xref: /linux/fs/nfs/file.c (revision 680e6ffa15103ab610c0fc1241d2f98c801b13e2)
1 /*
2  *  linux/fs/nfs/file.c
3  *
4  *  Copyright (C) 1992  Rick Sladkey
5  *
6  *  Changes Copyright (C) 1994 by Florian La Roche
7  *   - Do not copy data too often around in the kernel.
8  *   - In nfs_file_read the return value of kmalloc wasn't checked.
9  *   - Put in a better version of read look-ahead buffering. Original idea
10  *     and implementation by Wai S Kok elekokws@ee.nus.sg.
11  *
12  *  Expire cache on write to a file by Wai S Kok (Oct 1994).
13  *
14  *  Total rewrite of read side for new NFS buffer cache.. Linus.
15  *
16  *  nfs regular file handling functions
17  */
18 
19 #include <linux/module.h>
20 #include <linux/time.h>
21 #include <linux/kernel.h>
22 #include <linux/errno.h>
23 #include <linux/fcntl.h>
24 #include <linux/stat.h>
25 #include <linux/nfs_fs.h>
26 #include <linux/nfs_mount.h>
27 #include <linux/mm.h>
28 #include <linux/pagemap.h>
29 #include <linux/gfp.h>
30 #include <linux/swap.h>
31 
32 #include <linux/uaccess.h>
33 
34 #include "delegation.h"
35 #include "internal.h"
36 #include "iostat.h"
37 #include "fscache.h"
38 #include "pnfs.h"
39 
40 #include "nfstrace.h"
41 
42 #define NFSDBG_FACILITY		NFSDBG_FILE
43 
44 static const struct vm_operations_struct nfs_file_vm_ops;
45 
46 /* Hack for future NFS swap support */
47 #ifndef IS_SWAPFILE
48 # define IS_SWAPFILE(inode)	(0)
49 #endif
50 
51 int nfs_check_flags(int flags)
52 {
53 	if ((flags & (O_APPEND | O_DIRECT)) == (O_APPEND | O_DIRECT))
54 		return -EINVAL;
55 
56 	return 0;
57 }
58 EXPORT_SYMBOL_GPL(nfs_check_flags);
59 
60 /*
61  * Open file
62  */
63 static int
64 nfs_file_open(struct inode *inode, struct file *filp)
65 {
66 	int res;
67 
68 	dprintk("NFS: open file(%pD2)\n", filp);
69 
70 	nfs_inc_stats(inode, NFSIOS_VFSOPEN);
71 	res = nfs_check_flags(filp->f_flags);
72 	if (res)
73 		return res;
74 
75 	res = nfs_open(inode, filp);
76 	return res;
77 }
78 
79 int
80 nfs_file_release(struct inode *inode, struct file *filp)
81 {
82 	dprintk("NFS: release(%pD2)\n", filp);
83 
84 	nfs_inc_stats(inode, NFSIOS_VFSRELEASE);
85 	nfs_file_clear_open_context(filp);
86 	return 0;
87 }
88 EXPORT_SYMBOL_GPL(nfs_file_release);
89 
90 /**
91  * nfs_revalidate_size - Revalidate the file size
92  * @inode: pointer to inode struct
93  * @filp: pointer to struct file
94  *
95  * Revalidates the file length. This is basically a wrapper around
96  * nfs_revalidate_inode() that takes into account the fact that we may
97  * have cached writes (in which case we don't care about the server's
98  * idea of what the file length is), or O_DIRECT (in which case we
99  * shouldn't trust the cache).
