1 /* 2 * linux/fs/nfs/file.c 3 * 4 * Copyright (C) 1992 Rick Sladkey 5 * 6 * Changes Copyright (C) 1994 by Florian La Roche 7 * - Do not copy data too often around in the kernel. 8 * - In nfs_file_read the return value of kmalloc wasn't checked. 9 * - Put in a better version of read look-ahead buffering. Original idea 10 * and implementation by Wai S Kok elekokws@ee.nus.sg. 11 * 12 * Expire cache on write to a file by Wai S Kok (Oct 1994). 13 * 14 * Total rewrite of read side for new NFS buffer cache.. Linus. 15 * 16 * nfs regular file handling functions 17 */ 18 19 #include <linux/module.h> 20 #include <linux/time.h> 21 #include <linux/kernel.h> 22 #include <linux/errno.h> 23 #include <linux/fcntl.h> 24 #include <linux/stat.h> 25 #include <linux/nfs_fs.h> 26 #include <linux/nfs_mount.h> 27 #include <linux/mm.h> 28 #include <linux/pagemap.h> 29 #include <linux/gfp.h> 30 #include <linux/swap.h> 31 32 #include <asm/uaccess.h> 33 34 #include "delegation.h" 35 #include "internal.h" 36 #include "iostat.h" 37 #include "fscache.h" 38 #include "pnfs.h" 39 40 #include "nfstrace.h" 41 42 #define NFSDBG_FACILITY NFSDBG_FILE 43 44 static const struct vm_operations_struct nfs_file_vm_ops; 45 46 /* Hack for future NFS swap support */ 47 #ifndef IS_SWAPFILE 48 # define IS_SWAPFILE(inode) (0) 49 #endif 50 51 int nfs_check_flags(int flags) 52 { 53 if ((flags & (O_APPEND | O_DIRECT)) == (O_APPEND | O_DIRECT)) 54 return -EINVAL; 55 56 return 0; 57 } 58 EXPORT_SYMBOL_GPL(nfs_check_flags); 59 60 /* 61 * Open file 62 */ 63 static int 64 nfs_file_open(struct inode *inode, struct file *filp) 65 { 66 int res; 67 68 dprintk("NFS: open file(%pD2)\n", filp); 69 70 nfs_inc_stats(inode, NFSIOS_VFSOPEN); 71 res = nfs_check_flags(filp->f_flags); 72 if (res) 73 return res; 74 75 res = nfs_open(inode, filp); 76 return res; 77 } 78 79 int 80 nfs_file_release(struct inode *inode, struct file *filp) 81 { 82 dprintk("NFS: release(%pD2)\n", filp); 83 84 nfs_inc_stats(inode, NFSIOS_VFSRELEASE); 85 nfs_file_clear_open_context(filp); 86 return 0; 87 } 88 EXPORT_SYMBOL_GPL(nfs_file_release); 89 90 /** 91 * nfs_revalidate_size - Revalidate the file size 92 * @inode - pointer to inode struct 93 * @file - pointer to struct file 94 * 95 * Revalidates the file length. This is basically a wrapper around 96 * nfs_revalidate_inode() that takes into account the fact that we may 97 * have cached writes (in which case we don't care about the server's 98 * idea of what the file length is), or O_DIRECT (in which case we 99 * shouldn't trust the cache). 100 */ 101 static int nfs_revalidate_file_size(struct inode *inode, struct file *filp) 102 { 103 struct nfs_server *server = NFS_SERVER(inode); 104 struct nfs_inode *nfsi = NFS_I(inode); 105 106 if (nfs_have_delegated_attributes(inode)) 107 goto out_noreval; 108 109 if (filp->f_flags & O_DIRECT) 110 goto force_reval; 111 if (nfsi->cache_validity & NFS_INO_REVAL_PAGECACHE) 112 goto force_reval; 113 if (nfs_attribute_timeout(inode)) 114 goto force_reval; 115 out_noreval: 116 return 0; 117 force_reval: 118 return __nfs_revalidate_inode(server, inode); 119 } 120 121 loff_t nfs_file_llseek(struct file *filp, loff_t offset, int whence) 122 { 123 dprintk("NFS: llseek file(%pD2, %lld, %d)\n", 124 filp, offset, whence); 125 126 /* 127 * whence == SEEK_END || SEEK_DATA || SEEK_HOLE => we must revalidate 128 * the cached file length 129 */ 130 if (whence != SEEK_SET && whence != SEEK_CUR) { 131 struct inode *inode = filp->f_mapping->host; 132 133 int retval = nfs_revalidate_file_size(inode, filp); 134 if (retval < 0) 135 return (loff_t)retval; 136 } 137 138 return generic_file_llseek(filp, offset, whence); 139 } 140 EXPORT_SYMBOL_GPL(nfs_file_llseek); 141 142 /* 143 * Flush all dirty pages, and check for write errors. 