53 	if ((flags & (O_APPEND | O_DIRECT)) == (O_APPEND | O_DIRECT))
54 		return -EINVAL;
55 
56 	return 0;
57 }
58 EXPORT_SYMBOL_GPL(nfs_check_flags);
59 
60 /*
61  * Open file
62  */
63 static int
64 nfs_file_open(struct inode *inode, struct file *filp)
65 {
66 	int res;
67 
68 	dprintk("NFS: open file(%pD2)\n", filp);
69 
70 	nfs_inc_stats(inode, NFSIOS_VFSOPEN);
71 	res = nfs_check_flags(filp->f_flags);
72 	if (res)
73 		return res;
74 
75 	res = nfs_open(inode, filp);
76 	return res;
77 }
78 
79 int
80 nfs_file_release(struct inode *inode, struct file *filp)
81 {
82 	dprintk("NFS: release(%pD2)\n", filp);
83 
84 	nfs_inc_stats(inode, NFSIOS_VFSRELEASE);
85 	return nfs_release(inode, filp);
86 }
87 EXPORT_SYMBOL_GPL(nfs_file_release);
88 
89 /**
90  * nfs_revalidate_size - Revalidate the file size
91  * @inode - pointer to inode struct
92  * @file - pointer to struct file
93  *
94  * Revalidates the file length. This is basically a wrapper around
95  * nfs_revalidate_inode() that takes into account the fact that we may
96  * have cached writes (in which case we don't care about the server's
97  * idea of what the file length is), or O_DIRECT (in which case we
98  * shouldn't trust the cache).
99  */
100 static int nfs_revalidate_file_size(struct inode *inode, struct file *filp)
101 {
102 	struct nfs_server *server = NFS_SERVER(inode);
103 	struct nfs_inode *nfsi = NFS_I(inode);
104 
105 	if (nfs_have_delegated_attributes(inode))
106 		goto out_noreval;
107 
108 	if (filp->f_flags & O_DIRECT)
109 		goto force_reval;
110 	if (nfsi->cache_validity & NFS_INO_REVAL_PAGECACHE)
111 		goto force_reval;
112 	if (nfs_attribute_timeout(inode))
113 		goto force_reval;
114 out_noreval:
115 	return 0;
116 force_reval:
117 	return __nfs_revalidate_inode(server, inode);
118 }
119 
120 loff_t nfs_file_llseek(struct file *filp, loff_t offset, int whence)
121 {
122 	dprintk("NFS: llseek file(%pD2, %lld, %d)\n",
123 			filp, offset, whence);
124 
125 	/*
126 	 * whence == SEEK_END || SEEK_DATA || SEEK_HOLE => we must revalidate
127 	 * the cached file length
128 	 */
129 	if (whence != SEEK_SET && whence != SEEK_CUR) {
130 		struct inode *inode = filp->f_mapping->host;
131 
132 		int retval = nfs_revalidate_file_size(inode, filp);
133 		if (retval < 0)
134 			return (loff_t)retval;
135 	}
136 
137 	return generic_file_llseek(filp, offset, whence);
138 }
139 EXPORT_SYMBOL_GPL(nfs_file_llseek);
140 
141 /*
142  * Flush all dirty pages, and check for write errors.
143  */
144 int
145 nfs_file_flush(struct file *file, fl_owner_t id)
146 {
147 	struct inode	*inode = file_inode(file);
148 
149 	dprintk("NFS: flush(%pD2)\n", file);
150 
151 	nfs_inc_stats(inode, NFSIOS_VFSFLUSH);
152 	if ((file->f_mode & FMODE_WRITE) == 0)
153 		return 0;
154 
155 	/*
156 	 * If we're holding a write delegation, then just start the i/o
157 	 * but don't wait for completion (or send a commit).
