xref: /linux/fs/nfs/file.c (revision af1fd391a5118449aecda26792e40f9e8ab24123)
1 /*
2  *  linux/fs/nfs/file.c
3  *
4  *  Copyright (C) 1992  Rick Sladkey
5  *
6  *  Changes Copyright (C) 1994 by Florian La Roche
7  *   - Do not copy data too often around in the kernel.
8  *   - In nfs_file_read the return value of kmalloc wasn't checked.
9  *   - Put in a better version of read look-ahead buffering. Original idea
10  *     and implementation by Wai S Kok elekokws@ee.nus.sg.
11  *
12  *  Expire cache on write to a file by Wai S Kok (Oct 1994).
13  *
14  *  Total rewrite of read side for new NFS buffer cache.. Linus.
15  *
16  *  nfs regular file handling functions
17  */
18 
19 #include <linux/module.h>
20 #include <linux/time.h>
21 #include <linux/kernel.h>
22 #include <linux/errno.h>
23 #include <linux/fcntl.h>
24 #include <linux/stat.h>
25 #include <linux/nfs_fs.h>
26 #include <linux/nfs_mount.h>
27 #include <linux/mm.h>
28 #include <linux/pagemap.h>
29 #include <linux/gfp.h>
30 #include <linux/swap.h>
31 
32 #include <linux/uaccess.h>
33 
34 #include "delegation.h"
35 #include "internal.h"
36 #include "iostat.h"
37 #include "fscache.h"
38 #include "pnfs.h"
39 
40 #include "nfstrace.h"
41 
42 #define NFSDBG_FACILITY		NFSDBG_FILE
43 
44 static const struct vm_operations_struct nfs_file_vm_ops;
45 
46 /* Hack for future NFS swap support */
47 #ifndef IS_SWAPFILE
48 # define IS_SWAPFILE(inode)	(0)
49 #endif
50 
51 int nfs_check_flags(int flags)
52 {
53 	if ((flags & (O_APPEND | O_DIRECT)) == (O_APPEND | O_DIRECT))
54 		return -EINVAL;
55 
56 	return 0;
57 }
58 EXPORT_SYMBOL_GPL(nfs_check_flags);
59 
60 /*
61  * Open file
62  */
63 static int
64 nfs_file_open(struct inode *inode, struct file *filp)
65 {
66 	int res;
67 
68 	dprintk("NFS: open file(%pD2)\n", filp);
69 
70 	nfs_inc_stats(inode, NFSIOS_VFSOPEN);
71 	res = nfs_check_flags(filp->f_flags);
72 	if (res)
73 		return res;
74 
75 	res = nfs_open(inode, filp);
76 	return res;
77 }
78 
79 int
80 nfs_file_release(struct inode *inode, struct file *filp)
81 {
82 	dprintk("NFS: release(%pD2)\n", filp);
83 
84 	nfs_inc_stats(inode, NFSIOS_VFSRELEASE);
85 	nfs_file_clear_open_context(filp);
86 	return 0;
87 }
88 EXPORT_SYMBOL_GPL(nfs_file_release);
89 
90 /**
91  * nfs_revalidate_size - Revalidate the file size
92  * @inode - pointer to inode struct
93  * @file - pointer to struct file
94  *
95  * Revalidates the file length. This is basically a wrapper around
96  * nfs_revalidate_inode() that takes into account the fact that we may
97  * have cached writes (in which case we don't care about the server's
98  * idea of what the file length is), or O_DIRECT (in which case we
99  * shouldn't trust the cache).