144 */ 145 static int 146 nfs_file_flush(struct file *file, fl_owner_t id) 147 { 148 struct inode *inode = file_inode(file); 149 150 dprintk("NFS: flush(%pD2)\n", file); 151 152 nfs_inc_stats(inode, NFSIOS_VFSFLUSH); 153 if ((file->f_mode & FMODE_WRITE) == 0) 154 return 0; 155 156 /* Flush writes to the server and return any errors */ 157 return vfs_fsync(file, 0); 158 } 159 160 ssize_t 161 nfs_file_read(struct kiocb *iocb, struct iov_iter *to) 162 { 163 struct inode *inode = file_inode(iocb->ki_filp); 164 ssize_t result; 165 166 if (iocb->ki_flags & IOCB_DIRECT) 167 return nfs_file_direct_read(iocb, to); 168 169 dprintk("NFS: read(%pD2, %zu@%lu)\n", 170 iocb->ki_filp, 171 iov_iter_count(to), (unsigned long) iocb->ki_pos); 172 173 result = nfs_revalidate_mapping_protected(inode, iocb->ki_filp->f_mapping); 174 if (!result) { 175 result = generic_file_read_iter(iocb, to); 176 if (result > 0) 177 nfs_add_stats(inode, NFSIOS_NORMALREADBYTES, result); 178 } 179 return result; 180 } 181 EXPORT_SYMBOL_GPL(nfs_file_read); 182 183 ssize_t 184 nfs_file_splice_read(struct file *filp, loff_t *ppos, 185 struct pipe_inode_info *pipe, size_t count, 186 unsigned int flags) 187 { 188 struct inode *inode = file_inode(filp); 189 ssize_t res; 190 191 dprintk("NFS: splice_read(%pD2, %lu@%Lu)\n", 192 filp, (unsigned long) count, (unsigned long long) *ppos); 193 194 res = nfs_revalidate_mapping_protected(inode, filp->f_mapping); 195 if (!res) { 196 res = generic_file_splice_read(filp, ppos, pipe, count, flags); 197 if (res > 0) 198 nfs_add_stats(inode, NFSIOS_NORMALREADBYTES, res); 199 } 200 return res; 201 } 202 EXPORT_SYMBOL_GPL(nfs_file_splice_read); 203 204 int 205 nfs_file_mmap(struct file * file, struct vm_area_struct * vma) 206 { 207 struct inode *inode = file_inode(file); 208 int status; 209 210 dprintk("NFS: mmap(%pD2)\n", file); 211 212 /* Note: generic_file_mmap() returns ENOSYS on nommu systems 213 * so we call that before revalidating the mapping 214 */ 215 status = generic_file_mmap(file, vma); 216 if (!status) { 217 vma->vm_ops = &nfs_file_vm_ops; 218 status = nfs_revalidate_mapping(inode, file->f_mapping); 219 } 220 return status; 221 } 222 EXPORT_SYMBOL_GPL(nfs_file_mmap); 223 224 /* 225 * Flush any dirty pages for this process, and check for write errors. 226 * The return status from this call provides a reliable indication of 227 * whether any write errors occurred for this process. 228 * 229 * Notice that it clears the NFS_CONTEXT_ERROR_WRITE before synching to 230 * disk, but it retrieves and clears ctx->error after synching, despite 231 * the two being set at the same time in nfs_context_set_write_error(). 232 * This is because the former is used to notify the _next_ call to 233 * nfs_file_write() that a write error occurred, and hence cause it to 234 * fall back to doing a synchronous write. 