158 	 */
159 	if (NFS_PROTO(inode)->have_delegation(inode, FMODE_WRITE))
160 		return filemap_fdatawrite(file->f_mapping);
161 
162 	/* Flush writes to the server and return any errors */
163 	return vfs_fsync(file, 0);
164 }
165 EXPORT_SYMBOL_GPL(nfs_file_flush);
166 
167 ssize_t
168 nfs_file_read(struct kiocb *iocb, const struct iovec *iov,
169 		unsigned long nr_segs, loff_t pos)
170 {
171 	struct inode *inode = file_inode(iocb->ki_filp);
172 	ssize_t result;
173 
174 	if (iocb->ki_filp->f_flags & O_DIRECT)
175 		return nfs_file_direct_read(iocb, iov, nr_segs, pos, true);
176 
177 	dprintk("NFS: read(%pD2, %lu@%lu)\n",
178 		iocb->ki_filp,
179 		(unsigned long) iov_length(iov, nr_segs), (unsigned long) pos);
180 
181 	result = nfs_revalidate_mapping(inode, iocb->ki_filp->f_mapping);
182 	if (!result) {
183 		result = generic_file_aio_read(iocb, iov, nr_segs, pos);
184 		if (result > 0)
185 			nfs_add_stats(inode, NFSIOS_NORMALREADBYTES, result);
186 	}
187 	return result;
188 }
189 EXPORT_SYMBOL_GPL(nfs_file_read);
190 
191 ssize_t
192 nfs_file_splice_read(struct file *filp, loff_t *ppos,
193 		     struct pipe_inode_info *pipe, size_t count,
194 		     unsigned int flags)
195 {
196 	struct inode *inode = file_inode(filp);
197 	ssize_t res;
198 
199 	dprintk("NFS: splice_read(%pD2, %lu@%Lu)\n",
200 		filp, (unsigned long) count, (unsigned long long) *ppos);
201 
202 	res = nfs_revalidate_mapping(inode, filp->f_mapping);
203 	if (!res) {
204 		res = generic_file_splice_read(filp, ppos, pipe, count, flags);
205 		if (res > 0)
206 			nfs_add_stats(inode, NFSIOS_NORMALREADBYTES, res);
207 	}
208 	return res;
209 }
210 EXPORT_SYMBOL_GPL(nfs_file_splice_read);
211 
212 int
213 nfs_file_mmap(struct file * file, struct vm_area_struct * vma)
214 {
215 	struct inode *inode = file_inode(file);
216 	int	status;
217 
218 	dprintk("NFS: mmap(%pD2)\n", file);
219 
220 	/* Note: generic_file_mmap() returns ENOSYS on nommu systems
221 	 *       so we call that before revalidating the mapping
222 	 */
223 	status = generic_file_mmap(file, vma);
224 	if (!status) {
225 		vma->vm_ops = &nfs_file_vm_ops;
226 		status = nfs_revalidate_mapping(inode, file->f_mapping);
227 	}
228 	return status;
229 }
230 EXPORT_SYMBOL_GPL(nfs_file_mmap);
231 
232 /*
233  * Flush any dirty pages for this process, and check for write errors.
234  * The return status from this call provides a reliable indication of
235  * whether any write errors occurred for this process.
236  *
237  * Notice that it clears the NFS_CONTEXT_ERROR_WRITE before synching to
238  * disk, but it retrieves and clears ctx->error after synching, despite
239  * the two being set at the same time in nfs_context_set_write_error().
240  * This is because the former is used to notify the _next_ call to
241  * nfs_file_write() that a write error occurred, and hence cause it to
242  * fall back to doing a synchronous write.
243  */
244 int
245 nfs_file_fsync_commit(struct file *file, loff_t start, loff_t end, int datasync)
246 {
247 	struct nfs_open_context *ctx = nfs_file_open_context(file);
248 	struct inode *inode = file_inode(file);
249 	int have_error, do_resend, status;
250 	int ret = 0;
251 
252 	dprintk("NFS: fsync file(%pD2) datasync %d\n", file, datasync);
253 
254 	nfs_inc_stats(inode, NFSIOS_VFSFSYNC);
255 	do_resend = test_and_clear_bit(NFS_CONTEXT_RESEND_WRITES, &ctx->flags);
256 	have_error = test_and_clear_bit(NFS_CONTEXT_ERROR_WRITE, &ctx->flags);
257 	status = nfs_commit_inode(inode, FLUSH_SYNC);
258 	have_error |= test_bit(NFS_CONTEXT_ERROR_WRITE, &ctx->flags);
259 	if (have_error) {
260 		ret = xchg(&ctx->error, 0);
261 		if (ret)
262 			goto out;
263 	}
264 	if (status < 0) {
265 		ret = status;
266 		goto out;
267 	}
268 	do_resend |= test_bit(NFS_CONTEXT_RESEND_WRITES, &ctx->flags);
269 	if (do_resend)
270 		ret = -EAGAIN;
271 out:
272 	return ret;
273 }
274 EXPORT_SYMBOL_GPL(nfs_file_fsync_commit);
275 
276 static int
277 nfs_file_fsync(struct file *file, loff_t start, loff_t end, int datasync)
278 {
279 	int ret;
280 	struct inode *inode = file_inode(file);
281 
282 	trace_nfs_fsync_enter(inode);
283 
284 	do {
285 		ret = filemap_write_and_wait_range(inode->i_mapping, start, end);
