1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/fs/nfs/file.c 4 * 5 * Copyright (C) 1992 Rick Sladkey 6 * 7 * Changes Copyright (C) 1994 by Florian La Roche 8 * - Do not copy data too often around in the kernel. 9 * - In nfs_file_read the return value of kmalloc wasn't checked. 10 * - Put in a better version of read look-ahead buffering. Original idea 11 * and implementation by Wai S Kok elekokws@ee.nus.sg. 12 * 13 * Expire cache on write to a file by Wai S Kok (Oct 1994). 14 * 15 * Total rewrite of read side for new NFS buffer cache.. Linus. 16 * 17 * nfs regular file handling functions 18 */ 19 20 #include <linux/module.h> 21 #include <linux/time.h> 22 #include <linux/kernel.h> 23 #include <linux/errno.h> 24 #include <linux/fcntl.h> 25 #include <linux/stat.h> 26 #include <linux/nfs_fs.h> 27 #include <linux/nfs_mount.h> 28 #include <linux/mm.h> 29 #include <linux/pagemap.h> 30 #include <linux/gfp.h> 31 #include <linux/swap.h> 32 33 #include <linux/uaccess.h> 34 35 #include "delegation.h" 36 #include "internal.h" 37 #include "iostat.h" 38 #include "fscache.h" 39 #include "pnfs.h" 40 41 #include "nfstrace.h" 42 43 #define NFSDBG_FACILITY NFSDBG_FILE 44 45 static const struct vm_operations_struct nfs_file_vm_ops; 46 47 int nfs_check_flags(int flags) 48 { 49 if ((flags & (O_APPEND | O_DIRECT)) == (O_APPEND | O_DIRECT)) 50 return -EINVAL; 51 52 return 0; 53 } 54 EXPORT_SYMBOL_GPL(nfs_check_flags); 55 56 /* 57 * Open file 58 */ 59 static int 60 nfs_file_open(struct inode *inode, struct file *filp) 61 { 62 int res; 63 64 dprintk("NFS: open file(%pD2)\n", filp); 65 66 nfs_inc_stats(inode, NFSIOS_VFSOPEN); 67 res = nfs_check_flags(filp->f_flags); 68 if (res) 69 return res; 70 71 res = nfs_open(inode, filp); 72 if (res == 0) 73 filp->f_mode |= FMODE_CAN_ODIRECT; 74 return res; 75 } 76 77 int 78 nfs_file_release(struct inode *inode, struct file *filp) 79 { 80 dprintk("NFS: release(%pD2)\n", filp); 81 82 nfs_inc_stats(inode, NFSIOS_VFSRELEASE); 83 nfs_file_clear_open_context(filp); 84 nfs_fscache_release_file(inode, filp); 85 return 0; 86 } 87 EXPORT_SYMBOL_GPL(nfs_file_release); 88 89 /** 90 * nfs_revalidate_file_size - Revalidate the file size 91 * @inode: pointer to inode struct 92 * @filp: pointer to struct file 93 * 94 * Revalidates the file length. This is basically a wrapper around 95 * nfs_revalidate_inode() that takes into account the fact that we may 96 * have cached writes (in which case we don't care about the server's 97 * idea of what the file length is), or O_DIRECT (in which case we 98 * shouldn't trust the cache). 99 */ 100 static int nfs_revalidate_file_size(struct inode *inode, struct file *filp) 101 { 102 struct nfs_server *server = NFS_SERVER(inode); 103 104 if (filp->f_flags & O_DIRECT) 105 goto force_reval; 106 if (nfs_check_cache_invalid(inode, NFS_INO_INVALID_SIZE)) 107 goto force_reval; 108 return 0; 109 force_reval: 110 return __nfs_revalidate_inode(server, inode); 111 } 112 113 loff_t nfs_file_llseek(struct file *filp, loff_t offset, int whence) 114 { 115 dprintk("NFS: llseek file(%pD2, %lld, %d)\n", 116 filp, offset, whence); 117 118 /* 119 * whence == SEEK_END || SEEK_DATA || SEEK_HOLE => we must revalidate 120 * the cached file length 121 */ 122 if (whence != SEEK_SET && whence != SEEK_CUR) { 123 struct inode *inode = filp->f_mapping->host; 124 125 int retval = nfs_revalidate_file_size(inode, filp); 126 if (retval < 0) 127 return (loff_t)retval; 128 } 129 130 return generic_file_llseek(filp, offset, whence); 131 } 132 EXPORT_SYMBOL_GPL(nfs_file_llseek); 133 134 /* 135 * Flush all dirty pages, and check for write errors. 