235 */ 236 static int 237 nfs_file_fsync_commit(struct file *file, loff_t start, loff_t end, int datasync) 238 { 239 struct nfs_open_context *ctx = nfs_file_open_context(file); 240 struct inode *inode = file_inode(file); 241 int have_error, do_resend, status; 242 int ret = 0; 243 244 dprintk("NFS: fsync file(%pD2) datasync %d\n", file, datasync); 245 246 nfs_inc_stats(inode, NFSIOS_VFSFSYNC); 247 do_resend = test_and_clear_bit(NFS_CONTEXT_RESEND_WRITES, &ctx->flags); 248 have_error = test_and_clear_bit(NFS_CONTEXT_ERROR_WRITE, &ctx->flags); 249 status = nfs_commit_inode(inode, FLUSH_SYNC); 250 have_error |= test_bit(NFS_CONTEXT_ERROR_WRITE, &ctx->flags); 251 if (have_error) { 252 ret = xchg(&ctx->error, 0); 253 if (ret) 254 goto out; 255 } 256 if (status < 0) { 257 ret = status; 258 goto out; 259 } 260 do_resend |= test_bit(NFS_CONTEXT_RESEND_WRITES, &ctx->flags); 261 if (do_resend) 262 ret = -EAGAIN; 263 out: 264 return ret; 265 } 266 267 int 268 nfs_file_fsync(struct file *file, loff_t start, loff_t end, int datasync) 269 { 270 int ret; 271 struct inode *inode = file_inode(file); 272 273 trace_nfs_fsync_enter(inode); 274 275 inode_dio_wait(inode); 276 do { 277 ret = filemap_write_and_wait_range(inode->i_mapping, start, end); 278 if (ret != 0) 279 break; 280 inode_lock(inode); 281 ret = nfs_file_fsync_commit(file, start, end, datasync); 282 if (!ret) 283 ret = pnfs_sync_inode(inode, !!datasync); 284 inode_unlock(inode); 285 /* 286 * If nfs_file_fsync_commit detected a server reboot, then 287 * resend all dirty pages that might have been covered by 288 * the NFS_CONTEXT_RESEND_WRITES flag 289 */ 290 start = 0; 291 end = LLONG_MAX; 292 } while (ret == -EAGAIN); 293 294 trace_nfs_fsync_exit(inode, ret); 295 return ret; 296 } 297 EXPORT_SYMBOL_GPL(nfs_file_fsync); 298 299 /* 300 * Decide whether a read/modify/write cycle may be more efficient 301 * then a modify/write/read cycle when writing to a page in the 302 * page cache. 303 * 304 * The modify/write/read cycle may occur if a page is read before 305 * being completely filled by the writer. In this situation, the 306 * page must be completely written to stable storage on the server 307 * before it can be refilled by reading in the page from the server. 308 * This can lead to expensive, small, FILE_SYNC mode writes being 309 * done. 310 * 311 * It may be more efficient to read the page first if the file is 312 * open for reading in addition to writing, the page is not marked 313 * as Uptodate, it is not dirty or waiting to be committed, 314 * indicating that it was previously allocated and then modified, 315 * that there were valid bytes of data in that range of the file, 316 * and that the new data won't completely replace the old data in 317 * that range of the file. 318 */ 319 static int nfs_want_read_modify_write(struct file *file, struct page *page, 320 loff_t pos, unsigned len) 321 { 322 unsigned int pglen = nfs_page_length(page); 323 unsigned int offset = pos & (PAGE_SIZE - 1); 324 unsigned int end = offset + len; 325 326 if (pnfs_ld_read_whole_page(file->f_mapping->host)) { 327 if (!PageUptodate(page)) 328 return 1; 329 return 0; 330 } 331 332 if ((file->f_mode & FMODE_READ) && /* open for read? */ 333 !PageUptodate(page) && /* Uptodate? */ 334 !PagePrivate(page) && /* i/o request already? */ 335 pglen && /* valid bytes of file? */ 336 (end < pglen || offset)) /* replace all valid bytes? */ 337 return 1; 338 return 0; 339 } 340 341 /* 342 * This does the "real" work of the write. We must allocate and lock the 343 * page to be sent back to the generic routine, which then copies the 344 * data from user space. 