286 		if (ret != 0)
287 			break;
288 		mutex_lock(&inode->i_mutex);
289 		ret = nfs_file_fsync_commit(file, start, end, datasync);
290 		mutex_unlock(&inode->i_mutex);
291 		/*
292 		 * If nfs_file_fsync_commit detected a server reboot, then
293 		 * resend all dirty pages that might have been covered by
294 		 * the NFS_CONTEXT_RESEND_WRITES flag
295 		 */
296 		start = 0;
297 		end = LLONG_MAX;
298 	} while (ret == -EAGAIN);
299 
300 	trace_nfs_fsync_exit(inode, ret);
301 	return ret;
302 }
303 
304 /*
305  * Decide whether a read/modify/write cycle may be more efficient
306  * then a modify/write/read cycle when writing to a page in the
307  * page cache.
308  *
309  * The modify/write/read cycle may occur if a page is read before
310  * being completely filled by the writer.  In this situation, the
311  * page must be completely written to stable storage on the server
312  * before it can be refilled by reading in the page from the server.
313  * This can lead to expensive, small, FILE_SYNC mode writes being
314  * done.
315  *
316  * It may be more efficient to read the page first if the file is
317  * open for reading in addition to writing, the page is not marked
318  * as Uptodate, it is not dirty or waiting to be committed,
319  * indicating that it was previously allocated and then modified,
320  * that there were valid bytes of data in that range of the file,
321  * and that the new data won't completely replace the old data in
322  * that range of the file.
323  */
324 static int nfs_want_read_modify_write(struct file *file, struct page *page,
325 			loff_t pos, unsigned len)
326 {
327 	unsigned int pglen = nfs_page_length(page);
328 	unsigned int offset = pos & (PAGE_CACHE_SIZE - 1);
329 	unsigned int end = offset + len;
330 
331 	if ((file->f_mode & FMODE_READ) &&	/* open for read? */
332 	    !PageUptodate(page) &&		/* Uptodate? */
333 	    !PagePrivate(page) &&		/* i/o request already? */
334 	    pglen &&				/* valid bytes of file? */
335 	    (end < pglen || offset))		/* replace all valid bytes? */
336 		return 1;
337 	return 0;
338 }
339 
340 /*
341  * This does the "real" work of the write. We must allocate and lock the
342  * page to be sent back to the generic routine, which then copies the
343  * data from user space.
344  *
345  * If the writer ends up delaying the write, the writer needs to
346  * increment the page use counts until he is done with the page.
347  */
348 static int nfs_write_begin(struct file *file, struct address_space *mapping,
349 			loff_t pos, unsigned len, unsigned flags,
350 			struct page **pagep, void **fsdata)
351 {
352 	int ret;
353 	pgoff_t index = pos >> PAGE_CACHE_SHIFT;
354 	struct page *page;
355 	int once_thru = 0;
356 
357 	dfprintk(PAGECACHE, "NFS: write_begin(%pD2(%ld), %u@%lld)\n",
358 		file, mapping->host->i_ino, len, (long long) pos);
359 
360 start:
361 	/*
362 	 * Prevent starvation issues if someone is doing a consistency
363 	 * sync-to-disk
364 	 */
365 	ret = wait_on_bit(&NFS_I(mapping->host)->flags, NFS_INO_FLUSHING,
366 			nfs_wait_bit_killable, TASK_KILLABLE);
367 	if (ret)
368 		return ret;
369 
370 	page = grab_cache_page_write_begin(mapping, index, flags);
371 	if (!page)
372 		return -ENOMEM;
373 	*pagep = page;
374 
375 	ret = nfs_flush_incompatible(file, page);
376 	if (ret) {
377 		unlock_page(page);
378 		page_cache_release(page);
379 	} else if (!once_thru &&
380 		   nfs_want_read_modify_write(file, page, pos, len)) {
381 		once_thru = 1;
382 		ret = nfs_readpage(file, page);
383 		page_cache_release(page);
384 		if (!ret)
385 			goto start;
386 	}
387 	return ret;
388 }
389 
390 static int nfs_write_end(struct file *file, struct address_space *mapping,
391 			loff_t pos, unsigned len, unsigned copied,
392 			struct page *page, void *fsdata)
393 {
394 	unsigned offset = pos & (PAGE_CACHE_SIZE - 1);
395 	struct nfs_open_context *ctx = nfs_file_open_context(file);
396 	int status;
397 
398 	dfprintk(PAGECACHE, "NFS: write_end(%pD2(%ld), %u@%lld)\n",
399 		file, mapping->host->i_ino, len, (long long) pos);
400 
401 	/*
402 	 * Zero any uninitialised parts of the page, and then mark the page
403 	 * as up to date if it turns out that we're extending the file.