100  */
101 static int nfs_revalidate_file_size(struct inode *inode, struct file *filp)
102 {
103 	struct nfs_server *server = NFS_SERVER(inode);
104 
105 	if (filp->f_flags & O_DIRECT)
106 		goto force_reval;
107 	if (nfs_check_cache_invalid(inode, NFS_INO_REVAL_PAGECACHE))
108 		goto force_reval;
109 	return 0;
110 force_reval:
111 	return __nfs_revalidate_inode(server, inode);
112 }
113 
114 loff_t nfs_file_llseek(struct file *filp, loff_t offset, int whence)
115 {
116 	dprintk("NFS: llseek file(%pD2, %lld, %d)\n",
117 			filp, offset, whence);
118 
119 	/*
120 	 * whence == SEEK_END || SEEK_DATA || SEEK_HOLE => we must revalidate
121 	 * the cached file length
122 	 */
123 	if (whence != SEEK_SET && whence != SEEK_CUR) {
124 		struct inode *inode = filp->f_mapping->host;
125 
126 		int retval = nfs_revalidate_file_size(inode, filp);
127 		if (retval < 0)
128 			return (loff_t)retval;
129 	}
130 
131 	return generic_file_llseek(filp, offset, whence);
132 }
133 EXPORT_SYMBOL_GPL(nfs_file_llseek);
134 
135 /*
136  * Flush all dirty pages, and check for write errors.
137  */
138 static int
139 nfs_file_flush(struct file *file, fl_owner_t id)
140 {
141 	struct inode	*inode = file_inode(file);
142 
143 	dprintk("NFS: flush(%pD2)\n", file);
144 
145 	nfs_inc_stats(inode, NFSIOS_VFSFLUSH);
146 	if ((file->f_mode & FMODE_WRITE) == 0)
147 		return 0;
148 
149 	/* Flush writes to the server and return any errors */
150 	return vfs_fsync(file, 0);
151 }
152 
153 ssize_t
154 nfs_file_read(struct kiocb *iocb, struct iov_iter *to)
155 {
156 	struct inode *inode = file_inode(iocb->ki_filp);
157 	ssize_t result;
158 
159 	if (iocb->ki_flags & IOCB_DIRECT)
160 		return nfs_file_direct_read(iocb, to);
161 
162 	dprintk("NFS: read(%pD2, %zu@%lu)\n",
163 		iocb->ki_filp,
164 		iov_iter_count(to), (unsigned long) iocb->ki_pos);
165 
166 	nfs_start_io_read(inode);
167 	result = nfs_revalidate_mapping(inode, iocb->ki_filp->f_mapping);
168 	if (!result) {
169 		result = generic_file_read_iter(iocb, to);
170 		if (result > 0)
171 			nfs_add_stats(inode, NFSIOS_NORMALREADBYTES, result);
172 	}
173 	nfs_end_io_read(inode);
174 	return result;
175 }
176 EXPORT_SYMBOL_GPL(nfs_file_read);
177 
178 int
179 nfs_file_mmap(struct file * file, struct vm_area_struct * vma)
180 {
181 	struct inode *inode = file_inode(file);
182 	int	status;
183 
184 	dprintk("NFS: mmap(%pD2)\n", file);
185 
186 	/* Note: generic_file_mmap() returns ENOSYS on nommu systems
187 	 *       so we call that before revalidating the mapping
188 	 */
189 	status = generic_file_mmap(file, vma);
190 	if (!status) {
191 		vma->vm_ops = &nfs_file_vm_ops;
192 		status = nfs_revalidate_mapping(inode, file->f_mapping);
193 	}
194 	return status;
195 }
196 EXPORT_SYMBOL_GPL(nfs_file_mmap);
197 
198 /*
199  * Flush any dirty pages for this process, and check for write errors.
200  * The return status from this call provides a reliable indication of
201  * whether any write errors occurred for this process.
202  *
203  * Notice that it clears the NFS_CONTEXT_ERROR_WRITE before synching to
204  * disk, but it retrieves and clears ctx->error after synching, despite
205  * the two being set at the same time in nfs_context_set_write_error().
206  * This is because the former is used to notify the _next_ call to
207  * nfs_file_write() that a write error occurred, and hence cause it to
208  * fall back to doing a synchronous write.