345 * 346 * If the writer ends up delaying the write, the writer needs to 347 * increment the page use counts until he is done with the page. 348 */ 349 static int nfs_write_begin(struct file *file, struct address_space *mapping, 350 loff_t pos, unsigned len, unsigned flags, 351 struct page **pagep, void **fsdata) 352 { 353 int ret; 354 pgoff_t index = pos >> PAGE_SHIFT; 355 struct page *page; 356 int once_thru = 0; 357 358 dfprintk(PAGECACHE, "NFS: write_begin(%pD2(%lu), %u@%lld)\n", 359 file, mapping->host->i_ino, len, (long long) pos); 360 361 start: 362 /* 363 * Prevent starvation issues if someone is doing a consistency 364 * sync-to-disk 365 */ 366 ret = wait_on_bit_action(&NFS_I(mapping->host)->flags, NFS_INO_FLUSHING, 367 nfs_wait_bit_killable, TASK_KILLABLE); 368 if (ret) 369 return ret; 370 /* 371 * Wait for O_DIRECT to complete 372 */ 373 inode_dio_wait(mapping->host); 374 375 page = grab_cache_page_write_begin(mapping, index, flags); 376 if (!page) 377 return -ENOMEM; 378 *pagep = page; 379 380 ret = nfs_flush_incompatible(file, page); 381 if (ret) { 382 unlock_page(page); 383 put_page(page); 384 } else if (!once_thru && 385 nfs_want_read_modify_write(file, page, pos, len)) { 386 once_thru = 1; 387 ret = nfs_readpage(file, page); 388 put_page(page); 389 if (!ret) 390 goto start; 391 } 392 return ret; 393 } 394 395 static int nfs_write_end(struct file *file, struct address_space *mapping, 396 loff_t pos, unsigned len, unsigned copied, 397 struct page *page, void *fsdata) 398 { 399 unsigned offset = pos & (PAGE_SIZE - 1); 400 struct nfs_open_context *ctx = nfs_file_open_context(file); 401 int status; 402 403 dfprintk(PAGECACHE, "NFS: write_end(%pD2(%lu), %u@%lld)\n", 404 file, mapping->host->i_ino, len, (long long) pos); 405 406 /* 407 * Zero any uninitialised parts of the page, and then mark the page 408 * as up to date if it turns out that we're extending the file. 409 */ 410 if (!PageUptodate(page)) { 411 unsigned pglen = nfs_page_length(page); 412 unsigned end = offset + len; 413 414 if (pglen == 0) { 415 zero_user_segments(page, 0, offset, 416 end, PAGE_SIZE); 417 SetPageUptodate(page); 418 } else if (end >= pglen) { 419 zero_user_segment(page, end, PAGE_SIZE); 420 if (offset == 0) 421 SetPageUptodate(page); 422 } else 423 zero_user_segment(page, pglen, PAGE_SIZE); 424 } 425 426 status = nfs_updatepage(file, page, offset, copied); 427 428 unlock_page(page); 429 put_page(page); 430 431 if (status < 0) 432 return status; 433 NFS_I(mapping->host)->write_io += copied; 434 435 if (nfs_ctx_key_to_expire(ctx)) { 436 status = nfs_wb_all(mapping->host); 437 if (status < 0) 438 return status; 439 } 440 441 return copied; 442 } 443 444 /* 445 * Partially or wholly invalidate a page 446 * - Release the private state associated with a page if undergoing complete 447 * page invalidation 448 * - Called if either PG_private or PG_fscache is set on the page 449 * - Caller holds page lock 450 */ 451 static void nfs_invalidate_page(struct page *page, unsigned int offset, 452 unsigned int length) 453 { 454 dfprintk(PAGECACHE, "NFS: invalidate_page(%p, %u, %u)\n", 455 page, offset, length); 456 457 if (offset != 0 || length < PAGE_SIZE) 458 return; 459 /* Cancel any unstarted writes on this page */ 460 nfs_wb_page_cancel(page_file_mapping(page)->host, page); 461 462 nfs_fscache_invalidate_page(page, page->mapping->host); 463 } 464 465 /* 466 * Attempt to release the private state associated with a page 467 * - Called if either PG_private or PG_fscache is set on the page 468 * - Caller holds page lock 469 * - Return true (may release page) or false (may not) 470 */ 471 static int nfs_release_page(struct page *page, gfp_t gfp) 472 { 473 struct address_space *mapping = page->mapping; 474 475 dfprintk(PAGECACHE, "NFS: release_page(%p)\n", page); 476 477 /* Always try to initiate a 'commit' if relevant, but only 478 * wait for it if the caller allows blocking. Even then, 479 * only wait 1 second and only if the 'bdi' is not congested. 480 * Waiting indefinitely can cause deadlocks when the NFS 481 * server is on this machine, when a new TCP connection is 482 * needed and in other rare cases. There is no particular 483 * need to wait extensively here. A short wait has the 484 * benefit that someone else can worry about the freezer. 485 */ 486 if (mapping) { 487 struct nfs_server *nfss = NFS_SERVER(mapping->host); 488 nfs_commit_inode(mapping->host, 0); 489 if (gfpflags_allow_blocking(gfp) && 490 !bdi_write_congested(&nfss->backing_dev_info)) { 491 wait_on_page_bit_killable_timeout(page, PG_private, 492 HZ); 493 if (PagePrivate(page)) 494 set_bdi_congested(&nfss->backing_dev_info, 495 BLK_RW_ASYNC); 496 } 497 } 498 /* If PagePrivate() is set, then the page is not freeable */ 499 if (PagePrivate(page)) 500 return 0; 501 return nfs_fscache_release_page(page, gfp); 502 } 503 504 static void nfs_check_dirty_writeback(struct page *page, 505 bool *dirty, bool *writeback) 506 { 507 struct nfs_inode *nfsi; 508 struct address_space *mapping = page_file_mapping(page); 509 510 if (!mapping || PageSwapCache(page)) 511 return; 512 513 /* 514 * Check if an unstable page is currently being committed and 515 * if so, have the VM treat it as if the page is under writeback 516 * so it will not block due to pages that will shortly be freeable. 517 */ 518 nfsi = NFS_I(mapping->host); 519 if (atomic_read(&nfsi->commit_info.rpcs_out)) { 520 *writeback = true; 521 return; 522 } 523 524 /* 525 * If PagePrivate() is set, then the page is not freeable and as the 526 * inode is not being committed, it's not going to be cleaned in the 527 * near future so treat it as dirty 528 */ 529 if (PagePrivate(page)) 530 *dirty = true; 531 } 532 533 /* 534 * Attempt to clear the private state associated with a page when an error 535 * occurs that requires the cached contents of an inode to be written back or 536 * destroyed 537 * - Called if either PG_private or fscache is set on the page 538 * - Caller holds page lock 539 * - Return 0 if successful, -error otherwise 540 */ 541 static int nfs_launder_page(struct page *page) 542 { 543 struct inode *inode = page_file_mapping(page)->host; 544 struct nfs_inode *nfsi = NFS_I(inode); 545 546 dfprintk(PAGECACHE, "NFS: launder_page(%ld, %llu)\n", 547 inode->i_ino, (long long)page_offset(page)); 548 549 nfs_fscache_wait_on_page_write(nfsi, page); 550 return nfs_wb_launder_page(inode, page); 551 } 552 553 static int