404 	 */
405 	if (!PageUptodate(page)) {
406 		unsigned pglen = nfs_page_length(page);
407 		unsigned end = offset + len;
408 
409 		if (pglen == 0) {
410 			zero_user_segments(page, 0, offset,
411 					end, PAGE_CACHE_SIZE);
412 			SetPageUptodate(page);
413 		} else if (end >= pglen) {
414 			zero_user_segment(page, end, PAGE_CACHE_SIZE);
415 			if (offset == 0)
416 				SetPageUptodate(page);
417 		} else
418 			zero_user_segment(page, pglen, PAGE_CACHE_SIZE);
419 	}
420 
421 	status = nfs_updatepage(file, page, offset, copied);
422 
423 	unlock_page(page);
424 	page_cache_release(page);
425 
426 	if (status < 0)
427 		return status;
428 	NFS_I(mapping->host)->write_io += copied;
429 
430 	if (nfs_ctx_key_to_expire(ctx)) {
431 		status = nfs_wb_all(mapping->host);
432 		if (status < 0)
433 			return status;
434 	}
435 
436 	return copied;
437 }
438 
439 /*
440  * Partially or wholly invalidate a page
441  * - Release the private state associated with a page if undergoing complete
442  *   page invalidation
443  * - Called if either PG_private or PG_fscache is set on the page
444  * - Caller holds page lock
445  */
446 static void nfs_invalidate_page(struct page *page, unsigned int offset,
447 				unsigned int length)
448 {
449 	dfprintk(PAGECACHE, "NFS: invalidate_page(%p, %u, %u)\n",
450 		 page, offset, length);
451 
452 	if (offset != 0 || length < PAGE_CACHE_SIZE)
453 		return;
454 	/* Cancel any unstarted writes on this page */
455 	nfs_wb_page_cancel(page_file_mapping(page)->host, page);
456 
457 	nfs_fscache_invalidate_page(page, page->mapping->host);
458 }
459 
460 /*
461  * Attempt to release the private state associated with a page
462  * - Called if either PG_private or PG_fscache is set on the page
463  * - Caller holds page lock
464  * - Return true (may release page) or false (may not)
465  */
466 static int nfs_release_page(struct page *page, gfp_t gfp)
467 {
468 	struct address_space *mapping = page->mapping;
469 
470 	dfprintk(PAGECACHE, "NFS: release_page(%p)\n", page);
471 
472 	/* Only do I/O if gfp is a superset of GFP_KERNEL, and we're not
473 	 * doing this memory reclaim for a fs-related allocation.
474 	 */
475 	if (mapping && (gfp & GFP_KERNEL) == GFP_KERNEL &&
476 	    !(current->flags & PF_FSTRANS)) {
477 		int how = FLUSH_SYNC;
478 
479 		/* Don't let kswapd deadlock waiting for OOM RPC calls */
480 		if (current_is_kswapd())
481 			how = 0;
482 		nfs_commit_inode(mapping->host, how);
483 	}
484 	/* If PagePrivate() is set, then the page is not freeable */
485 	if (PagePrivate(page))
486 		return 0;
487 	return nfs_fscache_release_page(page, gfp);
488 }
489 
490 static void nfs_check_dirty_writeback(struct page *page,
491 				bool *dirty, bool *writeback)
492 {
493 	struct nfs_inode *nfsi;
494 	struct address_space *mapping = page_file_mapping(page);
495 
496 	if (!mapping || PageSwapCache(page))
497 		return;
498 
499 	/*
500 	 * Check if an unstable page is currently being committed and
501 	 * if so, have the VM treat it as if the page is under writeback
502 	 * so it will not block due to pages that will shortly be freeable.