209  */
210 static int
211 nfs_file_fsync_commit(struct file *file, loff_t start, loff_t end, int datasync)
212 {
213 	struct nfs_open_context *ctx = nfs_file_open_context(file);
214 	struct inode *inode = file_inode(file);
215 	int have_error, do_resend, status;
216 	int ret = 0;
217 
218 	dprintk("NFS: fsync file(%pD2) datasync %d\n", file, datasync);
219 
220 	nfs_inc_stats(inode, NFSIOS_VFSFSYNC);
221 	do_resend = test_and_clear_bit(NFS_CONTEXT_RESEND_WRITES, &ctx->flags);
222 	have_error = test_and_clear_bit(NFS_CONTEXT_ERROR_WRITE, &ctx->flags);
223 	status = nfs_commit_inode(inode, FLUSH_SYNC);
224 	have_error |= test_bit(NFS_CONTEXT_ERROR_WRITE, &ctx->flags);
225 	if (have_error) {
226 		ret = xchg(&ctx->error, 0);
227 		if (ret)
228 			goto out;
229 	}
230 	if (status < 0) {
231 		ret = status;
232 		goto out;
233 	}
234 	do_resend |= test_bit(NFS_CONTEXT_RESEND_WRITES, &ctx->flags);
235 	if (do_resend)
236 		ret = -EAGAIN;
237 out:
238 	return ret;
239 }
240 
241 int
242 nfs_file_fsync(struct file *file, loff_t start, loff_t end, int datasync)
243 {
244 	int ret;
245 	struct inode *inode = file_inode(file);
246 
247 	trace_nfs_fsync_enter(inode);
248 
249 	do {
250 		ret = filemap_write_and_wait_range(inode->i_mapping, start, end);
251 		if (ret != 0)
252 			break;
253 		ret = nfs_file_fsync_commit(file, start, end, datasync);
254 		if (!ret)
255 			ret = pnfs_sync_inode(inode, !!datasync);
256 		/*
257 		 * If nfs_file_fsync_commit detected a server reboot, then
258 		 * resend all dirty pages that might have been covered by
259 		 * the NFS_CONTEXT_RESEND_WRITES flag
260 		 */
261 		start = 0;
262 		end = LLONG_MAX;
263 	} while (ret == -EAGAIN);
264 
265 	trace_nfs_fsync_exit(inode, ret);
266 	return ret;
267 }
268 EXPORT_SYMBOL_GPL(nfs_file_fsync);
269 
270 /*
271  * Decide whether a read/modify/write cycle may be more efficient
272  * then a modify/write/read cycle when writing to a page in the
273  * page cache.
274  *
275  * The modify/write/read cycle may occur if a page is read before
276  * being completely filled by the writer.  In this situation, the
277  * page must be completely written to stable storage on the server
278  * before it can be refilled by reading in the page from the server.
279  * This can lead to expensive, small, FILE_SYNC mode writes being
280  * done.
281  *
282  * It may be more efficient to read the page first if the file is
283  * open for reading in addition to writing, the page is not marked
284  * as Uptodate, it is not dirty or waiting to be committed,
285  * indicating that it was previously allocated and then modified,
286  * that there were valid bytes of data in that range of the file,
287  * and that the new data won't completely replace the old data in
288  * that range of the file.
289  */
290 static int nfs_want_read_modify_write(struct file *file, struct page *page,
291 			loff_t pos, unsigned len)
292 {
293 	unsigned int pglen = nfs_page_length(page);
294 	unsigned int offset = pos & (PAGE_SIZE - 1);
295 	unsigned int end = offset + len;
296 
297 	if (pnfs_ld_read_whole_page(file->f_mapping->host)) {
298 		if (!PageUptodate(page))
299 			return 1;
300 		return 0;
301 	}
302 
303 	if ((file->f_mode & FMODE_READ) &&	/* open for read? */
304 	    !PageUptodate(page) &&		/* Uptodate? */
305 	    !PagePrivate(page) &&		/* i/o request already? */
306 	    pglen &&				/* valid bytes of file? */
307 	    (end < pglen || offset))		/* replace all valid bytes? */
308 		return 1;
309 	return 0;
310 }
311 
312 /*
313  * This does the "real" work of the write. We must allocate and lock the
314  * page to be sent back to the generic routine, which then copies the
315  * data from user space.
316  *
317  * If the writer ends up delaying the write, the writer needs to
318  * increment the page use counts until he is done with the page.