136 */ 137 static int 138 nfs_file_flush(struct file *file, fl_owner_t id) 139 { 140 struct inode *inode = file_inode(file); 141 errseq_t since; 142 143 dprintk("NFS: flush(%pD2)\n", file); 144 145 nfs_inc_stats(inode, NFSIOS_VFSFLUSH); 146 if ((file->f_mode & FMODE_WRITE) == 0) 147 return 0; 148 149 /* Flush writes to the server and return any errors */ 150 since = filemap_sample_wb_err(file->f_mapping); 151 nfs_wb_all(inode); 152 return filemap_check_wb_err(file->f_mapping, since); 153 } 154 155 ssize_t 156 nfs_file_read(struct kiocb *iocb, struct iov_iter *to) 157 { 158 struct inode *inode = file_inode(iocb->ki_filp); 159 ssize_t result; 160 161 if (iocb->ki_flags & IOCB_DIRECT) 162 return nfs_file_direct_read(iocb, to, false); 163 164 dprintk("NFS: read(%pD2, %zu@%lu)\n", 165 iocb->ki_filp, 166 iov_iter_count(to), (unsigned long) iocb->ki_pos); 167 168 nfs_start_io_read(inode); 169 result = nfs_revalidate_mapping(inode, iocb->ki_filp->f_mapping); 170 if (!result) { 171 result = generic_file_read_iter(iocb, to); 172 if (result > 0) 173 nfs_add_stats(inode, NFSIOS_NORMALREADBYTES, result); 174 } 175 nfs_end_io_read(inode); 176 return result; 177 } 178 EXPORT_SYMBOL_GPL(nfs_file_read); 179 180 int 181 nfs_file_mmap(struct file * file, struct vm_area_struct * vma) 182 { 183 struct inode *inode = file_inode(file); 184 int status; 185 186 dprintk("NFS: mmap(%pD2)\n", file); 187 188 /* Note: generic_file_mmap() returns ENOSYS on nommu systems 189 * so we call that before revalidating the mapping 190 */ 191 status = generic_file_mmap(file, vma); 192 if (!status) { 193 vma->vm_ops = &nfs_file_vm_ops; 194 status = nfs_revalidate_mapping(inode, file->f_mapping); 195 } 196 return status; 197 } 198 EXPORT_SYMBOL_GPL(nfs_file_mmap); 199 200 /* 201 * Flush any dirty pages for this process, and check for write errors. 202 * The return status from this call provides a reliable indication of 203 * whether any write errors occurred for this process. 204 */ 205 static int 206 nfs_file_fsync_commit(struct file *file, int datasync) 207 { 208 struct inode *inode = file_inode(file); 209 int ret, ret2; 210 211 dprintk("NFS: fsync file(%pD2) datasync %d\n", file, datasync); 212 213 nfs_inc_stats(inode, NFSIOS_VFSFSYNC); 214 ret = nfs_commit_inode(inode, FLUSH_SYNC); 215 ret2 = file_check_and_advance_wb_err(file); 216 if (ret2 < 0) 217 return ret2; 218 return ret; 219 } 220 221 int 222 nfs_file_fsync(struct file *file, loff_t start, loff_t end, int datasync) 223 { 224 struct nfs_open_context *ctx = nfs_file_open_context(file); 225 struct inode *inode = file_inode(file); 226 int ret; 227 228 trace_nfs_fsync_enter(inode); 229 230 for (;;) { 231 ret = file_write_and_wait_range(file, start, end); 232 if (ret != 0) 233 break; 234 ret = nfs_file_fsync_commit(file, datasync); 235 if (ret != 0) 236 break; 237 ret = pnfs_sync_inode(inode, !!datasync); 238 if (ret != 0) 239 break; 240 if (!test_and_clear_bit(NFS_CONTEXT_RESEND_WRITES, &ctx->flags)) 241 break; 242 /* 243 * If nfs_file_fsync_commit detected a server reboot, then 244 * resend all dirty pages that might have been covered by 245 * the NFS_CONTEXT_RESEND_WRITES flag 246 */ 247 start = 0; 248 end = LLONG_MAX; 249 } 250 251 trace_nfs_fsync_exit(inode, ret); 252 return ret; 253 } 254 EXPORT_SYMBOL_GPL(nfs_file_fsync); 255 256 /* 257 * Decide whether a read/modify/write cycle may be more efficient 258 * then a modify/write/read cycle when writing to a page in the 259 * page cache. 260 * 261 * Some pNFS layout drivers can only read/write at a certain block 262 * granularity like all block devices and therefore we must perform 263 * read/modify/write whenever a page hasn't read yet and the data 264 * to be written there is not aligned to a block boundary and/or 265 * smaller than the block size. 266 * 267 * The modify/write/read cycle may occur if a page is read before 268 * being completely filled by the writer. In this situation, the 269 * page must be completely written to stable storage on the server 270 * before it can be refilled by reading in the page from the server. 271 * This can lead to expensive, small, FILE_SYNC mode writes being 272 * done. 273 * 274 * It may be more efficient to read the page first if the file is 275 * open for reading in addition to writing, the page is not marked 276 * as Uptodate, it is not dirty or waiting to be committed, 277 * indicating that it was previously allocated and then modified, 278 * that there were valid bytes of data in that range of the file, 279 * and that the new data won't completely replace the old data in 280 * that range of the file. 281 */ 282 static bool nfs_full_page_write(struct page *page, loff_t pos, unsigned int len) 283 { 284 unsigned int pglen = nfs_page_length(page); 285 unsigned int offset = pos & (PAGE_SIZE - 1); 286 unsigned int end = offset + len; 287 288 return !pglen || (end >= pglen && !offset); 289 } 290 291 static bool nfs_want_read_modify_write(struct file *file, struct page *page, 292 loff_t pos, unsigned int len) 293 { 294 /* 295 * Up-to-date pages, those with ongoing or full-page write 296 * don't need read/modify/write 297 */ 298 if (PageUptodate(page) || PagePrivate(page) || 299 nfs_full_page_write(page, pos, len)) 300 return false; 301 302 if (pnfs_ld_read_whole_page(file->f_mapping->host)) 303 return true; 304 /* Open for reading too? */ 305 if (file->f_mode & FMODE_READ) 306 return true; 307 return false; 308 } 309 310 /* 311 * This does the "real" work of the write. We must allocate and lock the 312 * page to be sent back to the generic routine, which then copies the 313 * data from user space. 