503 	 */
504 	nfsi = NFS_I(mapping->host);
505 	if (test_bit(NFS_INO_COMMIT, &nfsi->flags)) {
506 		*writeback = true;
507 		return;
508 	}
509 
510 	/*
511 	 * If PagePrivate() is set, then the page is not freeable and as the
512 	 * inode is not being committed, it's not going to be cleaned in the
513 	 * near future so treat it as dirty
514 	 */
515 	if (PagePrivate(page))
516 		*dirty = true;
517 }
518 
519 /*
520  * Attempt to clear the private state associated with a page when an error
521  * occurs that requires the cached contents of an inode to be written back or
522  * destroyed
523  * - Called if either PG_private or fscache is set on the page
524  * - Caller holds page lock
525  * - Return 0 if successful, -error otherwise
526  */
527 static int nfs_launder_page(struct page *page)
528 {
529 	struct inode *inode = page_file_mapping(page)->host;
530 	struct nfs_inode *nfsi = NFS_I(inode);
531 
532 	dfprintk(PAGECACHE, "NFS: launder_page(%ld, %llu)\n",
533 		inode->i_ino, (long long)page_offset(page));
534 
535 	nfs_fscache_wait_on_page_write(nfsi, page);
536 	return nfs_wb_page(inode, page);
537 }
538 
539 #ifdef CONFIG_NFS_SWAP
540 static int nfs_swap_activate(struct swap_info_struct *sis, struct file *file,
541 						sector_t *span)
542 {
543 	*span = sis->pages;
544 	return xs_swapper(NFS_CLIENT(file->f_mapping->host)->cl_xprt, 1);
545 }
546 
547 static void nfs_swap_deactivate(struct file *file)
548 {
549 	xs_swapper(NFS_CLIENT(file->f_mapping->host)->cl_xprt, 0);
550 }
551 #endif
552 
553 const struct address_space_operations nfs_file_aops = {
554 	.readpage = nfs_readpage,
555 	.readpages = nfs_readpages,
556 	.set_page_dirty = __set_page_dirty_nobuffers,
557 	.writepage = nfs_writepage,
558 	.writepages = nfs_writepages,
559 	.write_begin = nfs_write_begin,
560 	.write_end = nfs_write_end,
561 	.invalidatepage = nfs_invalidate_page,
562 	.releasepage = nfs_release_page,
563 	.direct_IO = nfs_direct_IO,
564 	.migratepage = nfs_migrate_page,
565 	.launder_page = nfs_launder_page,
566 	.is_dirty_writeback = nfs_check_dirty_writeback,
567 	.error_remove_page = generic_error_remove_page,
568 #ifdef CONFIG_NFS_SWAP
569 	.swap_activate = nfs_swap_activate,
570 	.swap_deactivate = nfs_swap_deactivate,
571 #endif
572 };
573 
574 /*
575  * Notification that a PTE pointing to an NFS page is about to be made
576  * writable, implying that someone is about to modify the page through a
577  * shared-writable mapping
578  */
579 static int nfs_vm_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
580 {
581 	struct page *page = vmf->page;
582 	struct file *filp = vma->vm_file;
583 	struct inode *inode = file_inode(filp);
584 	unsigned pagelen;
585 	int ret = VM_FAULT_NOPAGE;
586 	struct address_space *mapping;
587 
588 	dfprintk(PAGECACHE, "NFS: vm_page_mkwrite(%pD2(%ld), offset %lld)\n",
589 		filp, filp->f_mapping->host->i_ino,
590 		(long long)page_offset(page));
591 
592 	/* make sure the cache has finished storing the page */
593 	nfs_fscache_wait_on_page_write(NFS_I(inode), page);
594 
595 	lock_page(page);