319  */
320 static int nfs_write_begin(struct file *file, struct address_space *mapping,
321 			loff_t pos, unsigned len, unsigned flags,
322 			struct page **pagep, void **fsdata)
323 {
324 	int ret;
325 	pgoff_t index = pos >> PAGE_SHIFT;
326 	struct page *page;
327 	int once_thru = 0;
328 
329 	dfprintk(PAGECACHE, "NFS: write_begin(%pD2(%lu), %u@%lld)\n",
330 		file, mapping->host->i_ino, len, (long long) pos);
331 
332 start:
333 	page = grab_cache_page_write_begin(mapping, index, flags);
334 	if (!page)
335 		return -ENOMEM;
336 	*pagep = page;
337 
338 	ret = nfs_flush_incompatible(file, page);
339 	if (ret) {
340 		unlock_page(page);
341 		put_page(page);
342 	} else if (!once_thru &&
343 		   nfs_want_read_modify_write(file, page, pos, len)) {
344 		once_thru = 1;
345 		ret = nfs_readpage(file, page);
346 		put_page(page);
347 		if (!ret)
348 			goto start;
349 	}
350 	return ret;
351 }
352 
353 static int nfs_write_end(struct file *file, struct address_space *mapping,
354 			loff_t pos, unsigned len, unsigned copied,
355 			struct page *page, void *fsdata)
356 {
357 	unsigned offset = pos & (PAGE_SIZE - 1);
358 	struct nfs_open_context *ctx = nfs_file_open_context(file);
359 	int status;
360 
361 	dfprintk(PAGECACHE, "NFS: write_end(%pD2(%lu), %u@%lld)\n",
362 		file, mapping->host->i_ino, len, (long long) pos);
363 
364 	/*
365 	 * Zero any uninitialised parts of the page, and then mark the page
366 	 * as up to date if it turns out that we're extending the file.
367 	 */
368 	if (!PageUptodate(page)) {
369 		unsigned pglen = nfs_page_length(page);
370 		unsigned end = offset + copied;
371 
372 		if (pglen == 0) {
373 			zero_user_segments(page, 0, offset,
374 					end, PAGE_SIZE);
375 			SetPageUptodate(page);
376 		} else if (end >= pglen) {
377 			zero_user_segment(page, end, PAGE_SIZE);
378 			if (offset == 0)
379 				SetPageUptodate(page);
380 		} else
381 			zero_user_segment(page, pglen, PAGE_SIZE);
382 	}
383 
384 	status = nfs_updatepage(file, page, offset, copied);
385 
386 	unlock_page(page);
387 	put_page(page);
388 
389 	if (status < 0)
390 		return status;
391 	NFS_I(mapping->host)->write_io += copied;
392 
393 	if (nfs_ctx_key_to_expire(ctx, mapping->host)) {
394 		status = nfs_wb_all(mapping->host);
395 		if (status < 0)
396 			return status;
397 	}
398 
399 	return copied;
400 }
401 
402 /*
403  * Partially or wholly invalidate a page
404  * - Release the private state associated with a page if undergoing complete
405  *   page invalidation
406  * - Called if either PG_private or PG_fscache is set on the page
407  * - Caller holds page lock
408  */
409 static void nfs_invalidate_page(struct page *page, unsigned int offset,
410 				unsigned int length)
411 {
412 	dfprintk(PAGECACHE, "NFS: invalidate_page(%p, %u, %u)\n",
413 		 page, offset, length);
414 
415 	if (offset != 0 || length < PAGE_SIZE)
416 		return;
417 	/* Cancel any unstarted writes on this page */
418 	nfs_wb_page_cancel(page_file_mapping(page)->host, page);
419 
420 	nfs_fscache_invalidate_page(page, page->mapping->host);
421 }
422 
423 /*
424  * Attempt to release the private state associated with a page
425  * - Called if either PG_private or PG_fscache is set on the page
426  * - Caller holds page lock
427  * - Return true (may release page) or false (may not)
428  */
429 static int nfs_release_page(struct page *page, gfp_t gfp)
430 {
431 	dfprintk(PAGECACHE, "NFS: release_page(%p)\n", page);
432 
433 	/* If PagePrivate() is set, then the page is not freeable */
434 	if (PagePrivate(page))
435 		return 0;
436 	return nfs_fscache_release_page(page, gfp);
437 }
438 
439 static void nfs_check_dirty_writeback(struct page *page,
440 				bool *dirty, bool *writeback)
441 {
442 	struct nfs_inode *nfsi;
443 	struct address_space *mapping = page_file_mapping(page);
444 
445 	if (!mapping || PageSwapCache(page))
446 		return;
447 
448 	/*
449 	 * Check if an unstable page is currently being committed and
450 	 * if so, have the VM treat it as if the page is under writeback
451 	 * so it will not block due to pages that will shortly be freeable.