314 * 315 * If the writer ends up delaying the write, the writer needs to 316 * increment the page use counts until he is done with the page. 317 */ 318 static int nfs_write_begin(struct file *file, struct address_space *mapping, 319 loff_t pos, unsigned len, 320 struct page **pagep, void **fsdata) 321 { 322 int ret; 323 pgoff_t index = pos >> PAGE_SHIFT; 324 struct page *page; 325 int once_thru = 0; 326 327 dfprintk(PAGECACHE, "NFS: write_begin(%pD2(%lu), %u@%lld)\n", 328 file, mapping->host->i_ino, len, (long long) pos); 329 330 start: 331 page = grab_cache_page_write_begin(mapping, index); 332 if (!page) 333 return -ENOMEM; 334 *pagep = page; 335 336 ret = nfs_flush_incompatible(file, page); 337 if (ret) { 338 unlock_page(page); 339 put_page(page); 340 } else if (!once_thru && 341 nfs_want_read_modify_write(file, page, pos, len)) { 342 once_thru = 1; 343 ret = nfs_read_folio(file, page_folio(page)); 344 put_page(page); 345 if (!ret) 346 goto start; 347 } 348 return ret; 349 } 350 351 static int nfs_write_end(struct file *file, struct address_space *mapping, 352 loff_t pos, unsigned len, unsigned copied, 353 struct page *page, void *fsdata) 354 { 355 unsigned offset = pos & (PAGE_SIZE - 1); 356 struct nfs_open_context *ctx = nfs_file_open_context(file); 357 int status; 358 359 dfprintk(PAGECACHE, "NFS: write_end(%pD2(%lu), %u@%lld)\n", 360 file, mapping->host->i_ino, len, (long long) pos); 361 362 /* 363 * Zero any uninitialised parts of the page, and then mark the page 364 * as up to date if it turns out that we're extending the file. 365 */ 366 if (!PageUptodate(page)) { 367 unsigned pglen = nfs_page_length(page); 368 unsigned end = offset + copied; 369 370 if (pglen == 0) { 371 zero_user_segments(page, 0, offset, 372 end, PAGE_SIZE); 373 SetPageUptodate(page); 374 } else if (end >= pglen) { 375 zero_user_segment(page, end, PAGE_SIZE); 376 if (offset == 0) 377 SetPageUptodate(page); 378 } else 379 zero_user_segment(page, pglen, PAGE_SIZE); 380 } 381 382 status = nfs_updatepage(file, page, offset, copied); 383 384 unlock_page(page); 385 put_page(page); 386 387 if (status < 0) 388 return status; 389 NFS_I(mapping->host)->write_io += copied; 390 391 if (nfs_ctx_key_to_expire(ctx, mapping->host)) 392 nfs_wb_all(mapping->host); 393 394 return copied; 395 } 396 397 /* 398 * Partially or wholly invalidate a page 399 * - Release the private state associated with a page if undergoing complete 400 * page invalidation 401 * - Called if either PG_private or PG_fscache is set on the page 402 * - Caller holds page lock 403 */ 404 static void nfs_invalidate_folio(struct folio *folio, size_t offset, 405 size_t length) 406 { 407 dfprintk(PAGECACHE, "NFS: invalidate_folio(%lu, %zu, %zu)\n", 408 folio->index, offset, length); 409 410 if (offset != 0 || length < folio_size(folio)) 411 return; 412 /* Cancel any unstarted writes on this page */ 413 nfs_wb_folio_cancel(folio->mapping->host, folio); 414 folio_wait_fscache(folio); 415 } 416 417 /* 418 * Attempt to release the private state associated with a folio 419 * - Called if either private or fscache flags are set on the folio 420 * - Caller holds folio lock 421 * - Return true (may release folio) or false (may not) 422 */ 423 static bool nfs_release_folio(struct folio *folio, gfp_t gfp) 424 { 425 dfprintk(PAGECACHE, "NFS: release_folio(%p)\n", folio); 426 427 /* If the private flag