100  */
101 static int nfs_revalidate_file_size(struct inode *inode, struct file *filp)
102 {
103 	struct nfs_server *server = NFS_SERVER(inode);
104 
105 	if (filp->f_flags & O_DIRECT)
106 		goto force_reval;
107 	if (nfs_check_cache_invalid(inode, NFS_INO_REVAL_PAGECACHE))
108 		goto force_reval;
109 	return 0;
110 force_reval:
111 	return __nfs_revalidate_inode(server, inode);
112 }
113 
114 loff_t nfs_file_llseek(struct file *filp, loff_t offset, int whence)
115 {
116 	dprintk("NFS: llseek file(%pD2, %lld, %d)\n",
117 			filp, offset, whence);
118 
119 	/*
120 	 * whence == SEEK_END || SEEK_DATA || SEEK_HOLE => we must revalidate
121 	 * the cached file length
122 	 */
123 	if (whence != SEEK_SET && whence != SEEK_CUR) {
124 		struct inode *inode = filp->f_mapping->host;
125 
126 		int retval = nfs_revalidate_file_size(inode, filp);
127 		if (retval < 0)
128 			return (loff_t)retval;
129 	}
130 
131 	return generic_file_llseek(filp, offset, whence);
132 }
133 EXPORT_SYMBOL_GPL(nfs_file_llseek);
134 
135 /*
136  * Flush all dirty pages, and check for write errors.
137  */
138 static int
139 nfs_file_flush(struct file *file, fl_owner_t id)
140 {
141 	struct inode	*inode = file_inode(file);
142 
143 	dprintk("NFS: flush(%pD2)\n", file);
144 
145 	nfs_inc_stats(inode, NFSIOS_VFSFLUSH);
146 	if ((file->f_mode & FMODE_WRITE) == 0)
147 		return 0;
148 
149 	/* Flush writes to the server and return any errors */
150 	return vfs_fsync(file, 0);
151 }
152 
153 ssize_t
154 nfs_file_read(struct kiocb *iocb, struct iov_iter *to)
155 {
156 	struct inode *inode = file_inode(iocb->ki_filp);
157 	ssize_t result;
158 
159 	if (iocb->ki_flags & IOCB_DIRECT)
160 		return nfs_file_direct_read(iocb, to);
161 
162 	dprintk("NFS: read(%pD2, %zu@%lu)\n",
163 		iocb->ki_filp,
164 		iov_iter_count(to), (unsigned long) iocb->ki_pos);
165 
166 	nfs_start_io_read(inode);
167 	result = nfs_revalidate_mapping(inode, iocb->ki_filp->f_mapping);
168 	if (!result) {
169 		result = generic_file_read_iter(iocb, to);
170 		if (result > 0)
171 			nfs_add_stats(inode, NFSIOS_NORMALREADBYTES, result);
172 	}
173 	nfs_end_io_read(inode);
174 	return result;
175 }
176 EXPORT_SYMBOL_GPL(nfs_file_read);
177 
178 int
179 nfs_file_mmap(struct file * file, struct vm_area_struct * vma)
180 {
181 	struct inode *inode = file_inode(file);
182 	int	status;
183 
184 	dprintk("NFS: mmap(%pD2)\n", file);
185 
186 	/* Note: generic_file_mmap() returns ENOSYS on nommu systems
187 	 *       so we call that before revalidating the mapping
188 	 */
189 	status = generic_file_mmap(file, vma);
190 	if (!status) {
191 		vma->vm_ops = &nfs_file_vm_ops;
192 		status = nfs_revalidate_mapping(inode, file->f_mapping);
193 	}
194 	return status;
195 }
196 EXPORT_SYMBOL_GPL(nfs_file_mmap);
197 
198 /*
199  * Flush any dirty pages for this process, and check for write errors.
200  * The return status from this call provides a reliable indication of
201  * whether any write errors occurred for this process.
202  *
203  * Notice that it clears the NFS_CONTEXT_ERROR_WRITE before synching to
204  * disk, but it retrieves and clears ctx->error after synching, despite
205  * the two being set at the same time in nfs_context_set_write_error().
206  * This is because the former is used to notify the _next_ call to
207  * nfs_file_write() that a write error occurred, and hence cause it to
208  * fall back to doing a synchronous write.