452 	 */
453 	nfsi = NFS_I(mapping->host);
454 	if (atomic_read(&nfsi->commit_info.rpcs_out)) {
455 		*writeback = true;
456 		return;
457 	}
458 
459 	/*
460 	 * If PagePrivate() is set, then the page is not freeable and as the
461 	 * inode is not being committed, it's not going to be cleaned in the
462 	 * near future so treat it as dirty
463 	 */
464 	if (PagePrivate(page))
465 		*dirty = true;
466 }
467 
468 /*
469  * Attempt to clear the private state associated with a page when an error
470  * occurs that requires the cached contents of an inode to be written back or
471  * destroyed
472  * - Called if either PG_private or fscache is set on the page
473  * - Caller holds page lock
474  * - Return 0 if successful, -error otherwise
475  */
476 static int nfs_launder_page(struct page *page)
477 {
478 	struct inode *inode = page_file_mapping(page)->host;
479 	struct nfs_inode *nfsi = NFS_I(inode);
480 
481 	dfprintk(PAGECACHE, "NFS: launder_page(%ld, %llu)\n",
482 		inode->i_ino, (long long)page_offset(page));
483 
484 	nfs_fscache_wait_on_page_write(nfsi, page);
485 	return nfs_wb_page(inode, page);
486 }
487 
488 static int nfs_swap_activate(struct swap_info_struct *sis, struct file *file,
489 						sector_t *span)
490 {
491 	struct rpc_clnt *clnt = NFS_CLIENT(file->f_mapping->host);
492 
493 	*span = sis->pages;
494 
495 	return rpc_clnt_swap_activate(clnt);
496 }
497 
498 static void nfs_swap_deactivate(struct file *file)
499 {
500 	struct rpc_clnt *clnt = NFS_CLIENT(file->f_mapping->host);
501 
502 	rpc_clnt_swap_deactivate(clnt);
503 }
504 
505 const struct address_space_operations nfs_file_aops = {
506 	.readpage = nfs_readpage,
507 	.readpages = nfs_readpages,
508 	.set_page_dirty = __set_page_dirty_nobuffers,
509 	.writepage = nfs_writepage,
510 	.writepages = nfs_writepages,
511 	.write_begin = nfs_write_begin,
512 	.write_end = nfs_write_end,
513 	.invalidatepage = nfs_invalidate_page,
514 	.releasepage = nfs_release_page,
515 	.direct_IO = nfs_direct_IO,
516 #ifdef CONFIG_MIGRATION
517 	.migratepage = nfs_migrate_page,
518 #endif
519 	.launder_page = nfs_launder_page,
520 	.is_dirty_writeback = nfs_check_dirty_writeback,
521 	.error_remove_page = generic_error_remove_page,
522 	.swap_activate = nfs_swap_activate,
523 	.swap_deactivate = nfs_swap_deactivate,
524 };
525 
526 /*
527  * Notification that a PTE pointing to an NFS page is about to be made
528  * writable, implying that someone is about to modify the page through a