596 	mapping = page_file_mapping(page);
597 	if (mapping != inode->i_mapping)
598 		goto out_unlock;
599 
600 	wait_on_page_writeback(page);
601 
602 	pagelen = nfs_page_length(page);
603 	if (pagelen == 0)
604 		goto out_unlock;
605 
606 	ret = VM_FAULT_LOCKED;
607 	if (nfs_flush_incompatible(filp, page) == 0 &&
608 	    nfs_updatepage(filp, page, 0, pagelen) == 0)
609 		goto out;
610 
611 	ret = VM_FAULT_SIGBUS;
612 out_unlock:
613 	unlock_page(page);
614 out:
615 	return ret;
616 }
617 
618 static const struct vm_operations_struct nfs_file_vm_ops = {
619 	.fault = filemap_fault,
620 	.page_mkwrite = nfs_vm_page_mkwrite,
621 	.remap_pages = generic_file_remap_pages,
622 };
623 
624 static int nfs_need_sync_write(struct file *filp, struct inode *inode)
625 {
626 	struct nfs_open_context *ctx;
627 
628 	if (IS_SYNC(inode) || (filp->f_flags & O_DSYNC))
629 		return 1;
630 	ctx = nfs_file_open_context(filp);
631 	if (test_bit(NFS_CONTEXT_ERROR_WRITE, &ctx->flags) ||
632 	    nfs_ctx_key_to_expire(ctx))
633 		return 1;
634 	return 0;
635 }
636 
637 ssize_t nfs_file_write(struct kiocb *iocb, const struct iovec *iov,
638 		       unsigned long nr_segs, loff_t pos)
639 {
640 	struct file *file = iocb->ki_filp;
641 	struct inode *inode = file_inode(file);
642 	unsigned long written = 0;
643 	ssize_t result;
644 	size_t count = iov_length(iov, nr_segs);
645 
646 	result = nfs_key_timeout_notify(file, inode);
647 	if (result)
648 		return result;
649 
650 	if (file->f_flags & O_DIRECT)
651 		return nfs_file_direct_write(iocb, iov, nr_segs, pos, true);
652 
653 	dprintk("NFS: write(%pD2, %lu@%Ld)\n",
654 		file, (unsigned long) count, (long long) pos);
655 
656 	result = -EBUSY;
657 	if (IS_SWAPFILE(inode))
658 		goto out_swapfile;
659 	/*
660 	 * O_APPEND implies that we must revalidate the file length.
661 	 */
662 	if (file->f_flags & O_APPEND) {
663 		result = nfs_revalidate_file_size(inode, file);
664 		if (result)
665 			goto out;
666 	}
667 
668 	result = count;
669 	if (!count)
670 		goto out;
671 
672 	result = generic_file_aio_write(iocb, iov, nr_segs, pos);
673 	if (result > 0)
674 		written = result;
675 
676 	/* Return error values for O_DSYNC and IS_SYNC() */
677 	if (result >= 0 && nfs_need_sync_write(file, inode)) {
678 		int err = vfs_fsync(file, 0);
679 		if (err < 0)
680 			result = err;
681 	}
682 	if (result > 0)
683 		nfs_add_stats(inode, NFSIOS_NORMALWRITTENBYTES, written);
684 out:
685 	return result;
686 
687 out_swapfile:
688 	printk(KERN_INFO "NFS: attempt to write to active swap file!\n");
689 	goto out;
690 }
691 EXPORT_SYMBOL_GPL(nfs_file_write);
692 
693 ssize_t nfs_file_splice_write(struct pipe_inode_info *pipe,
694 			      struct file *filp, loff_t *ppos,
695 			      size_t count, unsigned int flags)
696 {
697 	struct inode *inode = file_inode(filp);
698 	unsigned long written = 0;
699 	ssize_t ret;
700 
701 	dprintk("NFS splice_write(%pD2, %lu@%llu)\n",
702 		filp, (unsigned long) count, (unsigned long long) *ppos);
703 
704 	/*
705 	 * The combination of splice and an O_APPEND destination is disallowed.