209  */
210 static int
211 nfs_file_fsync_commit(struct file *file, int datasync)
212 {
213 	struct nfs_open_context *ctx = nfs_file_open_context(file);
214 	struct inode *inode = file_inode(file);
215 	int do_resend, status;
216 	int ret = 0;
217 
218 	dprintk("NFS: fsync file(%pD2) datasync %d\n", file, datasync);
219 
220 	nfs_inc_stats(inode, NFSIOS_VFSFSYNC);
221 	do_resend = test_and_clear_bit(NFS_CONTEXT_RESEND_WRITES, &ctx->flags);
222 	status = nfs_commit_inode(inode, FLUSH_SYNC);
223 	if (test_bit(NFS_CONTEXT_ERROR_WRITE, &ctx->flags)) {
224 		ret = xchg(&ctx->error, 0);
225 		if (ret)
226 			goto out;
227 	}
228 	if (status < 0) {
229 		ret = status;
230 		goto out;
231 	}
232 	do_resend |= test_bit(NFS_CONTEXT_RESEND_WRITES, &ctx->flags);
233 	if (do_resend)
234 		ret = -EAGAIN;
235 out:
236 	return ret;
237 }
238 
239 int
240 nfs_file_fsync(struct file *file, loff_t start, loff_t end, int datasync)
241 {
242 	int ret;
243 	struct inode *inode = file_inode(file);
244 
245 	trace_nfs_fsync_enter(inode);
246 
247 	do {
248 		struct nfs_open_context *ctx = nfs_file_open_context(file);
249 		ret = filemap_write_and_wait_range(inode->i_mapping, start, end);
250 		if (test_and_clear_bit(NFS_CONTEXT_ERROR_WRITE, &ctx->flags)) {
251 			int ret2 = xchg(&ctx->error, 0);
252 			if (ret2)
253 				ret = ret2;
254 		}
255 		if (ret != 0)
256 			break;
257 		ret = nfs_file_fsync_commit(file, datasync);
258 		if (!ret)
259 			ret = pnfs_sync_inode(inode, !!datasync);
260 		/*
261 		 * If nfs_file_fsync_commit detected a server reboot, then
262 		 * resend all dirty pages that might have been covered by
263 		 * the NFS_CONTEXT_RESEND_WRITES flag
264 		 */
265 		start = 0;
266 		end = LLONG_MAX;
267 	} while (ret == -EAGAIN);
268 
269 	trace_nfs_fsync_exit(inode, ret);
270 	return ret;
271 }
272 EXPORT_SYMBOL_GPL(nfs_file_fsync);
273 
274 /*
275  * Decide whether a read/modify/write cycle may be more efficient
276  * then a modify/write/read cycle when writing to a page in the
277  * page cache.
278  *
279  * Some pNFS layout drivers can only read/write at a certain block
280  * granularity like all block devices and therefore we must perform
281  * read/modify/write whenever a page hasn't read yet and the data
282  * to be written there is not aligned to a block boundary and/or
283  * smaller than the block size.
284  *
285  * The modify/write/read cycle may occur if a page is read before
286  * being completely filled by the writer.  In this situation, the
287  * page must be completely written to stable storage on the server
288  * before it can be refilled by reading in the page from the server.
289  * This can lead to expensive, small, FILE_SYNC mode writes being
290  * done.
291  *
292  * It may be more efficient to read the page first if the file is
293  * open for reading in addition to writing, the page is not marked
294  * as Uptodate, it is not dirty or waiting to be committed,
295  * indicating that it was previously allocated and then modified,
296  * that there were valid bytes of data in that range of the file,
297  * and that the new data won't completely replace the old data in
298  * that range of the file.
299  */
300 static bool nfs_full_page_write(struct page *page, loff_t pos, unsigned int len)
301 {
302 	unsigned int pglen = nfs_page_length(page);
303 	unsigned int offset = pos & (PAGE_SIZE - 1);
304 	unsigned int end = offset + len;
305 
306 	return !pglen || (end >= pglen && !offset);
307 }
308 
309 static bool nfs_want_read_modify_write(struct file *file, struct page *page,
310 			loff_t pos, unsigned int len)
311 {
312 	/*
313 	 * Up-to-date pages, those with ongoing or full-page write
314 	 * don't need read/modify/write
315 	 */
316 	if (PageUptodate(page) || PagePrivate(page) ||
317 	    nfs_full_page_write(page, pos, len))
318 		return false;
319 
320 	if (pnfs_ld_read_whole_page(file->f_mapping->host))
321 		return true;
322 	/* Open for reading too? */
323 	if (file->f_mode & FMODE_READ)
324 		return true;
325 	return false;
326 }
327 
328 /*
329  * This does the "real" work of the write. We must allocate and lock the
330  * page to be sent back to the generic routine, which then copies the
331  * data from user space.