529  * shared-writable mapping
530  */
531 static int nfs_vm_page_mkwrite(struct vm_fault *vmf)
532 {
533 	struct page *page = vmf->page;
534 	struct file *filp = vmf->vma->vm_file;
535 	struct inode *inode = file_inode(filp);
536 	unsigned pagelen;
537 	int ret = VM_FAULT_NOPAGE;
538 	struct address_space *mapping;
539 
540 	dfprintk(PAGECACHE, "NFS: vm_page_mkwrite(%pD2(%lu), offset %lld)\n",
541 		filp, filp->f_mapping->host->i_ino,
542 		(long long)page_offset(page));
543 
544 	sb_start_pagefault(inode->i_sb);
545 
546 	/* make sure the cache has finished storing the page */
547 	nfs_fscache_wait_on_page_write(NFS_I(inode), page);
548 
549 	wait_on_bit_action(&NFS_I(inode)->flags, NFS_INO_INVALIDATING,
550 			nfs_wait_bit_killable, TASK_KILLABLE);
551 
552 	lock_page(page);
553 	mapping = page_file_mapping(page);
554 	if (mapping != inode->i_mapping)
555 		goto out_unlock;
556 
557 	wait_on_page_writeback(page);
558 
559 	pagelen = nfs_page_length(page);
560 	if (pagelen == 0)
561 		goto out_unlock;
562 
563 	ret = VM_FAULT_LOCKED;
564 	if (nfs_flush_incompatible(filp, page) == 0 &&
565 	    nfs_updatepage(filp, page, 0, pagelen) == 0)
566 		goto out;
567 
568 	ret = VM_FAULT_SIGBUS;
569 out_unlock:
570 	unlock_page(page);
571 out:
572 	sb_end_pagefault(inode->i_sb);
573 	return ret;
574 }
575 
576 static const struct vm_operations_struct nfs_file_vm_ops = {
577 	.fault = filemap_fault,
578 	.map_pages = filemap_map_pages,
579 	.page_mkwrite = nfs_vm_page_mkwrite,
580 };
581 
582 static int nfs_need_check_write(struct file *filp, struct inode *inode)
583 {
584 	struct nfs_open_context *ctx;
585 
586 	ctx = nfs_file_open_context(filp);
587 	if (test_bit(NFS_CONTEXT_ERROR_WRITE, &ctx->flags) ||
588 	    nfs_ctx_key_to_expire(ctx, inode))
589 		return 1;
590 	return 0;
591 }
592 
593 ssize_t nfs_file_write(struct kiocb *iocb, struct iov_iter *from)
594 {
595 	struct file *file = iocb->ki_filp;
596 	struct inode *inode = file_inode(file);
597 	unsigned long written = 0;
598 	ssize_t result;
599 
600 	result = nfs_key_timeout_notify(file, inode);
601 	if (result)
602 		return result;
603 
604 	if (iocb->ki_flags & IOCB_DIRECT)
605 		return nfs_file_direct_write(iocb, from);
606 
607 	dprintk("NFS: write(%pD2, %zu@%Ld)\n",
608 		file, iov_iter_count(from), (long long) iocb->ki_pos);
609 
610 	if (IS_SWAPFILE(inode))
611 		goto out_swapfile;
612 	/*
613 	 * O_APPEND implies that we must revalidate the file length.