is set, then the folio is not freeable */ 428 if (folio_test_private(folio)) 429 return false; 430 return nfs_fscache_release_folio(folio, gfp); 431 } 432 433 static void nfs_check_dirty_writeback(struct folio *folio, 434 bool *dirty, bool *writeback) 435 { 436 struct nfs_inode *nfsi; 437 struct address_space *mapping = folio->mapping; 438 439 /* 440 * Check if an unstable folio is currently being committed and 441 * if so, have the VM treat it as if the folio is under writeback 442 * so it will not block due to folios that will shortly be freeable. 443 */ 444 nfsi = NFS_I(mapping->host); 445 if (atomic_read(&nfsi->commit_info.rpcs_out)) { 446 *writeback = true; 447 return; 448 } 449 450 /* 451 * If the private flag is set, then the folio is not freeable 452 * and as the inode is not being committed, it's not going to 453 * be cleaned in the near future so treat it as dirty 454 */ 455 if (folio_test_private(folio)) 456 *dirty = true; 457 } 458 459 /* 460 * Attempt to clear the private state associated with a page when an error 461 * occurs that requires the cached contents of an inode to be written back or 462 * destroyed 463 * - Called if either PG_private or fscache is set on the page 464 * - Caller holds page lock 465 * - Return 0 if successful, -error otherwise 466 */ 467 static int nfs_launder_folio(struct folio *folio) 468 { 469 struct inode *inode = folio->mapping->host; 470 471 dfprintk(PAGECACHE, "NFS: launder_folio(%ld, %llu)\n", 472 inode->i_ino, folio_pos(folio)); 473 474 folio_wait_fscache(folio); 475 return nfs_wb_page(inode, &folio->page); 476 } 477 478 static int nfs_swap_activate(struct swap_info_struct *sis, struct file *file, 479 sector_t *span) 480 { 481 unsigned long blocks; 482 long long isize; 483 int ret; 484 struct inode *inode = file_inode(file); 485 struct rpc_clnt *clnt = NFS_CLIENT(inode); 486 struct nfs_client *cl = NFS_SERVER(inode)->nfs_client; 487 488 spin_lock(&inode->i_lock); 489 blocks = inode->i_blocks; 490 isize = inode->i_size; 491 spin_unlock(&inode->i_lock); 492 if (blocks*512 < isize) { 493 pr_warn("swap activate: swapfile has holes\n"); 494 return -EINVAL; 495 } 496 497 ret = rpc_clnt_swap_activate(clnt); 498 if (ret) 499 return ret; 500 ret = add_swap_extent(sis, 0, sis->max, 0); 501 if (ret < 0) { 502 rpc_clnt_swap_deactivate(clnt); 503 return ret; 504 } 505 506 *span = sis->pages; 507 508 if (cl->rpc_ops->enable_swap) 509 cl->rpc_ops->enable_swap(inode); 510 511 sis->flags |= SWP_FS_OPS; 512 return ret; 513 } 514 515 static void nfs_swap_deactivate(struct file *file) 516 { 517 struct inode *inode = file_inode(file); 518 struct rpc_clnt *clnt = NFS_CLIENT(inode); 519 struct nfs_client *cl = NFS_SERVER(inode)->nfs_client; 520 521 rpc_clnt_swap_deactivate(clnt); 522 if (cl->rpc_ops->disable_swap) 523 cl->rpc_ops->disable_swap(file_inode(file)); 524 } 525 526 const struct address_space_operations nfs_file_aops = { 527 .read_folio = nfs_read_folio, 528 .readahead = nfs_readahead, 529 .dirty_folio = filemap_dirty_folio, 530 .writepage = nfs_writepage, 531 .writepages = nfs_writepages, 532 .write_begin = nfs_write_begin, 533 .write_end = nfs_write_end, 