332  *
333  * If the writer ends up delaying the write, the writer needs to
334  * increment the page use counts until he is done with the page.
335  */
336 static int nfs_write_begin(struct file *file, struct address_space *mapping,
337 			loff_t pos, unsigned len, unsigned flags,
338 			struct page **pagep, void **fsdata)
339 {
340 	int ret;
341 	pgoff_t index = pos >> PAGE_SHIFT;
342 	struct page *page;
343 	int once_thru = 0;
344 
345 	dfprintk(PAGECACHE, "NFS: write_begin(%pD2(%lu), %u@%lld)\n",
346 		file, mapping->host->i_ino, len, (long long) pos);
347 
348 start:
349 	page = grab_cache_page_write_begin(mapping, index, flags);
350 	if (!page)
351 		return -ENOMEM;
352 	*pagep = page;
353 
354 	ret = nfs_flush_incompatible(file, page);
355 	if (ret) {
356 		unlock_page(page);
357 		put_page(page);
358 	} else if (!once_thru &&
359 		   nfs_want_read_modify_write(file, page, pos, len)) {
360 		once_thru = 1;
361 		ret = nfs_readpage(file, page);
362 		put_page(page);
363 		if (!ret)
364 			goto start;
365 	}
366 	return ret;
367 }
368 
369 static int nfs_write_end(struct file *file, struct address_space *mapping,
370 			loff_t pos, unsigned len, unsigned copied,
371 			struct page *page, void *fsdata)
372 {
373 	unsigned offset = pos & (PAGE_SIZE - 1);
374 	struct nfs_open_context *ctx = nfs_file_open_context(file);
375 	int status;
376 
377 	dfprintk(PAGECACHE, "NFS: write_end(%pD2(%lu), %u@%lld)\n",
378 		file, mapping->host->i_ino, len, (long long) pos);
379 
380 	/*
381 	 * Zero any uninitialised parts of the page, and then mark the page
382 	 * as up to date if it turns out that we're extending the file.
383 	 */
384 	if (!PageUptodate(page)) {
385 		unsigned pglen = nfs_page_length(page);
386 		unsigned end = offset + copied;
387 
388 		if (pglen == 0) {
389 			zero_user_segments(page, 0, offset,
390 					end, PAGE_SIZE);
391 			SetPageUptodate(page);
392 		} else if (end >= pglen) {
393 			zero_user_segment(page, end, PAGE_SIZE);
394 			if (offset == 0)
395 				SetPageUptodate(page);
396 		} else
397 			zero_user_segment(page, pglen, PAGE_SIZE);
398 	}
399 
400 	status = nfs_updatepage(file, page, offset, copied);
401 
402 	unlock_page(page);
403 	put_page(page);
404 
405 	if (status < 0)
406 		return status;
407 	NFS_I(mapping->host)->write_io += copied;
408 
409 	if (nfs_ctx_key_to_expire(ctx, mapping->host)) {
410 		status = nfs_wb_all(mapping->host);
411 		if (status < 0)
412 			return status;
413 	}
414 
415 	return copied;
416 }
417 
418 /*
419  * Partially or wholly invalidate a page
420  * - Release the private state associated with a page if undergoing complete
421  *   page invalidation
422  * - Called if either PG_private or PG_fscache is set on the page
423  * - Caller holds page lock
424  */
425 static void nfs_invalidate_page(struct page *page, unsigned int offset,
426 				unsigned int length)
427 {
428 	dfprintk(PAGECACHE, "NFS: invalidate_page(%p, %u, %u)\n",
429 		 page, offset, length);
430 
431 	if (offset != 0 || length < PAGE_SIZE)
432 		return;
433 	/* Cancel any unstarted writes on this page */
434 	nfs_wb_page_cancel(page_file_mapping(page)->host, page);
435 
436 	nfs_fscache_invalidate_page(page, page->mapping->host);
437 }
438 
439 /*
440  * Attempt to release the private state associated with a page
441  * - Called if either PG_private or PG_fscache is set on the page
442  * - Caller holds page lock
443  * - Return true (may release page) or false (may not)
444  */
445 static int nfs_release_page(struct page *page, gfp_t gfp)
446 {
447 	dfprintk(PAGECACHE, "NFS: release_page(%p)\n", page);
448 
449 	/* If PagePrivate() is set, then the page is not freeable */
450 	if (PagePrivate(page))
451 		return 0;
452 	return nfs_fscache_release_page(page, gfp);
453 }
454 
455 static void nfs_check_dirty_writeback(struct page *page,
456 				bool *dirty, bool *writeback)
457 {
458 	struct nfs_inode *nfsi;
459 	struct address_space *mapping = page_file_mapping(page);
460 
461 	if (!mapping || PageSwapCache(page))
462 		return;
463 
464 	/*
465 	 * Check if an unstable page is currently being committed and
466 	 * if so, have the VM treat it as if the page is under writeback
467 	 * so it will not block due to pages that will shortly be freeable.