614 	 */
615 	if (iocb->ki_flags & IOCB_APPEND) {
616 		result = nfs_revalidate_file_size(inode, file);
617 		if (result)
618 			goto out;
619 	}
620 	if (iocb->ki_pos > i_size_read(inode))
621 		nfs_revalidate_mapping(inode, file->f_mapping);
622 
623 	nfs_start_io_write(inode);
624 	result = generic_write_checks(iocb, from);
625 	if (result > 0) {
626 		current->backing_dev_info = inode_to_bdi(inode);
627 		result = generic_perform_write(file, from, iocb->ki_pos);
628 		current->backing_dev_info = NULL;
629 	}
630 	nfs_end_io_write(inode);
631 	if (result <= 0)
632 		goto out;
633 
634 	result = generic_write_sync(iocb, result);
635 	if (result < 0)
636 		goto out;
637 	written = result;
638 	iocb->ki_pos += written;
639 
640 	/* Return error values */
641 	if (nfs_need_check_write(file, inode)) {
642 		int err = vfs_fsync(file, 0);
643 		if (err < 0)
644 			result = err;
645 	}
646 	nfs_add_stats(inode, NFSIOS_NORMALWRITTENBYTES, written);
647 out:
648 	return result;
649 
650 out_swapfile:
651 	printk(KERN_INFO "NFS: attempt to write to active swap file!\n");
652 	return -EBUSY;
653 }
654 EXPORT_SYMBOL_GPL(nfs_file_write);
655 
656 static int
657 do_getlk(struct file *filp, int cmd, struct file_lock *fl, int is_local)
658 {
659 	struct inode *inode = filp->f_mapping->host;
660 	int status = 0;
661 	unsigned int saved_type = fl->fl_type;
662 
663 	/* Try local locking first */
664 	posix_test_lock(filp, fl);
665 	if (fl->fl_type != F_UNLCK) {
666 		/* found a conflict */
667 		goto out;
668 	}
669 	fl->fl_type = saved_type;
670 
671 	if (NFS_PROTO(inode)->have_delegation(inode, FMODE_READ))
672 		goto out_noconflict;
673 
674 	if (is_local)
675 		goto out_noconflict;
676 
677 	status = NFS_PROTO(inode)->lock(filp, cmd, fl);
678 out:
679 	return status;
680 out_noconflict:
681 	fl->fl_type = F_UNLCK;
682 	goto out;
683 }
684 
685 static int
686 do_unlk(struct file *filp, int cmd, struct file_lock *fl, int is_local)
687 {
688 	struct inode *inode = filp->f_mapping->host;
689 	struct nfs_lock_context *l_ctx;
690 	int status;
691 
692 	/*
693 	 * Flush all pending writes before doing anything
694 	 * with locks..
695 	 */
696 	vfs_fsync(filp, 0);
697 
698 	l_ctx = nfs_get_lock_context(nfs_file_open_context(filp));
699 	if (!IS_ERR(l_ctx)) {
700 		status = nfs_iocounter_wait(l_ctx);
701 		nfs_put_lock_context(l_ctx);
702 		/*  NOTE: special case
703 		 * 	If we're signalled while cleaning up locks on process exit, we
704 		 * 	still need to complete the unlock.
705 		 */
706 		if (status < 0 && !(fl->fl_flags & FL_CLOSE))
707 			return status;
708 	}
709 
710 	/*
711 	 * Use local locking if mounted with "-onolock" or with appropriate
712 	 * "-olocal_lock="
713 	 */
714 	if (!is_local)
715 		status = NFS_PROTO(inode)->lock(filp, cmd, fl);
716 	else
717 		status = locks_lock_file_wait(filp, fl);
718 	return status;
719 }
720 
721 static int
722 do_setlk(struct file *filp, int cmd, struct file_lock *fl, int is_local)
723 {
724 	struct inode *inode = filp->f_mapping->host;
725 	int status;
726 
727 	/*
728 	 * Flush all pending writes before doing anything
729 	 * with locks..
730 	 */
731 	status = nfs_sync_mapping(filp->f_mapping);
732 	if (status != 0)
733 		goto out;
734 
735 	/*
736 	 * Use local locking if mounted with "-onolock" or with appropriate
737 	 * "-olocal_lock="
738 	 */
739 	if (!is_local)
740 		status = NFS_PROTO(inode)->lock(filp, cmd, fl);
741 	else
742 		status = locks_lock_file_wait(filp, fl);
743 	if (status < 0)
744 		goto out;
745 
746 	/*
747 	 * Revalidate the cache if the server has time stamps granular
748 	 * enough to detect subsecond changes.  Otherwise, clear the
749 	 * cache to prevent missing any changes.
750 	 *
751 	 * This makes locking act as a cache coherency point.