534 .invalidate_folio = nfs_invalidate_folio, 535 .release_folio = nfs_release_folio, 536 #ifdef CONFIG_MIGRATION 537 .migratepage = nfs_migrate_page, 538 #endif 539 .launder_folio = nfs_launder_folio, 540 .is_dirty_writeback = nfs_check_dirty_writeback, 541 .error_remove_page = generic_error_remove_page, 542 .swap_activate = nfs_swap_activate, 543 .swap_deactivate = nfs_swap_deactivate, 544 .swap_rw = nfs_swap_rw, 545 }; 546 547 /* 548 * Notification that a PTE pointing to an NFS page is about to be made 549 * writable, implying that someone is about to modify the page through a 550 * shared-writable mapping 551 */ 552 static vm_fault_t nfs_vm_page_mkwrite(struct vm_fault *vmf) 553 { 554 struct page *page = vmf->page; 555 struct file *filp = vmf->vma->vm_file; 556 struct inode *inode = file_inode(filp); 557 unsigned pagelen; 558 vm_fault_t ret = VM_FAULT_NOPAGE; 559 struct address_space *mapping; 560 561 dfprintk(PAGECACHE, "NFS: vm_page_mkwrite(%pD2(%lu), offset %lld)\n", 562 filp, filp->f_mapping->host->i_ino, 563 (long long)page_offset(page)); 564 565 sb_start_pagefault(inode->i_sb); 566 567 /* make sure the cache has finished storing the page */ 568 if (PageFsCache(page) && 569 wait_on_page_fscache_killable(vmf->page) < 0) { 570 ret = VM_FAULT_RETRY; 571 goto out; 572 } 573 574 wait_on_bit_action(&NFS_I(inode)->flags, NFS_INO_INVALIDATING, 575 nfs_wait_bit_killable, TASK_KILLABLE); 576 577 lock_page(page); 578 mapping = page_file_mapping(page); 579 if (mapping != inode->i_mapping) 580 goto out_unlock; 581 582 wait_on_page_writeback(page); 583 584 pagelen = nfs_page_length(page); 585 if (pagelen == 0) 586 goto out_unlock; 587 588 ret = VM_FAULT_LOCKED; 589 if (nfs_flush_incompatible(filp, page) == 0 && 590 nfs_updatepage(filp, page, 0, pagelen) == 0) 591 goto out; 592 593 ret = VM_FAULT_SIGBUS; 594 out_unlock: 595 unlock_page(page); 596 out: 597 sb_end_pagefault(inode->i_sb); 598 return ret; 599 } 600 601 static const struct vm_operations_struct nfs_file_vm_ops = { 602 .fault = filemap_fault, 603 .map_pages = filemap_map_pages, 604 .page_mkwrite = nfs_vm_page_mkwrite, 605 }; 606 607 ssize_t nfs_file_write(struct kiocb *iocb, struct iov_iter *from) 608 { 609 struct file *file = iocb->ki_filp; 610 struct inode *inode = file_inode(file); 611 unsigned int mntflags = NFS_SERVER(inode)->flags; 612 ssize_t result, written; 613 errseq_t since; 614 int error; 615 616 result = nfs_key_timeout_notify(file, inode); 617 if (result) 618 return result; 619 620 if (iocb->ki_flags & IOCB_DIRECT) 621 return nfs_file_direct_write(iocb, from, false); 622 623 dprintk("NFS: write(%pD2, %zu@%Ld)\n", 624 file, iov_iter_count(from), (long long) iocb->ki_pos); 625 626 if (IS_SWAPFILE(inode)) 627 goto out_swapfile; 628 /* 629 * O_APPEND implies that we must revalidate the file length. 