468 	 */
469 	nfsi = NFS_I(mapping->host);
470 	if (atomic_read(&nfsi->commit_info.rpcs_out)) {
471 		*writeback = true;
472 		return;
473 	}
474 
475 	/*
476 	 * If PagePrivate() is set, then the page is not freeable and as the
477 	 * inode is not being committed, it's not going to be cleaned in the
478 	 * near future so treat it as dirty
479 	 */
480 	if (PagePrivate(page))
481 		*dirty = true;
482 }
483 
484 /*
485  * Attempt to clear the private state associated with a page when an error
486  * occurs that requires the cached contents of an inode to be written back or
487  * destroyed
488  * - Called if either PG_private or fscache is set on the page
489  * - Caller holds page lock
490  * - Return 0 if successful, -error otherwise
491  */
492 static int nfs_launder_page(struct page *page)
493 {
494 	struct inode *inode = page_file_mapping(page)->host;
495 	struct nfs_inode *nfsi = NFS_I(inode);
496 
497 	dfprintk(PAGECACHE, "NFS: launder_page(%ld, %llu)\n",
498 		inode->i_ino, (long long)page_offset(page));
499 
500 	nfs_fscache_wait_on_page_write(nfsi, page);
501 	return nfs_wb_page(inode, page);
502 }
503 
504 static int nfs_swap_activate(struct swap_info_struct *sis, struct file *file,
505 						sector_t *span)
506 {
507 	struct rpc_clnt *clnt = NFS_CLIENT(file->f_mapping->host);
508 
509 	*span = sis->pages;
510 
511 	return rpc_clnt_swap_activate(clnt);
512 }
513 
514 static void nfs_swap_deactivate(struct file *file)
515 {
516 	struct rpc_clnt *clnt = NFS_CLIENT(file->f_mapping->host);
517 
518 	rpc_clnt_swap_deactivate(clnt);
519 }
520 
521 const struct address_space_operations nfs_file_aops = {
522 	.readpage = nfs_readpage,
523 	.readpages = nfs_readpages,
524 	.set_page_dirty = __set_page_dirty_nobuffers,
525 	.writepage = nfs_writepage,
526 	.writepages = nfs_writepages,
527 	.write_begin = nfs_write_begin,
528 	.write_end = nfs_write_end,
529 	.invalidatepage = nfs_invalidate_page,
530 	.releasepage = nfs_release_page,
531 	.direct_IO = nfs_direct_IO,
532 #ifdef CONFIG_MIGRATION
533 	.migratepage = nfs_migrate_page,
534 #endif
535 	.launder_page = nfs_launder_page,
536 	.is_dirty_writeback = nfs_check_dirty_writeback,
537 	.error_remove_page = generic_error_remove_page,
538 	.swap_activate = nfs_swap_activate,
539 	.swap_deactivate = nfs_swap_deactivate,
540 };
541 
542 /*
543  * Notification that a PTE pointing to an NFS page is about to be made
544  * writable, implying that someone is about to modify the page through a