nfs_swap_activate(struct swap_info_struct *sis, struct file *file, 554 sector_t *span) 555 { 556 struct rpc_clnt *clnt = NFS_CLIENT(file->f_mapping->host); 557 558 *span = sis->pages; 559 560 return rpc_clnt_swap_activate(clnt); 561 } 562 563 static void nfs_swap_deactivate(struct file *file) 564 { 565 struct rpc_clnt *clnt = NFS_CLIENT(file->f_mapping->host); 566 567 rpc_clnt_swap_deactivate(clnt); 568 } 569 570 const struct address_space_operations nfs_file_aops = { 571 .readpage = nfs_readpage, 572 .readpages = nfs_readpages, 573 .set_page_dirty = __set_page_dirty_nobuffers, 574 .writepage = nfs_writepage, 575 .writepages = nfs_writepages, 576 .write_begin = nfs_write_begin, 577 .write_end = nfs_write_end, 578 .invalidatepage = nfs_invalidate_page, 579 .releasepage = nfs_release_page, 580 .direct_IO = nfs_direct_IO, 581 .migratepage = nfs_migrate_page, 582 .launder_page = nfs_launder_page, 583 .is_dirty_writeback = nfs_check_dirty_writeback, 584 .error_remove_page = generic_error_remove_page, 585 .swap_activate = nfs_swap_activate, 586 .swap_deactivate = nfs_swap_deactivate, 587 }; 588 589 /* 590 * Notification that a PTE pointing to an NFS page is about to be made 591 * writable, implying that someone is about to modify the page through a 592 * shared-writable mapping 593 */ 594 static int nfs_vm_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf) 595 { 596 struct page *page = vmf->page; 597 struct file *filp = vma->vm_file; 598 struct inode *inode = file_inode(filp); 599 unsigned pagelen; 600 int ret = VM_FAULT_NOPAGE; 601 struct address_space *mapping; 602 603 dfprintk(PAGECACHE, "NFS: vm_page_mkwrite(%pD2(%lu), offset %lld)\n", 604 filp, filp->f_mapping->host->i_ino, 605 (long long)page_offset(page)); 606 607 /* make sure the cache has finished storing the page */ 608 nfs_fscache_wait_on_page_write(NFS_I(inode), page); 609 610 wait_on_bit_action(&NFS_I(inode)->flags, NFS_INO_INVALIDATING, 611 nfs_wait_bit_killable, TASK_KILLABLE); 612 613 lock_page(page); 614 mapping = page_file_mapping(page); 615 if (mapping != inode->i_mapping) 616 goto out_unlock; 617 618 wait_on_page_writeback(page); 619 620 pagelen = nfs_page_length(page); 621 if (pagelen == 0) 622 goto out_unlock; 623 624 ret = VM_FAULT_LOCKED; 625 if (nfs_flush_incompatible(filp, page) == 0 && 626 nfs_updatepage(filp, page, 0, pagelen) == 0) 627 goto out; 628 629 ret = VM_FAULT_SIGBUS; 630 out_unlock: 631 unlock_page(page); 632 out: 633 return ret; 634 } 635 636 static const struct vm_operations_struct nfs_file_vm_ops = { 637 .fault = filemap_fault, 638 .map_pages = filemap_map_pages, 639 .page_mkwrite = nfs_vm_page_mkwrite, 640 }; 641 642 static int nfs_need_check_write(struct file *filp, struct inode *inode) 643 { 644 struct nfs_open_context *ctx; 645 646 ctx = nfs_file_open_context(filp); 647 if (test_bit(NFS_CONTEXT_ERROR_WRITE, &ctx->flags) || 648 nfs_ctx_key_to_expire(ctx)) 649 return 1; 650 return 0; 651 } 652 653 ssize_t nfs_file_write(struct kiocb *iocb, struct iov_iter *from) 654 { 655 struct file *file = iocb->ki_filp; 656 struct inode *inode = file_inode(file); 657 unsigned long written = 0; 658 ssize_t result; 659 size_t count = iov_iter_count(from); 660 661 result = nfs_key_timeout_notify(file, inode); 662 if (result) 663 return result; 664 665 if (iocb->ki_flags & IOCB_DIRECT) { 666 result = generic_write_checks(iocb, from); 667 if (result <= 0) 668 return result; 669 return nfs_file_direct_write(iocb, from); 670 } 671 672 dprintk("NFS: write(%pD2, %zu@%Ld)\n", 673 file, count, (long long) iocb->ki_pos); 674 675 result = -EBUSY; 676 if (IS_SWAPFILE(inode)) 677 goto out_swapfile; 678 /* 679 * O_APPEND implies that we must revalidate the file length. 