630 */ 631 if (iocb->ki_flags & IOCB_APPEND || iocb->ki_pos > i_size_read(inode)) { 632 result = nfs_revalidate_file_size(inode, file); 633 if (result) 634 return result; 635 } 636 637 nfs_clear_invalid_mapping(file->f_mapping); 638 639 since = filemap_sample_wb_err(file->f_mapping); 640 nfs_start_io_write(inode); 641 result = generic_write_checks(iocb, from); 642 if (result > 0) { 643 current->backing_dev_info = inode_to_bdi(inode); 644 result = generic_perform_write(iocb, from); 645 current->backing_dev_info = NULL; 646 } 647 nfs_end_io_write(inode); 648 if (result <= 0) 649 goto out; 650 651 written = result; 652 iocb->ki_pos += written; 653 nfs_add_stats(inode, NFSIOS_NORMALWRITTENBYTES, written); 654 655 if (mntflags & NFS_MOUNT_WRITE_EAGER) { 656 result = filemap_fdatawrite_range(file->f_mapping, 657 iocb->ki_pos - written, 658 iocb->ki_pos - 1); 659 if (result < 0) 660 goto out; 661 } 662 if (mntflags & NFS_MOUNT_WRITE_WAIT) { 663 result = filemap_fdatawait_range(file->f_mapping, 664 iocb->ki_pos - written, 665 iocb->ki_pos - 1); 666 if (result < 0) 667 goto out; 668 } 669 result = generic_write_sync(iocb, written); 670 if (result < 0) 671 return result; 672 673 out: 674 /* Return error values */ 675 error = filemap_check_wb_err(file->f_mapping, since); 676 switch (error) { 677 default: 678 break; 679 case -EDQUOT: 680 case -EFBIG: 681 case -ENOSPC: 682 nfs_wb_all(inode); 683 error = file_check_and_advance_wb_err(file); 684 if (error < 0) 685 result = error; 686 } 687 return result; 688 689 out_swapfile: 690 printk(KERN_INFO "NFS: attempt to write to active swap file!\n"); 691 return -ETXTBSY; 692 } 693 EXPORT_SYMBOL_GPL(nfs_file_write); 694 695 static int 696 do_getlk(struct file *filp, int cmd, struct file_lock *fl, int is_local) 697 { 698 struct inode *inode = filp->f_mapping->host; 699 int status = 0; 700 unsigned int saved_type = fl->fl_type; 701 702 /* Try local locking first */ 703 posix_test_lock(filp, fl); 704 if (fl->fl_type != F_UNLCK) { 705 /* found a conflict */ 706 goto out; 707 } 708 fl->fl_type = saved_type; 709 710 if (NFS_PROTO(inode)->have_delegation(inode, FMODE_READ)) 711 goto out_noconflict; 712 713 if (is_local) 714 goto out_noconflict; 715 716 status = NFS_PROTO(inode)->lock(filp, cmd, fl); 717 out: 718 return status; 719 out_noconflict: 720 fl->fl_type = F_UNLCK; 721 goto out; 722 } 723 724 static int 725 do_unlk(struct file *filp, int cmd, struct file_lock *fl, int is_local) 726 { 727 struct inode *inode = filp->f_mapping->host; 728 struct nfs_lock_context *l_ctx; 729 int status; 730 731 /* 732 * Flush all pending writes before doing anything 733 * with locks.. 734 */ 735 nfs_wb_all(inode); 736 737 l_ctx = nfs_get_lock_context(nfs_file_open_context(filp)); 738 if (!IS_ERR(l_ctx)) { 739 status = nfs_iocounter_wait(l_ctx); 740 nfs_put_lock_context(l_ctx); 741 /* NOTE: special case 742 * If we're signalled while cleaning up locks on process exit, we 743 * still need to complete the unlock. 744 */ 745 if (status < 0 && !(fl->fl_flags & FL_CLOSE)) 746 return status; 747 } 748 749 /* 750 * Use local locking if mounted with "-onolock" or with appropriate 751 * "-olocal_lock=" 752 */ 753 if (!is_local) 754 status = NFS_PROTO(inode)->lock(filp, cmd, fl); 755 else 756 status = locks_lock_file_wait(filp, fl); 757 return status; 758 } 759 760 static int 761 do_setlk(struct file *filp, int cmd, struct file_lock *fl, int is_local) 762 { 763 struct inode *inode = filp->f_mapping->host; 764 int status; 765 766 /* 767 * Flush all pending writes before doing anything 768 * with locks.. 