545  * shared-writable mapping
546  */
547 static vm_fault_t nfs_vm_page_mkwrite(struct vm_fault *vmf)
548 {
549 	struct page *page = vmf->page;
550 	struct file *filp = vmf->vma->vm_file;
551 	struct inode *inode = file_inode(filp);
552 	unsigned pagelen;
553 	vm_fault_t ret = VM_FAULT_NOPAGE;
554 	struct address_space *mapping;
555 
556 	dfprintk(PAGECACHE, "NFS: vm_page_mkwrite(%pD2(%lu), offset %lld)\n",
557 		filp, filp->f_mapping->host->i_ino,
558 		(long long)page_offset(page));
559 
560 	sb_start_pagefault(inode->i_sb);
561 
562 	/* make sure the cache has finished storing the page */
563 	nfs_fscache_wait_on_page_write(NFS_I(inode), page);
564 
565 	wait_on_bit_action(&NFS_I(inode)->flags, NFS_INO_INVALIDATING,
566 			nfs_wait_bit_killable, TASK_KILLABLE);
567 
568 	lock_page(page);
569 	mapping = page_file_mapping(page);
570 	if (mapping != inode->i_mapping)
571 		goto out_unlock;
572 
573 	wait_on_page_writeback(page);
574 
575 	pagelen = nfs_page_length(page);
576 	if (pagelen == 0)
577 		goto out_unlock;
578 
579 	ret = VM_FAULT_LOCKED;
580 	if (nfs_flush_incompatible(filp, page) == 0 &&
581 	    nfs_updatepage(filp, page, 0, pagelen) == 0)
582 		goto out;
583 
584 	ret = VM_FAULT_SIGBUS;
585 out_unlock:
586 	unlock_page(page);
587 out:
588 	sb_end_pagefault(inode->i_sb);
589 	return ret;
590 }
591 
592 static const struct vm_operations_struct nfs_file_vm_ops = {
593 	.fault = filemap_fault,
594 	.map_pages = filemap_map_pages,
595 	.page_mkwrite = nfs_vm_page_mkwrite,
596 };
597 
598 static int nfs_need_check_write(struct file *filp, struct inode *inode)
599 {
600 	struct nfs_open_context *ctx;
601 
602 	ctx = nfs_file_open_context(filp);
603 	if (test_bit(NFS_CONTEXT_ERROR_WRITE, &ctx->flags) ||
604 	    nfs_ctx_key_to_expire(ctx, inode))
605 		return 1;
606 	return 0;
607 }
608 
609 ssize_t nfs_file_write(struct kiocb *iocb, struct iov_iter *from)
610 {
611 	struct file *file = iocb->ki_filp;
612 	struct inode *inode = file_inode(file);
613 	unsigned long written = 0;
614 	ssize_t result;
615 
616 	result = nfs_key_timeout_notify(file, inode);
617 	if (result)
618 		return result;
619 
620 	if (iocb->ki_flags & IOCB_DIRECT)
621 		return nfs_file_direct_write(iocb, from);
622 
623 	dprintk("NFS: write(%pD2, %zu@%Ld)\n",
624 		file, iov_iter_count(from), (long long) iocb->ki_pos);
625 
626 	if (IS_SWAPFILE(inode))
627 		goto out_swapfile;
628 	/*
629 	 * O_APPEND implies that we must revalidate the file length.