706 	 */
707 
708 	ret = generic_file_splice_write(pipe, filp, ppos, count, flags);
709 	if (ret > 0)
710 		written = ret;
711 
712 	if (ret >= 0 && nfs_need_sync_write(filp, inode)) {
713 		int err = vfs_fsync(filp, 0);
714 		if (err < 0)
715 			ret = err;
716 	}
717 	if (ret > 0)
718 		nfs_add_stats(inode, NFSIOS_NORMALWRITTENBYTES, written);
719 	return ret;
720 }
721 EXPORT_SYMBOL_GPL(nfs_file_splice_write);
722 
723 static int
724 do_getlk(struct file *filp, int cmd, struct file_lock *fl, int is_local)
725 {
726 	struct inode *inode = filp->f_mapping->host;
727 	int status = 0;
728 	unsigned int saved_type = fl->fl_type;
729 
730 	/* Try local locking first */
731 	posix_test_lock(filp, fl);
732 	if (fl->fl_type != F_UNLCK) {
733 		/* found a conflict */
734 		goto out;
735 	}
736 	fl->fl_type = saved_type;
737 
738 	if (NFS_PROTO(inode)->have_delegation(inode, FMODE_READ))
739 		goto out_noconflict;
740 
741 	if (is_local)
742 		goto out_noconflict;
743 
744 	status = NFS_PROTO(inode)->lock(filp, cmd, fl);
745 out:
746 	return status;
747 out_noconflict:
748 	fl->fl_type = F_UNLCK;
749 	goto out;
750 }
751 
752 static int do_vfs_lock(struct file *file, struct file_lock *fl)
753 {
754 	int res = 0;
755 	switch (fl->fl_flags & (FL_POSIX|FL_FLOCK)) {
756 		case FL_POSIX:
757 			res = posix_lock_file_wait(file, fl);
758 			break;
759 		case FL_FLOCK:
760 			res = flock_lock_file_wait(file, fl);
761 			break;
762 		default:
763 			BUG();
764 	}
765 	return res;
766 }
767 
768 static int
769 do_unlk(struct file *filp, int cmd, struct file_lock *fl, int is_local)
770 {
771 	struct inode *inode = filp->f_mapping->host;
772 	struct nfs_lock_context *l_ctx;
773 	int status;
774 
775 	/*
776 	 * Flush all pending writes before doing anything
777 	 * with locks..
778 	 */
779 	nfs_sync_mapping(filp->f_mapping);
780 
781 	l_ctx = nfs_get_lock_context(nfs_file_open_context(filp));
782 	if (!IS_ERR(l_ctx)) {
783 		status = nfs_iocounter_wait(&l_ctx->io_count);
784 		nfs_put_lock_context(l_ctx);
785 		if (status < 0)
786 			return status;
787 	}
788 
789 	/* NOTE: special case
790 	 * 	If we're signalled while cleaning up locks on process exit, we
791 	 * 	still need to complete the unlock.
792 	 */
793 	/*
794 	 * Use local locking if mounted with "-onolock" or with appropriate
795 	 * "-olocal_lock="
796 	 */
797 	if (!is_local)
798 		status = NFS_PROTO(inode)->lock(filp, cmd, fl);
799 	else
800 		status = do_vfs_lock(filp, fl);
801 	return status;
802 }
803 
804 static int
805 is_time_granular(struct timespec *ts) {
806 	return ((ts->tv_sec == 0) && (ts->tv_nsec <= 1000));
807 }
808 
809 static int
810 do_setlk(struct file *filp, int cmd, struct file_lock *fl, int is_local)
811 {
812 	struct inode *inode = filp->f_mapping->host;
813 	int status;
814 
815 	/*
816 	 * Flush all pending writes before doing anything
817 	 * with locks..
818 	 */
819 	status = nfs_sync_mapping(filp->f_mapping);
820 	if (status != 0)
821 		goto out;
822 
823 	/*
824 	 * Use local locking if mounted with "-onolock" or with appropriate
825 	 * "-olocal_lock="
826 	 */
827 	if (!is_local)
828 		status = NFS_PROTO(inode)->lock(filp, cmd, fl);
829 	else
830 		status = do_vfs_lock(filp, fl);
831 	if (status < 0)
832 		goto out;
833 
834 	/*
835 	 * Revalidate the cache if the server has time stamps granular
836 	 * enough to detect subsecond changes.  Otherwise, clear the
837 	 * cache to prevent missing any changes.
838 	 *
839 	 * This makes locking act as a cache coherency point.