769 */ 770 status = nfs_sync_mapping(filp->f_mapping); 771 if (status != 0) 772 goto out; 773 774 /* 775 * Use local locking if mounted with "-onolock" or with appropriate 776 * "-olocal_lock=" 777 */ 778 if (!is_local) 779 status = NFS_PROTO(inode)->lock(filp, cmd, fl); 780 else 781 status = locks_lock_file_wait(filp, fl); 782 if (status < 0) 783 goto out; 784 785 /* 786 * Invalidate cache to prevent missing any changes. If 787 * the file is mapped, clear the page cache as well so 788 * those mappings will be loaded. 789 * 790 * This makes locking act as a cache coherency point. 791 */ 792 nfs_sync_mapping(filp->f_mapping); 793 if (!NFS_PROTO(inode)->have_delegation(inode, FMODE_READ)) { 794 nfs_zap_caches(inode); 795 if (mapping_mapped(filp->f_mapping)) 796 nfs_revalidate_mapping(inode, filp->f_mapping); 797 } 798 out: 799 return status; 800 } 801 802 /* 803 * Lock a (portion of) a file 804 */ 805 int nfs_lock(struct file *filp, int cmd, struct file_lock *fl) 806 { 807 struct inode *inode = filp->f_mapping->host; 808 int ret = -ENOLCK; 809 int is_local = 0; 810 811 dprintk("NFS: lock(%pD2, t=%x, fl=%x, r=%lld:%lld)\n", 812 filp, fl->fl_type, fl->fl_flags, 813 (long long)fl->fl_start, (long long)fl->fl_end); 814 815 nfs_inc_stats(inode, NFSIOS_VFSLOCK); 816 817 if (fl->fl_flags & FL_RECLAIM) 818 return -ENOGRACE; 819 820 if (NFS_SERVER(inode)->flags & NFS_MOUNT_LOCAL_FCNTL) 821 is_local = 1; 822 823 if (NFS_PROTO(inode)->lock_check_bounds != NULL) { 824 ret = NFS_PROTO(inode)->lock_check_bounds(fl); 825 if (ret < 0) 826 goto out_err; 827 } 828 829 if (IS_GETLK(cmd)) 830 ret = do_getlk(filp, cmd, fl, is_local); 831 else if (fl->fl_type == F_UNLCK) 832 ret = do_unlk(filp, cmd, fl, is_local); 833 else 834 ret = do_setlk(filp, cmd, fl, is_local); 835 out_err: 836 return ret; 837 } 838 EXPORT_SYMBOL_GPL(nfs_lock); 839 840 /* 841 * Lock a (portion of) a file 842 */ 843 int nfs_flock(struct file *filp, int cmd, struct file_lock *fl) 844 { 845 struct inode *inode = filp->f_mapping->host; 846 int is_local = 0; 847 848 dprintk("NFS: flock(%pD2, t=%x, fl=%x)\n", 849 filp, fl->fl_type, fl->fl_flags); 850 851 if (!(fl->fl_flags & FL_FLOCK)) 852 return -ENOLCK; 853 854 if (NFS_SERVER(inode)->flags & NFS_MOUNT_LOCAL_FLOCK) 855 is_local = 1; 856 857 /* We're simulating flock() locks using posix locks on the server */ 858 if (fl->fl_type == F_UNLCK) 859 return do_unlk(filp, cmd, fl, is_local); 860 return do_setlk(filp, cmd, fl, is_local); 861 } 862 EXPORT_SYMBOL_GPL(nfs_flock); 863 864 const struct file_operations nfs_file_operations = { 865 .llseek = nfs_file_llseek, 866 .read_iter = nfs_file_read, 867 .write_iter = nfs_file_write, 868 .mmap = nfs_file_mmap, 869 .open = nfs_file_open, 870 .flush = nfs_file_flush, 871 .release = nfs_file_release, 872 .fsync = nfs_file_fsync, 873 .lock = nfs_lock, 874 .flock = nfs_flock, 875 .splice_read = generic_file_splice_read, 876 .splice_write = iter_file_splice_write, 877 .check_flags = nfs_check_flags, 878 .setlease = simple_nosetlease, 879 }; 880 EXPORT_SYMBOL_GPL(nfs_file_operations); 881