630 	 */
631 	if (iocb->ki_flags & IOCB_APPEND) {
632 		result = nfs_revalidate_file_size(inode, file);
633 		if (result)
634 			goto out;
635 	}
636 	if (iocb->ki_pos > i_size_read(inode))
637 		nfs_revalidate_mapping(inode, file->f_mapping);
638 
639 	nfs_start_io_write(inode);
640 	result = generic_write_checks(iocb, from);
641 	if (result > 0) {
642 		current->backing_dev_info = inode_to_bdi(inode);
643 		result = generic_perform_write(file, from, iocb->ki_pos);
644 		current->backing_dev_info = NULL;
645 	}
646 	nfs_end_io_write(inode);
647 	if (result <= 0)
648 		goto out;
649 
650 	written = result;
651 	iocb->ki_pos += written;
652 	result = generic_write_sync(iocb, written);
653 	if (result < 0)
654 		goto out;
655 
656 	/* Return error values */
657 	if (nfs_need_check_write(file, inode)) {
658 		int err = vfs_fsync(file, 0);
659 		if (err < 0)
660 			result = err;
661 	}
662 	nfs_add_stats(inode, NFSIOS_NORMALWRITTENBYTES, written);
663 out:
664 	return result;
665 
666 out_swapfile:
667 	printk(KERN_INFO "NFS: attempt to write to active swap file!\n");
668 	return -EBUSY;
669 }
670 EXPORT_SYMBOL_GPL(nfs_file_write);
671 
672 static int
673 do_getlk(struct file *filp, int cmd, struct file_lock *fl, int is_local)
674 {
675 	struct inode *inode = filp->f_mapping->host;
676 	int status = 0;
677 	unsigned int saved_type = fl->fl_type;
678 
679 	/* Try local locking first */
680 	posix_test_lock(filp, fl);
681 	if (fl->fl_type != F_UNLCK) {
682 		/* found a conflict */
683 		goto out;
684 	}
685 	fl->fl_type = saved_type;
686 
687 	if (NFS_PROTO(inode)->have_delegation(inode, FMODE_READ))
688 		goto out_noconflict;
689 
690 	if (is_local)
691 		goto out_noconflict;
692 
693 	status = NFS_PROTO(inode)->lock(filp, cmd, fl);
694 out:
695 	return status;
696 out_noconflict:
697 	fl->fl_type = F_UNLCK;
698 	goto out;
699 }
700 
701 static int
702 do_unlk(struct file *filp, int cmd, struct file_lock *fl, int is_local)
703 {
704 	struct inode *inode = filp->f_mapping->host;
705 	struct nfs_lock_context *l_ctx;
706 	int status;
707 
708 	/*
709 	 * Flush all pending writes before doing anything
710 	 * with locks..
711 	 */
712 	vfs_fsync(filp, 0);
713 
714 	l_ctx = nfs_get_lock_context(nfs_file_open_context(filp));
715 	if (!IS_ERR(l_ctx)) {
716 		status = nfs_iocounter_wait(l_ctx);
717 		nfs_put_lock_context(l_ctx);
718 		/*  NOTE: special case
719 		 * 	If we're signalled while cleaning up locks on process exit, we
720 		 * 	still need to complete the unlock.
721 		 */
722 		if (status < 0 && !(fl->fl_flags & FL_CLOSE))
723 			return status;
724 	}
725 
726 	/*
727 	 * Use local locking if mounted with "-onolock" or with appropriate
728 	 * "-olocal_lock="
729 	 */
730 	if (!is_local)
731 		status = NFS_PROTO(inode)->lock(filp, cmd, fl);
732 	else
733 		status = locks_lock_file_wait(filp, fl);
734 	return status;
735 }
736 
737 static int
738 do_setlk(struct file *filp, int cmd, struct file_lock *fl, int is_local)
739 {
740 	struct inode *inode = filp->f_mapping->host;
741 	int status;
742 
743 	/*
744 	 * Flush all pending writes before doing anything
745 	 * with locks..
746 	 */
747 	status = nfs_sync_mapping(filp->f_mapping);
748 	if (status != 0)
749 		goto out;
750 
751 	/*
752 	 * Use local locking if mounted with "-onolock" or with appropriate
753 	 * "-olocal_lock="
754 	 */
755 	if (!is_local)
756 		status = NFS_PROTO(inode)->lock(filp, cmd, fl);
757 	else
758 		status = locks_lock_file_wait(filp, fl);
759 	if (status < 0)
760 		goto out;
761 
762 	/*
763 	 * Invalidate cache to prevent missing any changes.  If
764 	 * the file is mapped, clear the page cache as well so
765 	 * those mappings will be loaded.
766 	 *
767 	 * This makes locking act as a cache coherency point.