840 	 */
841 	nfs_sync_mapping(filp->f_mapping);
842 	if (!NFS_PROTO(inode)->have_delegation(inode, FMODE_READ)) {
843 		if (is_time_granular(&NFS_SERVER(inode)->time_delta))
844 			__nfs_revalidate_inode(NFS_SERVER(inode), inode);
845 		else
846 			nfs_zap_caches(inode);
847 	}
848 out:
849 	return status;
850 }
851 
852 /*
853  * Lock a (portion of) a file
854  */
855 int nfs_lock(struct file *filp, int cmd, struct file_lock *fl)
856 {
857 	struct inode *inode = filp->f_mapping->host;
858 	int ret = -ENOLCK;
859 	int is_local = 0;
860 
861 	dprintk("NFS: lock(%pD2, t=%x, fl=%x, r=%lld:%lld)\n",
862 			filp, fl->fl_type, fl->fl_flags,
863 			(long long)fl->fl_start, (long long)fl->fl_end);
864 
865 	nfs_inc_stats(inode, NFSIOS_VFSLOCK);
866 
867 	/* No mandatory locks over NFS */
868 	if (__mandatory_lock(inode) && fl->fl_type != F_UNLCK)
869 		goto out_err;
870 
871 	if (NFS_SERVER(inode)->flags & NFS_MOUNT_LOCAL_FCNTL)
872 		is_local = 1;
873 
874 	if (NFS_PROTO(inode)->lock_check_bounds != NULL) {
875 		ret = NFS_PROTO(inode)->lock_check_bounds(fl);
876 		if (ret < 0)
877 			goto out_err;
878 	}
879 
880 	if (IS_GETLK(cmd))
881 		ret = do_getlk(filp, cmd, fl, is_local);
882 	else if (fl->fl_type == F_UNLCK)
883 		ret = do_unlk(filp, cmd, fl, is_local);
884 	else
885 		ret = do_setlk(filp, cmd, fl, is_local);
886 out_err:
887 	return ret;
888 }
889 EXPORT_SYMBOL_GPL(nfs_lock);
890 
891 /*
892  * Lock a (portion of) a file
893  */
894 int nfs_flock(struct file *filp, int cmd, struct file_lock *fl)
895 {
896 	struct inode *inode = filp->f_mapping->host;
897 	int is_local = 0;
898 
899 	dprintk("NFS: flock(%pD2, t=%x, fl=%x)\n",
900 			filp, fl->fl_type, fl->fl_flags);
901 
902 	if (!(fl->fl_flags & FL_FLOCK))
903 		return -ENOLCK;
904 
905 	/*
906 	 * The NFSv4 protocol doesn't support LOCK_MAND, which is not part of
907 	 * any standard. In principle we might be able to support LOCK_MAND
908 	 * on NFSv2/3 since NLMv3/4 support DOS share modes, but for now the
909 	 * NFS code is not set up for it.
910 	 */
911 	if (fl->fl_type & LOCK_MAND)
912 		return -EINVAL;
913 
914 	if (NFS_SERVER(inode)->flags & NFS_MOUNT_LOCAL_FLOCK)
915 		is_local = 1;
916 
917 	/* We're simulating flock() locks using posix locks on the server */
918 	fl->fl_owner = (fl_owner_t)filp;
919 	fl->fl_start = 0;
920 	fl->fl_end = OFFSET_MAX;
921 
922 	if (fl->fl_type == F_UNLCK)
923 		return do_unlk(filp, cmd, fl, is_local);
924 	return do_setlk(filp, cmd, fl, is_local);
925 }
926 EXPORT_SYMBOL_GPL(nfs_flock);
927 
928 /*
929  * There is no protocol support for leases, so we have no way to implement
930  * them correctly in the face of opens by other clients.
931  */
932 int nfs_setlease(struct file *file, long arg, struct file_lock **fl)
933 {
934 	dprintk("NFS: setlease(%pD2, arg=%ld)\n", file, arg);
935 	return -EINVAL;
936 }
937 EXPORT_SYMBOL_GPL(nfs_setlease);
938 
939 const struct file_operations nfs_file_operations = {
940 	.llseek		= nfs_file_llseek,
941 	.read		= do_sync_read,
942 	.write		= do_sync_write,
943 	.aio_read	= nfs_file_read,
944 	.aio_write	= nfs_file_write,
945 	.mmap		= nfs_file_mmap,
946 	.open		= nfs_file_open,
947 	.flush		= nfs_file_flush,
948 	.release	= nfs_file_release,
949 	.fsync		= nfs_file_fsync,
950 	.lock		= nfs_lock,
951 	.flock		= nfs_flock,
952 	.splice_read	= nfs_file_splice_read,
953 	.splice_write	= nfs_file_splice_write,
954 	.check_flags	= nfs_check_flags,
955 	.setlease	= nfs_setlease,
956 };
957 EXPORT_SYMBOL_GPL(nfs_file_operations);
958