752 	 */
753 	nfs_sync_mapping(filp->f_mapping);
754 	if (!NFS_PROTO(inode)->have_delegation(inode, FMODE_READ))
755 		nfs_zap_caches(inode);
756 out:
757 	return status;
758 }
759 
760 /*
761  * Lock a (portion of) a file
762  */
763 int nfs_lock(struct file *filp, int cmd, struct file_lock *fl)
764 {
765 	struct inode *inode = filp->f_mapping->host;
766 	int ret = -ENOLCK;
767 	int is_local = 0;
768 
769 	dprintk("NFS: lock(%pD2, t=%x, fl=%x, r=%lld:%lld)\n",
770 			filp, fl->fl_type, fl->fl_flags,
771 			(long long)fl->fl_start, (long long)fl->fl_end);
772 
773 	nfs_inc_stats(inode, NFSIOS_VFSLOCK);
774 
775 	/* No mandatory locks over NFS */
776 	if (__mandatory_lock(inode) && fl->fl_type != F_UNLCK)
777 		goto out_err;
778 
779 	if (NFS_SERVER(inode)->flags & NFS_MOUNT_LOCAL_FCNTL)
780 		is_local = 1;
781 
782 	if (NFS_PROTO(inode)->lock_check_bounds != NULL) {
783 		ret = NFS_PROTO(inode)->lock_check_bounds(fl);
784 		if (ret < 0)
785 			goto out_err;
786 	}
787 
788 	if (IS_GETLK(cmd))
789 		ret = do_getlk(filp, cmd, fl, is_local);
790 	else if (fl->fl_type == F_UNLCK)
791 		ret = do_unlk(filp, cmd, fl, is_local);
792 	else
793 		ret = do_setlk(filp, cmd, fl, is_local);
794 out_err:
795 	return ret;
796 }
797 EXPORT_SYMBOL_GPL(nfs_lock);
798 
799 /*
800  * Lock a (portion of) a file
801  */
802 int nfs_flock(struct file *filp, int cmd, struct file_lock *fl)
803 {
804 	struct inode *inode = filp->f_mapping->host;
805 	int is_local = 0;
806 
807 	dprintk("NFS: flock(%pD2, t=%x, fl=%x)\n",
808 			filp, fl->fl_type, fl->fl_flags);
809 
810 	if (!(fl->fl_flags & FL_FLOCK))
811 		return -ENOLCK;
812 
813 	/*
814 	 * The NFSv4 protocol doesn't support LOCK_MAND, which is not part of
815 	 * any standard. In principle we might be able to support LOCK_MAND
816 	 * on NFSv2/3 since NLMv3/4 support DOS share modes, but for now the
817 	 * NFS code is not set up for it.
818 	 */
819 	if (fl->fl_type & LOCK_MAND)
820 		return -EINVAL;
821 
822 	if (NFS_SERVER(inode)->flags & NFS_MOUNT_LOCAL_FLOCK)
823 		is_local = 1;
824 
825 	/*
826 	 * VFS doesn't require the open mode to match a flock() lock's type.
827 	 * NFS, however, may simulate flock() locking with posix locking which
828 	 * requires the open mode to match the lock type.
829 	 */
830 	switch (fl->fl_type) {
831 	case F_UNLCK:
832 		return do_unlk(filp, cmd, fl, is_local);
833 	case F_RDLCK:
834 		if (!(filp->f_mode & FMODE_READ))
835 			return -EBADF;
836 		break;
837 	case F_WRLCK:
838 		if (!(filp->f_mode & FMODE_WRITE))
839 			return -EBADF;
840 	}
841 
842 	return do_setlk(filp, cmd, fl, is_local);
843 }
844 EXPORT_SYMBOL_GPL(nfs_flock);
845 
846 const struct file_operations nfs_file_operations = {
847 	.llseek		= nfs_file_llseek,
848 	.read_iter	= nfs_file_read,
849 	.write_iter	= nfs_file_write,
850 	.mmap		= nfs_file_mmap,
851 	.open		= nfs_file_open,
852 	.flush		= nfs_file_flush,
853 	.release	= nfs_file_release,
854 	.fsync		= nfs_file_fsync,
855 	.lock		= nfs_lock,
856 	.flock		= nfs_flock,
857 	.splice_read	= generic_file_splice_read,
858 	.splice_write	= iter_file_splice_write,
859 	.check_flags	= nfs_check_flags,
860 	.setlease	= simple_nosetlease,
861 };
862 EXPORT_SYMBOL_GPL(nfs_file_operations);
863