768 	 */
769 	nfs_sync_mapping(filp->f_mapping);
770 	if (!NFS_PROTO(inode)->have_delegation(inode, FMODE_READ)) {
771 		nfs_zap_caches(inode);
772 		if (mapping_mapped(filp->f_mapping))
773 			nfs_revalidate_mapping(inode, filp->f_mapping);
774 	}
775 out:
776 	return status;
777 }
778 
779 /*
780  * Lock a (portion of) a file
781  */
782 int nfs_lock(struct file *filp, int cmd, struct file_lock *fl)
783 {
784 	struct inode *inode = filp->f_mapping->host;
785 	int ret = -ENOLCK;
786 	int is_local = 0;
787 
788 	dprintk("NFS: lock(%pD2, t=%x, fl=%x, r=%lld:%lld)\n",
789 			filp, fl->fl_type, fl->fl_flags,
790 			(long long)fl->fl_start, (long long)fl->fl_end);
791 
792 	nfs_inc_stats(inode, NFSIOS_VFSLOCK);
793 
794 	/* No mandatory locks over NFS */
795 	if (__mandatory_lock(inode) && fl->fl_type != F_UNLCK)
796 		goto out_err;
797 
798 	if (NFS_SERVER(inode)->flags & NFS_MOUNT_LOCAL_FCNTL)
799 		is_local = 1;
800 
801 	if (NFS_PROTO(inode)->lock_check_bounds != NULL) {
802 		ret = NFS_PROTO(inode)->lock_check_bounds(fl);
803 		if (ret < 0)
804 			goto out_err;
805 	}
806 
807 	if (IS_GETLK(cmd))
808 		ret = do_getlk(filp, cmd, fl, is_local);
809 	else if (fl->fl_type == F_UNLCK)
810 		ret = do_unlk(filp, cmd, fl, is_local);
811 	else
812 		ret = do_setlk(filp, cmd, fl, is_local);
813 out_err:
814 	return ret;
815 }
816 EXPORT_SYMBOL_GPL(nfs_lock);
817 
818 /*
819  * Lock a (portion of) a file
820  */
821 int nfs_flock(struct file *filp, int cmd, struct file_lock *fl)
822 {
823 	struct inode *inode = filp->f_mapping->host;
824 	int is_local = 0;
825 
826 	dprintk("NFS: flock(%pD2, t=%x, fl=%x)\n",
827 			filp, fl->fl_type, fl->fl_flags);
828 
829 	if (!(fl->fl_flags & FL_FLOCK))
830 		return -ENOLCK;
831 
832 	/*
833 	 * The NFSv4 protocol doesn't support LOCK_MAND, which is not part of
834 	 * any standard. In principle we might be able to support LOCK_MAND
835 	 * on NFSv2/3 since NLMv3/4 support DOS share modes, but for now the
836 	 * NFS code is not set up for it.
837 	 */
838 	if (fl->fl_type & LOCK_MAND)
839 		return -EINVAL;
840 
841 	if (NFS_SERVER(inode)->flags & NFS_MOUNT_LOCAL_FLOCK)
842 		is_local = 1;
843 
844 	/* We're simulating flock() locks using posix locks on the server */
845 	if (fl->fl_type == F_UNLCK)
846 		return do_unlk(filp, cmd, fl, is_local);
847 	return do_setlk(filp, cmd, fl, is_local);
848 }
849 EXPORT_SYMBOL_GPL(nfs_flock);
850 
851 const struct file_operations nfs_file_operations = {
852 	.llseek		= nfs_file_llseek,
853 	.read_iter	= nfs_file_read,
854 	.write_iter	= nfs_file_write,
855 	.mmap		= nfs_file_mmap,
856 	.open		= nfs_file_open,
857 	.flush		= nfs_file_flush,
858 	.release	= nfs_file_release,
859 	.fsync		= nfs_file_fsync,
860 	.lock		= nfs_lock,
861 	.flock		= nfs_flock,
862 	.splice_read	= generic_file_splice_read,
863 	.splice_write	= iter_file_splice_write,
864 	.check_flags	= nfs_check_flags,
865 	.setlease	= simple_nosetlease,
866 };
867 EXPORT_SYMBOL_GPL(nfs_file_operations);
868