680 */ 681 if (iocb->ki_flags & IOCB_APPEND) { 682 result = nfs_revalidate_file_size(inode, file); 683 if (result) 684 goto out; 685 } 686 687 result = count; 688 if (!count) 689 goto out; 690 691 result = generic_file_write_iter(iocb, from); 692 if (result > 0) 693 written = result; 694 695 /* Return error values */ 696 if (result >= 0 && nfs_need_check_write(file, inode)) { 697 int err = vfs_fsync(file, 0); 698 if (err < 0) 699 result = err; 700 } 701 if (result > 0) 702 nfs_add_stats(inode, NFSIOS_NORMALWRITTENBYTES, written); 703 out: 704 return result; 705 706 out_swapfile: 707 printk(KERN_INFO "NFS: attempt to write to active swap file!\n"); 708 goto out; 709 } 710 EXPORT_SYMBOL_GPL(nfs_file_write); 711 712 static int 713 do_getlk(struct file *filp, int cmd, struct file_lock *fl, int is_local) 714 { 715 struct inode *inode = filp->f_mapping->host; 716 int status = 0; 717 unsigned int saved_type = fl->fl_type; 718 719 /* Try local locking first */ 720 posix_test_lock(filp, fl); 721 if (fl->fl_type != F_UNLCK) { 722 /* found a conflict */ 723 goto out; 724 } 725 fl->fl_type = saved_type; 726 727 if (NFS_PROTO(inode)->have_delegation(inode, FMODE_READ)) 728 goto out_noconflict; 729 730 if (is_local) 731 goto out_noconflict; 732 733 status = NFS_PROTO(inode)->lock(filp, cmd, fl); 734 out: 735 return status; 736 out_noconflict: 737 fl->fl_type = F_UNLCK; 738 goto out; 739 } 740 741 static int do_vfs_lock(struct file *file, struct file_lock *fl) 742 { 743 return locks_lock_file_wait(file, fl); 744 } 745 746 static int 747 do_unlk(struct file *filp, int cmd, struct file_lock *fl, int is_local) 748 { 749 struct inode *inode = filp->f_mapping->host; 750 struct nfs_lock_context *l_ctx; 751 int status; 752 753 /* 754 * Flush all pending writes before doing anything 755 * with locks.. 756 */ 757 vfs_fsync(filp, 0); 758 759 l_ctx = nfs_get_lock_context(nfs_file_open_context(filp)); 760 if (!IS_ERR(l_ctx)) { 761 status = nfs_iocounter_wait(l_ctx); 762 nfs_put_lock_context(l_ctx); 763 if (status < 0) 764 return status; 765 } 766 767 /* NOTE: special case 768 * If we're signalled while cleaning up locks on process exit, we 769 * still need to complete the unlock. 770 */ 771 /* 772 * Use local locking if mounted with "-onolock" or with appropriate 773 * "-olocal_lock=" 774 */ 775 if (!is_local) 776 status = NFS_PROTO(inode)->lock(filp, cmd, fl); 777 else 778 status = do_vfs_lock(filp, fl); 779 return status; 780 } 781 782 static int 783 is_time_granular(struct timespec *ts) { 784 return ((ts->tv_sec == 0) && (ts->tv_nsec <= 1000)); 785 } 786 787 static int 788 do_setlk(struct file *filp, int cmd, struct file_lock *fl, int is_local) 789 { 790 struct inode *inode = filp->f_mapping->host; 791 int status; 792 793 /* 794 * Flush all pending writes before doing anything 795 * with locks.. 796 */ 797 status = nfs_sync_mapping(filp->f_mapping); 798 if (status != 0) 799 goto out; 800 801 /* 802 * Use local locking if mounted with "-onolock" or with appropriate 803 * "-olocal_lock=" 804 */ 805 if (!is_local) 806 status = NFS_PROTO(inode)->lock(filp, cmd, fl); 807 else 808 status = do_vfs_lock(filp, fl); 809 if (status < 0) 810 goto out; 811 812 /* 813 * Revalidate the cache if the server has time stamps granular 814 * enough to detect subsecond changes. Otherwise, clear the 815 * cache to prevent missing any changes. 816 * 817 * This makes locking act as a cache coherency point. 818 */ 819 nfs_sync_mapping(filp->f_mapping); 820 if (!NFS_PROTO(inode)->have_delegation(inode, FMODE_READ)) { 821 if (is_time_granular(&NFS_SERVER(inode)->time_delta)) 822 __nfs_revalidate_inode(NFS_SERVER(inode), inode); 823 else 824 nfs_zap_caches(inode); 825 } 826 out: 827 return status; 828 } 829 830 /* 831 * Lock a (portion of) a file 832 */ 833 int nfs_lock(struct file *filp, int cmd, struct file_lock *fl) 834 { 835 struct inode *inode = filp->f_mapping->host; 836 int ret = -ENOLCK; 837 int is_local = 0; 838 839 dprintk("NFS: lock(%pD2, t=%x, fl=%x, r=%lld:%lld)\n", 840 filp, fl->fl_type, fl->fl_flags, 841 (long long)fl->fl_start, (long long)fl->fl_end); 842 843 nfs_inc_stats(inode, NFSIOS_VFSLOCK); 844 845 /* No mandatory locks over NFS */ 846 if (__mandatory_lock(inode) && fl->fl_type != F_UNLCK) 847 goto out_err; 848 849 if (NFS_SERVER(inode)->flags & NFS_MOUNT_LOCAL_FCNTL) 850 is_local = 1; 851 852 if (NFS_PROTO(inode)->lock_check_bounds != NULL) { 853 ret = NFS_PROTO(inode)->lock_check_bounds(fl); 854 if (ret < 0) 855 goto out_err; 856 } 857 858 if (IS_GETLK(cmd)) 859 ret = do_getlk(filp, cmd, fl, is_local); 860 else if (fl->fl_type == F_UNLCK) 861 ret = do_unlk(filp, cmd, fl, is_local); 862 else 863 ret = do_setlk(filp, cmd, fl, is_local); 864 out_err: 865 return ret; 866 } 867 EXPORT_SYMBOL_GPL(nfs_lock); 868 869 /* 870 * Lock a (portion of) a file 871 */ 872 int nfs_flock(struct file *filp, int cmd, struct file_lock *fl) 873 { 874 struct inode *inode = filp->f_mapping->host; 875 int is_local = 0; 876 877 dprintk("NFS: flock(%pD2, t=%x, fl=%x)\n", 878 filp, fl->fl_type, fl->fl_flags); 879 880 if (!(fl->fl_flags & FL_FLOCK)) 881 return -ENOLCK; 882 883 /* 884 * The NFSv4 protocol doesn't support LOCK_MAND, which is not part of 885 * any standard. In principle we might be able to support LOCK_MAND 886 * on NFSv2/3 since NLMv3/4 support DOS share modes, but for now the 887 * NFS code is not set up for it. 888 */ 889 if (fl->fl_type & LOCK_MAND) 890 return -EINVAL; 891 892 if (NFS_SERVER(inode)->flags & NFS_MOUNT_LOCAL_FLOCK) 893 is_local = 1; 894 895 /* We're simulating flock() locks using posix locks on the server */ 896 if (fl->fl_type == F_UNLCK) 897 return do_unlk(filp, cmd, fl, is_local); 898 return do_setlk(filp, cmd, fl, is_local); 899 } 900 EXPORT_SYMBOL_GPL(nfs_flock); 901 902 const struct file_operations nfs_file_operations = { 903 .llseek = nfs_file_llseek, 904 .read_iter = nfs_file_read, 905 .write_iter = nfs_file_write, 906 .mmap = nfs_file_mmap, 907 .open = nfs_file_open, 908 .flush = nfs_file_flush, 909 .release = nfs_file_release, 910 .fsync = nfs_file_fsync, 911 .lock = nfs_lock, 912 .flock = nfs_flock, 913 .splice_read = nfs_file_splice_read, 914 .splice_write = iter_file_splice_write, 915 .check_flags = nfs_check_flags, 916 .setlease = simple_nosetlease, 917 }; 918 EXPORT_SYMBOL_GPL(nfs_file_operations); 919